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Abstract: Hyperbolic materials enable numerous surprising applications 

that include far-field subwavelength imaging, nanolithography, and 

emission engineering. The wavevector of a plane wave in these media 

follows the surface of a hyperboloid in contrast to an ellipsoid for 

conventional anisotropic dielectric. The consequences of hyperbolic 

dispersion were first studied in the 50’s pertaining to the problems of 

electromagnetic wave propagation in the Earth’s ionosphere and in the 

stratified artificial materials of transmission lines. Recent years have 

brought explosive growth in optics and photonics of hyperbolic media 

based on metamaterials across the optical spectrum. Here we summarize 

earlier theories in the Clemmow’s prescription for transformation of the 

electromagnetic field in hyperbolic media and provide a review of recent 

developments in this active research area. 
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1. Hyperbolic media in retrospect 

Recent advances in nanofabrication, characterization, and high-performance computing, 

along with developments in the theory of light-matter interaction, have brought to life a new 

class of multi-scale composite systems, known as metamaterials. In metamaterials, it is 

material geometry that determines the interaction of these complex systems with 

electromagnetic fields. Metamaterials offer new avenues for manipulation of light, opening 

the door for such unusual applications as high-resolution imaging, lithography, and lifetime 

engineering. This review is focused on a subclass of metamaterials called hyperbolic that 

provide a flexible platform for manipulation of optical landscape. 

Hyperbolic metamaterials (HMM), uniaxial structures that due to their extreme anisotropy 

combine the properties of transparent dielectrics and reflective metals, first attracted the 

attention of researchers in the middle of last century. These efforts were stimulated by the 

problem of propagation of radio waves in the Earth’s ionosphere [1–4], and, more generally, 

by the behavior of the electromagnetic waves in a plasma of electrons and ions upon the 

applied permanent magnetic field. Along with the anisotropic plasmas, stratified man-made 

hyperbolic materials were studied for radiofrequency applications of transmission lines [5]. 

Today, hyperbolic metamaterials provide one of the most practical metamaterial platforms. 

Hyperbolic composites (also known as media with indefinite permittivity and permeability 

tensors [6]) and some homogeneous materials with hyperbolic dispersion were experimentally 

realized across the optical spectrum, from UV to visible, and from near-IR to mid-IR 

frequencies. Sub-wavelength imaging, focusing, lifetime engineering, and new approaches to 

enhance nonlinear response of optical structures, have all been demonstrated in hyperbolic 

structures. The hyperbolic media continue to be of great interest to the research community 

with possible applications emerging in heat transport and acoustics. The purpose of this 

review is to provide an outlook of this rapidly developing research area. 

The review begins with a historical digest of the hyperbolic material’s properties. Then, 

we systematically present the recent theoretical and experimental studies of optical hyperbolic 

metamaterials. While our main goal is to critically revise the existing experimental evidences 

of the potential applications of hyperbolic media for sub-diffraction imaging and spontaneous 

emission engineering, we also highlight the vital discrepancies with existing theoretical 

fundamentals. 

2. Fundamentals of hyperbolic media 

The vectors of electric displacement D  and field E  are not always parallel in electrically 

anisotropic media. They are connected by the constitutive equation 0[ε]= EeD , where [ε]  is 

a symmetric dielectric tensor and 0ε is the permittivity of vacuum. The unit coordinate 

vectors x̂ , ŷ , and ẑ represent the three Cartesian directions - the principal axes – for which 

x y z[ε] diag( , , )ε ε ε= , with xε , yε , and zε being the principal dielectric constants. In general, 

the three principal dielectric constants are distinct x y zε ε ε≠ ≠ referred to as optically 

biaxial, and may be wavelength dependent, i.e. exhibit dispersion of the optical axes. In 
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optically uniaxial media, where x yε ε ε= = , and zε ε≠ , the principal direction ẑ  must 

coincide with the optic axis, which typically defines the three-fold, four-fold or six-fold axial 

symmetry of a given crystal, so that ( )z[ε] diag , ,ε ε ε= . 

While in crystal optics a uniaxial medium corresponds to a wide class of crystalline 

structures with mainly elliptic dispersion, for magneto-ionic media it specifies the medium 

with an infinitely strong magnetostatic field bias [2], which, similar to hyperbolic 

metamaterials, can also have different signs of the principal dielectric constants, e.g. 0ε > , 

z 0ε < .Here, we restrict ourselves to uniaxial hyperbolic media, as the main known 

theoretical analyses have been done for the hyperbolic uniaxial plasmas in [3, 7, 8]. 

