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Hyperbolic operators with symplectic
multiple characteristics

By

Tatsuo NISHITANI

1. Introduction

Let U be an open set in R? with coordinates x’=(x,, .-+, x;). Denote by T*U
the contangent bundle on U and by (x’, §")=(x,, *++, x4, &, *+*, §,) standard coordi-
nates in T*U. Let I be an open interval containing the origin and set 2=IxU.
We denote by (x, §)=(x,, X', &, &) standard coordinates in T*2 and

D; = —id[0x;,j =0, +-,d, D =(Dy, D), D" = (D,, -++, D).

7

Let
(1.1) P(x, D) = D+ 3} A,(x, D) Dy~
i=1

be a differential operator in D, of order m with coefficients 4;(x, D’) which are clas-
sical pseudodifferential operators of order j defined near (%, ¢ =(0, %', £ Nelx
(T*U\0). We denote by p(x, £) the principal symbol of P and we assume that
p(x, +) is hyperbolic with respect to dx, near (%, ¢ ') that is the zeros &, of p(x, &,, &,')
are all real near (%, é’). We shall study the microlocal and local Cauchy problem
for P(x, D) with data on x,=0.

Denote by 3 the set of real characteristics of order m of P;

(12) = ={(x,6)eT*2\0; p(x, &) =dp(x,&) =+ =d" ' p(x, £)=0} .
We assume that

3 is a C™ manifold near p = (%, é) = (%, éo, é') with the

1.3
(1.3 tangent space 7,Z at p such that T,SD T, =NT,=

where S={x,==0} is a initial surface and 7, X is the ¢ orthogonal space of T,=.
Here ¢ is a natural 2 form on T*£ given in any standard coordinates (x, &) by

d
g = Zodf]/\dx, .
i=

Note that if 7,3, is a symplectic subspace, that is T; %N 7,%={0}, this condition
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is verified obviously. As another example we consider the case 7,SN T2 is in-
volutive which was treated in [13]. Since T,SNT,=DT,2XNT,= (1.3) is also
verified.

We introduce the localization p,(x, &) of p(x, &) at p;

(1.4) pol(x, €) =lims™ plo+s(x, &))  (cf. [3], [4]) .

It is well known that p,(x, £) is a hyperbolic polynomial in T,(T*2) with respect to
H,,, the Hamilton field of x, (see [5], [7]). Then we can define the hyperbolic cone
I'(p,, H,,) as the component of H, in {X&T,(T*2); p,(X)=0} and the propaga-
tion cone C(p,, H,);

C(pp, H,)) = {XET(T*2); 0(X, Y)=0 forany Ye&I'(p,, H,)} .
Note that (1.3) implies
(1.5) C(py, H )N T, % = {0}

(but the converse is not true in general). Let X be defined by fy(x, §)=:--=f,
(x, £)=0 for instance, where df;(0) are linearly independent, then p(x, £) can be
written as

p(x9 E) :mzzmcw(x’ E) F(x’ 6)0‘

near o with F=(f;, +--,f,). This gives that d"p(p) (X}, -+*, X,,)=0 if some X; be-
longs to T,%. Hence py(X)=d"p(p) (X, :++, X) is well defined as a polynomial in
N(T*2),=T(T*2)/T,%. We assume that

(1.6) Po(x, &) is strictly hyperbolic with respect to j(H,) in Nx(T*®),

where j is a natural projection from 7,(T*2) onto N3 (T*2),(T,% is the linearity
space of py(x, £), cf. [3], [4]). When m=2 and = is a C* manifold near o (1.6) is
always verified except for a special case dim Ns(T*2)=1 (that is the case of char-
acteristic of constant multiplicity). We note that these conditions are invariant
under a change of homogeneous symplectic coordinates preserving x,=const.

Let P(x, &) be the full ymbol of P;

P(x,&) = p(x, ) 4pp-j(x, E) 4+ Fpi(x, E)+ -+
where p.(x, £) is the homogeneous part of degree 7 of P(x,£). We assume that
(1.7)  pn-j(x, &) vanishes of order m—2j on X near p whenever m—2j>0.

Clearly (1.7) is invariant under conjugation by elliptic Fourier integral operators.
When P is a differential operator, Theorem 4.1 in [7] asserts that for the Cauchy
problem for P to be C* well posed it is necessary that p,_; vanishes of order m—2;
at o. This necessary condition is independent of any geometric character of 3
and C(p,, H,)). In this sense the condition (1.7) is the weakest one on lower order
terms to expect the C* correctness of the Cauchy problem when p(x, &) has a char-
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acteristic of order m.
Under these assumptions we have the microlocal correctness in C* of the
Cauchy problem for P;

Theorem 1.1. Assume that (1.3), (1.6) and (1.7). Then there is a parametrix
of P at (0, %', &) with finite propagation speed of wave front sets.

We shall give the definition of a parametrix of P at (0, X/, 3 ") with finite pro-
pagation speed of wave front sets in Appendix. When m=2 (1.5) and (1.6) imply
that p(x, £) is effectively hyperbolic at o and hence more general results were ob-
tained (see [6], [8], [10], [11]). We give two simple examples which also motivate
our hypotheses (1.3) and (1.6).

Example 1.1. Consider the following operator in R? with 0=(0, 0, 0, )&
T*RA\0
P(x, D) = (Dy—x, Dy) {(Dy+xo D\Y’+aDy}, @=0.

This verifies (1.3) and (1.7) but (1.6). It is clear that the Cauchy problem for this
P is not C~ well posed.

Example 1.2. Let P(x, D) be
(Dy—ax, D)) (Dy—bx, D\) (Dy—cxy, D))+aD,, a0

which is also considered in R? with o=(0, 0, 0, 1) where g, b, ¢ are mutually different
real constants. This verifies (1.6) and (1.7) but (1.3). The Cauchy problem for
this P is not C* well posed in view of Theorem 4.1 in [7].

Now we study the propagation of wave front sets in a slightly more general set-
ting. Let P be a classical pseudodifferential operator of order m in an open set
£ C R with the real principal symbol p(x, )& C™(T*2\0). Let p=T*2\0 be a
characteristic of p of order r. Denote by X, the set of real characteristics of order r
of p defined by (1.2) with m=r;

S, ={x.HET*AN0; p(x, &) = dp(x, &) = -+ =d" ' p(x,€) =0} .
We assume that there is a conic neighborhood of V of p such that
(1.8) 2,NV isa C” manifold near p.

We introduce the localization py(x, §) of p(x, &) at o by (1.4) with m=r. As noted
before, py(x, £) is a well defined polynomial in Ny (T*£),. In what follows we re-
gard Ny (T*82), as a subspace of T,(T*8) and denote by [X]= Ny (T*2), the residue
classe of X& T,(T*2). We suppose that

P is strictly hyperbolic in Ny (T*2), with respect to some

(1.9)
[61€ N, (T*2), .
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By I'(p,, [6]) C N5 (T*82), we denote the hyperbolic cone of p, regarded as a polyno-
mial in N3 (T*82),. Let P(x, &) be the full symbol of P and p,(x, £) be the homoge-
neous part of degree i of P(x, £). Now we assume that

DPm-j(x, &) vanishes of order r—2j on 3, N ¥ near o whenever

1.10
(1.10) r—2j>0.

As mentioned above we regard T; %,/T, 2,N 7,3, as a subspace of N (T*2), and
hence is equal to {[X]EN; (T*2),; XeT; }.

Theorem 1.2. Suppose (1.8)-(1.10). Let ¢(x, &) be real, homogeneous of degree
0 in &, C* in a conic neighborhood of p such that

2(0) =0, [HoNET(p,, ODN(TTZ,/TIZ,NT,Z,).
Let o be a sufficiently small conic neighborhood of p. Then it follows from

o N {p<O0} N WF() = ¢, pe&E WF(Pu)
that
o0& WF(u)
for any distribution uc 9)'(£2).
Note that if 7,3, is symplectic then T, =, is identified with N3 (T*2), and
hence the hypothesis in Theorem 1.2 is reduced to
(1.11) [He(o)]ET (p,, [0]) .

Note that the hypothesis in this theorem is equivalent to
(1.12) Hy(0)ET (p,, OON T Z,+ T, %, .

Since I'(p,, )N T, =,+ ¢ is equivalent to C(p,, )N T,Z,={0}, then this theorem
gives a rough estimate of wave front sets when

(1.5) C(pn, ONT,Z, = {0}

and p satisfies (1.9), (1.10). As noted before when r=2 (1.5)" and (1.9) imply
that p(x, &) is effectively hyperboic at o and then Theorem 1.2 holds under (1.11)
(see [10], [12]). If we assume further that codim Z,=2, detailed discussions were
given in [1], [2], [9).

We turn to the local Cauchy problem. To simplify notation, we say p(x, §)&
34 near o if p(x, &) is homogeneous of degree p, C* in a conic neighborhood of o
which is a polynomial in &, such that p(x, &) vanishes of order y on X near o. Then
(1.7) is equivalent to say

1.7y p,,,_,-E-E”""'"‘“” near o whenever m—2j>0,

We assume that 4;(x, D') in (1.1) are classical pseudodifferential operators of order
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jin 8. We also assume that p(x, +) is hyperbolic with respect to dx, near %, that is
the zeros &, of p(x, &, £') are all real for any (x,&")E2 x(R?\0), where £ is an
open neighborhood of . Let x&7T#2\0 be a multiple characteristic of p. We
denote by m(x) its multiplicity and by =,, the component of « in the real character-
istic set of order m(x) of p. We recall our hypotheses (1.3), (1.6) and (1.7) at «;

S is a C™ manifold near £ with the tangent space

(1.3). T2 at«xsuchthat T.SD T, SN T, S

(L.6), Pu(x, &) s strictly hyperbolic with respect to [H, ] in
Nz (T*2)c

(1.7, Pu-j(x, )8/ ~2 near £ whenever m(x)—2j>0.

Theorem 1.3. Let p(x, -) be hyperbolic with respect to dx, near X. Assume
that (1.3),, (1.6), and (1.7), are verified for every multiple characteristic k€T ;“.Q\O.
Then the Cauchy problem for P is locally solvable near % in C= with initial data
on x,=0.

Proof. By Proposition A.4, it will suffice to show that P has a parametrix with
finite propagation speed of wave front sets at (0, %', &’) for any |&'|=1. Fix &’
with I{"~ "| =1 arbitrarily and show that P has such a parametrix at (0, X', 3 ). Let
K€ T;“.Q\O (j=1, «»+, r) be multiple characteristics of p such that their projection
off &, coordinate are (%, &), that is £, =(%, £, E7), where £§ are different zeros of
p(x, &, E~’). Let m(x;)=m; then it is clear that

P(x. &) =T p(x, €)
where p@(x, £) are homogeneous of degree m;, C* in a conic neighborhood of
* ") which are polynomials in &, and «; are characteristics of order m; of p%¥(x, £).
We note that

pxj(xy 5) = p:(tj) (x, f) {E'P(h)(,cj)} .
2
It is clear from hypothesis that
(1.13) PV (x,£)EZRL™ near k;.

The zeros &, of p¥ (x, &) (j=1, -++, r) are different each other when (x, £’) is near
(%, ¢’) and then we can write

P(x, D) = P®(x, D)-+-P?"(x, D)+ 3} B,(x, D') Dy ~/
i=1

where B;(x, &) S~ near (%, 3 ") uniformly when | x,| is small and P¥(x, &) has an
asymptotic expansion;

PO (x, )~ O (x, ) DG)a(x, )+ oo -+p8(x, €)oo
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with p{(x, &) which are homogeneous of degree i, C* in a conic neighborhood of

(J‘c,g ), polynomials in &,, Comparing the homogeneous part of degree m—i of
the symbols of P(x, D) and P®(x, D)---P")(x, D) it follows that

{kl;-:[i P(k)(x’ f)} PSJ}-:‘(X’ €)+Rj,i(x’ E) = pm—i(-x’ f') .

By induction on 7, it follows easily that R; ;(x, §) vanishes of order m;—2i on Z(
near «;. Since p®(x, &) never vanish on 2, if k= j it follows that

(1.14) PH-i(x, E)EZFE™™  whenever m;—2i>0.

From (1.13), (1.14) we can apply Theorem 1.1 with P=P®, =3, and we
conclude that PYX(x, D) has such a parametrix at (0, #',&") (j=I, ---,r). On the
other hand, by Corollary A.l, to prove the existence of a parametrix with finite
propagation speed of wave front sets of P at (0, %', £ "y it suffices to show that each
PY9(x, D) has such a parametrix at (0, 2',&). This remark completes the proof.

