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Hyperbolic Moment Equations Using Quadrature-Based
Projection Methods

J. Koellermeier and M. Torrilhon

Department of Mathematics, RWTH Aachen University, Aachen, Germany

Abstract. Kinetic equations like the Boltzmann equation are the basis for various applications involving rarefied gases. An
important problem of many approaches since the first developments by Grad is the desired global hyperbolicity of the emerging
set of partial differential equations. Due to lack of hyperbolicity of Grad’s model equations, numerical computations can break
down or yield nonphysical solutions. New hyperbolic PDE systems for the solution of the Boltzmann equation can be derived
using quadrature-based projection methods.The method is based on a non-linear transformation of the velocity to obtain a
Lagrangian velocity phase space description in order to allow for physical adaptivity, followed by a series expansion of the
unknown distribution function in different basis functions and the application of quadrature-based projection methods.In this
paper, we extend the proof for global hyperbolicity of the quadrature-based moment system system to arbitrary dimensions,
utilizing quadrature-based projection methods for tensor product Hermite basis functions. The analytical computation of the
eigenvalues shows the proposed correspondence to the Hermite quadrature points.

Keywords: kinetic equation, hyperbolicity, quadrature
PACS: 02.30.Jr, 05.20.Dd

INTRODUCTION

The solution of kinetic equations like the Boltzmann Equations requires an efficient and yet robust discretization

of the velocity space to allow for both physical adaptivity and stability of the numerical method. The standard method

to discretize the resulting equation in velocity space has been developed by Grad in [1] and relies on the expansion of

the distribution function in Hermite polynomials. The drawback of this method is that the resulting PDE system can

loose hyperbolicity for certain values of higher moments, see e.g. [2]. In these cases, numerical methods can become

unstable because the problem is ill-posed.

Existing hyperbolic models are for example given in [3] where multi-variate Pearson-IV-Distributions are used as

an ansatz or in [4] where a maximum entropy approach ensures the hyperbolicity.

Another method by Cai et al. relies on a truncation of the expansion at certain steps of the derivation and has been

successfully applied to different problems (see [5]). This work has recently been supplemented with a solid theoretical

basis in [6], where the procedure is generalized.

The novel quadrature-based projection methods have been first introduced in [7]. This approach computes the inte-

grals during the projection by Gaussian quadrature which modifies the emerging system and guarantees hyperbolicity

for a wide range of cases, provided some simple conditions are fulfilled. Up to now there is only a proof of hyperbol-

icity in the one-dimensional case using Hermite polynomials as ansatz functions, but the framework is able to handle

multi-dimensional settings as well.

The main part of this paper is concerned with the extension of the proof given in [8] to arbitrary dimensions and more

flexible basis expansions. The developed framework can be applied to this setting analogously to the one-dimensional

case as we will show. This results in a straightforward proof and makes it possible to calculate the eigenvalues of the

system analytically.

The paper is organized as follows: We first explain the basic concepts and recall the equations derived in [8] using

quadrature-based projection methods, along with the conditions for hyperbolicity of the emerging system. A proof for

global hyperbolicity of the PDE system in the general d-dimensional case is detailed in the main section. The paper

ends with a short conclusion.
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TRANSFORMED BOLTZMANN TRANSPORT EQUATION

We consider the Boltzmann equation without external force for the evolution of the mass density function f (t,x,c)

∂

∂ t
f (t,x,c)+ ci

∂

∂xi

f (t,x,c) = S( f ), (1)

where we assume a d-dimensional setting, i.e. x ∈R
d and velocity v ∈R

d . Index notation is used whenever the indices

are no further specified, e.g. in the transport term of Equation (1). The collision operator S( f ) on the right-hand side

will be neglected throughout this paper as we focus on the transport part of Equation (1). Models for the right-hand

side can be found in [9], [10] and [11].

The macroscopic quantities density ρ(t,x), velocity v(t,x) and energy θ(t,x) of the distribution function can be

computed by integration over the velocity space (we will omit the arguments most of the time for better readability).