2.1 Clemmow’s prescriptions 

Anisotropy of material constants results in a transformation of the electromagnetic field 

distribution in space under diffraction or point source radiation. Because of the foreseeable 

complexity of the general analysis presented in [3, 7, 8] we review the Clemmow approach 

[2] and isolate the simple cases of TM and TE waves in hyperbolic plasma, which are then 

applied to the refraction and diffraction of light in novel artificial hyperbolic media. The 

analysis in [2] is restricted to a media of unit permeability, and starts with known E- and H-

fields in free space (denoted respectfully as 0 0( )E r  and 0 0( )H r ), with 0 0 0 0ˆ ˆ ˆx y z= + +r x y z  

defining an observation point. Then, the scaling procedure 0
E(r) = [e]E ([n]r)  and 

0
H(r) = [h]H ([n]r)  is derived to find the corresponding fields, ( )E r and ( )H r  in a given 

uniaxial media, where , ,[e] [n]  and [h] are linear transforms. The above procedure is 

impossible unless one of the z-components of either 0
H  or 0

E is dropped, leading to 

solutions valid solely for either transverse magnetic (TM, 0ˆ 0⋅ =z H ) or transverse electric 

(TE, 0ˆ 0⋅ =z E ) waves. 

From the symmetry considerations for TM-waves it follows that the metric and the E-field 

scaling transforms repeat the structure of the dielectric tensor, ( )z[ε] diag , , ,ε ε ε=  so that 

( )z[e] diag , , ,e e e=  and, while the transverse components of H-field are scaled uniformly, i.e. 

[ ] [ ],h=h i  where [ ]i  is the identity matrix. From the Maxwell curl equations for the TM 

waves, it then follows that 1 1 1

z
[ ] [ ] [ε]nn h− − −=n s  and 1

z
[ ] [ ] [ε],nn h− =n s  or 1

z
[ ][ ] [ε].ee h− =n e  

Multiplying the above equations we first arrive at 2 2

z ,n e ε= = 2 2

z zn e ε= = , and 2

zh εε= , 

and then, at the remarkably simple Clemmow’s TM-prescription 

 ( ) [ ] [ ]( ) ( ) [ ]0 0, ( ),zεε= =E r n E n r H r H n r  (1) 

where ( )z z[ ] diag , ,ε ε ε=n . 

In contrast, for TE-waves it can be expected that since 0ˆ 0,⋅ =z E  then zε  should not 

appear in the Maxwell equations for the uniaxial medium, as if that medium were isotropic 

with dielectric constant zε . Indeed, the final Clemmow’s TE-prescription is, ( )n ε=  

 ( ) ( ) ( )0 0, ( ).n n n= =E r E r H r H r  (2) 

2.2 Dispersion relations in a uniaxial hyperbolic medium 

Consider the behavior of monochromatic plane waves in uniaxial hyperbolic media before 

addressing the complex fields generated there by elementary sources. Following the general 
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Clemmow approach, the space-time dependence ( ) ( ); exp
c

f t tωι ω = ⋅ − r k r  is taken here 

for a plane wave defined for a given angular frequencyω  and the free-space speed of light c  

using the material wavevector [ ] 0=k n k  with the freespace wave-vector 0
k  ( )0 1=k . Then, 

the phase velocity of the plane wave is p .v c= k  A plane wave [9] in a uniaxial media splits 

into two linearly polarized characteristic waves: ordinary waves for which the E-vector is 

normal to the principal plane, which contains both the wave vector and the optic axis, ,z  and 

extraordinary waves with E-vector parallel to the principal plane. For ordinary waves, E is 

aligned with D, and the phase velocity is independent of propagation direction. As any free-

space electromagnetic field can be represented as a superposition of coplanar TM- and TE-

waves, there is always a matching superposition of coplanar TM- and TE-waves in the 

uniaxial medium obtained from the scaling transformations (1) and (2). These transformations 

are also reversible, since a representation of any uniaxial-medium field as a superposition of 

coplanar TM- and TE-waves is always possible. For example, the independent characteristic 

extraordinary (TM) and ordinary (TE) plane waves in the anisotropic medium are obtained 

from the corresponding free-space plane waves in [2]. 