Proof of Theorem 1.2. Let %,NV be given by
by(x, &) = +or =by(x,§) =0

where b,(x, &) are homogeneous of degree 1 in & and db (o) are linearly independent.
Choose c;(x, &) (1= j<1=2 (d+1)—k) with c,(0)=0, homogeneous of degree 1 in
¢, C in a conic neighborhood of p so that H, (o) form a basis for 7,%,. Let

(Ho(o)ET(po, DN (T2, THE,N T,Z,)

k 1
Then we can write Hy(0)== 2 @; H,,(0)+ 2 B; H,;(p) with real constants a;, §;.
ji=1 ji=1

Set Yr(x, &)=Za, by(x, E)+Z B, ¢;(x, E)+M |(x, |&| ) —0|*|€| and we may as-
sume that {p=<0} D {y<0} near p taking M sufficiently large. Since [Hy(p)lE
I'(p,, [6)) it follows that

Po(Hy(0))=*0
and this implies that (Hy(0))" p,(0)=£0. From the definition of localization we have
(1.15) (Hy(o) p) (0)*0.

Put X,=v(x, £) and note that Hy(o) and the radial vector field at o (which is in
T,=,) are linearly independent because X a; H,(0)=+0. Then we can extend X, to a
full homogeneous symplectic coordinates {X, 5} such that X (0)=0. £(p)=e;. We
write (x, &) instead of (X, &) then (1.15) implies that H{ p(0)+0. Since Hi, p(p)=0
for 0= j<r—1, Malgrange’s preparation theorem gives that

p(x’ 5) = (I(X, E) {E(')"{_al(x, 5/) 56-1+"' +ar(xa 5’)}

with q(p)==0 where a;(x, £') are real, homogeneous of degree j in ', C* in a conic
neighborhood of p'=(0, e}), ef=(0, -, 0, NER? and a;(0')==0, £'=(&,, -+, &)



Hyperbolic operators 411
A pseudodifferential operator analogue of the Malgrange division theorem shows that
P(xs D) = Q(xa D) {D6+Al(x7 D,) D6—1+°"+A7(xs D’)}

modulo a smoothing operator near o where Q is non characteristic at 0. Snice our
result is invariant under multiplication by Q it will suffice to consider

P(X’ D) = D(’)+A1(-v> DI) D(’;_l—i—"'—l—A,(X, D,) .
Denote by P(x, &) the full symbols of P(x, D);
P(X, E) = p(x’ €)+pr—-l(x’ E)+"°+pi(x7 5)+"' .

It follows from the assumption (1.10) that p,_(x, §) vanishes of order r—2j when-
ever r—2j>0. Since p, is strictly hyperbolic with respect to [H,] in N3 (T*2),
and clearly

Tp{x%=0} DT;Z,NT,%,

we can apply Proposition 6.2 to P(x, D) (after reducing to a second order system
following §7) to conclude that; if

(1.16) (@' XRYN {x,<O} N WF(u) = ¢, o WF(Pu)

then one has o€ WF(u) where o' is a sufficiently small conic neighborhood of
0'=(0,e}). 1f p(x, &)=0 then |&,| is bounded by B|(x,&'|&"| ) —p'|?|&’| near
o with a positive constant B and hence we can replace @' X R in (1.16) by a small
conic neighborhood of p in T*2\0. This proves the theorem.

In §82 and 3 we reduce our study on P to first order operators using a blow
up like process along T,X. We shall also estimate the derivatives of symbols of
such reduced first order operators. In §4 we recall some properties of pseudodif-
ferential operators with symbols defined in §3 which are found in [11] with different
notation. In §5, we shall therefore study such first order operators using calculus
in §4. We follow [11] and a basic estimate is proved by energy integral method.
A modified version of such estimate will be applied to study the propagation of
wave front sets of solutions. In §6 we shall extend estimates obtained in §5 to a
product of two first order operators. §7 is devoted to a reduction of the Cauchy
problem for P to that of a second order system with diagonal princiapl part to
which we can apply our results in §6. We complete the proof of Theorems 1.1
here. In Appendix we shall give the definition and some properties of parametrices
with finite propagation speed of wave front sets which are found in §3 in [14] in a
slightly different formulation.

2. Blow up of principal symbol

We can choose a homogeneous symplectic coordinates (x, &) at (%, f.;) pre-
serving x,=const., such that o’ =(%’, £")=(0, €}), e;=(0, -+-, 0, )& R? and
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P, &) = &8+ 3 d(x, &) ep
where a;(x, £') are homogeneous of degree j in &', C* in a conic neighborhood of
p'=(0,0,e7). Since = C {£,=0} in this coordinates, = is given by
=16 =0,b)(x,6)=0,j=1,,k}

where db,(p’) are linearly independent. Here we have assumed that the codimen-
sion of X is k-+1.

Lemma 2.1. Suppose (1.3). Then we can choose a homogeneous symplectic
coordinates at (X', £") so that o'’ =(0, e}) and

S = {6, =0,b,x,8)=0,j=1,, k}

where b(x, §") are homogeneous of degree 1 in &', C™ in a conic neighborhood of
o' and

db(0') = dxy+bdx,_+adx,
db,f(0") = dx;+ay; dxg, dbyjs\(p') = d€ j+ay;11 dxy, 1S j<¢q
dbyy14(0") = AX gy jFaggrrs; dxg, 1= j=<r, dbylo”) = by dX pi i+, dxy

with r=k—2q—2, q<d—1 and b=0 if g=d—1.

Remark 2.1. In the case H, (0') (1< j<k) and 3/9¢, are linearly dependent we
have b,=0 in this lemma.

For later use, renumbering the coordinates, we may assume that o'=(0, 0, e})
and ¥ is given by

> = {fo =0, b,-(x,f') — O’j =1, -, k}
where b(x, £’) are homogeneous of degree 1 in &', C* near p’ and
dby(0") = dxy+bdx,_,-+adx,

dbyi(p') = dxpy jtay; dx,, dbyji(0') = déysjtayndx, (1Sj=q,ptq=4d)
dbj(p") = dx;_\ta; dx, Q< jSr = k—29-2), db,(0") = b,y dx,+a,, dx, .

Note that b,(x, £") can be written as
2.1 by(x, &) = (xo+bx,_ytax,+fi(x", £)) exx. &)

near p’ with dfi(¢’)=0 where f,(x',&"), e;(x, £’) are homogeneous of degree 0, 1 in
&’ respectively and e,(p")=1.

Put by(x, £)=¢&, then we can write p(x, &) as
(2.2) px, &) =by(x, E"+ 31 a(x, &) b(x, €)”

|} =m,w0§m -2

Where a:(ao, @, =, ak)ENk+15 b(x7 5)=(b0(-x, E)y bl(x’ 61)9 Tty bk(xa 51)) and aa(x! E/)
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are homogeneous of degree 0 in ¢'. Choose Y;T,(T*2) (0= j=<k) so that
db(0) (Y;) = 9;;

whose residue classes form a basis to Ny(T*2),. With this basis we may assume
that Ny(T*@2),=R*, [H,]=(1,0, -, 0)€R*% Then p, in Nx(T*8),=R*" is
given by

q(c) = C6n+ 2 aa(p’) (O, c:(co, (1’ Tty CI;)
| =m,dq=Sm~2
and hence
po(x, &) = q(db(x,£)) .
Assumption (1.3) implies that

g(¢) is a strictly hyperbolic polynomial in { with respect to

2.3
@3 (1,0, -, 0)S R .

Using this ¢ we can write p(x, £) as

(2.4) P8 =g, O+ 3 a(x, )b &)

o8] =m,wo§m—

where a,(x, £’ )=a,(x, ¢ )—a,(p’) and hence a,(o’)=0. We make a blow up like
process to p(x, &) along 3 using the expression (2.4) and Nuij approximation [15].
Let

qCx,E) =g+ 3 ax &)<
lm|=m.d0§m-2

q(¢, 05 x, &) = (1—0" &°[6CH " (¢ x, €)

where (k] denotes the integer part of k. Then we can write of course
R [m/2l
(2.5) q(&5x,8) =4, 05%, 8N+ D07 r, ({5 x, &)
j=1

where r,_,({; x, &) are polynomials in ¢ of degree m—2j with coefficients which
are homogeneous of degree 0 in £’, C* in a conic neighborhood of o’. We note
that

q&;p) =g(€).4(£,0;x,8) =q(¢;x, €.

Proposition 2.1. The equation §({, s; p')=0 in {, has m real distinct roots for
any ({', )% (0, 0).

Since 4 is homogeneous of degree m, 0 in ({, p), &' respectively, it follows from

Proposition 2.1 and Rouché’s theorem that there are m functions fj((', o, x, e
C=((R**"\0) x W) such that

(2.6) §(€,05x,.6) =T (CG—7,¢", 03 x,€)
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when ({’, 6)=(0, 0) where W is a conic neighborhood of p’. Here we note that
24(¢’, 0; x, £’) is homogeneous of degree 1, 0 in (', 6), &' respectively and
2.7) 4L 05 %, E)—4,(¢", 05 %, €) | Ze (1€ |40

for any (x, £Ye W, ({’, o) R**\0, i & j, with a positive constant ¢. By (2.5) and
(2.6) we have an expression of p(x, £);

m [m/2] .
@8 p( &) = T €T/ (5. £, 05x, £+ 330¥ 1B (x, £ %,€)

with b'(x, £ )=(by(x, §'), -+, by(x, ).

3. Estimate of blown up symbol

Let x,(s)EC7(R) be equal to | in |s| =1 vanish in |s| =2 such that 0=x(s)
1. Wedefine y; =y (x, &), n;=7,(¢, u) following [11] by

Yo = #Xg, y;=0X,(x)) x, (1< jZ p), y; = w2 2 (7P x) x; (p+H1Z))
Ny = ﬂ_l Eo, 7; :/l_llz 11(/1_1/2 Ej<6,>_l) 5,‘ (P+1§])
n; = T (T EKE DT —8,,)) (6,0, KE M+ a7 8,6 (1S p)

where 0<¢<1 and &;; is Kronecker’s delta. It is easy to check that

J

(1) 3,80 dd+GL) for anyj, an,€SuE™, dxd+Gl) (p+1<))
17, —0;KE>ES (e, dxd+Gu) (1= j<p)

uniformly when 0<a<1 with Gl =|dx”|* 47" |dx" "' |2 +u"{EY?|dE"|?, Gu=
[dx" [P u™t dx" TP a7 E D72 dE |2 where X/ =(xy, =+, Xp), X7 =(xp, o+, Xa)-
Put W,={(x",&); |x;| ¢, [§;18'] 7' —8;,] =c} and note that

(3.2) |un;—8;,KE D1 S2uKE D, (1 —CuXEDSuln'| S(14+Cr) ED

with a positive constant C independent of #. Then there is a positive constant ¢&
such that (), 7')EWia. Moreover if |x;|<a'? [EKE>1—0;,| Zu it follows
that

(3.3) (7, 1) = (uxg, ux”, 2 X" 7 Eg, T EY T EET ) = Mu(x, §)

with &7 =(&}, «+, €,), " '=(€ 41, -+, €5). Let I be an open interval containing 0 and
b(x, £Ye C=(Ix W,) be homogeneous of degree 1 in &’ such that

(3.4) b(0,e,) =0, (8/0¢,)b(0,e,) =0 j=1,-,p—1.
For such b(x, £') we define B(x, &', u) by
(3.5) B(x, &', ) = ub(y,7") = b(y, un'), 0<pu=4

with t<c. Remark that B(x, &', #) is defined for all (x’, £)eR?x R?. First we
estimate the derivatives of B. By the Taylor expansion of B at (0, <{¢"> e,) we can
write
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B(y, un’) =m2 (a! B yP(un’)” BF(0, <E De,)+

+Bl=1

£2 5 (@l A7 P '~y e, [ (1-0) B3 (09, 0(um —CE > e)+<E > €,) O

Here we have used (8/8¢,) b(0, e,)=0 which follows from Euler’s identity and (3.4).
We note that the integral belongs to S({&"> 1!, dx3+Gy) by (3.1) and (3.2). Hence
the second term of the right hand side belongs to S(4%&">, dxt+Gy). From (3.4)
the first term of the right-hand side contains no x7;(I = j < p) and hence belongs to
S(u<€", dx3+GL) in view of (3.1). These two facts give that

| B (x, &', 1) | Scpp 1%+ 12EMT1 for  |a| 1

3.6 o o
G0 |BE (x, &', )| Scp 127197187 WBGESIT for [a] 22

where B =8y, B, B/ NEN, a=(a", a”"Y)eN?. Let f(x,EYSC"(IXW,) be
homogeneous of degree m in £’.  We set

Fx, &) =2"f(y,7).
Then the same argument as to prove (3.6) shows that
Lemma 3.1. F(x, &', 8) = f(0, e)) KED"+F(x, &', 1)
with F(x, &', u)ES(uleD", dxi+Gu). If & (0, e,)=0 for |a+8| <r then
F(x, &', n)ESWLED", dxi+Gy)
uniformly when 0<p < /.
Let Bi(x, &', 1) be defined by (3.5) with b(x, £ )=b,(x, ¢). From (2.1) we have

By(x,&' n) = (xo+bzl(xp—1) xp—1+azl(xp) xp‘*‘/“—lfl(y’, 7)) ne(y, un')

(3.7)
=o(x, &, ) E(x, &, 1)

where E,=ull>+E,, E,€SuXE", dx§+G,) in view of Lemma 3.1 and hence
E = cudé"> with a positive constant ¢.  Since f{%, (0, e,)=0 for |e+] <2 it fol-
lows from Lemma 3.1 again that

2 (Y )Y ES (s, dxb+Gl)
hence
(3.8) o(x, &', n), 98 (x, &', WES(, dx3+G,) for |a+p| =1.

