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Abstract. We consider the problem of reducing initial value problems for Einstein’s field

equations to initial value problems for hyperbolic systems, a problem of importance for numerical

as well as analytical investigations of gravitational fields. The main steps and the most important

objectives in designing hyperbolic reductions are discussed. Various reductions which have

already been studied in the literature or which can easily be derived from previous discussions

of the field equations are pointed out and some of their specific features are indicated. We propose

new reductions based on the use of the Bianchi equation for the conformal Weyl tensor. These

reductions involve symmetric hyperbolic systems of propagation equations and allow a number

of different gauge conditions. They use unknowns in a most economic way, supplying direct

and non-redundant information about the geometry of the time slicing and the four-dimensional

spacetime. Some of this information is directly related to concepts of gravitational radiation.

All these reductions can be extended to include the conformal field equations. Those which are

based on the ADM representation of the metric can be rewritten in flux conserving form.

PACS numbers: 0420C, 0420E

1. Introduction

In accordance with the basic tenets of general relativity, Einstein’s field equations should

imply causal propagation of the gravitational field and should be hyperbolic. Because of

their covariance, however, the equations are not hyperbolic in an immediate sense. The

derivation of general statements about the existence, uniqueness and stability of solutions

by analytical methods requires as an extra step the conversion of geometric initial value

problems for Einstein’s field equations into Cauchy problems for hyperbolic differential

systems. This process, referred to in the following as ‘hyperbolic reduction’, is the subject

of this paper.

While a number of hyperbolic reductions have been considered for some time in

analytical studies, they have so far played only a minor role in numerical relativity. One can

start finite differencing with equations which are not manifestly hyperbolic. However, since

more and more complicated and, in particular, genuinely four-dimensional problems are

being attacked, there is a growing interest among numerical relativists in using hyperbolic

propagation equations.

Hyperbolicity has strong implications for the nature of the characteristics and thus the

propagational properties of the equations. This is reflected in the Courant–Lewy–Friedrichs

condition and similar requirements known for a long time in numerical analysis of hyperbolic

field equations.

In general relativity, as compared with other theories based on hyperbolic field equations,

the structure of the characteristics plays an even more central role because it is closely
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1452 H Friedrich

related to the basic field of the theory. Suitable hyperbolic reductions should ensure causal

propagation. The characteristics should be timelike or null and the outer sheet of the cone

of characteristic rays should coincide with the null cone of the gravitational field. Since the

null cone determines the metric field up to conformal rescalings, almost equivalent concepts

are denoted by ‘causal structure’, ‘conformal structure’ and ‘structure of characteristics’.

They are distinguished mainly by emphasizing different points of view.

Since in general relativity the analysis of the causal structure has proven so important

in local as well as in global studies and since hyperbolicity is intimately related to causality,

it seems advisable also to make this relationship in numerical investigations manifest in the

form of the equations. The necessity of this becomes particularly obvious in calculations

near lightlike horizons. In this situation a subtle interplay occurs between the causal

structure of the solution, the analytical characteristics of the equations, and the ‘numerical

characteristics’ which depend on the equations singled out by the hyperbolic reduction.

Furthermore, gauge conditions involving acausal propagation of gauge-dependent quantities

may lead to numerical as well as interpretational difficulties of various sorts.

One reason for the recent interest in hyperbolic reductions is the desire to utilize the

expertise gathered in fields which have a longer tradition of numerical investigations.

It remains to be seen to what extent methods which have been developed according to

the particular needs and phenomena observed, e.g. in hydrodynamics, can be transferred

successfully to relativity. Perhaps it will prove more important to copy the long tradition

in hydrodynamics of relating analytical investigations to numerical ones. Furthermore,

it is desirable to convert, if possible, interesting numerical findings, which indicate new

phenomena of a general nature, into analytical theorems. The recent tendency of numerical

relativists to use hyperbolic systems should simplify this task since these systems are more

amenable to analytic discussion.

To give a survey of hyperbolic reductions which is general enough to offer the optimal

reduction in any given situation appears a hopeless task. There are various concepts of

hyperbolicity available in the literature and it may be good to keep this in mind while

seeking for a reduction designed to satisfy specific needs. However, no attempt will be

made here at presenting hyperbolicity in any generality. Instead I shall discuss in section 2

some known examples of hyperbolic reductions, various aspects of the general idea, and

some of the most important objectives in the construction of hyperbolic reductions. In

sections 5 and 6 some new examples of reductions using symmetric hyperbolic systems

will be introduced. These examples employ different representations of the metric but all of

them use the Bianchi identity, discussed in some detail in section 4, as a basic ingredient.

The importance of the Bianchi identity has been documented in various analytical

investigations. Most interesting for the present discussion is the fact that irrespective of the

gauge this identity implies hyperbolic propagation equations for the conformal Weyl tensor.

Because of its invariant nature the Bianchi identity offers a rich choice of possibilities to

perform reductions which, moreover, can be well adapted to various geometrical situations

and allow us also to deal with situations where source fields are present. Finally, the

reduction procedures indicated here extend easily to the case of the conformal field equations

which allow numerical calculations of infinite spacetimes on finite grids.

How well the hyperbolic systems proposed in this and other articles behave in numerical

calculations is a question which cannot be discussed at present. This is not only due to

the ignorance of the present author but also to the general lack of experience with all these

systems in numerical calculations under fairly general assumptions. However, because of

its invariant nature, its enormous flexibility, and its behaviour under conformal rescalings

it may be expected that the Bianchi identity will prove useful in numerical studies to the
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same extent it has proved useful in analytical investigations.

2. General remarks on reduction procedures

In the following we shall only consider the vacuum field equations since their analysis

usually extends easily to the more general case where source fields are present. To compare

different hyperbolic reductions and to speak about them in a general way, it will be

convenient to introduce a few basic concepts and illustrate them by discussing a specific

example. A reduction procedure consists essentially of four steps.

(i) Choice of the representation of the Einstein equations and of the basic unknowns. For

the sake of illustration we shall consider in the following the system of metric coefficients

gµν in some coordinates as the basic unknowns and the Ricci tensor, considered as a second-

order operator acting on gµν , as the basic operator such that the vacuum field equations take

the form

0 = Rµν ≡ − 1
2
gαβ

{

∂2gµν

∂xα ∂xβ
+ ∂2gαβ

∂xµ ∂xν
− ∂2gµβ

∂xα ∂xν
− ∂2gαν

∂xµ ∂xβ

}

+ H ′
µν(g, ∂g)

with a certain function H ′
µν of the metric coefficients and their derivatives. As it stands the

equation is not hyperbolic in any known sense.

(ii) Choice of the gauge and of the ‘coordinate gauge source functions’. Given the

representation of the field equations above, a possible way of identifying a useful gauge is

to introduce the quantity Ŵµ = gαβ Ŵα
µ

β , with Ŵν
µ

ρ denoting the Christoffel symbols of

gµν , and to rewrite the equation above in the form [6, 23]

0 = − 1
2
gαβ ∂2gµν

∂xα ∂xβ
+ gα(µ ∇ν) Ŵα + Hµν(g, ∂g),

where we consider ∇ν Ŵµ to be given by the expression which we would obtain if the

Ŵµ were components of a vector field. If the functions Ŵµ were known in this equation,

we would have a system of wave equations, i.e. the prototype of a hyperbolic system.