 

Fig. 1. Typical vector diagram and dispersion relations in uniaxial media. (a) Plane-wave 

vectors. (b), Isofrequency cross-sections for a negative elliptic media, 
z
.ε ε<  c, d 

Isofrequency curves for different types of ideal, lossless hyperbolic media: dielectric, 

z
0, 0ε ε< >  (c), metallic, 

z
0, 0ε ε> < , (d). (e), (f) Isofrequency curves for different types 

of non-ideal, absorbing hyperbolic media: dielectric type, with 
x,y

= 0.57 0.13ε ι+ , 

4.22 2.03
z

ε ι= − +  (e); metallic type, with 
x,y

2.78 0.13ε ι= − + , 
z

6.31 0.09iε = + (f). 
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For a plane wave defined by ( );f tr , the Maxwell equations give, 

 0 0 00, 0, , , andc c cµ µ µ⋅ = ⋅ = × = × = × = −k D k H k E H k E H k H D  (3) 

While in general the Poynting vector ( )*1
Re

2
= ×S E H  is not parallel to ,k  the vectors 

within the triads( ,k H  and )D  and ( ,S E  and )H  are mutually orthogonal and vector H  is 

normal to coplanar vectors , ,k D E and ,S  as shown in Fig. 1(a). 

The eigenvalue problem ( ) [ ] 0× × + =k k E Eε , obtained from the last two equations of 

(3), gives two distinct characteristic equations respectively for ordinary and extraordinary 

waves: 

 

2 2 2 2 2 2
x y z x y z

z

1, and 1.
k k k k k k

ε ε ε

+ + +
= + =  (4) 

Note that any “nonideality” of the hyperbolic medium results in a closed form of the iso-

frequency curves instead of hyperboloid as shown in Figs. 1(e) and 1(f) for absorbing 

hyperbolic media. 

2.3 Volume plasmon polaritons in hyperbolic media 

Since the permittivity tensor has metallic properties for one of the principal components and 

dielectric for another, there should be a peculiarity in the angular dependence of wave 

propagation, namely the permittivity for extraordinary wave satisfies the condition 

( ) ( )c cRe  0ε ϕ ε ϕ′= = at the critical angle. This condition determines an angular boundary 

between “metal” and “dielectric” types of propagation. Thus a coupling between plasmon and 

polariton can occur at this virtual boundary similar to the surface plasmon polariton at a 

metal-dielectric interface. In this case the hyperbolic media support plasmon-polariton waves 

propagating across the interfaces of real metal and dielectric structures, which are called here 

volume plasmon polaritons,. Consider a slab of hyperbolic uniaxial medium with optical axis 

in the z direction. Let displacement vector D  lie in the principal plane containing both optic 

axis and wave vector k . 

Component of electric field directed along D is given by ( ) ,DE D D ε ϕ= ⋅ =E D  where 

 
( )

( ) ( )2 2

e o

sin cos1
,

ϕ ϕ

ε ϕ ε ε
= +  (5) 

o x y e z, ,ε ε ε ε ε= = =  and  ϕ  is the angle between the wave vector and optical axis. The wave 

vector refraction at the crystal-isotropic medium interface formally obeys the Snell’s law. 

Once we know the wave vector direction, then the angleθ between the ray and optical axis is 

defined as follows 

 o

e

tan tan .
ε

θ ϕ
ε

=  (6) 

In a hyperbolic media the angular dependence of the permittivity has a resonance behavior 

as shown in Fig. 2(a), where we have chosen exemplary values for multilayer structures 

o 2.78 0.22,ε ι= − +  and e 6.31 0.15.ε ι= +  It can be shown that for the critical angle, the 

angles between D  and E  as well as between k  and are both about 90°, which is clear also 

from Figs. 2(a) and 2(b). Interestingly the resonance behavior results in a field confinement in 

the critical direction due to high values of ( )Im ε as shown in Fig. 2(c). 
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Fig. 2. Volume plasmon-polariton. a) Angular dependence of the permittivity for extraordinary 

wave, imaginary (brown) and real (blue) parts. Critical angle between wave vector and optic 

axis c 57 ;ϕ °=  b) Angle between Poynting vector and optic axis ( )
c

;3, 3θ ϕ θ = °  c) 

magnetic field angular dependence localized at the critical angle (calculated at 650 nm from 

the source) [24]. Figures reproduced with permission from ©2013 Wiley-VCH 

2.4 Radiation patterns from elementary sources 

Clemmow’s prescriptions (Eqs. (1), (2)) converts the field distribution of any localized 

elementary source in vacuum into the corresponding distribution inside a uniaxial material 

[2,10]. A gallery of the field distributions generated by various point sources upon different 

orientations and polarizations in 3D has been recently reviewed in [10] following the earlier 

works [2,3,7,8,11,12]. Here, our examples show the pseudo-color maps of the H-field 