We return to estimate the derivatives of B. Let x(s)eC>™(R) be equal to
zeroin |s|=1 and equal to | in |s|=2. According to the remark preceding to
Remark 4.1, we may consider Bx(«#'<¢">) instead of B hence we may suppose that

(3.9) HES=1

on the support of B. We use this abbreviation without refering.
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Lemma 3.2. Let |87 |=s, |8"/|=t. Then
| B@ | S cpp ah™1 1212 E 1101y OB 1= 02 £ 1187 1002
ifle|Z1landif |a|=r=2 then
| B <cCap pEFIE 2 E NI BN (el =02 g BT =)z g BT -0l
Corollary 3.1. Let |87 |=s, || 2t Then

|B§g§| <cus ul—t/2<€’>1-I¢I/2<uf’>(lﬂ"l-s)/2<E’>(Iﬂ”'I"t)/2

for any a,
[ BE) | S cpp =13+ 17D £ = (0102 e 7= (1B 1= )2
XEDWBNDE for || 21,
| BE | < cpE /D> IE D =Dy B 1= )2 £ 187 1= 02
if ] 22.

Lemma 3.3. For |a+4-8| =1 we have
| BE)| S capatl DIECE IR g 12 0 e

Let 2(¢', 0; x, £Ye C=((R*\0) x W) be homogeneous of degree n, m in (', o).
&’ respectively where W is a conic neighborhood of (0, e¢,). The homogeneity shows
that

(3.10) 18202 g 0y 1L, 05 %, &Y | S Cupy(1 ¢ |2 022 g7 | molal
Put
a(x, &, 1) = (B, (x, &', #), -+, By(x, &', 1), <€ DV2 y, un’)
m(B) = { 3 By, &', wPCud >+ TP,
where B,(x, £, u) is given by (3.5) with b=>b(x, {’) which was defined after Remark

2.1. Note that when 2 is homogeneous of degree 1 and 0 in ({’, o), &' respectively
then in view of (3.3) and (3.5) we have

GBI alx, €, ) = ul(b(Mu(x, £), -+, b(Mu(x, €)), <uE DV Mu(x, €1))

when |x;| a7 |5j<5’>_1‘5jp] =78
Our aim in this section is to prove the following proposition.

Proposition 3.1.
AR E S (a1 BT g YIE D m(BY T EICE ST, g > dxf)
if le+8] <1,
aBES(u 1=+ VI pE YD m(BY T IHPILE YT, gu-{uE " dxf)
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if |a+A8| =2 uniformly when 0<u= it where
Gu = uE D |dx" |PHLED X 24> dE |2

Remark 3.1. Taking into account (3.9) we may suppose that 4 '<<E"D, u™?
{&E>2<E">"! and hence we may assume that

dxi+Gu= gutdxi .

Proof. First we prove this proposition when 1 is independent of (x, £"). After
this we shall reduce the proof of the general case to this. Put J§=(B1 (x, &', 1), -+,
By(x, &', &), {u€">SY?) and consider 1(B) where (¢, o) satisfies

|0%s,00 27, 0) | Sey(| £ 24?10l

Since |({(ué DVA) @ | S e, {<uE DAE Y 1}(E D" 1* and we may assume {ué DVEKE D!
<cu modulo Sz~ hence By, ,=<u€ D' verifies (3.6). We start with
3.12) a% aﬁ(af;;) =Z2C(r, @, f) 0%y, A(B) B.(d(‘fal) ‘Ba =

=243 =3+2"

s=1 S22

where |7|21, B=4+F, a=d+4, letBil 21, a=at+-+a,, f=F+-+4,
We study the case |@&+7F|=1. Noting that | B|=<{u& >m(B’) it follows that

| 1Sl BI" | B, | Scut’> ™ m(B')" | BE

Ji(B) 71(B) |

Since e =d +4&, 19 A+A, from Corollary 3.1 | B{*)g,| is estimated by c,q 4'~1%" +#" /12
GBI IEICE 5B ug 5 e 5 and hence

|| Scup a™ ™ m( By I g e DI
X{EDT |°°|/2<ﬂ5 >|ﬂ |/2<5 >lﬂ”’

We turn to =", When [&| =1 there is k such that @,=@& and hence we may as-

sume that @,>&. Then as in the preceding argument |B|*" ’|B,“’g},)| is estimated
by

(3.13)

Carpy 7% 1 (B CE D TIE TR g DI
X<5'>us;’ ‘112

On the other hand by Lemma 3.2 | B|*~* H IBf“(; » | is bounded by

(3.14)

(3.15) c,,,(f Nymlal=lag iz e >(|ﬂ”| |ﬂ;’|)/2<5'>(xﬂ”’l—m;”i)lz
for | B| '<<{u&">"¥2. Now (3.14) and (3.15) imply that |S”| is estimated by

;ﬁ 'u‘li”’ n1(Br)n—1<'uE/>n<€,>_1<5,>_”|¢|/z
X’ >|ﬂ |/2<5 >m”'

(3.13) and (3.16) show that

(3.16)
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?, ae I(E)ES(,U_‘MI 148" \[2 in(B’)””"'*ﬂ'(uf />n<£ />_|¢|’ g~,:.—|—<ﬂf «> dxg)
if |a+8|<1. Inthe case |F| =1 the proof is similar.
Now we shall study the case |&+F|=2. Let a=d-+& f=F+5. Then
Corollary 3.1 gives that
| Bl | S cap 71548 VG DRI B g B 2 g B

and hence Iﬁl"“lBﬁ-”l‘gﬂ)l and |%’| are bounded by
cap w71V (B I Y e T IBICE e

> <u5'>lé"l/2<5 f>|é" /2

for m(B")* '<Cm(B’)*"%. We estimate =”. Let |§]|=2. Then there are j, k such
that /9,.+/9kg,§ hence we can assume that §,+8,=4. Corollary 3.1 shows that

(3.17)

2
@) | s esti
111 | B{%, | is estimated by
Cap 17 OHDICE SRR e SR 1=Coy s
X E DB THBY 1=ty Hep2

. - .
for p1'Zs;, B’ '=t;. Since fi’’+pY 'z " it follows that | B|*"*x II | B, |
. 1]
is bounded by ]

cap 1BV By pE YIE ST I e B B 1= 1B 2
X<E />(|p;/ /+ﬁ§’ /1_1‘5// ll)/z )

On the other hand Lemma 3.3 shows that | B|2"* H IB}‘;(‘)_,I) is estimated by
1=3

Cap<5 Duildl "'1+’2"’2<u6 ’>(|ﬂ”| -8y +8 /2

(3.18) ><<€,>(15// ll‘lﬂ;’/"'ﬂ;/,l)/z )

From these estimates it follows that |Z”| is bounded by
(3]9) c;fj ‘u‘lg" ’I/Z m(B/)n—2<ﬂf/>n<E />—|3|/2<uf ,>|§//|,2<E ,>|Ap// 12 -
Let |&@|=2. As in the preceding argument we may suppose that a,+a,=&. In

2
view of Corollary 3.1 Il;[l |B§7g;1))| is estimated by

Cap HSE DTN EIDN e BT +BF 112 SIBY B
Since | B|""2 u< Cu™ m(B'y' "% ue">"¢€">2 using (3.18) we can estimate || by
(3.20) cip 27 m(BY R uE Y EDTEE '>—|"1/2<ﬂ5 '>|fa"|/2<5f>1?:” e
Let |&|=|A|=1. We may assume that ¢,=>&, and #,+8,=4. By Corollary 3.1

2
we can give an estimate of ] IB(.‘l‘f;l)I by
i=1

Y-1244 &’’’ ’ _ - ’7 Ty-124
Cap U2 VB V2B A2 g AUl =12y B 4B 1 1B 12
X (E B T8 1-1B e



Hyperbolic operators 419

Taking this estimate into account the same argument as above gives an estimate
of |=”| by

(321) cup m(B'Y Y CE DI M ey B B e
These estimates prove that
2 08 X(B)E S (u™ 1" 8" V2 (B Y\ PICpE YE DI, gutuE > dxd)

if |e+8|=2. Now we shall give a proof for the general case reducing it to that
we have proved. First note that

2, 8% a(x, &', ) = SC(¥,9,7,4,8, §, B) 0% 8% 8% ,, 1(B; y, un’)
?

s A u a
X ;[I B*) 11 Yii@p ,]-}1 (ﬂ’?k,)( »

=1 ‘l(ﬂl) =1

where |7|=s, |8|=t, |v|=u, |&+4;|, |F:], |&|=21, a=é+a f=F+F. We
note that

i

(322)  IKEDyum | Scp P VEED, u|(un )P | S TINEDTI

That is <€D y;, #(un;) satisfy the smae estimate (3.6). On the other hand it fol-
lows from (3.2) and (3.10) that
|0k 8% 0%r,y A(B3 3, 1m") | S Cypp((| B' [P+t DYy Hm* <
S Cupy(| B u D) e
Since (€D WEDTt ur S C(| B |24 uE D) “H/2 (modulo Sz™) one can estimate
|6% 0% a| by
SC(, 8,7, 8,&, 8, B) (| B'|H<uE )= trurminigrym

s A ? [ ~
x L 1B L IL1KED piap| I | a(am, )0 .
=1 B 15y 151

Since to prove the proposition for 4 (B) we have used only the formula (3.21) and
the estimate (3.6) then noting (3.22) the proof can be reduced to the previous case.

4. Some properties of pseudodifferential operators

We use notation and calculus in [5] (Chapter 18). We shall use the following
metrics;

guldx', d&’) = {uE > dx" |2+ DK uE > dE’ |,

gu(dx’, dE) = {uE D dx" |BHEDdx" T|2F4E > dEE at (x',€).
These metrics are slowly varying and o temperate uniformly when 0<x<1. We
denote g(dx’, dé")=g(dx’, d¢")=g\(dx’, d¢’). Remark that g"=g, gu.<g.<g. We

say that a positive function m(x, &', #) € C~(I x R* x (0, #(m))) is a weight function
if m(x, £, 1) is o temperate with respect to the metric g uniformly when 0<<u=< u(m)
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and satisfies
4.1) C N ED™MZm(x, E', W) CuVe(EDN, O<u = u(m)

with constants C, N; independent of 2. We denote by X the set of all weight func-
tions. Tt is clear that if m;e K (i=1, 2) then m,m,& K and if me K so does m &
X for any real s€ R.

We define S(m, Gy) with me K, Gu=g. or g. the set of all a(x, &', u)=a(x,, x',
£, myeC(IxR* x(0, #(a)]) such that

a(x, &', )yeS(m, {pE"> dxi+Gy)

uniformly when O0<a#< u#(a). We also define Sz the set of all a(x, &', x)e C~(Ix
R x(0, #(a)]) such that for any /& N there is k (/)€ R with

#Da(x, &', meSKED", g

uniformly when O0<u#=<u(a). Let 2(s)EeC”(R) be x(s)=0in |s| =1 and equal to
lin |s{=2andset (&', ©)=x (27 ulE">). Fora(x, &', p)&S(m, G.)it is obvious
that ¢z S(m, Gu). On the other hand it is clear that a(1—-%?)ESz™ in view of
(4.1) and G.<g. Since the operator with symbol in Sz is bounded from L*(R%)
to a Sobolev space of any order on R (although the operator norm depends pos-
sibly on #) and hence is quite harmless in our arguments. Then we shall usually
work with S(m, G.)/Six™ instead of S(m, G.). According to this note we shall ofen
identify ae S(m, G.) with aZ.

Remark 4.1. Since we have (Qu<{ED><{uE>) =1 on the support of 7 if
520 so it follows that

Sm, G S mCaE'>ES, Gr), (™ mCE>, GIC S(nuE’>™, G
Lemma 4.1 Let ¢)(x, &', p)eC"(IXR* x(0, A]) (j=1,2, -+, k). Assume
|@Sh(x, £/, )| S Cu 1 HPVKEST1®L for  |e+B| L1

with positive constnat C independent of 1. Then
13
(4.2) m= {3 px, &', uf+<ut > e XK.
i=1

For a(x, &', n)&S(n, Gu) we denote by a(x, D', #) (or Opa) the operator with
symbol a(x, &', #). By a(a(x, D’, #)) we denote the symbol of a(x, D', #). But
sometimes we do not distinguish the operator and its symbol if there will be no con-
fusion. a(x, D', #)* is the adjoint of a with respect to the scalar product in L¥ (/).
Noting that gu/gn < ul > CE D™, 8u/8n=1 we set h(G.)=#, 1 according to Gu=g,,
8.