ρ =
∫

Rd
f (t,x,c) dc, ρv =

∫

Rd
c f (t,x,c) dc, d ·ρθ =

∫

Rd
|c− v|2 f (t,x,c) dc. (2)

Multiplication of Eq.(1) with
(
1,c,c2

i

)
followed by integration over the velocity space yields the conservation laws

of mass, momentum and energy, see e.g. [12].

We recall the transformed version of the Boltzmann Eq. (1) that essentially uses a Lagrangian velocity phase space

and thus exhibits physical adaptivity which allows for efficient and yet simple discretizations, introduced also in [13].

As described in [7], the velocity is transformed in a highly non-linear way to allow for intrinsic physical adaptivity

of the scheme. We shift the microscopic velocity c by its macroscopic counterpart v and scale by the standard deviation√
θ . The corresponding Galilei-invariant variable transformation reads

c �→ c− v(t,x)√
θ(t,x)

=: ξ (t,x,c). (3)

Every Maxwellian in c-space is thus transformed to a Gaussian in ξ -space scaled with density ρ , as depicted in [7].

We furthermore use a scaled distribution function f̃ (t,x,ξ ), defined by

f (t,x,ξ ) =
ρ

√
θ

d
f̃ (t,x,ξ ). (4)

According to [7] and with the help of the convective time derivative Dt := ∂t + vi∂xi
, Equation (1) transforms to

(
1

ρ
Dtρ − d

2θ
Dtθ

)
f̃ +Dt f̃ +

√
θξ j

((
1

ρ
∂x j

ρ − d

2θ
∂x j

θ

)
f̃ +∂x j

f̃

)
+

∂ξ j
f̃

(
− 1√

θ

(
Dtv j +

√
θξi∂xi

v j

)
− 1

2θ
ξ j

(
Dtθ +

√
θξi∂xi

θ
))

= 0.

(5)

This PDE for the vector of unknowns u =
(

ρ ,v1, . . . ,vd ,θ , f̃
)T

can be written in the following compact notation

Λ ADtu+Λ
√

θξiA∂xi
u = 0, (6)

using the definitions

A =

(
f̃ ,− ∂ f̃

∂ξ1
, . . . ,− ∂ f̃

∂ξd

,−d f̃ −ξ j

∂ f̃

∂ξ j

,1

)
∈ R

d+3, (7)

Λ =

⎛
⎜⎜⎜⎝

1
ρ

1√
θ

Id

1

2
√

θ
1

⎞
⎟⎟⎟⎠ ∈ R

(d+3)×(d+3). (8)
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Equation (6) is underdetermined, as ρ ,v and θ are not known. But the definition of the macroscopic variables

according to Eq. (2) leads to d +2 additional algebraic equations that formally close the system.

It was shown in [8] that point evaluations of Eq. (6) together with a reasonable finite difference approximation of

the derivatives ∂ξ j
f̃ do in general not lead to a globally hyperbolic system as eigenvalues of the system matrix depend

on the unknowns. A deficiency that is removed with the help of quadrature-based projection methods, as explained in

the following Section.

GENERAL FRAMEWORK FOR HYPERBOLIC APPROXIMATION OF KINETIC

EQUATIONS

We expand the unknown distribution function f (t,x,ξ ) around its equilibrium Maxwellian with respect to basis

functions φα(ξ ) and corresponding coefficients κα(t,x), obtaining

f̃ (t,x,ξ ) =
n

∑
α=1

κα(t,x)φα(ξ ). (9)

with differentiable ansatz functions φα(ξ ).