Two interesting observations can be made concerning these functions. Firstly, for given

coordinates xµ, the functions Ŵµ are obtained by applying the invariant wave operator to

the coordinate functions, i.e. Ŵµ = −∇ρ ∇ρ xµ. Secondly, for given smooth functions

f µ′ = f µ′
(xλ′

), µ′ = 0, 1, 2, 3, defined for xλ′
in some open subset of R

4, we may

consider the system of semi-linear wave equations ∇ρ ∇ρ xµ′ = −f µ′
(xλ′

) for unknown

functions xµ′
. Solving these equations for Cauchy data on a spacelike hypersurface such

that the differentials dxµ′
are independent there, we obtain a local coordinate system. If

the Christoffel symbols are expressed in these coordinates we get Ŵµ′ = f µ′
. Thus, by

suitable choice of coordinates the functions Ŵµ can locally be given any preassigned form

and conversely they determine the coordinates via wave equations from suitably given initial

data. We call functions serving such purposes ‘gauge source functions’.

(iii) Preparation of the ‘reduced initial value problem’. In the example above we choose

coordinate gauge source functions f µ and consider the ‘reduced equations’

0 = − 1
2
gαβ ∂2gµν

∂xα ∂xβ
+ gα(µ ∇ν) f α + Hµν(g, ∂g) (2.1)
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as propagation equations for the metric coefficients. On the initial hypersurface S = {x0 =
0}, which is assumed to be spacelike, let h, χ be geometrical initial data satisfying the

constraints on S (cf [2] and section 6). Thus the Riemannian metric h and the symmetric

tensor field χ are, respectively, assumed to represent the first and the second fundamental

form induced on S by the metric gµν which we want to construct. By suitable choice of

the coordinates and their differentials on the initial hypersurface, we prepare the initial data

gµν , ∂0gµν derived from h, χ such that Ŵµ(g, ∂g) = f µ on S. It may be noted that there

are several ways of doing this, but in any case we now have a well posed initial value

problem which has a unique smooth solution gµν on a certain domain containing S.

(iv) Demonstration that the solution to the reduced problem does satisfy the Einstein

equations. From the solution gµν considered above, we derive the functions Ŵµ. To see

that we have in fact obtained a solution to the Einstein equations we need to show that

Ŵµ = f µ. Using the twice contracted Bianchi identity and (2.1) we derive the ‘subsidiary

equation’

0 = ∇ρ∇ρ (Ŵµ − f µ) + Rµ
ρ (Ŵρ − f ρ).

By the way we set up the reduced initial value problem and from the fact that gµν solves

the reduced equations we can deduce that the Cauchy data for Ŵµ − f µ on the initial

hypersurface vanish. Since the subsidiary equations are wave equations, which possess the

uniqueness property, we conclude that Ŵµ = f µ in a certain neighbourhood of the initial

hypersurface.

The reduction argument above with the choice Ŵµ = 0, i.e. for ‘harmonic coordinates’,

was discovered by Choquet-Bruhat [10]. The case of general gauge source functions has

been discussed in [13].

Once the gauge source functions have been chosen, it is obvious what has to be done

in step (iii); for further illustration see section 6.1.

Step (iv) may take different forms. While in our example above it needs to be shown that

the gauge conditions propagate, the gauge is expressed explicitly in some of the examples

considered later on by the form of the unknowns and it has to be shown that the constraints

are preserved in the evolution of the data by the reduced equations (cf section 6.1). This

step provides the only possibility of ensuring that a given choice of gauge source functions

is consistent with the field equations. Most likely, progress in numerical calculations will

rely on more and more intricate choices of gauge conditions. Therefore step (iv) needs to

be performed to ensure the soundness of the procedure.

The related steps (i) and (ii) are decisive for any reduction. The first requirement is, of

course, that the prospective gauge condition can be imposed locally without any restriction

of generality and that it leads to hyperbolic reduced equations. However, the decision here

will depend on considerations which go beyond the question of hyperbolicity.

We shall aim at a geometrical setting and a set of unknowns which allow an immediate

and clear cut physical or geometrical interpretation of the results of numerical calculations.

The unknowns should supply invariant information on the four-dimensional spacetime,

possibly related to concepts of radiation and other notions of physical interest, as well

as information on the nature of the three-dimensional time slices which are constructed in

the numerical evolution.

We may want to select a set of gauge source functions which ensure the time slicing

exists globally, i.e. in the maximal domain of dependence of the data, and which also entail

nice behaviour of the time slices near horizons and at infinity. If there were an optimal
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time slicing for a given solution, it could in principle be characterized in terms of the

gauge source functions given above. In fact, this is not possible since the slicing itself

will depend on the evolution and cannot be characterized in a solution-independent local

way. Ideally one would like to follow the numerical evolution of the spacetime and steer

the propagation of the time slicing by a suitable adjustment of the gauge source functions

in dependence on the geometry of the evolved spacetime; this poses several problems.

The question of how the time slices react to changes in the gauge source functions has

hardly been studied. Secondly, care must be taken not to introduce undue couplings into

the equations. Furthermore, in the example considered above, the reduced equations are

likely to change their type if the gauge source functions f µ are allowed to depend on the

derivatives of the metric coefficients.

There is an interesting case where the gauge source functions depend on the metric.

This gauge condition essentially removes the freedom to perform diffeomorphisms, but it

leaves us the freedom to choose coordinates as they appear suitable for our investigations.

Assume that on the manifold M , on which we expect the solution gµν to exist, is given a

symmetric connection which has connection coefficients γµ
ν
ρ in some coordinate system.

We require that the gauge source functions satisfy in the same coordinates

0 = Ŵν − gµρ γµ
ν
ρ .

With these gauge source functions we get hyperbolic reduced equations and it turns out

that this gauge is consistent with the field equations, i.e. it is preserved under propagation.

Being obtained by contraction with the metric from the difference of two connections, the

quantity on the right-hand side of the equation above is a tensor. Thus the equation holds

in any coordinate system and the gauge condition can be imposed on the whole manifold.

In the particular case where the coefficients γµ
λ
ν are the Christoffel symbols of a Lorentz

metric kµν on M , which we shall refer to in the following as the ‘harmonic map gauge’, the

equation above can be interpreted as saying that the identity map idM is a harmonic map

from the Lorentz space (M, g) onto the Lorentz space (M, k). This property can also be

expressed by either of the equivalent conditions

∇ρ kρµ − 1
2
∇µ kρ

ρ = 0, ∇̂ν gµν − 1
2
gµλ gρν ∇̂λ gρν = 0

where ∇ is the Levi-Civita connection defined by the metric g, which is also used to

raise indices, and ∇̂ denotes the Levi-Civita connection defined by the metric k. Such

gauge conditions have been used and discussed, in some cases without being aware that

one is dealing with harmonic maps, in [7, 8] (for which [19] should be consulted), and in

[14, 15, 20].

The behaviour of the field equations under conformal rescalings usually plays an

important role in analytical investigations of the solutions in the large [4, 14–16]. Thus

one may wish to choose a representation of the Einstein equations which allows explicit

use of their conformal properties.