Lemma 4.2. Let mix, &', w)€ K and afx, E', vy S(m;, Gu) (i=1,2). Then
a,(x, D', p) a)(x, D', p)ye S(m, m,, G.) and
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o(a az)—WE (a)? aiw)(x' E', 1) ayy (x, E', 0)ESH(GLY, Gu) .

<N

Lemma 4.3. Letm(x, &', vy K and a(x, &', )&S(m, Gu). Then a(x, D', u)*
eS(m, Gu) and

o a*)—[ E}N(—l)""'(a!)'l ai (x, &', ) ESHh(G)Y, Gy)
where @ denotes the complex conjugate of a.

Lemma 4.4. Leta(x, &', n)=S(m, gu) and a(x, &', u)=cm(x, &', ) with positive
constant ¢ independent of um. Then there are b(x,&’, u), b(x, &', wyESm™, g)
such that

alx, D', ) b(x, D', )=b(x, D', p) a(x, D', u)=1,
a(x, D', W* b(x, D', u)=b(x, D", p) alx, D', W)* =1

modulo Sg™.

Proof. Put by(x, &', u)=a(x, &', u)' € S(m™, gu) then OpaOp by—1=r
(x, D', )eS(u, gu)CS(x, g).- Since

g(x, D', u) = Sr(x, D', iy €5(1, 8)

we get a(x, D', p) b(x, D', p)=1 with b(x, D', w)=by(x, D', 1) q(x, D', n)E S(m™, g).
To prove the existence of &(x, D', x) we note that a(x, D', #)*=a(x, D', )+ T with
T&S(um, gu). Using the first part in Lemma 4.5 below one can write

alx, D', w*=a(x, D', u)(1+4r) with reS, g).

Denote by §ES(1, g), g€ S(m™?, g) parametrices of (1-+r) and a that we have just
constructed above it follows that 5=g g=.S(m™", g) is the desired one.

Lemma 4.5. Assume that ax, &', m))ES(my, gu) and a(x, &', w)=c; m(x, &', )
with positive constants ¢; independent of n(i=1,2). Let b(x, &', n)yeS(m, g.) then
we have

Op b= O0p ¢,{Op c-+r} Op a,, Op b= (Op a)*{Op c+#} Op q,
with a(c)=0(b) o(a) ! o(a,)™* and r, FE S(umm7' mz!, g).
Remark 4.2. The same argument shows that
Opb={Opc+r} Opa,Opa,, Opb=O0Opa,Opa, {Opc+r} etc.,

with possibly different r&S(ummi! mz', g). If b(x, &', )€ S(m, g) then we can
write

Opb=Opac(x,D', #)Opa,, Opb=(Opa)*c(x,D' #)Opa, etc.,

with possibly difierent ¢(x, D', #) & S(mm7! m3*, g).
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Let A(x, & )=(4"? x, ™2 ¢") and put
Gu(dx', d&') = {pP D dx’ [P+ P EDTdE |2

Then it is easy to see that a=S(l, g,) if and only if A*a=S(1, #8.), where A*a
denotes the pull back of @ by A (here we have identified a with aZ).

Lemma 4.6, Let a(x, &', n)eS(1, gu) and sup|a(x, &', #)| =c, with a constant
¢ independent of n. Then

lla(x, D', u) ul| = (c+c(a) @)||ull
where ||+|] is the LX(R*) norm.

Proof. Recall hat A*a=S(1, #3.)C S, g.). Hence Op 4*a is I? bounded.
Moreover A*a= S(1, ug.) implies that

| A*a |8 < (c+c, #) forany kEN.
Then it follows that ||(Op 4*a) u|| < (c+c(a) ) ||u]|] which proves the lemma.

Now we observe some special symbols. Let ¢;(x, &', ©)&C~(I xR x(0, A))
(j=1, ---, k) and assume that

4.3) lpSt(x, &, )| S g€ D7 for  Ja+p| <1
|@§(x, €7, )| Scpg ™ *HPEDTI for  |atp] 22
with positive constants c,g independent of z. We define m(®) by (4.2).
Lemma 4.7, Assume (4.3). Then
m(O)H ES(m(@) ">, ) for |atB|<1.
Remark 4.3. Assume that ¢;(x, &', #))€ C~(I X R* X (0, A)) (j=1, -+, k) satisfy

(4.4 |pSin(x, €7, )| Scop ™I DT for  |a+p| <1

' @S (x, &) )| Scop ™ “PIEDT for  [atp] 22

uniformly in 2. Then the same argument gives that
m(QYF &S (a2 (@Y IR DI, gy if at+p|<1.

Suppose that ¢,(x, £', #)& C~(I x R* x(0, A]) verify the hypothesis in Lemma
4.7. Leta(x, &', u)ES(m, gu) satisfy;

4.5) a@ e S(imm(@)" 1AL > g) forall a,p
4.6) CKuE><m(@)SC{uE'>™ ¥ on suppafl] with |et+p|=1

with a positive constant C independent of x#. As an example choose x(s)EC*(R)
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such that x(s)=1 for |s|=1. Then a(x, &, #)=x (m(®) {ut’>"?) satisfy the con-
ditions (4.5) and (4.6) since {u&’>Y? m(®)= S (m(®) {ut">'"?, gu) and m(®) {ué'DH*
is bounded on the support of x®(m (@) {ut’ > (k=1).

Lemma 4.8. Assume (4.5) and (4.6). Let b(x, &', n)ES(, gu) then
a(x, D', 1) b(x, D', £)—Op (ab) E S (mm &> uE 12 m(0Y, gu)
foranyreR.

Proof. By (4.5) and (4.6), a*® belongs to S(m<& > 14 ul > @2 gy (@)~ 1=i+ita),
gw) for any real i(a). On the other hand b,y & S(Wu&’>'*2, g,) and hence

a® by € S(mmE Y71 ue HIHPH@E (@)1 ti@), g,), |a] 21,
With i(a)=|a|4r this proves the statement.

Lemma 4.9. Assume that a(x, &, ©)eS(m, gu), b(x, &, n)ES(, gu) satisfy
(4.5) and (4.6) with m(D), m(¥) respectively. Then

[a, B]E S (mmE > ue DM m(OY m(¥Y', gu)

for any real r, s € R where [a, D] is the commutator of a and b.

5. Energy estimate for first order operators
Energy estimate for the first order operator
L(x,D, p) = Dy—ib—a(x,D’, n), 8>1
will be proved by energy integral method, where a(x, &/, x) is real and satisfies

1 B0 WS m (B ) 71, g)
‘ A, &', W) E S (™1 E N m(BYY T PICuE S ED71, g)

when |a+#| =1 and |a+#|=2 respectively where B,(x, &, #) and m(B’) are de-
fined in section 3. Note that B,(x, &', #) {ué’>™! verifies the conditions in Lemma
4.1 for Bj(x, &', p) satisfy (3.6) and hence m(BYE K. Let x,(s), xi(s)E C=(R) such
that

2(s) =0 in s=—1/2, x,(s) =1 in s=—1/4, 051, (5)<1 for sER
2(5) =0ins=—1, 24(5) = 1 in s =1, 0S5 24(5) =1, 25(8)+25(—5) =1 for sER.

We introduce following symbols;

ay(x, &, 1) = xyen? o(x, &, 1) {uéHV?)
Jox, &, 1) = e 22,(e0(x, &', 1) <uE" DB —1} o (x, &, u)+-<ue" >z
I(r) (x, &, 1) = "> J(x, &, )"

with ¢(x, &', 1) defined by (3.7) where e=-+1, é=max (0, —¢), r€ R, neR*. Note
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that ¢(x, £’, u) satisfies (4.3) by (3.8). We define m(p) by (4.2) with ¢,=¢ and k=1
then m(g)= K in view of Lemma 4.1,

Lemma 5.1. With positive constants c;, one has
ey m(@)SJ(x, &, w)<c, m(p)
uniformly when 0<<u=< .
Lemma 5.2. J{%)ES(m(p)'"1**PIED1, g,) for |a+£| L 1.

From Lemma 5.1 we have J; & S(m(p)’, gu) for any r &R and by Lemma 5.2
it follows that

(52) LB E St ™ m(g) 1=Ky 141, g,)

for |a+pg]=1. Notice that Lemma 5.1 gives that

(5.3) I(r)Z D™ m(g)™

with a positive constant ¢ independent of #. We start with the following identity;

—21Im(I(r) La, u, I(r) a, u) = =2 Im([I(r), L] @, u, I,(r) a, u) ,
(54)  —2Im(LI(r) @ u, I(r) @y u) = 8||(r) a, ul[*+26]|I(r) @, u|]
—2Im(al(ry a, u, I(r) a, u)—2 Im((I,(r), L] e, u, I(r) ¢, u)
where 8,=0/8x,, Im A=the imaginary part of 4 and (-, -) denotes the scalar prod-
uct in L%(R?). Take r=1/2 in (5.4) and estimate the third term in the right-hand

side of (5.4). From Lemma 4.3 and (5.1) it follows that a* —a& S(u " '{ué’> (&>
m(B), g S(m(B)"Y, g). Noting that Cm(B’)=m(p) one obtains

(5.5 a*—acSimp), g).

(5.2), (5.3) and Remark 4.2 show that with J(r)=0p(J;")

(5.6) LA =1L)* J(—1/2) (1+r), L(D=0+F) J(—1/2) I(1)
with r, F=S(x, g). On the other hand one has

&) Jo(—1/2) A+r) (@* —a) (1+F7) J(—1/2)=A+R

with A=J,(—1/2) (a*—a) J(—1/2)=8(1, g) in view of (5.5) and R&S(u,g). We
note that 4 does not depend on n whereas R depends possibly on #. From (5.6)
and (5.7) it follows that I(1/2)*(a*—a) I (1/2)=I,(1)*(4+ R) I(1) and this proves
that

(58) [Tm(al(1/2) @, u, I,(1/2) a; u)| < (c+c () )| I(1) . ulf* .

Next we estimate the last term of the right-hand side of (5.4), [[,(1/2), L]=id, I,(1/2)-
[1(1/2),a). Since a{® belongs to S(u~'*" 8" \V2{uE"> m(B)"1=+EICE Y1, gy C
S(u~Y2ut"> (>4, g) for |e+4| =1, Lemma 4.2 and (5.2) give that
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[.(r), al& S (a2 pue"y" ! m(py™ >, g)C

5.9 7
( ) CS(IJVZ<115/>M n1(qo)"’""l, g) .

Noting I,(1/2)*[1,(1/2), al& S (e ué’> m(p) 22, g), it follows from Remark 4.2
that I(1/2)*[I(1/2), a]=I,(1)*AI(1) with A€ S(«"%, g). This gives that

(5.10) | Tm ([(1/2), al @, u, 1(1/2) &, w) | Sc(n) £ 2| 1(1) @ ul*.

Now we consider —2 Im(i8, I,(1/2) a, u, I(1/2) @, u)=—-—2 Re(8, I,(1/2) a, u, I,(1/2)
a, u). Let us write down 8, I,(1/2) explicitly.
8y Ii(1/2) = —(ne+1/2) 1(3/2) {2 > 28 (cpnt > @
(5.11) +¢ Quy(eplu’ D) —1)}
= —(ne+1/2) el,(3/2)+(ne+1/2) 1,(3/2) (¢ —K)

with K=2{ué&">S? y(e@p{uE>?) o+ {22,(eplut’>"*)—1}, here we have used
d,p=1. Note that (¢ —K) a,(x, &, #)=0 for n=16 and apply Lemma 4.8 to
(e—K) to get

(6 —K) ¢, & S(CEDTICue Y2 m (o), gu) © S(ulut DM m(@)F, gu)
for any k€ R, n=16. Then it follows from (5.11) that
8y I(1/2) ay+(n+¢[2) I,(3/2) @, € S (™42 m ()3, g,) .

Put T—=I(1/2)* {8, 1,(1/2) a,+-(n4-¢/2) I(3/2) @} then T is in S(udu&yri+ie
m(p) 2~k o). Choose k= --2n& hence 2né+k/2=n&, —2ne—2+k=—ne—n—2.
Then by Lemma 4.5, T is written

T=TL()*rI(1) with reS(y,g).

Choose k=—2n&-+2n then 2né+-k/2=n&+n, —2ne—2-+k=—ne+n—2. Hence
Lemma 4.5 shows again that

T=I()*I_(1) with FES(u,g).
On the other hand since a;,+a_,=1 we can write
(5.12) T=T(a,te_)=LN)* L) e+ (DI (DNa_ = ? L(D*rs I(1) a;

Again Lemma 4.5 gives I (l/2*I(3/2)=L(1)*(1+r) I(1) with reS(#, g) then
combining this and (5.12) one has

1(1/2*0, 1(1/2) e = —(n-+€/2) I()* (1) e+ 35 I(1)*ry I(1) @,
with ry,eS(z, g). This implies that

~21Im(i8, 1(1/2) @, u, 1(1/2) @, )= (2n-+e)|[1(1) @, ul?