ˆH=H y generated by a line of dipolar sources ( )ˆp=p x continuously distributed along y-axis 

in a 2D space (xz-plane), as depicted in Fig. 3(a). The TM H-field in vacuum is given by 

( ) ( ) ( )10 1

1

1
,

4
,H x z p H zω ρ ρ −= −  with

( ) ( )1

1H ρ  being the first order Hankel function of the 

first kind, and 1 2 2c x yρ ω −= +  [3]. Then the singular shadow region is aligned with the xy-
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plane (Fig. 3(a)). By using Eqs. (1)-(2) into ( , )H x z  and arrive at, 0

z z( , ) ( , ),H x z n nH nx n z=  

where z z, .n nε ε= =  

 

Fig. 3. Radiation from elementary 2D sources and permittivity spectra. a-d, Radiation from a 

2D electric dipole in (a) vacuum; (b) lossy dielectric HMMat 340 nm with 
x,y

= 0.57 0.13ε ι+ , 

4.22 2.03
z

ε ι= − + ,(the dispersion curve of Fig. 1(e)); (c) ENZ materialat 359.4 nm with 

x,y
0.005 0.123ε ι= + , 

z
2.82 43.3ε ι= + ; and (d) lossy metallic HMMat 465 nm with 

x,y
2.78 0.13ε ι= − + , 

z
6.31 0.09iε = + ,(the dispersion curve of Fig. 1(f)); (e) spectra of the xy 

and (f) z components of the permittivity [24]. Figures reproduced with permission from ©2013 

Wiley-VCH 

The H-field pattern in vacuum, H0(x, z), and the corresponding exact H-field patterns H(x, 

z), for all of the HMM regimes (epsilon near-zero (ENZ), dielectric, and metallic) are shown 

in Fig. 3(b), 3(c), and 3(d), where the optic axis is aligned with ẑ. The ENZ regime gives low 

divergence due to the highly anisotropic elliptical dispersion (see Fig. 3(c)), while the 

dielectric type of HMM dispersion may result in a similar directional propagation along the 

optic axis, as shown in Fig. 3(b). This case has been utilized in the new type of optical 

imaging device, often called hyperlens. The concept of the hyperlens, suggesting a far-field 

imaging beyond the diffraction limit, was first introduced in [13,14] and experimentally 

realized in [15,16]. In the hyperlenses light propagates along the optical axis of the hyperbolic 

anisotropic structure due to very small critical angle. In the metallic type of HMM the volume 

plasmon polaritons propagate along the resonance cone (Fig. 3(d)). Thus, in contrast to the 

imaging devices built on ENZ materials and dielectric HMMs [13,14,17,18], optical devices 

exploiting cone diffraction in metallic hyperbolic media may offer beneficial applications for 

photo-lithography and light response probing. Several numerical studies [19–23] and a recent 

experiment [24] have shown that it is possible to obtain an interference peak much smaller 
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than the free-space wavelength using both diffracted rays as will be discussed in the next 

section. 

Note that all the discussed types of hyperbolic metamaterials can be realized with the 

same structure by varying the wavelength of the incident light. Figures 3(e) and 3(f) show 

permittivity spectra for two components of multilayer structure with optic axis denoted by z. 

For the multilayer dispersion calculations, the Rytov effective medium theory with nonlocal 

corrections is employed [5]. According to [25], all structures containing one or more metal-

dielectric interfaces can be qualitatively considered as a hyperbolic layer. 

Depending on composition and component dimensions, multilayer systems provide 

hyperbolic dispersion at the UV (Ag/Al2O3) [13], near-IR(Al/ZnO) [26], and mid-IR 

(InGaAs/AlInAs) [27] frequency ranges. Hyperbolic dispersion has been also demonstrated in 

nanowire systems [28–30], and homogeneous materials [31–33]. 

3. Refraction in hyperbolic media 

As described above, in hyperbolic media propagation of the energy, given by the Poynting 

vector, is not collinear to the propagation of the phase fronts, described by the wavevector, 

which has profound implications for refraction of the waves to and from the hyperbolic 

structures. Consider first a single plane wave that is incident at an HMM boundary. 

Electromagnetic field can be described as a linear combination of incident, reflected, and 

refracted electromagnetic waves. Existence of the continuous planar interface requires 

conservation of the component of the wavevector parallel to this interface [9], which fixes the 

directions of the reflected and refracted waves. Application of the boundary conditions results 

in the amplitudes of these waves. 