Finally and most importantly, we wish to arrive at reduced equations which show a

favourable behaviour in numerical calculations. This question can hardly be discussed

without performing sufficiently general numerical calculations for the various reduced

systems which have been proposed. In certain contexts equations of divergence or flux

conservative type (see below) have proved useful in hydrodynamics. To what extent this

form of the equations will be favourable in relativity remains to be seen. Nevertheless, the

reductions proposed in section 6 offer reduced equations which can be written in a flux

conserving form.

The hyperbolic systems discussed below will not be of wave equation type but will

be ‘symmetric hyperbolic systems’ [17]. These systems are of the form Aµ ∂µu + b = 0
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where the unknown u takes values in some R
N , b is an R

N -valued function and the Aµ

are N × N -matrix-valued functions which depend on the coordinates and the unknown u.

The basic requirement on the system is that the matrices Aµ are symmetric (Hermitian

in the case of complex-valued unknowns), i.e. satisfy TĀµ = Aµ, and that there exists a

covector field ξµ such that Aµ ξµ is positive definite for all admissible values of u and the

coordinates. Sometimes a system is called symmetric hyperbolic if it can be brought into

the form above by a simple transformation like multiplication of the system by a suitable

matrix-valued function.

Symmetric hyperbolic systems were used for the first time in general relativity by Fischer

and Marsden [9], who combined the fact that wave equations imply symmetric hyperbolic

systems [5] with the reduction procedure in harmonic coordinates discussed above to get

symmetric hyperbolic reduced equations for the 10 components of the metric coefficients

and their 40 first-order derivatives. Their system can also be rewritten in the divergence or

‘flux conserving’ form ∂µ Fµ(x, u) + b′(x, u) = 0, where Fµ(x, u) is a smooth function

of the coordinates and the unknown. Of course, in this reduction the harmonic map gauge

may also be employed.

3. The basic equations

Again we denote the Christoffel symbols associated with the metric gµν by Ŵρ
µ

ν . The

curvature tensor is then given by

Rµ
νλρ = ∂λ Ŵρ

µ
ν − ∂ρ Ŵλ

µ
ν + Ŵλ

µ
δ Ŵρ

δ
ν − Ŵρ

µ
δ Ŵλ

δ
ν . (3.1)

It satisfies the contracted Bianchi identity

∇µ Rµ
νλρ = ∇λ Rνρ − ∇ρ Rνλ. (3.2)

The vacuum Einstein equations Rνρ = 0 are equivalent to

Rµ
νλρ = Cµ

νλρ (3.3)

where Cµ
νλρ denotes the (trace-free) conformal Weyl tensor. They imply the vacuum

Bianchi identity, referred to in the following as the ‘Bianchi equation’,

∇µ Cµ
νλρ = 0. (3.4)

We shall consider the conformal Weyl tensor as one of our basic unknowns and the system

(3.3), (3.4) as our basic representation of the Einstein equations. Precisely which fields

will be considered as unknowns in addition to the conformal Weyl tensor depends on the

representation of the metric.

In the orthonormal frame formalism we shall consider as unknowns the fields

eµ
k, Ŵk

i
j , Ci

jkl .

Here the metric is given in terms of the coefficients eµ
k , µ, k = 0, 1, 2, 3, of an

orthonormal frame ek in some coordinate system xµ such that ek = eµ
k ∂µ, g (ej , ek) = ηjk ,

and thus gµν = ηjk eµ
j eν

k . In accordance with the spinor formalism employed below

we shall always assume the signature ηjk = diag(1, −1, −1, −1) if we deal with the

orthonormal frame formalism. The Ŵk
i
j are the connection coefficients in this frame such

that ∇k ej ≡ ∇ek
ej = Ŵk

i
j ei , where ∇ denotes the Levi-Civita connection for g, and the

Ci
jkl are the components of the conformal Weyl tensor in the frame ek . Using ηjk to lower

indices, the fact that the connection is metric is expressed by the condition Ŵijk = −Ŵikj .

Without assuming any gauge condition we deal with 50 unknown functions.
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In terms of these fields the field equations take the form

[ep, eq] − (Ŵp
l
q − Ŵq

l
p) el = 0, (3.5)

ep(Ŵq
i
j ) − eq(Ŵp

i
j ) − Ŵk

i
j (Ŵp

k
q − Ŵq

k
p) + Ŵp

i
k Ŵq

k
j − Ŵq

i
k Ŵp

k
j = Ci

jpq, (3.6)

∇i C
i
jkl = 0. (3.7)

The first of these equations expresses the fact that the connection ∇ is torsion free and the

remaining equations are rewritings in the frame formalism of (3.3) and (3.4), respectively.

In dealing with the ADM representation we assume as usual that the signature is

(−1, 1, 1, 1, ), that t = x0, and that latin indices take values 1, 2, 3 such that the xi are

coordinates on the slices Sc = {t = c} of constant ‘time’ c. In the ADM representation the

metric takes the form

g = −(N dt)2 + hij (Si dt + dxi) (Sj dt + dxj ). (3.8)

In this expression the lapse function N is assumed to be positive, the interior Riemannian

metric h induced on the time slice St is given by its coefficients hij in a natural basis ∂j ,

and the shift vector field S = Sµ ∂µ, which is tangent to the time slices, is given by its

spatial components Si since S0 = 0. We denote by hij the contravariant form of h such

that hij hjk = δi
k .

The (future-directed) unit normal to the time slices is given by nµ = (1/N)(δµ
0 − Sµ),

whence nµ = −N δ0
µ. We write hµ

ν = gµ
ν + nµ nν for the orthogonal projector onto the

time slices, hµν = gµν +nµ nν for the four-dimensional representation of the interior metric

on the time slices, and hµν = gµν + nµ nν .

Besides the ADM representation of the metric we need the corresponding representation

of the connection coefficients. We find

Ŵµ
ν
ρ = nµ nν nρ

n(N)

N
+ nµ aν nρ − aµ nν nρ − nµ nν aρ

+ nµ nρ

1

N
Sν

,π nπ − nµ

1

N
Sν

,π hπ
ρ − nρ

1

N
Sν

,π hπ
µ

+ nν χµρ − nµ χ ν
ρ − χµ

ν nρ + γµ
ν
ρ . (3.9)

Here we use n(N) = nµ ∂µ N , aµ = nν ∇ν nµ = (1/N)hµ
ν ∇ν N = (1/N)Dµ N , where we

denote by D the covariant derivative operator induced on the time slices by the interior

metric h, furthermore χµν = 1
2
Ln hµν , the second fundamental form induced by g on the

time slices, and the coefficients γµ
ν
ρ = Ŵλ

η
π hλ

µ hν
η hπ

ρ , which represent the covariant

derivative D such that the components γi
j
k are the Christoffel symbols of the metric hij .