After insertion of Ansatz (9) into Eq. (6), we multiply with test functions ψβ (ξ ) for β = 1, . . . ,n and integrate over

the velocity space to obtain a system of equations for the unknowns ρ ,v,θ and the basis coefficients κα . This can be

interpreted as a projection with projection operator P

Pβ (g) := 〈g,ψβ 〉=
∫

Rd
gψβ dξ . (10)

As the definition of P using exact integration does not lead to global hyperbolic systems (see [5]), we use an

approximative projection operator Q, that computes the integrals by Gauss-quadrature

Pβ (g)≈ Qβ (g) :=
n

∑
k=1

wkg(ξk)ψβ (ξk). (11)

with positive quadrature weights wk and pairwise distinct quadrature points ξk ∈ R
d , for k = 1, . . . ,n.

Applying Qβ for β = 1, . . . ,n to Eq. (6) with Expansion (9) inserted, the emerging PDE system can be written in

the following form

ΨTWAΛ
D

Dt
ũ+

d

∑
i=1

ΨTWΞiAΛ
√

θ
∂

∂xi

ũ = 0, (12)

with unknowns

ũ = (ρ ,v1, . . . ,vd ,θ ,κ0, . . . ,κn)
T ∈ R

n+d+2, (13)

a columnwise defined system matrix

A =

(
Φκ,−

∂Φ

∂ξ1
κ , . . . ,−

∂Φ

∂ξd

κ ,−dΦκ −Ξ j

∂Φ

∂ξ j

κ,Φ

)
∈ R

n×(n+d+2), (14)

consisting of matrices (for i, j = 1, . . . ,n and k = 1, . . . ,d)

Ψ
i, j

= ψ j(ξi), Φ
i, j

= φ j(ξi),

(
∂Φ

∂ξk

)

i, j

= ∂ξk
φ j

∣∣
ξi

(15)

(
Ξk

)
i, j

=
(

ξ
i

)
k

δi j, W
i, j

= ωiδi j (16)

as well as Λ from Eq. (26) with In instead of 1 as last entry.

It is already clear, that System (12) is not closed, as its n equations include n+d +2 unknowns. A model reduction

is explained in the following according to the procedure described in [8].
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Inserting the scaled distribution function from Eq. (4) and using (9), we get d+2 compatibility conditions from Eqs.

(2)

1 = κα〈φα(ξ ),1〉, 0 = κα〈φα(ξ ),ξi〉, for i = 1, . . . ,d, d = κα〈φα(ξ ),ξ
2
i 〉. (17)

The compatibility conditions (17) can be used to reduce the number of unknowns in the PDE system to obtain a

closed PDE system similar to the general procedure described in [14]. We thus use Q ∈R
l×n,c = (1,0, . . . ,0,d)T ∈R

l

and write the l = d +2 Eqs. (17) in matrix-vector form to define Q by

Qκ = c. (18)

Now we decompose Q ∈ R
l×n as follows (e.g. using singular value decomposition):

Q = SMT−1, with regular S ∈ R
l×l , M =

(
Q̂,0

)
∈ R

l×n, regular Q̂ ∈ R
l×l and regular T ∈ R

n×n. (19)

We can then solve for the first l variables of a transformed set of variables β̂ ∈ R
n using

β̂ =

(
β0

β

)
:= T−1κ ⇒ β0 = Q̂

−1
S−1c (20)

and then close the system of PDEs by inserting

κ = T

(
β0

β

)
=
(

T1,T2

)( β0

β

)
= T1Q̂

−1
S−1c+T2β , (21)

with a proper splitting of the columns of T =
(

T1,T2

)
.

With the help of the compatibility conditions, the set of n basis coefficients κ is thus reduced to a set of n− l

variables β which leads to a closed PDE system with the same number of equations and unknowns.