Consider now the situation when the interface is illuminated not by a single plane wave, 

but by a rather wide, but finite-sized monochromatic beam. The electromagnetic field of the 

beam can be represented as a linear combination of the plane waves, and refraction/reflection 

of each component of the beam can be calculated using the single-wave formalism described 

above. When the beam is substantially wide, its plane wave decomposition will contain a 

relatively narrow spectrum of the wavevector components. Consequently, the Poynting 

vectors of all the refracted components of the beam will be aligned with each other. This 

common direction of the Poynting flux describes the direction of the propagation of the 

refracted beam. 

Light refraction at the interface with anisotropic crystals is often non-trivial. Even with 

naturally-occurring materials it is possible to achieve negative refraction for a limited range 

of angles [34]. When the light is incident from isotropic material onto hyperbolic media, the 

beam can be refracted in the negative direction [35]. Negative refraction of the beam has been 

experimentally validated in layered metamaterials at mid-IR [27] and near-IR frequencies 

[26], in nanowire-based metamaterials at visible frequencies [30], and in homogeneous media 

at UV frequencies [31]. 

Negative refraction has been historically considered the hallmark of metamaterials, where 

it enables planar lenses that are not limited by spherical aberrations [36]. A classic Veselago 

lens should have an angle- and polarization-independent index of refraction, and thus requires 

use of an isotropic magnetic media. Nevertheless, hyperbolic materials can mimic the 

performance of a Veselago lens in waveguide geometry [37]. Practical applications of 3D 

lenses based on hyperbolic materials are affected by the dependence of their refractive index 

on the angle [38], which re-introduces image distortion similar to spherical aberration. Such 

distortions, however, can be limited in ENZ and in canalization imaging [13,14,39]. 

4. Diffraction in hyperbolic media: sub-wavelength imaging and nanolithography 

Any inhomogeneity inside the material or any inhomogeneity along the boundary between 

two media necessarily leads to diffraction. Qualitatively, the profile of the diffracted beam 

can be calculated from the Huygens-Fresnel principle. Note that in contrast to conventional 
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isotropic materials, emission of waves in hyperbolic systems is highly directional (Figs. 1 and 

2). The unique dispersion allows hyperbolic systems to preserve high-wavevector 

components of the wave-packets that carry information about the subwavelength features of 

the source. Therefore, hyperbolic structures are capable of focusing radiation to 

subwavelength spots, a phenomenon that has been proposed in [19, 39] and recently realized 

in [24]. In this experiment, a double-slit interference of resonant cones produced by slits in Cr 

film results in a sub-diffraction pattern [19], which is highly beneficial for nanolithography 

applications [24]. The experiment scheme is shown in (Figs. 4(b) and 4(c)) where the flat 

Ag/SiO2 hyperbolic structure forms a line of 90 nm width on the photoresist layer, which was 

simply brought in contact with the hyperbolic layer and detected then with an Atomic Force 

Microscope (AFM) [24]. 

Further, the hyperbolic structures can be used to magnify the subwavelength objects and 

thus enable far-field super-resolution imaging. Super-imaging is a challenging problem that is 

typically addressed by near-field optical microscopy. A super-lens made of metamaterial with 

both negative permittivity and permeability [40] provides a way to translate the information 

about subwavelength objects. This approach was further developed to incorporate alternating 

layers with optical gain [41] and to enlarge the objects in acylindrical geometry [42,43].An 

approach to magnify subwavelength objects in 2D plasmon-polariton systems was proposed 

in [44]. 

Curved hyperbolic metamaterials enable far-field magnification of 3D objects when 

subwavelength information, encoded in resonant cones [11,45] (see Sec. 2) is gradually 

translated into propagating information similar to the magnification by anisotropic structure 

[46–48]. Magnifying lens based on hyperbolic metamaterials was proposed in [13,14]; it was 

then realized in [15] for UV imaging in Ag/Al2O3 curved multilayer metamaterial (Fig. 4(a)). 

 

Fig. 4. Imaging (a) [15] and nanolithography (b), (c) [24] with hyperbolic metamaterials. 