Finally we need the decomposition of the conformal Weyl tensor

Cµνλρ = 2 {lµ[λ Eρ]ν − lν[λ Eρ]µ − n[λ Bρ]τ ǫτ
µν − n[µ Bν]τ ǫτ

λρ} (3.10)

in terms of its n-electric part Eτσ = Cµνλρ hµ
τ nν hλ

σ nρ and its n-magnetic part Bτσ =
C∗

µνλρ hµ
τ nν hλ

σ nρ . Here we use the notation lµν = hµν + nµ nν and, with ǫµνλρ

being the antisymmetric tensor satisfying ǫ0123 = | det(gµν)|
1
2 = N {det(hij )}

1
2 , we write

ǫτση = ǫµνλρ nµ hν
τ hλ

σ hρ
η and C∗

µνλρ = 1
2
Cµναβ ǫαβ

λρ . Using (3.8)–(3.10) we can express

equations (3.3), (3.4) in terms of the 44 functions

N, Si, hij , γi
j
k, χjk, Ejk, Bjk.
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4. The Bianchi equation

The investigation of the Bianchi equation has a long history in general relativity. Its

importance in the analysis of the long-time behaviour of solutions to the Einstein equations

and its geometrical and interpretational interest in the study of gravitational radiation was

perhaps recognized for the first time by Sachs [27] and demonstrated extensively by Newman

and Penrose [24]. The system (3.5)–(3.7) provides in fact the tensorial basis of their spin

frame formalism. Penrose pointed out the covariant transformation law of the Bianchi

equation under conformal rescalings [25]. Trying to exploit this property in the context

of global and semi-global existence theorems, I realized that the Bianchi equation implies

hyperbolic equations and leads to energy estimates in terms of the Bel–Robinson tensor

[11, 12, 15]. Later this fact was used in a more elaborate way by Christodoulou and

Klainerman [4] in their work on the global nonlinear stability of Minkowski space.

If the connection coefficients are considered as given, the Bianchi equation (3.4)

represents an overdetermined system of 16 linear equations for the 10 independent

components of the conformal Weyl tensor. For our purpose the most interesting observation

about that system is the fact that we can extract from it symmetric hyperbolic systems of

propagation equations. In the spin frame formalism (3.4) reads

∇f
c′9abcf = 0 (4.1)

where 9abcd is the symmetric spinor field which represents the conformal Weyl tensor.

Introducing the directional derivative operators

P = ∇00′ + ∇11′ =
√

2 ∇e0
, D01 = 1

2
(∇00′ − ∇11′),

D00 = −∇01′ , D11 = ∇10′ ,

we find that (4.1) is equivalent to the system consisting of the ‘constraint equations’

Dab 9abcd = 0 and the propagation equations

P9abcd − 2D(d
f 9abc)f = 0 (4.2)

which after a trivial transformation form a symmetric hyperbolic system [15]. It may be

remarked that the operators introduced above arise naturally in the projection formalism

based on the timelike vector field
√

2 e0 which leads to the space spinor formalism. Of

course, the equations above can always be rewritten in terms of real fields, but their

analysis is done most conveniently in terms of the symmetric spinor field. Still other

symmetric hyperbolic systems can be extracted from (4.1), some of which are particularly

well adapted to situations where data are partly prescribed on null [11, 12] or timelike

hypersurfaces [16].

In the ADM representation, the Bianchi equation (3.4) splits into the constraints

Di Eij − Bik χ i
l ǫ

kl
j = 0, Di Bij + Eik χ i

l ǫ
kl

j = 0, (4.3)

and the propagation equations

1

N
(∂t − LS) Eij + Dk Bl(i ǫj)

kl − 3 Ek
(i χj)k + χk

k Eij − ǫi
kl Ekm χln ǫj

mn

+ 2 ak Bl(i ǫj)
kl = 0, (4.4)

1

N
(∂t − LS) Bij − Dk El(i ǫj)

kl − 3 Bk
(i χj)k + χk

k Bij − ǫi
kl Bkm χln ǫj

mn

− 2 ak El(i ǫj)
kl = 0. (4.5)
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Provided N > 0 and hjk is positive definite, the system consisting of these two propagation

equations satisfies the conditions of symmetric hyperbolicity if they are contracted with

hk(ihj)l and written in the form

hk(ihj)l 1

N
(∂t − LS) Eij + 1

2
(ǫij (k hl)m + ǫim(k hl)j ) Di Bjm + · · · = 0,

hk(ihj)l 1

N
(∂t − LS) Bij − 1

2
(ǫij (k hl)m + ǫim(k hl)j ) Di Ejm + · · · = 0.

Since the conformal Weyl tensor obeys hyperbolic equations, we are left with the analysis

of (3.3) or equations (3.5), (3.6). Before discussing these systems we should observe the

interesting structure of the characteristics of the propagation equations considered above.

This is directly related to concepts of gravitational radiation which have been discussed in

studies of the asymptotic behaviour of gravitational fields (cf [25, 27]). Only equations

(4.4), (4.5) will be discussed, the situation is similar for (4.2).

For a given solution gµν , a covector ξ 6= 0 is by definition characteristic for the system

(4.4), (4.5) iff the linear map defined by the principal symbol at ξ has non-trivial kernel,

i.e. iff there is a non-trivial solution (Eij , Bkl) to

nµ ξµ Eij − Bm(i ǫj)
mn ξn = 0, nµ ξµ Bkl + Ep(k ǫl)

pq ξq = 0.

Case nµ ξµ = 0. There are non-trivial solutions of the form

Bij = a (|ξ |2 hij − 3 ξi ξj ), Eij = c (|ξ |2 hij − 3 ξi ξj )

with real numbers a, c. We use the notation |ξ | = (hij ξi ξj )
1
2 .

Case kµν ξµ ξν ≡ (−nµ nν + 1
4
hµν) ξµ ξν = 0. There are non-trivial solutions of the form

Bij = 2 ξ(i τj), Eij = 1

nµ ξµ

ξ(i ǫj)
kl τk ξl

with arbitrary τj satisfying ξ j τj = 0. These are in fact two families of solutions which are

distinguished by the sign of nµ ξµ.

Case gµν ξµ ξν = 0. There are non-trivial solutions satisfying

ξ i Bij = 0, Eij = 1

nµ ξµ

Bk(i ǫj)
kl ξl . (4.6)

Again these define two 2-parameter families of solutions distinguished by the sign of nµ ξµ.

There are no further characteristics.

It follows that the characteristic polynomial of the system (4.4), (4.5) has the form

c (nµ ξµ)k (gµν ξµ ξν)
j (kµν ξµ ξν)

l with constant c 6= 0 and positive integers k, j, l. Thus

the characteristics of the system are real and they are null hypersurfaces with respect to gµν

or they are timelike and either tangent to n or to the timelike cone {kµν tµ tν = 0} where

kµν = −nµ nν + 4 hµν such that kµν kνρ = δµ
ρ .

Denote by ξL, L = 0, 1, 2, 3, 4, non-vanishing covectors at a given point p ∈ M

satisfying nµ ξL
µ = (1 − 1

2
L) |ξL|. By the previous discussion, all characteristic covectors

at p are of this type. For further discussion choose an orthonormal frame ek at p with

e0 = n and fix the scaling and the spatial components of the covectors by the condition
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hµν ξL
ν = eµ

3. With ek we associate the pseudo-orthonormal frame eaa′ , a, a′ = 0, 1 given

by

e00′ = 1√
2

(e0 + e3), e11′ = 1√
2

(e0 − e3),

e01′ = 1√
2

(e1 + i e2), e10′ = 1√
2

(e1 − i e2)

and assume a spin frame field ιa , a = 0, 1, such that eaa′ = ιa ῑa′ . Suppose the Weyl

spinor field is given in terms of such a spin frame and set, as usual, 9L = 9abcd for

L = a + b + c + d . Then

90 = Cµνλρ eµ
00′ eν

01′ eλ
00′ eρ

01′ , 91 = Cµνλρ eµ
00′ eν

01′ eλ
00′ eρ

11′ ,

92 = Cµνλρ eµ
00′ eν

01′ eλ
10′ eρ

11′ ,

93 = Cµνλρ eµ
00′ eν

11′ eλ
10′ eρ

11′ , 94 = Cµνλρ eµ
11′ eν

10′ eλ
11′ eρ

10′

and the discussion above can be rephrased by saying that for the characteristic covector ξL

the principal symbol has non-trivial kernel generated by 9 = (90, 91, 92, 93, 94) with

9K = 0 for K 6= L and arbitrary component 9L.