Rewriting System (12) with the help of the reduced variables, we get

ΨTWAβ Λ
β

D

Dt
u+

d

∑
i=1

ΨTWΞiAβ Λ
β

√
θ

∂

∂xi

u = 0 (22)

with a columnwise defined system matrix Aβ of which the first d +2 columns include the transformed coefficients β :

Aβ =

(
Φ

β
,−

∂Φ

∂ξ1 β

, . . . ,−
∂Φ

∂ξd β

,−dΦ
β
−Ξ

j

∂Φ

∂ξ j β

,ΦT
2

)
∈ R

n×n. (23)

Additionally, we use the definition of the matrices (for i, j = 1, . . . ,n and k = 1, . . . ,d)

Φ
β

= Φ
(

T1Q̂
−1

S−1c+T2β
)
, (24)

∂Φ

∂ξk β

=
∂Φ

∂ξk

(
T1Q̂

−1
S−1c+T2β

)
, (25)

Λ
β
=

⎛
⎜⎜⎜⎝

1
ρ

1√
θ

Id

1

2
√

θ
In−d−2

⎞
⎟⎟⎟⎠ ∈ R

n×n. (26)

The subscript β thus denotes a dependence of the corresponding matrix on the unknowns β .

The important question of hyperbolicity of System (22) is addressed by Theorem 1 in [8] and requires essentially

only the regularity of matrices Ψ,W ,Λ
β

and Aβ , of which the regularity of matrix Aβ is the only non-trivial task for

most cases.
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Provided these requirements, the generalized eigenvalues λk for k = 1, . . . ,n are all real and read

λk =
d

∑
i=1

ni

((
ξk

)
i

√
θ + vi

)
, for k = 1, . . . ,n. (27)

After the validation of the conditions for the one-dimensional case in previous papers, we will show global

hyperbolicity in the general d-dimensional case in the following Section.

GLOBALLY HYPERBOLIC SYSTEM USING HERMITE ANSATZ AND

QUADRATURE IN D DIMENSIONS

A proof of global hyperbolicity for the one-dimensional system with Hermite ansatz functions can be found in [8].

We will now extend the proof to the general case of d dimensions in position and velocity space, i.e. x,ξ ∈ R
d .

We consider the following basis expansion for the scaled distribution function f in orthonormal basis functions

f̃ (t,x,ξ ) = ∑
αi≤Ni

κα(t,x)φα(ξ ), (28)

for a d-dimensional multi-index α ∈ N
d and a vector N = (N0, . . . ,Nd) ∈ N

d specifying the moment theory. The total

number of unknown basis coefficients is denoted as N = ∏d
i=1 (Ni +1).

The corresponding basis functions are the tensor product of one-dimensional Hermite functions

φα(ξ ) =
d

∏
i=1

φαi
(ξi), φi(x) = Hei(x)

1√
2π

e−x2/2 and test functions ψα(ξ ) =
d

∏
i=1

Hei(ξi), (29)

with normalized Hermite polynomial Hei of degree i such that the following recursion formulas hold

∂Φα

∂ξi

=−
√

αi +1Φα+ei
, ξi

∂Φα

∂ξi

=−
√

αi +1
(√

αi +2Φα+2ei
+
√

αi +1Φα

)
. (30)

Note that this ansatz (28) and (29) exhibits some flexibility, because different choices for Ni can be chosen to capture

the different behaviour of the distribution function in each spatial direction. We will nevertheless loose rotational

invariance with this separation ansatz.

The quadrature projection is done using multi-dimensional Gauss-Hermite quadrature as follows

∫

Rd
g(ξ )dξ ≈

N1

∑
i1=0

. . .
Nd

∑
id=0

g
(
(ξ1)i1 , . . . ,(ξd)id

)
w1,i1 · . . .wd,id , (31)

using quadrature points (ξi) j and weights wi, j given by

(ξi) j = j-th root of HeNi+1 (ξi) , for i = 1, . . . ,d, j = 0, . . . ,Ni (32)

wi, j = j-th weight of quadrature formula in direction i, for i = 1, . . . ,d, j = 0, . . . ,Ni (33)