5.13
.13) —c(m) e DI ey ul*.
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From (5.10) and (5.13), —2 Im({/,(1/2), L] a, u, I,(1/2) @, u) is bounded from below
by n+¢)||I(1) @, ul|*—c(n) u'* % [|1Is @5 ul[>. Set H™*= H*(R®) where H'(R’)

is the usual Sobolev space of order s and we summarize above estimates.
Lemma 5.3.
—2Im(Z,(1/2) Let, u, I,(1/2) @, ) = 8,||1.1/2) e, u|[>-+26||1,(1/2) e, ul[*
+@n+e)l|1(1) @, ulP—(c+c(n) ') 23 M(1) e ulf?
SJor any us C=(I, H™).

Our next task is to estimate (1,(1/2) D, @, u, I,(1/2) a, u), (I(1/2) [a,, a] u, I,(1/2)
a, u) which come from the commutator [L, a,]=[D,, a,]+[a,, a]. We recall that for
any kER, n=16 we have D, a,=—ienV* u&SY? 1§V (en'? plut Sy e S(ué HH?
m(p) ™1k, g,) for | olug S| < 1/4 on the support of x§"(en'? pué Y% when n=16.
The same argument as in the proof of (5.12) gives

L(/2)*1(1/2) Dy e = 33 (1Y (Ro+-rs) £(1)

with ry&S(x, g) where Ry(x, &, w)=I(1)"" I(1)™ I(1/2) I(1/2) Dy a,={u’>7"547*
J$* J7" Dy a, which is equal to

{Kue> g I} Jy Dy ety

We shall examine that R; < S(1, g.) and that the maximum of the symbol Ry(x, &, &)
has a bound independent of n and #. Note that Jy=8¢p+<{u&’>"/* when

| pCu’>S2| <1/4. If Se=1 then it is obvious (ue”> 5+ J3 J;2=1. If de=—1 then
it follows that

CpE > JE I = (>, T = (1—g®ué D)

when |@lu&’>?| < 1/4. This implies that, on the support of D, @, (n>16) where
| @ ug 2| <n ', we have

(5.15) [Cue’>3F JL I |"<(Ikn )< e

with a constant ¢ independent of n. Recall that Jy Dy a,=—ien'*{uf’ D" Jy 25"
(en'? ol ué">V?).  Since {u& D? Jy=0{ué">? ¢+1 on the support of D, @, (n=16)
we have |J; D, @, | < cn'? with ¢ independent of n.  (5.15) and this show that

(5.16) | Re(x, &, )| < cen'?
with ¢ independent of n. Then Lemma 4.6 implies that
(517 [(1(1/2) Dy @, u, 1(1]2) @y 1) | S (en'P+-c(n) &) 23 15(1) @ ull’ .

To estimate [e,, a] we note that {3, & S(m(p) 1*TEIFA e AL S 11, g,), for any
|e+8| =1, k&R which follows from the note preceding to Lemma 4.8 and the
fact that a{@ e S(u~'%" 8"\ ug"s m(B'Y - 1%PICE ST, g) for |a+B| <1. Tak-
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1/2 1+k

ing these notes into account Lemma 4.2 shows [a,, a] belongs to S(u'* m(e)”
{uE?, g) for any k& R. We apply the same argument to obtain (5.12) to get

IA/2)* 1,(1)2) (e, a] = 2 L()* R, I(1) @, with R,eS(EY% g)
and consequently one has
(5.18) |(01/2) [ae, @l u, 1(1/2) @y w)| S c(n) 2 33 [ 11(1) ey ull* -
Now (5.17) and (5.18) imply
G19) [T IL, e u, 1(1/2) @y w)| < (cn*+cn) #'%) T 1(1) @ ull*.

Summing the inequality in Lemma 5.3 for e=41 and using the above estimate
(5.19) we get

Lemma 5.4.
—21Im 3 (J(1/2) ety Lu, 1(1/2) @, 1) =8, 3 [|1,(1/2) @, ull’
+26 ZZ [11(1/2) @, ul*+(2n—1 —cn‘”—z(n) w0 311 @, ul®
for any ue C=(1, H™>).
Proposition 5.1.
3 10) @, Lull 218y 33 [I1(1/2) @, ul[*+2n8 33 |11:(1/2) e, ul?
+en® 3311 @, ulf?

with a positive constant ¢ independent of n and p for any h<n, 0<u< pn), usC~
d, H™=).

Remark 5.1. If we start with r=1, 3/2 in (5.4) we shall obtain the following
estimates instead of that in Proposition 5.1,

53 I~ 172) @y Ll 20y 5 1) @ 4200 3 [10) gl
+en? 2 [ (r+1/2) a, ul, r=1, 3/2.
Corollary 5.1.
er [ ImigycuD'>* Lute, P ez limey ute, I d

with positive constants c¢; independent of n and u for any n<n, 0<p=<A(n), ueC”
(I, H™™) vanishing in x,<0.

Remark 5.2. Note that m(g) (x, &, ) =<{ué">"? when ¢(x, &, £)=0.

We shall prove a variant of Proposition 5.1. We put (u, v)y=(uD" >y,
<aD>’ ), [lully=|KaDDull.

Proposition 5.2, Fix O<<v<<l. Then
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& 33 I110) @, Lo Zndy S [11,112) @, D> ul?
+C2 no” ; ”12(1/2) aeu”?s)‘}“'z ”2 Ze ”12(1) o, "“fs)

Jor any Asn, 0<uA(n), 0(n, 1, $)<6,s€ R, ucsC>(I, H =) where c; are positive
constants independent of n, 1, 6, s.

Lemma 5.5, Let TeS(m,g). Then

LN a,T=TI(r) e, + ; RLuD HYE VR [(rb1—k) ay, RyeS*m,g)
Jor any k=0. In particular if T={uD")’ we have

I(ryalauD" > —uD"> I() ¢, = ? RyuD ">~ [ (r1—k) ay
= 28] RuD"> 12 [ (r4+-1—k) ayluD")*

for any k=0 where Ry, R,&S (1, g).

Proof of Proposition 5.2. First we note that Lemma 5.4 can be stated as;

—21Im 2 (7,(0) a, Lu, I (1) a, u)=9, 2 11.(1/2) e, ul|*
+26 Ee] [11(1/2) @, ul*+cn ; [[I(1) @, ul?

for any n<n, 0<p=<A(n). We replace u by <uD’>u in this estimate. Since [L,
uDY=[KuD"’, ale S(u"* ue”>*, g) it follows from Lemma 5.5 that

1,0) a, L<u D> = uD")* I,(0) a, L+ 25" RluD" > Ij(0) ay L
+ 25} Ry(uD"> I(0) o5,

(1) aaD’> = D'y 1,(1) e 33 RCuD > 1(1/2) s

with Ry, Ry, Ry& S(1'2 g). Then these imply that
2|(I,0) &, L<uD"H'u, I (1) a{uD"Y'u) | S2[(14(0) @y Lu, 1,(1) @ )|

+n7Y|1,00) e, Lull;_1/n+c(n, 2. 5) 25 115(1/2) a5 ullés,
and this is also estimated by
(5.20) (e:+1) 7 11(0) @, Lulfoy+ci'nl|I(1) e, ullf,

+ein, u, 5) ? 175(1/2) a5 ulls) -

On the other hand one has from Lemma 5.5 that /(1) ¢, {uD">’'={uD Y I,(1) a,+
? RuD ">~ [,(1/2) a5 hence

(521) 2”1!(1) a!</1D’>Su”2%H]8(1) @, u“?s)_
—cylin, 1,8) 33 [1(1/2) @ g0 -

Another application of Lemma 5.5 shows that

(5.22) &(n, 1, H(1/2) el D DulPZ|1(1/2) @, ullG, -
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Taking ¢! <¢/2, 0 —&(n, 2, 5) 622 6", we get from (5.20)(5.22)
(er+1) 7 |{10) ¢ LullEsy 2 8o 33 111(1/2)D">'ul P46 —ci(n, £, 5)
—cy(n, 4, 5) ) 33 |11(1/2) @0 ulléy+e. n 33 11E() e ullisr -
This proves the proposition,
Remark 5.1, If we start with r=1, 3/2 then we shall obtain
ey 33 [1(r—1/2) @y Lull{y 218, 33 |I1(r) aluD>" ull
+ey n0* S @, ullfy+eo n* T 1r+1/2) e ullf
with r=1, 3/2 for any A<n, 0<u S A(n), 6(n, 1, s)=<0.
Corollary 5.2,
2 [11,00) @, Lu||%_1,—2 Im g (I(1/2) @, Lu, 1,(1/2) aq 1),
=0, 33 11(1/2) D" ull*+c0" 3 111(1/2) @, ulliy+en S I1(1) @ ulls)

Sfor any n<n, O<usi(n), 0(n, 2, )0, usC=(I, H™™) where c is a positive con-
stant independent of n, u, 8, s.

The rest of this section is devoted to obtain an estimate of wave front sets.
Let

f(x” 6,, ﬂ)ES(ﬂ, GI") .
Set Yr(x, &', n)=x,—f(x', &', #) and define ¥(x, §', ) by

exp (I (x, &', ) if y(x, &, )=0

2 ' =
(x, &% 40 { 0 it Y (x, &, m)>0

(cf.[9]). Then it is clear that ¥(x, &', u)eS(1, G.). We give two examples of such
J(x,&). Let x(x)Y=Cy(R% be equal to 1 near x'=0 vanish in |x'|=1. Let
(X', ) T*R\0 and set

dyx' &) = {x(x' —F')|x'—F' |*+ | E'CE D —E" |24} V2,
Then it is easy to see that ad(Mu(x’, &))ES (¢, G.). As another example we take

f(x', EYeC=(W) which is homogeneous of degree 0 in &' such that f(0, e,)=0
where W is a conic neighborhood of (0,e,). It follows from Lemma 3.1 that

O 1) tueeS(u, Gu).
Put

v =y lres(, 6.
Lemma 5.6.
c(n, u, ) 2 11,(0) @, ul|?;—1/4y—2 Im 3 (I (1/2) a,[¥, L) u, I(1/2) a, Tu)q,
=Q—c(n f)u'’) 2 11/2) e, Fullfs
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SJor any n<n, 0<pu < An), us C>(I, H™™).

Proof. Note that ¥ =% —R, ReS(ue'>™!, g). Since [¥, L]=—D¥ +[a, ¥]
£S5(1, g) Lemma 5.5 gives that

I =1Im(I,(1/2) &,[¥, L] u, I,(1/2) @, ¥u),
~Im(I(1/2) @[, L) u, 1(1/2) ¢, ¢ T u),, -

Here and in the following ~ denotes the equality modulo a term which is bounded
by

2 33| I11/2) @ Tullisy+c(n, . 5) 33 [[10) e, ullGe-10 -
The argument as in the proof of Lemma 5.5 shows
(5:23)  <eDY () @y =y aD Ir) @t 5 RCuD Y I o
with R;e S(x, g). Using (5.23) it follows that

I~Im(aD"Y* 1(1/2) a,[¥, L u, y-{pD"Y I(1/2) a, ¥u)
= Im(p*uD"Y 1(1/2) a,[¥, L u,{aD"Y’ I(1/2) @, Tu).

Remarking y* —yr € S(ué D!, Gu) (5.23) shows that
(5.24) I~1m{(1/2) e, p[¥, L] u, I(1/2) @, Tu),) .

Set [#, L]=—iK+T with K=O0p({f,—a, v} v? ¥)eS(1,g). From (5.1) it is
clear that TeS(e"Ku' > ' m(B) ", g)CS(u K ut’ >, g). Substituting this ex-
pression into (5.24) we have

—I~Re(I(1/2) @, vKu, I1]2) a, Tu) .

Noting v K=O0p({&,—a, v} ¥)+T, TS ue > 2 g) it follows that —I~ Re
(I(1/2) @, Op({€,—a, ¥} ¥) u, 1(1/2) @, Tu),. Set

(5.25) M =Op{é&—a,y} =Op(l+{a f}) with {a f}ES"?g)

then it follows that M ¥ =Op({¢,—a, v} ¥)—T, T€S(ué" >, g) and hence
—I~Re(I,(1/2) &, MTu, I,(1/2) @, Pu),) .

Here we apply Lemma 5.5 and we get by (5.25) that I,(1/2) e, M =MI(1/2) a,+ ;

Ry I;(1/2) @5, Ry S(n, g). Since [{uD"*, M, [{uD">, R;] are in S(ulué > ™72, g)
this gives that

<uD" Y 1L(1)2) e, M = M{uD")' I,(1/2) a,+ ? RyluD"* I4(1)2) a3
+3 TuD > 2 Iy(1)2) a5, T,ES(1, 8) .

Here we note that M and R, are independent of 5. Using above expression we have
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—I~Re(M<{uD"> I(1/2) a, Fu, {uD">* I,(1/2) @, ¥u)
+33 Re(RCuD>* Iy(1/2) 2, Tu, <uD"> I(1/2) a, Tu) .