The relationship between the type of characteristic and the fields in the kernel of the

principal symbol map indicated above is important in the study of the propagation properties

of the reduced equations. Because they are of particular interest, we add a few remarks on the

characteristics determined by covectors of the type ξ 4. Suppose that the frame ek extends to

a smooth frame field on some open neighbourhood of p such that e0 = n and let N be a null

hypersurface in this neighbourhood such that the null vector field e00′ is tangent to N . Then

the characteristic covector field gµν eν
00′ is smooth and coincides at p with ξ 4

µ. On the given

background we consider linear perturbations of the Weyl tensor obeying an equation whose

principal part coincides with that of the symmetric hyperbolic system considered above for

the conformal Weyl tensor. Following the discussion of the propagation of discontinuities in

[5, p 618ff] we assume that the perturbation is a distributional solution which is continuous

across N with some of its first derivatives suffering jumps but having continuous limits

on N from the right and the left which are differentiable in directions tangent to N . It

follows from the discussion above that the jumps occur only in the symmetric, transverse,

trace-free components of Eij and Bij which are given by (4.6) with nµ ξµ = nµ gµν eν
00′ .

Loosely speaking, we could say that these components, also given by 94, contain the

‘high-frequency’ parts of perturbations of the conformal Weyl tensor which travel along the

characteristic N . The two components of (4.6) correspond to the two polarization states of

gravitational waves.

Now consider again solutions to the nonlinear reduced equations. Then the local

consideration above may be supplemented by the observation of a somewhat global nature

that in the case where N extends smoothly to null infinity, the function 94, after suitable

rescaling with an affine parameter on the null generators on N , approaches the radiation

field on null infinity (cf [25]). Thus the discussion of the characteristics of the propagation

equations (4.4), (4.5) should not only be of interest in the local numerical analysis, in

particular near lightlike horizons, but also in the interpretation of numerical data concerning

questions of gravitational radiation.

We remark that the function 90 has an analogous meaning with respect to null

hypersurfaces coming in from past null infinity. On N the function 90 represents the

null datum for the field equations. The characteristics associated with nµ and kµν arise by
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extracting the determined system (4.4), (4.5) from the overdetermined system (3.4). They

depend on the chosen time slicing and have no invariant meaning; but they may be of

interest in the numerical treatment of the equations.

5. Reductions in the orthonormal frame representation

Since the Bianchi equation implies symmetric hyperbolic equations for the conformal Weyl

tensor, we are left with the analysis of the structure equations (3.5), (3.6). Three different

ways of obtaining hyperbolic reduced equations will be shown. We shall only indicate

the type of gauge condition and discuss the hyperbolic reduced equations. How the initial

data for the reduced equations are prepared and how it follows that the gauge conditions

and constraints are preserved under the evolution in the various cases follows from the

discussions in [13, 15, 16] and will not be repeated here.

5.1. Gauge conditions based on wave equations

Suppose a coordinate system xµ and a frame ek have been chosen. Since for fixed index

µ the differential dxµ is represented in the frame ek by the coefficients eµ
k , the coordinate

gauge source functions are given by f µ = −∇k eµ
k . We characterize the additional freedom

introduced by the frame field in terms of the ‘frame gauge source functions’ f i
j = ∇k Ŵk

i
j

where the ‘covariant derivative’ is defined here by the expression which is obtained for a

tensor field which has the components Ŵk
i
j in the given frame. In a similar way as before we

find that with any coordinate system and any frame field there are associated gauge source

functions f µ, f i
j and that for arbitrarily given functions f µ(xν), f i

j (x
ν) coordinates and

frame fields can locally be found for which these functions take the meaning of gauge

source functions as discussed above [13]. By identifying these gauge source functions there

are various ways to arrive at hyperbolic propagation equations.

If we recall how the Lorentz gauge is used in Maxwell’s equations to derive a system

of wave equations for the potential and if we compare with (3.5) and (3.6), we see that

prescribing the gauge source functions above allows one to derive systems of wave equations

for the frame coefficients eµ
l and for the connection coefficients Ŵl

i
j . In the case of (3.6),

which has been considered recently in [26], equations for the Ŵl
i
j are obtained in which

the conformal Weyl tensor no longer occurs because of (3.7). It suffices therefore to couple

these equations to suitable equations for the frame coefficients. Finally, we recall that it has

been known for a long time that the Bianchi equation implies a system of wave equations for

the conformal Weyl tensor. Since we consider the information on the conformal Weyl tensor

as particularly valuable and do not see any advantage in going to systems of higher order,

we shall discuss in the following only reductions following from the structure equations and

the Bianchi equation without taking further derivatives.

We note that in spinor notation the first structure equation is equivalent to

∇a
f ′

eµ
bf ′ + ǫab f µ = 0

and its complex conjugate, and the second structure equation is equivalent to

2 ∇c
f ′

Ŵdf ′ ab + Ŵ(c
e′f (a Ŵd)e′ b)

f + ǫcd f ab = −2 φab
cd ,

2 ∇f
c′ Ŵf d ′ ab + Ŵe

(c′ f
′(a Ŵd ′)e

b)
f + ǫc′d ′ f ab = 0,

where eµ
aa′ and Ŵaa′bc denote the frame and the connection coefficients, respectively, and

the frame gauge source function is represented by f ab = f a
a′ ba′

. These equations have
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been used in [13] to deduce propagation equations which combine, e.g. with (4.2), to yield

symmetric hyperbolic propagations equations. We shall not reproduce the system here but

note the remarkable feature that the gauge source functions enter the equations above in

undifferentiated form. It appears to be the only system with this property. It allows us to

prescribe gauge source functions which depend not only on the coordinates but also on the

unknowns eµ
k , Ŵi

j
k , Ci

jkl without changing the principal part of the system. The question

of how this could be used to steer the evolution of the gauge has not been studied yet.

5.2. Geometric gauge conditions

Suppose we are given, as in the ADM formalism, a nowhere vanishing ‘time flow vector

field’ T and a time function t = x0 such that 〈dt, T 〉 = 1. We write T = T k ek and

assume that T 0 > 0. We assume, furthermore, coordinates xα with α = 1, 2, 3, such that

T k eµ
k = T µ = δµ

0, whence T = ∂t . The propagation of the time slices is thus determined

in terms of the functions T k . We note that in the generality above, the functions T k were

first considered as gauge source functions in [26]. The evolution of the frame field is fixed

in terms of the functions T k
j = T l Ŵl

k
j since ∇T ej = T k

j ek .