A compact notation for the quadrature formula is

∫

Rd
g(ξ )dξ ≈

N

∑
k=1

g
(

ξk

)
wk, (34)

with the total number of quadrature points equal to the number of basis coefficients N and a consecutive ordering of

the quadrature points according to

ξk ∈ {
(
ξi1 , . . . ,ξid

)
|i j ∈ {0, . . . ,N j}, j = 1, . . . ,d} (35)

wk ∈ {Πd
j=1w j,i j

|i j ∈ {0, . . . ,N j}, j = 1, . . . ,d} (36)

The setting described above enables us to prove the following central theorem of this paper:

Theorem 1 Using tensor product Hermite basis and test functions as specified in Eqs. (29) together with Gauss-

Hermite quadrature, the conditions of Theorem 1 in [8] are fulfilled and the resulting PDE system is globally

hyperbolic.
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Proof We first reduce the number of unknowns as described in using the decomposition (19) and state the compati-

bility conditions derived using Equation (17) as

1 = κ0, 0 = κei
, for i = 1, . . . ,d, d = dκ0 +

√
2

d

∑
i=1

κ2ei
. (37)

We order the basis coefficients introducing the index set Nκ = {α ∈ N
d |1 < |α|,αi ≤ Ni,α �= 2ei, i = 1, . . . ,d}

κ =

(
κ0,κei

,κ2ei
, κα

α∈Nκ

)
. (38)

to write Equations (37) in matrix vector form as Qκ = c, see (18), with

c = (1,0, . . . ,0,d)T , Q =

⎛
⎝

1

Id 0

d
︸ ︷︷ ︸

d

√
2 . . .

√
2

⎞
⎠ (39)

A decomposition Q = SMT−1 is done according to Equation (19) using

S=

⎛
⎜⎜⎜⎜⎝

1

1

. . .

1

d 1

⎞
⎟⎟⎟⎟⎠
, M =

⎛
⎜⎜⎜⎜⎜⎝

1

1

. . . 0

1

︸ ︷︷ ︸
Q̂

d
√

2

⎞
⎟⎟⎟⎟⎟⎠
, T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Id+1

1 −1 . . . −1

1

. . .

1

︸ ︷︷ ︸
d −1

IN−2d−2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(40)

Splitting the matrix T into two parts as proposed in Eq. (21), we can identify the multiplication of a matrix with T2

from the right as deletion of the first d + 1 columns and subtraction of the d + 2nd column from columns d + 3 up to

2d +2. Multiplication with T1 extracts the first d +2 columns.

The unknown vector κ can be rewritten with only N −d −2 variables as

κ =

(
1,0, . . . ,0,−

d

∑
i=1

κ2ei
, κα

α∈Nκ

)T

, (41)

which corresponds to the solution of Eqs. (37) for the first d +2 unknowns.

We will now derive matrix Aβ in (23) columnwise in order to show regularity of Aβ later.

For better readability, we introduce a set of multi-indices Nβ0
= {0,e1, . . . ,ed ,2e1}, such that the corresponding

basis coefficients κα for α ∈ Nβ0
are all the coefficients β0, that we have explicitly calculated using the compatibility

conditions, i.e. the first d + 2 entries in κ and the remaining multi-indices form the set Nβ = {α ∈ N
d ,αi ≤ Ni,1 <

|α|,α �= 2e1}.

The last N −d −2 columns of Aβ (see (23) for the definition), identified by the corresponding multi-index α ∈ Nβ ,

are ΦT2 and read

ΦT2
α
=

(
Φα −Φ2e1

d

∑
j=2

δα ,2e j

)
, for α ∈ Nβ . (42)

The first column Φ
β

can be written as

Φ
β
= Φ

0
+

d

∑
j=2

(
Φ

2e j
−Φ

2e1

)
κ2e j

+ ∑
α∈Nκ

Φ
α

κα (43)
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Columns 2 to d +1 can be simplified using the recursion formulas in (30)

−
∂Φ

∂ξi β

= Φ
ei
−
√

2Φ
2e1+ei

d

∑
j=2

κ2e j
+ ∑

α∈Nβ ,αi<Ni

Φ
α+ei

√
αi +1κα , (44)

where the last sum only includes αi < Ni, because a value αi = Ni would evaluate Φ
α+ei

to zero, as the i−th entry of

each quadrature point is a root of the Ni +1st Hermite polynomial.