Notice that the second term in the right-hand side is estimated by
e(n,f) m 33 (1/2) @y Tullly

Recalling (5.25) the first term of the right-hand side is estimated from below by
(L=c(f) (/D) e, Fullly .

These complete the proof.

Propesition 5.3. Fix O<v<l. Then
c(n, u,5,0) 33 110) @, ulltc—1pm+e 3 |110) @ Lullfsy
=nd, ;} 11,(1/2) a e D" Full*+c, nd" Ee} 11,(1/2) e, 7 ul|i,
+ep it (1) e ¥ ulliy

Jor any n<n, 0<u=<A(n), 0(n, 2, 5)<0, uLC=(I, H™ ™) where c; are positive con-
stants independent of n, 1, 8, s.

Remark 5.4. If we start with r=1, 3/2 then we shall get
e, #,5,0) 23 |I1r—1/2) @y ulle-yyny+ 33 11r—1/2) @, Lullt
210, 33 |I1(r) auD’> TulP+c, no” 33 1) e Zull,
+C2 nZ 2 ”[e(r+1/2) aeq/“”%s) , = l’ 3/2 .
4

6. Energy estimate for second order operators
We shall extend Propositions 5.2 and 5.3 to operators of the form
L =gq,q,q;(x, D, n) = Dy—i6—a;(x, D', 1)
where a;(x, &', #) are real and satisfy (5.1). We assume moreover
6.1) lax, &', w)—a)(x, &', p)| = clnE"> m(B)
with a positive constant ¢ independent of z. Put
Hey = { S} ILO) @, 9, g, ullts+ 3 1L0) @, g 4, ullZ}
then Proposition 5.2 gives (v=2/3)
(62) &HyZndy 3333 (I1(1/2) aluDD’ g, ulf+en®® 33 S I1(1/2) @, g; ullly
+ort 33D @, g, ull

with a positive constnat ¢ independent of n, #, 8, s. The same argument to obtain
(5.12) shows that
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6.3) L) elq,—q9) = 13) (9,—q,) a,+ 3Ry I5(2) @5 RyeS'2,g).

Since g,—q,=a,—a,=S(ué"> m(B'), g) and |a;—a,| =c{pE"> m(B’) by assump-
tion (6.1) we can estimate ||{uD"> I,(0) a, || by ||I,(1) (¢,—a,) @, u||. Indeed

Lemma 6.1. With a positive constant c independent of n, p we have
cll1() (@ —az) wif*+(e+-c(n) mill2) wi Z|[<aD> 10) wli*+ 33 111(1) a; wlf* -

Proof. By (5.1) and (5.2) it follows that [I,(1). a;} are in (a2 ué">™ m(p)~""2,
g) then it suffices to prove that

cll@—ay) L) wiP+(ctcm) ll12) wIPZIKeDD 1(0) wif+ 33 Ila; L) wif .

Put T(x, &', 1) =<{uk’> Jo(x, &, 1) (a,—a,)™' then T&S(m(p) m(B)™, g)CS(1,g)
for (a,—a,) 'e SKut > m(B")!, g) and m(p)=< Cm(B’). Taking this into account,
it is easy to see that

(64)  THES( =R p(B) 1D, g) for atp] =1.

Then it follows that

(6.5) T(a,—ay) = Op(Ku€"> J)+R, RES(m(B'), g) T S(m(p)~, 8) -

From Lemma 4.2 we have Op({ut"> J,) I(1)—<uD"> I(0) belongs to S(ulué »E
m(p)~""%, g) then Lemma 4.5 snows that

(6.6) Op(Kué™> Jp) I(1) = {uD"> 1(0)+r, I(2), nES(#, 8) .

On the other hand from Lemma 4.5 again one has IL()=(1+r)J, I(2) with
r,&8(x, g) then it follows that

(6.7) RI(1) = (R+7) I(2)

with R=RJ,eS5(1, g) which is independent of »n and 7=Rr, J,ES(x,g). Now
(6.5)—(6.7) give that T(a,—a,) I(1)=<uD"> I(0)+-(R+F) I,(2) with FES(x, g) and
this proves

[IKaD"> 1(0) wIP S ¢ [l(@y—ap) 1(1) Wi +(c+c(n) 2)II12) wil*

since T& S(1, g) and T is independent of n.

Next set T;(x, &, w)=a;(x, &', #) (a,(x, &', m)—a,(x, &', w)) 'ES(1, g) then T;
satisfy the estimate (6.4) and hence T(a,—a;)=a;+R; with R,eS(@m(B)™, g)CS
(m(@)~, g). Then by (6.7) one obtains

(6.8) Tia,—ay) I(1) = a; L(D)+(Ri+7) 1(2), ;€ S(z, 8)

with R, S8(1, g) which are independent of n. From (6.8) ||a; I,(1) w||* is bounded
by ¢ ||(a;—a,) I(1) w||+(c+c(n) #)||1.(2) w||* and the proof of the lemma is com-
plete.
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Note that from this lemma and (6.3) it follows with a positive constant ¢ that
(to replace a; @, by a, a;, see the proof of (5.18))

¢ SIIL(D) @ q; ull*+(e+e(m) #) 3 111(2) e ulf

© 211KuD’> 10) @, lf+ 33 (1) e, o ulf

Lemma 6.2. With a positive constant c independent of n, p, 6, s we have
¢ 33 lr—1/2) ac g; ul [t +(ete(m) #) 3 1l(r+1/2) a ullG)
+eln m,8) {35 33 1(r—1) e g; ullés-sy0+ ‘? 1y(r—1/2) @y ull§}
g ”Ia(r_3/2) @, u”?s+l)+”]!(r_1/2) az(Do_io) u“%x)
where r=1, 3/2.

Proof. 1t will suffice to show the case r=3/2. In (6.9) we replace u by
{uD"* u. Noting that [a;, {uD"Y )€ S(u¥*<ue")’, g) and applying Lemma 5.5 it
follows that

¢ S @, q; ullto+e+e() ) 33 1112 @ ullfy
(6.10) Fc(n, 1,5) {35 |I13(1) @, ull?s>+§ 23 [1(1/2) @5 g ul[t—1s0}
2 ||1(0) @, ullfeny+ 2 1LQ1) aleD > a; ull* .

Denoting by F the left-hand side of the inequality of the lemma, this implies that F
is bounded from below by the right-hand side of (6.10). Note that [|[(1) a(D,—i6)
ullfo S2 1) auD Y (Dy—i6) ull+ec(n, 4, 5) 33 115(1/2) ets(Dy—i6) ulffy-170) Where
the right-hand side is estimated by

4{||IL,(1) e, uD">* q; ul*+-||1(1) anD")’ a; ul[’}
+c(n, 2, 5) ‘{g [115(1/2) @5 q; u“?s—w)‘l‘g 115(1/2) ey a; u”?s—lﬂ)}

for Dy—i6=gq;+a;. Further this term is estimated by 4F-tc(n, &, s) 23 ||1(1/2)
3

@y a; ulf,_1je. It is clear that the argument to show (6.10) also gives that

c(n, 1, 5) {33 33 |I5(1/2) @y g; ullfs-1/4>+281 [11a(1) @y ullfo}
230 S I560/2) @ & -0

and hence we have proved
4F 2 (|1(1) a(Dy—i6) ullfs, -
This completes the proof.

We return to estimate Hg,. Using Lemma 6.2 and Remark 5.3 (v=1/2) we
have
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¢33 3 [M(r—1/2) e, g; ullsy 218, 33 |I1(r) @Dy’ ulf

+& S —3/2) ey ulltsan+6 3 (I1(r—1/2) ay(Dy—i6) ulif,,

+& i g [1I(r+1/2) a, ul|E;,+&, n6'? g [17:(r) @, ul%,

—e(n, #,8) 33 35 [Ir—1) @e g; ullés—yy
for any n<n, 0<u < A(n), 6(n, n,5)<6 where r=1, 3/2. The sum of the second
and third term of the right-hand side of (6.2) is estimated from below obviously by

27 en6®* 33 S I112) @, g, ullfo+27'ent TSI @y g, ull,
4271 cno'? 2! ’E 11,(1/2) @, q; |3, 427" en® E! 2,} 1,(1) @, q; ull%,, .

We substitute the estimate (6.11) into the last two terms of the above expression.
To simplify notation we set

Q(x, &, 1) = (Q1, @, @) = (Dy—i0, qy, q) ,
€(s) (u) =n g E‘} “12(1/2) a!<'uD,>s qi u”2+él nzollz A? ”I!(l) az</"D’>s u”2

6 S ILG/2) akuD" ulf

Then by (6.11) with r=1 and 3/2, éH,, is estimated from below by
£5/21 25-2k

(6.12) aO e(,)(u)—i—(’,‘-z 2 2 2 2 gj-k—g/z ns

T YI+i=2,j21 k=0 s=j-k

X “1,(.8‘/2—1() @, Qy u”%s-&k)

where O"=0%1 Q% Q%:, r =(71, 72, 73

Finally we estimate q, ¢,—¢, ¢1=[q,, ¢.]. Note that T=[q,, g,] is in SKu">, g)
for (8/8¢,) q;=1 and (8/0x,) ;€ S(Kué">, g). Then using Lemma 5.5 it follows
that 1,(0) ¢, T= T I,(0) a,—l—az} RuD"> 1y(0) a5 with Rye S(#'?, g). Since [{uD">’,

T1ES(& P ut >+, g) we have
{uD"Y I(0) a, T= T{uD>**" I(0) a,+ 28‘1 RyluD">**! Iy(0) e,
+ %} RluD"> 42 [(0)a; with R,eS('2 g).

(6.11)

We note that T=T<zD">" is independent of #, s and Ry do not depend on s.
Then one obtains
(6.13) |11(0) @, Tullfs)<(c+c(n) ) 28] [1150) @ ul[Css )

+c(n, £, 5) ? [175(0) a; u”?s+1/2) .
Remarking that the second term in the right-hand side of (6.13) is estimated by
c(n, &, 5) ? [1I;(—1/2) @5 ul|?;, 34, we have from (6.12)

Proposition 6.1.

c; 2 |11(0)a, q, q, uII?»z% o)1)
£ [i/2) 2j-2¢

SICPINPI DI Ikl (|1 (s)2—k) ety Q7 uillfsan

T lyl+i=ziz kS0 s55-



Hyperbolic operators 435

Sfor any n<n, 0<uZ A(n), 0(n, 1, )0, us C=(1, H™>) where c; are positive constants
independent of n, u, 9, s.

For later use we restate Proposition 6.1 in a slightly less precise form
Corollary 6.1.
¢ S II(O) et 4, 4; ullf Z 9o o)+, 1 3 AS 11D @, g; wllly
FI1(1) @d(Do—i6) ulli+111:(0) @, ullsn}
Sor any h=<n, 0<u =< An), 6(n, 1, 5)<0,usC=(I, H™™).
Corollary 6.2.

c [ Imtey <u" gy gy ute. ity deze [ ey u(e, e de

Sor any h=n, 0<u= A(n), 6(n, 1, )< 6, us C=(I, H™") vanishing in x,<0.
Now we extend Proposition 5.3. Put
E) = 33 SILD @ g ullfe+ 3D @Dy—i8) ull i+ 33 14O) @yl
H(#, u) = 33 {110) @ ¥4, g, ullin+110) @ ¥'g, g ullin) .
Then from Proposition 5.3 (v=1/2) it follows that
c(m, 4,0, 9) Esyy()+EH(¥, 1)2n8, 33 23 [11(1/2) euD">* T q; ulf?
o’ 33 3L e ¥g; ullty+on 0 33 3 I1(1/2) @, Y q; ullf,

with a positive constant ¢ independent of n, &, 0, s. Substituting the estimate of
Remark 5.4 with r=3/2 (v=1/2) into the second term of the right-hand side we get

c(n, i, 0,5) Eqgyyny W)+CHgy (¥, )20, 8»(¥, u)
(6.14) +ey 1 PIDMIAOER LS ullfy+cs n' 3 112) @, i,
+c5 n6'”2 S (1)) @, ¥y, ullioy+cs n® 62 3 |1(3/2) e, ullfy
where &, (¥, u) =n 3] 2 [ 1,(1) a;<pe D)’ ¥q; ul|*+n® 2 11:(3/2) @ {uD">* Tull".

Noting that {¥, ;] S(1, g) we can replace ¥q; by ;¥ in the last four terms of the
right-hand side of (6.14). From Lemma 6.2 the sum of these terms so obtained is
estimated from below by

(6']5) e5 nZ E($+l) (q,u) _C(nv X, 01 S) E(s+3/4)(u) .

We turn to ||[[(0)a, ¥q, q, ullf. Since T=[q,, ¢]€SKué ">, g) and [¥, T)e
S(u % uE Y\, g) it follows from Lemma 5.5 that ||7,(0) a, ¥q, q, u||%, is bounded
by

CHIz(O) a, qu q HH?S)_*_CHIE(O) @, TW“H%S)"'C(’U M, S)”]!(O) Q. u“?sH/?) .