It turns out that we can consider the functions T k(t, xα), T k
j (t, x

α) as freely specifiable

gauge source functions. The gauge conditions are then expressed by

eµ
0 = 1

T 0
(δµ

0 − T a eµ
a), Ŵ0

j
k = 1

T 0
(T j

k − T a Ŵa
j
k),

where a = 1, 2, 3 and summation is implied. Observing this in the structure equations and

taking into account that 9abcd and Ci
jkl are related by a linear transformation with constant

coefficients, we deduce for the remaining 40 unknowns eµ
a , Ŵa

i
j , Ci

jkl the symmetric

hyperbolic propagation equations

∂t e
µ

a = (T l
a − T l

,ν eν
a − Ŵa

l
j T j ) eµ

l,

∂t Ŵa
i
k = T i

k ,µ eµ
a + Ŵa

i
l T

l
k − Ŵa

l
k T i

l + (T l
a − T l

,ν eν
a − Ŵa

l
p T p) Ŵl

i
k + Ci

kla T l,

P9abcd − 2D(d
f 9abc)f = 0.

The functions T k(t, xα) with T 0 > 0 can be prescribed here completely freely. However,

the cone of characteristic rays contains, besides the cone determined by the subsystem

arising from the Bianchi equation, the direction ∂t . To ensure causal propagation of the

gauge (and to avoid certain other possible problems) we require 0 6 g(∂t , ∂t ) = ηkj T k T j .

Nevertheless, it is remarkable that we have free control of the causal nature of the time

flow vector field. Since its coefficients may be given explicitly, it may be much easier in

this gauge to study the influence of the gauge source functions on the evolution of the time

slicing. The particular choice T k
j = 0, i.e. parallel transport of the frame in the direction

of T , leads to a considerable simplification of the equations above, but the freedom to

specify the evolution of the frame may be used to adapt it to the particular situation under

investigation. An interesting way to prescribe T is to choose it timelike in the interior and

null ‘far out’. This allows a smooth transition between the standard Cauchy problem and

the characteristic Cauchy problem (‘Cauchy–characteristic matching’).

5.3. Mixed gauge conditions

Assume again a vector field T and coordinates xµ as above, but write N = T 0, and set

Na = ea(N). In distinction from the previous case we assume now that e0 is the future



Hyperbolic reductions for Einstein’s equations 1463

directed unit normal to the slices {t = constant} and the frame is Fermi propagated in the

direction of e0.

We find that we can prescribe T a(t, xα), a = 1, 2, 3, and f 0(t, xα) = −∇k ∇k t as

gauge source functions. We note that this gauge, in which the time slicing is determined by

a wave equation, is similar to the one employed in [3]. The gauge conditions translate into

eµ
0 = 1

N
(δµ

0 − T a eµ
a), e0

a = 0, a = 1, 2, 3,

Ŵ0
0
a = 1

N
Na, Ŵ0

a
b = 0.

This leaves us with the 38 unknowns N , Na , eα
a , Ŵa

b
c, χab, Ci

jkl , a, b, c = 1, 2, 3,

where Ŵa
b
c contains the information about the Levi-Civita connection of the interior metric

on the slices {t = constant} and χab = −Ŵa
0
b is their extrinsic curvature.

Commutating derivatives of N and observing the structure equations, we derive the

following symmetric hyperbolic propagation equations:

∂t e
α

a = {T c (Ŵc
b
a − Ŵa

b
c) − ea(T

b)} eα
b ,

Ŵa
b
c,µ eµ

0 = −χa
d Ŵd

b
c + 1

N
(ec(N) χa

b − ηbd ed(N) χac) + Cb
c0a,

N,µ eµ
0 = N χ + N2 f 0,

1

N
Na,µ eµ

0 − Dc χca = 2

N
χ Na + 1

N
χa

c Nc + 3 Na f 0 + N ea(f
0),

N χaa,µ eµ
0 + Da Na = −Nχa

b χab − N C0
a0a, a = 1, 2, 3,

2 N χac,µ eµ
0 + Da Nc + Dc Na = −2 N χa

b χcb − 2 N C0
c0a, a 6= c,

Pφabcd − 2D(d
f φabc)f = 0.

Besides various timelike or null directions, the cone of characteristic rays contains again

the direction ∂t . For causal propagation, we thus have to ensure that N2 > δab T a T b in

the evolution. This causality condition is different from the previous one because N is

no longer freely specifiable. Apart from this requirement, the gauge source functions can

be given arbitrarily. The symmetric hyperbolic system above supplies in a most economic

and direct way all the interesting information: the four-dimensional metric, given in terms

of the frame coefficients, the four-dimensional connection, the conformal Weyl tensor, and

the geometry of the time slices as well as their embedding. It may also be noted that the

algebraic structures of the equations given in this and the previous section are very simple

as compared to that of many other reduced systems.

We end the discussion of hyperbolic reductions in orthonormal frame representations

with two remarks. There is no obvious way how the equations considered above can be

rewritten in ‘flux conserving form’. If this form turns out to be as important in relativity as

advertised in some of the articles on hyperbolic reductions (cf [1]) and as it has proved to

be in the case of some other quasilinear systems, this may be a serious drawback.

One of the most important reasons to consider the Bianchi equation is its behaviour

under rescalings of the metric. By introducing a few more unknowns (so that we end up,

depending on the choice of gauge, with about 55 unknowns) we can represent Einstein’s

equations in a conformal metric and still get hyperbolic equations. Doing this we trade a few

unknowns against an infinite number of grid points or, in other words, we can ‘calculate an
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infinite world on a finite grid’. It may well be that this property of the Bianchi equation can

compete with the numerical advantages offered in other systems by the flux conserving form.

Furthermore, the conformal equations allow one to make use of the elegant interpretational

framework based on null infinity.

6. Hyperbolic reductions in the ADM representation

In the ADM representation the propagational part of the Einstein equations is usually

expressed by the ADM equations

∂t hij − LS hij = 2 N χij , (6.1)

1

N
(∂t χkl − LS χkl − Dk Dl N) = −3Rkl − χi

i χkl + 2 χik χl
i . (6.2)

Traditionally the fundamental forms hij , χkl are considered here as the basic unknowns and

the lapse function N and the components Si of the shift vector field are considered as free

gauge source functions. Because of the terms of second order occuring in the Ricci tensor

on the right-hand side, it is obvious that the system, as it stands, does not satisfy any known

hyperbolicity condition. Consequently, a direct analytic investigation of this system is an

outstanding problem.

Nevertheless, the system is close to being hyperbolic. Substituting χij from equation

(6.1) into equation (6.2) we get an equation of second order for hij of the form

1

2 N2
{∂2

t hij − Sk ∂k ∂t hij − Sk ∂t ∂k hij + Sk S l ∂k ∂l hij } + 3Rij

= terms of lower order in hij . (6.3)

For a given solution gµν , the principal symbol of this system defines, for any covector ξµ,

a linear map kij → Akl
ij (ξ) kkl with

Akl
ij (ξ) kkl = 1

2 N2
(ξ 2

0 kij − 2 ξ0 Sk ξk kij + Sk ξk S l ξl kij )

− 1
2
hkl(ξk ξl kij + ξi ξj kkl − ξi ξl kkj − ξk ξj kil)

= 1
2

{

− gµν ξµ ξν kij − ( 1
2
hkl kkl ξi − ξ k kki) ξj − ( 1

2
hkl kkl ξj − ξ k kkj ) ξi

}

where we set ξ k = hkl ξl .