For the remaining d +2nd column, the term ∑d
j=1 ξ j

∂Φ

∂ξ j β
can be written as

d

∑
j=1

ξ j

∂Φ

∂ξ j β

=−
d

∑
j=1

∑
α j<N j

(α j +1)Φα κα −
d

∑
j=1

∑
α j+1<N j

√
α j +1

√
α j +2Φα+2e j

κα , (45)

so that the entire column reads

−dΦ
β
−

d

∑
j=1

ξ j

∂Φ

∂ξ j β

=
d

∑
j=1

(
− ∑

α j=N j

Φα κα + ∑
α j<N j

α jΦα κα + ∑
α j+1<N j

√
α j +1

√
α j +2Φα+2e j

κα

)
(46)

=
√

2
d

∑
j=1

Φ2e j
+2

d

∑
j=2

(
Φ2e j

−Φ2e1

)
κ2e j

+ ∑
α∈Nκ

Φα γα , (47)

for γα ∈ R including some coefficients κα to sum up the higher order terms.

With the help of the expressions for the single columns, we can now easily go through the conditions of Theorem 1

in [8] and prove the central statement of this paper.

We have to check regularity of matrices Ψ,W ,Λ
β

and Aβ in order to verify global hyperbolicity of System (22) in

our setting.

Ψ is regular by construction, as its columns are point evaluations of each orthogonal test function.

W is a regular diagonal matrix, because the quadrature weights are strict positive for multi-dimensional Gauss-

Hermite quadrature.

Λ
β

is regular, if and only if ρ �= 0 and θ �= 0, this is true by assumption of Ansatz (4).

As derived above, every column of Aβ is a linear combination of some Φα . Linear independence of its colums can

be proved by checking where each column Φα appears. In total, we must not have more than N columns Φα involved

and all columns of Aβ have to be linearly independent of each other.

(1) ΦT2 (see Eq. (42)) has linear independent columns
(

Φα −Φ2e1
∑d

j=2 δα ,2e j

)
, for α ∈ Nβ ,

(2) Φ
β

(see Eq. (43)) is a linear combination of columns of ΦT2 plus an additional Φ0 and thus linearly independent

of ΦT
2
,

(3) − ∂Φ

∂ξi β
(see Eq. (44)) is a linear combination of the columns of ΦT2 plus an additional Φei

and thus linearly

independent of the others

(4) −dΦ
β
−∑d

j=1 ξ j
∂Φ

∂ξ j β
(see Eq. (47)) is a linear combination of columns of ΦT2 plus an additional

√
2∑d

j=1 Φ2e j

and thus linearly independent of the others.

According to Eq.(27), the eigenvalues of the system matrix can be derived analytically and are closely connected

with the Hermite roots. The following two-dimensional example in Fig.1 shows that the eigenvalues in fact lie on

circles going through the origin and one of the quadrature points, which consists of Hermite roots.

CONCLUSION

After the presentation of the most important notations and previous results, we have described a very flexible ansatz

using tensor product Hermite basis functions of different order in each spatial direction. This ansatz is capable of

capturing the important features of the distribution function, e.g. for applications with certain pronounced directions.
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FIGURE 1. Eigenvalue plot of 2D example for asymmetric N1 = 3,N2 = 1 (left) and symmetric N1 = N2 = 2 (right)

By extension of the proof for hyperbolicity from the one-dimensional case to the multi-dimensional case, we

have shown another successful application of the general framework developed in [8]. With the help of simple

quadrature rules and their properties, the necessary expressions could be derived and it was possible to show global

hyperbolicity of the system of equations. Furthermore, the eigenvalues of the generalized system matrix could be

computed analytically.
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