Figures reproduced with permissions: (a) Ref [15] from ©2007 AAAS and (b),(c) Ref [24]. 

from ©2013 Wiley-VCH. 
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5. Photonic density of states and radiative rate engineering 

Fermi’s golden rule with Purcell’s effect links the radiative decay rate of spontaneous 

emission and photonic density of states, which can be modified due to environment in which 

fluorescent molecules are embedded [49,50]. The most attractive property of the hyperbolic 

metamaterials pointed in [51] is the broadband and strongly enhanced radiative decay rate for 

the fluorophore spontaneous emission near or inside a medium relative to free space (Purcell 

factor). The photonic density of states (PDS) in the metamaterial is related to the volume in k-

space enclosed by the corresponding iso-frequency surface [50,51] and may have singularities 

[51–53]. As we discussed above, the iso-frequencies have closed trajectories (see Fig. 1) 

which eliminate singularities of the PDS. The value of the enhancement is theoretically 

limited only by losses [53] or finite period-to-wavelength ratio [53,54]. The finite size of the 

emitter distribution can limit the HMM density of states even at zero losses [55] and the 

Purcell factor in hyperbolic metamaterials stays finite due to the discreteness of the actual 

structure and specific geometry [56–60]. 

 

Fig. 5. Wire (a), (b) [28] and layered (c) [25] HMM samples for life time engineering. Figures 

reproduced with permissions: (a),(b) Ref [28]. from ©2010 OSA and (c) Ref [25]. from ©2012 

OSA. 

Table 1. Radiative, nonradiative decay rates, apparent quantum yield, and fluorescence 

and absorption enhancements in layered HMM are shown in the table for four samples, 

each at 89 and 21 nm dielectric spacer [25]. Table reproduced with permission from 

©2012 OSA. 

 ( )1

r

8

s 10
− −

Γ  ( )1

nr

8

s 10κ
− −

 
rr n

κΓ  Q  Fluorescence Absorption 

nm 89 21 89 21 89 21 89 21 89 21 89 21 

HMM 1.4 0.54 4.6 5.66 0.3 0.09 0.23 0.09 9.3 1.6 5.4 2.5 

Thick Au 0.9 0.18 4.6 4.6 0.2 0.04 0.17 0.04 9.4 0.9 7.9 3.4 

Thin Au 0.7 0.15 5.5 6.8 0.13 0.02 0.12 0.02 6.4 0.55 7.7 3.5 

Glass, ref 0.62 0.63 3.9 3.96 0.16 0.16 0.14 0.14 1 1 1 3 

Experimental studies mainly focus on life time measurements [28,61];this approach does 

not provide conclusions on the radiative decay and Purcell factor. In a general case, study of 

both life time and quantum yield is required [25]. Two types of hyperbolic metamaterials, 

alumina membrane embedded with silver nanowires [28] and multilayer metal-dielectric 

[25,29],are typically used in optical experiments to prove the theoretically predicted 

anomalously high photonic density of states in hyperbolic metamaterials. The material in [28] 

has exhibited a hyperbolic dispersion with the effective values of permittivity (εΠ = 5 + i0.22, 

ε⊥ = −0.15 + i1.1).In the film deposited onto the silver-filled membrane, the emission life time 

of dye was as short as: 125 ps (Fig. 5). The shortening of the emission life time is claimed to 

be due to a large number of available radiative channels, although this was not proved by the 

measurements. The quantum yield and the lifetime were measured for the multilayer HMM 

samples in [25] which consisted of 16 stacked layers Au(19nm)/Al2O3(19nm) on a glass 

substrate, as shown in Fig. 5(c). The quantum yield and life time are related as follows: 
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 ( )
1 1

r r nrQ , .τ τ κ
− −= Γ = Γ + = Γ   (7) 

Here, rΓ  is the radiative decay rate, nrκ is the non-radiative decay rate, τ is the excited 

state lifetime, and Γ is the total decay rate. For Ag nanoantennae [62], direct measurements of 

both the lifetime and the quantum yield changes are necessary for conclusive results of the 

radiative decay rate and Purcell factor. The quantum yield is simply the ratio of the emitted to 

the absorbed photons and can be determined by measuring the absorption, emission, 

reflection, and lifetime of the dye molecules relative to a reference dye film. Then the results 

are compared with the radiative decay rate of control samples that are similar to those used in 

classic experiments, namely thin and thick gold films. By using the reference method, the 

quantum yield can be experimentally obtained through absorption and fluorescence 

measurements for the samples under study relative to the corresponding dye/epoxy reference 

sample [25]. Purcell factors are shown in Table 1. Our maximum changes in the radiative 

decay rates relative to Rh800 in methanol are about 1.2 for dye molecules on glass, 1.35 for 

thin gold films, 1.73 for thick gold, and 2.7 for multilayer HMM samples. 

The photonic density of states (PDS) in emitters can be modified due to the interference of 

emitted and reflected waves near metal films [63,64], which have led to the development of 

PDS engineering that uses metal-dielectric interfaces [64,65], metal-film interfaces [66–68]. 