A covector ξµ 6= 0 is characteristic for the PDE above iff for this covector the map

above has non-trivial kernel. If ξµ 6= 0 satisfies

gµν ξµ ξν = 0

the principal symbol has non-trivial kernel consisting of the solutions to 1
2
hkl kkl ξi = ξ k kki .

Secondly, if gµν ξµ ξν 6= 0 and kij 6= 0 is in the kernel, then necessarily kij = ξi ηj + ηi ξj
with some covector η. Inserting this into the equation Akl

ij (ξ) kkl = 0 we get the characteristic

condition

nµ ξµ = 0.

Conversely, if this condition is satisfied, kij = ξi ηj + ηi ξj is in the kernel of the symbol

map for arbitrary η. Thus the characteristic polynomial is of the form c (nµ ξµ)k (gνρ ξν ξρ)
j

with constant c 6= 0 and positive integers k, j satisfying k+2j = 12. All characteristics are

real and either null with respect to gµν or timelike and tangent to n. Obviously the system

is not strictly hyperbolic.
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Since (6.3) satisfies this weakest concept of hyperbolicity, it may be surmised that the

ADM equations represent only a half-way reduction of equation (6.3) to a system of first

order which possibly satisfies a stronger requirement of hyperbolicity. In [18] the ADM

equations are rewritten as a system of first order for 30 unknowns in which lapse and shift

are considered as free gauge source functions. The system given by the authors can be

rewritten in symmetric hyperbolic form. This is most remarkable, since it clarifies for the

first time the sense in which the ADM equations can be considered as hyperbolic and it

shows also for the first time that lapse and shift can be prescribed freely.

In [1] the ADM equations are rewritten as a system of first order for 49 unknowns, but

the analysis of hyperbolicity given there does not go beyond the analysis given above. In

[3] a symmetric hyperbolic system of first order for 58 unknowns is derived. It is based,

however, not directly on the ADM equations but on derivatives of these equations and of

the momentum constraints. Consequently some of the unknowns are of second order.

Instead of taking the ADM equations as a starting point, we shall combine (6.1) with

equations implied by (3.1), (3.3) (cf (6.16), (6.17)) to derive a hyperbolic system including

(4.4), (4.5). For this purpose the identity γi
i
k = 1

2
hij ∂k hij = ∂k log(

√
h) with h = det(hik)

is used. Two slightly different systems will be considered below; there may well be other

possibilities for deducing hyperbolic systems involving the Bianchi equation.

In the first case the function q = log(N/
√

h) and the components Si of the shift vector

field are considered as freely specifiable gauge source functions. We obtain the following

system for the 40 unknowns hij , γj
i
k , χij , Eij , Bij :

1

N
(∂t − LS) hij = 2 χij , (6.4)

1

N
hil (∂t − LS) γj

l
k − Di χjk − aj χik + ai χjk − ak χij − 1

N
∂j ∂k S l hli = 2 ǫl

i(k Bj)l,

(6.5)

1

N
(∂t − LS) χij − ∂k γi

k
j − ∂i ∂j q + γi

k
j ∂k q − ai aj + γi

k
m γk

m
j − χk

k χij = −2 Eij ,

(6.6)

1

N
(∂t − LS) Eij + Dk Bl(i ǫj)

kl − 3 Ek
(i χj)k + χk

k Eij − ǫi
kl Ekm χln ǫj

mn

+ 2 ak Bl(i ǫj)
kl = 0, (6.7)

1

N
(∂t − LS) Bij − Dk El(i ǫj)

kl − 3 Bk
(i χj)k + χk

k Bij − ǫi
kl Bkm χln ǫj

mn

− 2 ak El(i ǫj)
kl = 0. (6.8)

We set here N =
√

h eq and ai = ∂i q + γk
k
i and use the notation

LS γj
i
k = S l ∂l γj

i
k + γl

i
k ∂j S l − γj

l
k ∂l S

i + γj
i
l ∂k S l .

If N > 0 and hij is positive definite the system is symmetric hyperbolic.

In the second case we consider the functions Si and s = −N2 f 0 − ∂k Sk , with

f 0 = −∇µ ∇µ t , as freely specifiable gauge source functions. Notice that this includes

as a particular choice the harmonic time slicing condition f 0 = 0, i.e. s = −∂k Sk .

In addition to the unknowns above we introduce the 10 unknowns q, qi = ∂i q,

qji = ∂j ∂i q. Using (3.9) and (6.4), we find that they satisfy the equations

(∂t − LS) q = s, (6.9)
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(∂t − LS) qi = ∂i s, (6.10)

(∂t − LS) qji = ∂j ∂i S
k qk + ∂j ∂i s. (6.11)

The system (6.4)–(6.11), with ∂i q, ∂j ∂i q replaced by qi , qji , respectively, is again

symmetric hyperbolic under the proviso given above.

Besides those discussed in the section on the Bianchi equation, we point out further

interesting properties of the systems above. We have obtained systems which supply in

a most economic way all the information on four-dimensional spacetime, including the

relevant fields of second order, as well as the inner and embedding geometry of the time

slicing. Furthermore, both systems of propagation equations can easily be written in the

‘flux conserving’ form ∂t u + ∂i F
i(x, u) = S(x, u). Finally, after simple extensions, the

systems can be considered as subsystems of the conformal field equations. The interest of

the latter in numerical investigations has to some extent been demonstrated in [21, 22].

6.1. Propagation of the constraints

Since neither (6.4)–(6.8) nor (6.4)–(6.11) has been considered in the literature before, we

shall outline the arguments which show that solutions to data satisfying the constraints do

indeed satisfy Einstein’s field equations. We shall only consider the first system in detail,

the argument being similar in the second case.

The initial data have to satisfy the constraint equations

∂k γl
i
j − ∂l γk

i
j + γk

i
m γl

m
j − γl

i
m γk

m
j + χ i

k χj l − χ i
l χjk

= 3Ri
jkl + χ i

k χj l − χ i
l χjk

= 2 {hi
[k El]j − hj [k El]

i}, (6.12)

Dk χji − Dj χki = −Bil ǫ
l
kj (6.13)

implied by (3.1), (3.3). We denote by 3Ri
jkl the curvature tensor of hij and by 3R its

Ricci scalar. The data for (6.4)–(6.8) are obtained from standard initial data hij , χij on

the three-dimensional initial hypersurface S = {t = 0} as follows. We assume the smooth

Riemannian metric hij and the smooth symmetric tensor field χij to be given such that they

satisfy the vacuum constraints

3R + (χk
k)2 − χij χ ij = 0, Dk χkj − Dj χk

k = 0

which are obtained by contractions of (6.12), (6.13). The connection coefficients γi
j
k are of

course the Christoffel symbols derived from hij . We use (6.12), contracted over the indices

i and k, and (6.13) to obtain

Elj = ∂i γl
i
j − ∂l ∂j log(

√
h) + γl

m
j ∂m log(

√
h) − γl

i
m γi

m
j + χi

i χj l − χi l χ
i
j ,

and Bij = −ǫj
kl Dk χli on S. Then hij , χij , Eij , Bij do not only satisfy (6.13) but also

(6.12) because the space is of dimension three. Moreover, they satisfy the constraints (4.3).