From this estimate and (6.13) ||7,(0) @, ¥q, q, ul|%, is estimated by



436 Tatsuo Nishitani
(6.16) ¢|l7(0) @, ¥ g, g, ullfsy+(c+-c(n) &) 281 175(0) s Zullfsary
+e(n, p,5) ? [1150) @ ullZss1s2) -
Now (6.15) and (6.16) show that
Proposition 6.2.
c(n, £, 0, 5) Eeyyp @)+ 33 111(0) @, ¥ ; gz ulllyy
=9y € (¥, u)tc, 1 Eqyyy (Fu)

for any h=sn, 0<u=<A(n), 6(n, 1, 5)<6, usC=(I, H™™) where c; are positive con-
stants independent of n, 1, 0, s.

7. Reduction to a second order system

Put

gi(x, &, 1) = Eq—i0—aj(x, &', u), aj(x, &', 1) = A(B'(x, &', 1), <uE' D5 y, un')

for 1< j<m where 2({’, 0; x, £') are defined in §2, (2.6). Let K be a set of indices
K=(i,, iy, *+, ), | Si)<ip<+--<i,<m and |K|=k=the number of indices. We
denote

qK(x’ 6’ ﬂ) =;’1€—Iin(x’ fa ﬂ) .

For ¢, a permutation on X, we put

Q% = OP 4u(i) OP Gutip***OP Gotiy -
When K=(1, 2, -+, m) we often write ¢, Q° instead of gg, O%.

Lemma 7.1.
18! s .
gy =2 > Thaqy with THESE I gy,
= M=K -

Put v»=¢{” g;y with |7|=1. Then it is clear that
PRES (1t uE > m(B)1etPILE Y1, g) for |a+-B| 1.
Lemma 7.2.

1]
a(Opgq;0pgx) =aq:qx+ 23 V¥rqi+ 2 > Tpq
ILI<IK| -1 i=2 IL=IKI-j

where Vs, € S(u™ B RLuE > (€T m(B)T1#*P g,) for |a+B| <1 and T, €
SEuEY? m(B')7, gu)-

Lemma 7.3. Let ,/,ggges(ﬂ—lﬁa” ’I/Z<#€'>j KEDTI% m(B) 1P &) for |a+ ]
<2. Thenfor |L|=|K|—2j we have

OP(ds) =¥ Op g +0p( S} 51 Tiidar)

i=2f+1 |M|=|K|-i
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with Tyy ;€ S(ué D2 m(B'), gu).

Lemma 7.4. Assume that A€ Sut Y2 m(B')™, g.) and |M | =|K|—j. Then
¥4 . n—1 =
Op(dgw) =2 35 Ts:iOpgs with Ts,; €S> m(B'), gu) .
Remark 7.1. If A& S(ue' D92 m(B)7, g,) and | M| =| K| —j then Lemma
7.4 implies that
1K
Op(dgy) =2 > T5:.0pgs.

i=§ 18|=|K|-i

Lemma 7.5,
Op(g: 9x) = Op ¢; Op gx + 2 Y Opart 2 > Tu,iOpay

1L =2 |M|=|K|-j

with Ty, ;€ S((uE D' m(B'Y™, gu) where ¥£3 (la-+B| <1) belong to S(u'=+#" 112
CuEHLEDT M m(B) 7, 8.

Proposition 7.1. Let o be a permutation on K. Then

» Lixl/2) o
Opgx—0kx = 2 > v Q1
=1 1L|=|K|-2},T, Lk
(7.1) [F:4]
Cui; Ou

j=3 |M|=|K|-j,T, ML

with Cy € S(uE Y=Y m(B'Y™, g.) where for |a+ 8| =<1 one has
(7.2) YR ES (1 I ue Y KE DI m(B) 1, )
Proof. We shall proceed by induction on [K|. When | K| =2 one has clearly
Op gx = Qk+¥o.+T7, T7€SKut DV m(B)7, gu)

where ¥, satisfies (7.2). Hence -5 =y ,+T7 verifies the desired estimate (7.2)
and (7.1) holds when |K|=2. We assume that (7.1) holds with K and let T=KU
{v},1=v<m. From Lemma 7.4 it follows that

Op(9yqx) =Op 4, Op gx+ 25 ¥ Opqit DY To,; OP au

j=2 |M|=|KI-

with Ty, ;€S ué Y2 m(B’)™", g.). We substitute the expression (7.1) into Op g.
To do so we note that

[Op gy, YL 1ESKuE Y2 m(BY Y, 8.),
[Op gy, Cig ;1€ Su DI D2 m(B'Y ™, g) .

These imply that Op g, Op gx —Op g, Q% is of the same form as the right-hand side
of (7.1). We turn to the term v, Op g;. Substituting the expression of Op ¢q,, it
follows that ¢, Op ¢, —y, QF is equal to

[izi/2]

WS O5+S S TR O

i=1 |8|=|Ll-2j j=3 |M|=|L|-§
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where T3] €8 ({ug Y02 m(B)™1, g.). We examine that y, v%5 7 =y¢5 T4, verify
the desired estimates. Since v, satisfies (7.2) noting that m(B’)!< C{u& "> it fol-
lows that

oL ¥ET) =V ¥E T +R with RESEué D2 m(B'), g,)

and this asserts that ¥%7,, verify the desired estimates (7.2). Then v, Opgq.—
¥, 07 is of the same form of the right-hand side of (7.1). Finally we treat
Ty,; Op q4. Remark that

Ty, ¥ €S DIV m(B)™, g) (IM|=|K|—j, |[L|=|M|—-2i)
Ty,; Cri €Sue DD m(BY, &) (IM|=|K|—j, |L]=|M|—i).

Then it is clear that Ty ; Op g, has the same form as of the right-hand side of
(7.1). Now we have proved that (7.1) is valid when X is replaced by KU {v}.

For later reference we restate Proposition 7.1 with | K|=p1 in a slightly dif-
ferent form. 1f j is even then with j=2i we have

Cir' ) € Sl DO m(B') 1w HF g 18

CS(u 187 V2 uE N E 1% m(BY) 1P, g,)

rr 7

e D12, gu)

for |+ 8| =<1. Thus Proposition 7.1 stated as
[m/2]

(13  Opg—Q" =3 B yii0i+ 3 3 Ci Ok

j=1 |L|=m=-2j,7, J=3,0dd |M=m—j,T,M

We proceed to the second step of our reduction. For a permutation ¢ on
(1,2, -+, m) we define

wi = <uD"Y 1 OP Gyzjrn OP Gotzjrn *OP Gotm u for 1= j=Z[mf2) = 1.
If m is odd we add further
Wive, = (@) KaD"> 1y, if m is odd.
Proposition 7.2.
- [tm+1)/2) P 77 ~
OP go(1y OP Gorp 4 = Q°u = (Op ¢) u+ 2 23 457 wit 22 33 457 0p grip w5,
OP Gozj-1) Op aizj) W? =uD" W;—1+ij wi+ ng(Do‘ia) W‘; , 2Zj<m

where A€ SCuE'S, g), AT ES(mp) ™, g), CLES(HXue’>, g), Co e S (1,
gu). If mis odd then we have further

OP Gotm-1) OP Gotm) Wit1 = A OP Gotm-1) Wf;,’*‘/f‘r OP Gotm—p Wit +C° W;,“f‘éa. Witq
where A”€ S(m(p)™, g), A°ES(m(p)™", g), C°ES(Kut">, &), CTESKuE"D, g).

Proof. For any L(|L| =m—2j),  (a permutation on L) we choose § =0(L, 7)
(a permutation on (1, 2, -+, m)) so that
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(uDY ™ O u = wh.
Setting
>3 YiiKaD >0 = A3 e S(Kuk"D, &)

§=8CL,T)

it is clear that the first term of the right-hand side of (7.3), operated on u, can be
written as

ST S A5 WS
ji=1 8

Consider the second term of the right-hand side of (7.3) Let M=(i, *-+, i,,-;).
When m—j=1 (if m is even this is the case) we choose §, a permutation on
(1,2, .-+, m) such that

0Qk) =1(), »-, 0(m) = t(i,-;), j=2k—1.
Then it follows that

C3ilj O u = Cif; OP gr;y<utD D™ D wi = C3KuD >~ Op gyepy wh
+C37 (0P gaan, <D >™UVE wh
where C37[0Op Gaary, <uD' >~ V& S(4* m(B')™!, g.). Thus setting
A5t = 33 CiKuDH Ve S(m(B), gu)
8=8(M,T)

the second term of the right-hand side of (7.3), after operated on wu, is written

i To.8 5, Lmgny/2l 5.8
2 2477 0p grop Wit 2 247w
1= 1=

When m=j=2k—1 (hence in particular m is odd) note that from Lemma 4.4 there
is me S(m(p), g) such that

mm(p) =1,

Then we can write Ci,, u=Aj  wa_; With A2+1=CX,_,,,</1D'>‘(’:‘") M which is in
S(uE, g). This proves the first part.
We shall prove the second part. Note that

(7.4) OP Gatzj-1 OP Goizpy W5 = <uD'D> Wi_1 40P Guezj-ry YW
+9 OP Guizjy***OD Gotm U

where Y =[0p o, <uD"Y ™1 {uD">™ U, 4f==[Op oy, <D™, Tt is easy to
see that v & S(4'%, gu), ¥ €S (4 ue >, gu). It is obvious that Op g p Y=1
(Dy—i0)+(Dgyr —ay55-1) ) and the second term of the right-hand side is in §(uY?
{ué">, gw). On the other hand writing

¥ OP Goiayy = ¥ <uD">7 97 (Dy—i0) {uD' Y™ =4 Gy jy<uD ™™ uD ™

it is clear that the second term of the right-hand side of (7.4) is
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CT,‘ W;-—*—ng(Do——io) W‘;

with CT; €S uE", &), C5;€S(4'?, g.). This proves the second statement.
We turn to the last statement. Remark that Op Go(m Was=m(p)"* wi+yru with

¥ =[0p Gotm, m(e) KD Y1 € S (m(p) *(ut >, £,) and
Op Da(m-1) Op qzr(m)w";wl:”l(sp)_l Op Go(m-1) W2+[Op Ga(m-1) m(¢)—l] WE
+Op Go(m-1) ¢.<'aD/>—(m—l) mw:‘-ﬂ .

Since Yr=y<uD>" "D meS(m(p)~, g) it follows that [Op gum.ps¥] is in
SKué">, 8). 1Itisalso clear that [Op gem-py, m(@)~'] is in S(n(p) 7, gu)CSKuED,
gu). These notes show the last statement.

Next we study the difference of the principal symbol and its blown up one.
Recall that
[m/2] R
p(x, &) =g (b(x, &), 05x, &)+ 33 0% r,_5i(b(x, €); x, €,
o ~ JZI
q(c) g, X, f’) = ].—.I; (Co_lj(‘:ly g, X, EI)) .
=
Put
P(xa 53 ﬂ) = ﬂmP(y, ”)7 Pm-j(xs E’ ﬂ) = ﬂm—i pm—j(y’ 77) H
Ryajx, &, 1) = 1" ¥ 1, [(b(y, 7); ¥, 7) -

Since ub(y, 7)=B(x, £, #) we have

-~ [m/2l .
(75) P(x’ 65 ﬂ) - q(B(x’ 59 /l), Moy, 77,)"*_ 12=1 (/-w')zl Rm—zi(x’ f, ﬂ)
+ }gl tuj Pm—j(x’ f: ‘u) .

Here we take uo = ué "D that is 0 =u~'Cué D2 then it follows that

~ m [ /2] .
(7.6) P(x,&—ib,& ', p) = ;l]; q;(x, &, m+ 22 P Rm-zj(xs Eo—i0, 8, 1)
= i=1
+ 2 /“j Pm—j(x’ 50—1.0) fl: /")
i=1

where g,(x, &, )=, —i0 —1(B' (x, &', #), {uE'D*; y, un’) which was studied in sec-
tions 5 and 6. Set

q;‘(c’ g; X, fI) == co—'zj((” 0g; X, 5,)’ qk(c’ g, X, 6’) zjljl[?.qi(c, o; X, f’) .
=

Let r(¢; x, &) be polynomial in ¢ of degree k(k=m—1) with coefflicients which are
homogeneous of degree 0 in ¢, C” in a conic neighborhood of (0, e,). Since ;
(¢, a; x, &) are different for any ({’, 6)3=(0, 0), (x, £')E W, a conic neighborhood
of (0, e,), we can write

7.7 r¢; x,¢&) =l;z_-:‘éx(f', 0;x,8) (¢, 05 x, &)

where éK(C ',a; x, &) are homogeneous of degree 0 in ({’, o) and &' respectively.
Set
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Cr(x, &', 1) = Cr(B'(x, &', 1); Cut D25 y, un’)
then Proposition 3.1 and (7.7) give
Lemma 7.6. Let R,,_,i(x, ¢, u) be as above. Then

CUE"Y R, _pf(x, Eg—if, &', 1) = Kl:ﬁm}_zjcx,j(x, &, 1) ge(x, &, 1)

|
where C3)js € S(n™1#"" 40" 12 g 51 (&) 71# m(B") 181, ) for |a+B| < 1.