Non-radiative decay can be modified due to dipole-image interaction and excitation of the 

surface-plasmon polaritons or wave-guiding modes. Indeed, similar to SPP, the limiting factor 

of the radiative decay is in the out-coupling of the HMM modes to the low PDS of free space 

[69]. Thus the ratio between leaky and bound modes [66] should be a critical parameter in 

theory, which would allow to determine effect of HMM on both, the radiative and 

nonradiative rates. This is the main limitation of the existing theories. 

6. Beyond the effective medium theory: nonlocality corrections and additional waves 

Hyperbolic metamaterials provide unprecedented opportunities for controlling the flow of 

optical information. However, the majority of exciting applications of hyperbolic systems can 

be traced to extreme (either vanishingly small, or infinitely big) values of the components of 

the effective permittivity tensor or to extreme values of effective refractive 

index eff z .n k c ω= To name a few, traditional implementations of hyperlens and canalization 

imaging systems rely on e o .ε ε  Modulation of photonic density of states, as well as 

numerous designs leading to subwavelength focusing [19,70] rely on the existence of 

propagating modes at eff 1.n   In fact, “extreme” photonics is deeply interweaved with the 

novel applications of metamaterials, and this relationship extends far beyond the area of 

hyperbolic systems to cloaking and light transmission through subwavelength channels [71–

73] and other applications. 
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Fig. 6. Effect of nonlocality on extinction in nanowire medium: at high absorption (a) 

metamaterial exhibits the extinction spectrum consistent with predictions of effective medium 

theory, at smaller losses (b), interference of two TM-polarized beams becomes evident in 

transmission [29]. Figures reproduced with permission from ©2009 APS. 

However, the very composites that bring to life the extreme behaviors usually provide 

tight limitations on what can be realized in realistic systems. The optics of nanolayered 

composites can be understood analytically, with the help of transfer matrix formalism [5,74]. 

The effective parameters for a multilayer, periodic structure with a period d b a= +  and 

containing both a metal (with permittivity mε  and permeability mµ ) and a 

dielectric ( )dd ,ε µ are given by [5]: 

 d m m d m d

o o o

o o

1 , ,
4

b akab

d a b

µ ε µ ε ε ει
ε ε ε

ε µ

 − + 
= − =     +  

 (8) 

 d m m d m d

o o o

o o

1 , ,
4

b akab

d a b

µ ε µ ε µ µι
µ µ µ

ε µ

 − + 
= + =     +  

 (9) 

 1 d m

e e e .,
a b

a b

ε ε
ε ε ε − +

= =
+

   (10) 

It was shown in [54,56] that increasing the number of layers at the same thickness brings 

the results for the multilayer structure closer and closer to those of a homogeneous sample. 

Note that Eqs. (8)-(10) were obtained in [5] for infinite periodic system with elementary cell 

made of two layers. For bounded layered systems the key moment of the problems is the 

boundary conditions. Modification of the boundary conditions by introduction of additional 

surface currents suggested in [75] returns the conventional permittivity and permeability of 

metamaterials their usual physical properties. The modified retrieval procedure based on 

reflection/transmission yields bulk values of effective impedance and refractive index, which 

are independent of system size and boundary realization, whereas the conductivities of the 

excess surface currents depend on the property of the interface [75]. 

Note that the corrections to ideal effective medium theory (EMT) response can be 

described in terms of a permittivity tensor with wavevector-dependent components. Since 

wavevector dependence of permittivity can be related to long-range correlation in polarization 

[76,77], materials that exhibit such dependence are known as nonlocal media. The true 

response of any composite structure is nonlocal. The significance of nonlocal corrections, 

however, depends on the particular application and on geometry under consideration. 

Optics of nanowire metamaterials offer unique opportunity to realize regimes where 

nonlocality not corrects, but rather dominates the response of the system. Nanowire materials 
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are known to provide a flexible platform that can realize elliptic, hyperbolic, and -near-zero 

(ENZ) regimes in the same material. In the ENZ regime, the optical properties of the 

[meta]material can be approximated as ( )e , ( )ε ω ιε δ′′= +k k , with ε ′′  representing material 

absorption at ENZ frequency and ( )δ k  describing nonlocal correction to the EMT response 

[77].Therefore, when the losses in material are substantially small, the nonlocal “correction” 

dominates the polarization inside the system. 