Lemma 7.3 and Remark 7.1 show that Op(Cy,; gx) can be written as in the
same form of the right-hand side of (7.3). Then we can apply Proposition 7.2 or
rather its proof to conclude that

Proposition 7.3, Let R,,_,(x, &, ) be as above. Then

. [em+1>/2) or n
Op(</£$ ’>’ Rm—zj(x, Eo_iﬁa &, 'u)) u= 21 2] Af. Wj
[m/2] 7= T

+ 35 3 457 0p guop v]
where A7 and A" have the same properties as in Proposition 7.2.

Finally we study lower order terms satisfying (1.7). Assume that p,_;(x, &)
vanishes of order m—2j whenever m—2j>0 on X near (0, ¢,). Since p,_;(x, &)
are polynomials in &, we can represent p,,_; as follows when m—2j>0;

2j-1 )
pm—j(x’ f) :]w|=2—21d¢(x, ‘-c’) b(x, f)"'l_ g ei—i(x’ EI) &'

where d(x, £'), e,(x, ') are homogeneous of degree j, k respectively. By the de-
finition of P,,_(x, £, #) it follows that

ﬂj Pm_j(x’ f, #) =l IE 2§ ﬂj da(ya /‘77,) B(xa Ea 'u)d
27-1 | =m-

+3 BTN ey, mum')) EFF .
From (7.7) it follows that

B(x, 5, ﬂ)’ :LEIE 2 CK(X’ 6,’ lu) qK(x’ 59 /“) (Ial = m—2j) s
=m-24
Eg'_i =|L|2 . CL(x’ fl’ /“) qL(xa E, ﬂ)

=m~i
7 7

where C§, belong to S(u~1*" "*+87 12 g ~1al py(Bry~1e+Bl 5 if |a+B| <1. Note
that Lemma 3.1 and Remark 3.1 show that

(7.8) (& d(y, i NP ESKuEHIED ™M, &), |r+d]=1,
(e (3, un NP ES e HIE D™, &), |r+8|=1.
Since j < i < 2j—1 and hence i —j < (i—1)/2 we see that Op (&’ P,,_(x, &,—i0, &', »))

has the same form as in the right-hand side of (7.3).
We turn to the case m—2j=<0. Let
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Pm-i(x, &) =31 e;_;(x, &) e’
i=j
where ¢;_;(x, £’) are homogeneous of degree i—j. Write
WP, (x, &, 1) = D3 (w6, [(p, un') €7
1=y

where 4"~/ e, ,(y, nn') satisfies (7.8). If m—2j<0 then (i+1)/2<(m+1)/2< j and
hence we have

(7.9) (i=N=>0-D/2.

This is also true if m=2j and i is odd for (i+1)/2<m/2=j. On the other hand
if m=2j and i is even we get i—j=i—m/2<i/2. In any case Op(«’ P,,_;(x, &, &', 1))
has the same form as in the right-hand side of (7.3).

Proposition 7.4. Assume that p,_i(x,&) satisfy (1.7). Let P,_i(x,&, u) be
defined as above. Then

. , em+1)/21 er o mi2] P r
Op(# Ppy_j(x, &0, €', ) u = 25 23A7" wi+ 21 204577 0P quep Wi
T j=2 7

i=1

where A7 and A7 have the same properties as in Proposition 7.2.
Propositions 7.2, 7.3 and 7.4 show that the equation
P(x, Dy,—ib, D', p)u=f

can be reduced to a second order system with diagonal principal part to which
we can apply Corollary 6.1. Then we can conclude that P(x, D, «) has a parame-
trix verifying (A.3) and (A.4) without modulo term. To prove that this parametrix
satisfies (A.5) we apply Proposition 6.2 with suitable vy (x, £', #), for example
vro(x, &', )=x,—ud (Mu(x', £')). Remarking that

Ij(xa 6’ ﬂ) = /“m P(MF-(x: E))

when |x;| Su'?, |EED1—0,,| <u it follows that P(M,(x, £)) has a parametrix
at (0, e,) with finite propagation speed of wave front sets. Hence P(x, ) has such a
parametrix at (0, e,).

Appendix

In this appendix, we shall give the definition of parametrices with finite pro-
pagation speed of wave front sets and give some properties of such parametrices.
Consider operators of the form

(A.1) P(x, D) = io A(x, D) Dy~

where A4;(x, D’) are N XN matrix valued pseudodifferential operators with symbols
in S/(R**' x R®) and A,(x, D')=I, the identity matrix of order N. We call m the
order of P. Let I be an open interval containing s and we denote by C¥I, H?) the
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set of k times continuously differentiable functions from I to the usual Sobolev
space H?—=H’(R*) of order p and by ||+||, the norm in H? and set

171 = UG for £=(fi - S)SHY.

By CX(I, H?); we denote the set of f& C¥I, H?) vanishing in x,<<s. We shall say
that VeCV/, if there is a positive constant (V) such that

(A2 DS VA ESepn 33 [ 1DRSE e, e ss+0 1)

for any k€N, p, g€ R and f<(CHI, H?)I)N.

To simplify notation we shall in what follows write simply A& S/ when A=(h;;)
is a Nx N matrix valued pseudodifferential operator (or symbol) with 4, S/(R")
where n will be clear in the context. We fix (s, %, é')=(s, £)SIx(T*R\0) and
observe an operator G which satisfies the following conditions;

(A.3) PGh=h modulo an operator in C*({, S™*)4-CV’, for any
h=h(x', DYESYR?x R%) supported near «,
with a constant § we have
. t
A IDEGI MESep, [ 17w Mg, 05 jsm—1
for any peER, fE(CXI, HFtn NN |
for any h(x’, D) S”(R?x R?) supported near & and for any
(A.5) h(x', DYES”(R* < R*) with supp h,C CT*R*\(supp h,),
one has D} h, GheV,, 0<j<m—1.

Note that (A.4) means that Gf loses B derivatives. From the dfinition of CV/ it
follows in particular that there is a positive constant & (/,, h,) such that

WF(D§ Gh, f(t, *))Nsupp h,=¢, 0 j<m—I

when ¢t <540 (h,, hy) for any f(C°(I, H))V.
For /e N we can write

(A.6) Df{ = QP+R, R= i_‘, B;Dy~i, BeSi-n+i

where Q is an operator of the form (A.1) of order /—m. Hence it follows that
Dy Gh=0Q(h+S+V)+RGh with S€C>(1, §™), VeV,. Then it is claer that for
sufficiently small |¢t—s|,

1

(A7) DS Gh f(t, Hl3=c,

m+1
>

k=0

t
[ 1D s, Nieripnde,
[ I-m £t
[ 104 G (e, Nz e, 3 1D 165, arspes e

for any f&(C'""*Y(I, H**'*ByH)¥_ Assume that a(x, D)€ S™(R*' x R%) and ahis in
S§7° near « uniformly when |x,—s] is small. Then it is also clear that (from (A.4))
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I-m+1

(A3) 14D Gh £, S cpa 33 | IDES G, )3 e

k=0
¢ I-m (¢t
[ tant 6115, iz dese, 3 | 10t sce, 1z e
for any fe(C'""*Y(I, H){)¥ and p, gE R, for small |t—s|. Let P be another op-
erator of the form (A.1) of order m such that

(A.9) P—P =3 B(x, D) D}~

with B;&S7 which are in S~ near « uniformly when |x,—s| is small. In the
following we write P=P near « when P and P satisfy (A.9). If G verifies (A.3)-
(A.5) for P at (s, £) then it follows that

(A.10) (P—P) GheV,

where A(x’, D) S° has support in a sufficiently small conic neighborhood of «.
This implies that G satisfies (A.3)~(A.5) for P also at (s, x). This allows us to
microlocalize our definition of parametrices; we shall say that P has a parametrix
with finite propagation speed of wave front sets at (s, x) if there exist P, G with
P=P near & wihch satisfy (A.3)-(A.5). We call G a parametrix of P at (s, &) with
finite propagation speed of wave front sets. For brevity we say it parametrix in this
Appendix. In what follows we denote by J a small open interval containing s
which may differ in each context. Now we give some properties of parametrices.

Proposition A.l. Let P; (i=1,2) be operators of the form (A.1) of order m;.
If each P; has a parametrix at (s, &) then P, P, so does at (s, £). If P, P, has a para-
metrix at (s, k) then so does P, at (s, £).

Corollary A.1. Let P,(i=1,2, -+, n) be operators of the form (A.1) of order

my;. If each P; has a parametrix at (s, £) then P, P,--P, has a parametrix at (s, ).

Let T(x, D) be NxN matrix valued pseudodifferential operator in SY(R?*! x
R?) which is elliptic near (s, £) uniformly when |x,—s| is small.

Proposition A.2. Let P, P be operators of the form (A.1) of order m. Assume
that PT=TP near x. Then if P has a parametrix at (s, &) then so does P at (s, ).

Next we shall examine the invariance of existence of a parametrix by conjuga-
tion with a Fourier integral operator associated to a local homogeneous canonical
transformation preserving the planes x,==const. Let ¥ be a local homogeneous
canonical transformation from a neighborhood of (3, #)=(J,, J's %, #') to a neigh-
borhood of (X%, é)=(3%0, x', éo, 2”) such that y,=x, Since ¥ preserves y,=const., a
generating function of this canonical transformation has the form

Xo Mo +8(x, 1) .

We work with a Fourier integral operator F associated with ¥ which is elliptic
near (%, £, 9, %), is represented as
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Fu(x) = S e* =" a(x, 7') @ (xo, 7°) dn’

(in a convenient ¥’ coordinates) in which x, can be regarded as a parameter. We
also assume that F is bounded from H*(R%) to H*(R3/) for every k& R uniformly
with respect to a parameter x, when | x,—s| is small.

Proposition A.3. Let 2, F be as above and P(x, D), P*(y, D) be operators of the
form (A1) of order m. Assume that

PF=FP* near (y,%").
Then if P* has a parametrix at (s, ', %") then so does P at (s, %', £ ).

Proposition A.4. Let P be an operator of the form (A.1) of order m. Assume
that P has a parametrix at (s, X', &’) for every &' with |&'| =1. Then the Cauchy
problem for P is locally solvable near (s, ') in C* with initial data on x,=s.

Proof. Denote by Gy a parametrix of P at (s, X',¢’). By hypothesis there
are operators Py of the form (A.1) of order m such that Py=P near (',¢’) and
P, G verify (A.3)~(A.5). Then there are finite open conic neighborhood W; of
(%', &) such that U; W; D2 x(R?\0) where £ is a neighborhood of %’. We may
assume that

Py=P,=P in W,

uniformly when |x,—s| is small and (A.3), (A.5) hold for any 4, h,&S° with sup-
ports in W; with P=P;, G=G;=G¢. Now we take another open conic covering

{V;} of 2x(R*\0), V,C C W, and a partition of unity {a,(x’, )} subordinate to
{V.} so that

2.- a x’, &) = a(x)
where a(x’) is equal to 1 in a small neighborhood of *’. Put
G = E’ G;a;
then we have from (A.3) and (A.8) that
PGf=3(P=P)G;a;f+ 2 P, Gia;f = a(x) [+(V+S)f

with S€C=(J, $™), VeW,. Set T=—(V+S) and let B(x'), r (x)=C5(R) be
equal to 1 near %' such that supp rc C {#=1}, supp SC C {a=1}. By the defini-
tion of CY/, it is clear that

t
an {ievse e dese, e irar for i=som)
for any f€(C°(J, LY. 1t is also easy to see that

UASf@, HIF=47NS(L, DI for t=s+8,
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if ||8l] is sufficiently small. This implies that

(A1) [ e, -y

for any fE(CJ, LH#)". Define

2 de<21 S' If(z, P de for 1<s+8,

U=3 Ty
then it follows from (A.12) that
(A13) [ose, o drse [, e ae tor 1ts,
and (1—-87T) U=1. Since r(a—T) U=r it follows that
(A14) 7N PGUf=7(xVf, 1<s+6, forany fe(CUJ, [N,
Noting that
[irse g aese, [ s, i de, 1<ste,

for any pe R, fe(C%(J, LYY and

Uf =33 (BTY f = f+ATUS
one has from (A.4)

. R t
1D GU(t, IESe, 10 G 1, M+ { 101Gz, I e}
t ¢
<ed] 15 Maasvg ae+ | N1, I e}
where #=max #;, 0= j<m—1. This gives that
(A.15) 10§ GUA(t, 326, [ 1/, Najup de 1 <543,

for any pER with p+p+m—120,0< jSm—1, fE(C°(J, H*P+» )N Now
(A.14) shows that GU f'is a local solution near x’ to the Cauchy problem

Pu=f, fE(CJ, H*Prn N,

From (A.15) it follows that D GU f(0<j=<m-1) belong to (L*{0, 3,], H*))* and
vanish in x,<<s. This completes the proof.
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