Direct solutions of Maxwell equations demonstrate that in this case, [meta-]material 

supports not two, but at least three different waves, at least two of which have identical (TM) 

polarization. The existence of additional waves fundamentally changes optical response of the 

system. 

Thus, the spectrum of extinction in nonlocal ENZ metamaterials is dominated not by 

absorption-related angle-dependent maximum, but rather by collection of angle- and 

wavelength-dependent maxima corresponding to the points of destructive interference of two 

TM-polarized beams (Fig. 6). Such changes in optical response of nonlocal metamaterials 

were first observed in [29]. 

Any phenomenon that relies on optical response to change of material parameters can 

potentially be greatly enhanced. In particular, the interference-based transmission has already 

provided a new way to enhance nonlinear optical response employing nonlocal metamaterials. 

A clear manifestation of such an enhancement was reported in [78], where optical nonlocality 

provides a four-fold enhancement to optical nonlinearity in TM-polarized response in 

comparison to local TE-polarized response of the same metamaterial. 

Strong optical nonlocality and existence of additional waves in ENZ regime in layered 

structures was reported in [79,80], and many other designs of ENZ metamaterials are likely to 

follow this trend. Optical nonlocality remains an active research area with multiple groups 

working on better understanding of the collective excitations that underline ENZ response of 

macroscopic materials 

7. Natural hyperbolic materials 

The vital aspects in designing an optical element with hyperbolic dispersion is either 

developing a metamaterial or selecting a natural dispersive material with strong anisotropy. 

This alternative approach to hyperbolic media has been recently demonstrated as a simulated 

example of negative refraction in graphite (see Fig. 7(a)) [31]. For far-infrared and THz 

domains naturally occurring hyperbolic materials have been discussed for a waveguide 

application at about 20 μm, 58 μm, and 255 μm using, respectively, sapphire, bismuth, or 

triglycine sulfate [32]. 
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Fig. 7. Natural hyperbolic media. a, Negative refraction in graphite [31]; b, c, Components of 

the principal dielectric tensor of calcite (b) [81] and monocrystalline Bismuth (c) [32]. Figure 

7(a) reproduced with permission from Appl. Phys. Lett. 98, 101901 (2011) Copyright 2011 

American Institute of Physics. 

A similar example has been demonstrated [81] with one of the most common mineral, 

calcite (CaCO3), which, on top of its text-book famous birefringence, exhibits two very 

distinct non-overlapping ordinary and extraordinary absorption bands in the mid-infrared 

spectral range as a result of the internal vibration modes of its planar carbonate ions. Two sets 

of optical dispersion parameters, ordinary and extraordinary, using just a few terms of the 

Lorentz oscillator model, have been fit to the experimental data using generalized 

ellipsometry [82]. 

Dispersion spectra of ɛo and ɛe depicted in Fig. 7(b), indicate that the best figure of merit 

( )Re( ) / Im( ),   {o,e}j j jFOM jε ε= − =  is around 4.7 at 6.75 µm, and around 6.3 at 11.33 µm 

for the ordinary and extraordinary components respectively 
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o e( 6.75 ) 2.59 0.55, ( 11.33 ) 1.90 0.30.m mε λ µ ι ε λ µ ι= = − + = = − +  The major absorption 

peaks for the ordinary and extraordinary rays are correspondingly located at 7.13 mλ µ=  and 

11.48 mµ . Strong hyperbolic anisotropy is not limited to resonance phonon excitations that 

occur for example in calcite. For example in Bi, a Group V semimetal with rhombohedral 

lattice and trigonal symmetry, such anisotropy is induced by a substantial difference in its 

electron effective masses along different directions in the crystal. Hence, the most interesting 

feature of the Bi dispersion - transition from Re( ) 0jε >  to { }Re( ) 0,   o, ej jε < = , _ is 

determined by the strong anisotropy of its plasma frequency within a band between 

  53.7 mλ µ=  and 63.2 mµ  as shown in Fig. 7(c). The existence of that 10-μm band has been 

confirmed experimentally in [33]. 

In conclusion, while important fundamentals of understanding of optics of hyperbolic 

media have been laid in the middle of previous century, this unique research area continued 

explosive growth during the past decade, allowing to advancements beyond the traditional 

material and functional choices for all components of the optical part of electromagnetic 

spectrum. These materials lay the foundations for numerous applications with unparalleled 

performance in lithography, imaging, sensing, and quantum photonics. Effects and devices 

based on hyperbolic dispersion provide numerous exciting opportunities for future research at 

the convergence of material science, physics, engineering, and numerical modeling. 
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