Choosing a function N > 0 on S, we can determine the function q on S. We assume q to

be extended to a smooth function q = q(t, x) with (t, x) ∈ M = R × S, and we assume

a smooth vector field Sµ = Sµ(t, x) with S0 = 0 as given on M . Then all quantities

in the propagation equations can be expressed in terms of the unknowns and the fields q,

Si , the derivative operator D being of course defined by the connection coefficients γi
j
k

provided by the solution. Since the system is symmetric hyperbolic there exists in a certain

neighbourhood U of S ≡ S × {0} in M a smooth solution of (6.4)–(6.8) which takes the
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given data on S and for which hij is positive definite. From q and hij we can determine

the smooth positive function N on U which allows us to determine the metric gµν on U .

We denote the domain of dependence of S in U with respect to this metric by V .

We show that gµν satisfies Einstein’s vacuum field equations on V . Since equation

(6.4) is part of the system of propagation equations, it follows that the field χij supplied by

the solution indeed represents the second fundamental form induced by gµν on the slices

{t = constant}. At this stage it is not clear, however, whether the γi
j
k supplied by the

solution coincide with the Christoffel symbols of the metric hij . Though the connections

corresponding to the Ŵµ
ν
ρ and the γi

j
k are symmetric because the symmetry is demanded

explicitly for the latter, we do not know at this stage whether they are metric for gµν and hik ,

respectively. We denote the Christoffel symbols derived from hij by γ̄i
j
k and the associated

covariant derivative operator by D̄. If γi
j
k coincides with the Christoffel symbols for hij ,

the coefficients (3.9) are the Christoffel symbols for gµν . We therefore show that the ‘zero

quantities’

z = (γi
j
k − γ̄i

j
k, 1µ

νλρ = Rµ
νλρ − Cµ

νλρ, Hνλρ = ∇µ Cµ
νλρ) (6.14)

vanish on V . In the following we shall denote by L(z), sometimes with indices attached

to L, expressions which are linear in the zero quantities. Examples of such expressions,

which will occur in the following calculations, are given by γi
i
k −∂k log(

√
h) = γi

i
k − γ̄i

i
k ,

Di hjk = Di hjk − D̄i hjk , etc.

We have the decomposition

1µ
νλρ = δµ

νλρ + nµ (nλ 1νρ − nρ 1νλ)

+ nν (nλ δµ
ρ − nρ δµ

λ) − nλ 1µ
νρ + nρ 1µ

νλ − nµ δνλρ − nν δ∗µ
λρ (6.15)

with

δµ
νλρ = hµ

α 1α
βγ δ hβ

ν hγ
λ hδ

ρ, 1νρ = nα 1α
βγ δ hβ

ν nγ hδ
ρ,

δµ
ρ = hµ

α 1α
βγ δ nβ nγ hδ

ρ, 1µ
νρ = hµ

α 1α
βγ δ hβ

ν nγ hδ
ρ,

δνλρ = nα 1α
βγ δ hβ

ν hγ
λ hδ

ρ, δ∗µ
λρ = hµ

α 1α
βγ δ nβ hγ

λ hδ
ρ .

With this notation the propagation equations (6.5), (6.6) are equivalent to

hµλ 1λ
νρ + δνµρ + hµλ Dρ χλ

ν − Dρ χµν = 0, (6.16)

1νρ + δµ
νµρ + Dρ γµ

µ
ν − Dρ Dν log(

√
h) = 0, (6.17)

respectively.

Observing that the right dual of a tensor possessing the symmetries of a conformal Weyl

tensor coincides with its left dual and using the fact that Rµ
νλρ satisfies the Bianchi identity,

we get

ǫν
αβγ ∇α 1µ

λβγ = −ǫλ
µαβ Hναβ + L(z) = L′(z). (6.18)

In the decomposition (6.15) we take into account that we solved the propagation equations

(6.16), (6.17) and insert the resulting expression on the left-hand side of (6.18). Evaluation

of

−nρ hα
ν ǫβγ δ

τ hτ
µ ∇β 1ρ

αγ δ, −hµρ hα
ν ǫβγ δ

τ hτ
µ ∇β 1ρ

αγ δ,

gives equations

1

N
(∂t − LS) δ̃ij + Dk δ̃k

ij = Lij (z), (6.19)

1

N
hlk (∂t − LS) δ̃k

ij + Dl δ̃ij = Llij (z), (6.20)
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respectively, where we used the notation

δ̃µν = 1
2
δ̃µλρ ǫλρ

ν, δ̃κ
µν = 1

2
δ̃κ

µλρ ǫλρ
ν .

We note that at some stage in the somewhat lengthy calculation the relation

Dµ δ̃νµ = Dµ Bµν + ǫν
αβ Eβκ χα

κ + Lν(z) = L′
ν(z)

has been used. From (6.4) the equation

1

N
hil (∂t − LS) γ̄j

l
k − D̄k χji − D̄j χki + D̄i χjk

− aj χik + ai χjk − ak χij + 1

N
∂j ∂k S l hli = 0

follows by direct calculation. By suitable subtractions of (6.5), δjki , and δkji we arrive at

an equation of the form

1

N
(∂t − LS) (γj

l
k − γ̄j

l
k) = L′

j
l
k(z). (6.21)

Using the (manifest) symmetries of the tensor Cµ
νλρ we get

∇ν Hνλρ = ∇ν ∇µ Cµ
νλρ = Cαβλρ 1µαβ

µ − Cαβ
τ [λ 1τ

ρ]αβ . (6.22)

Again by the symmetries of the field Cµ
νλρ , we find the decomposition

Hνλρ = qντ ǫτ
λρ − nλ pνρ + nρ pνλ + 1

2
(nρ qτ ǫτ

νλ − nλ qτ ǫτ
νρ − 2 nν qτ ǫτ

λρ)

+ 1
2
(3 nν nλ + hνλ) pρ − 1

2
(3 nν nρ + hνρ) pλ

with

qντ = 1
2
Hαβγ hα

(ν ǫτ)
βγ , pνρ = Hαβγ hα

(ν nβ hγ
ρ),

qτ = 1
2
Hαλρ nα ǫτ

λρ, pρ = Hαβγ nα nβ hγ
ρ .

With this notation the propagation equations (6.7), (6.8) are equivalent to

qντ = 0, pµρ = 0, (6.23)

and the constraint equations (4.3) are satisfied if and only if qτ and pρ vanish.

Using on the left-hand side of (6.22) the decomposition above with (6.23) we deduce

the equations

3 nλ∇λ pµ + ǫµ
αβ Dα qβ − 3 nµ aα pα + 3 ǫµ

αβ aα qβ − χµ
α pα + 4 χα

α pµ

= − 2 (Cαβλρ 1ναβ
ν − Cαβ

τ [λ 1τ
ρ]αβ) nλ hρ

µ, (6.24)

2 nλ∇λ qµ − ǫµ
αβ Dα pβ − 2 nµ aα qα − χµ

α qα + 3 χα
α qµ

= − 2 (Cαβλρ 1ναβ
ν − Cαβ

τλ 1τ
ραβ) ǫλρ

µ, (6.25)

which imply equations of the form

hil 3

N
(∂t − LS) pl + ǫikl Dk ql = Li

p(z), (6.26)

hil 2

N
(∂t − LS) ql − ǫikl Dk pl = Li

q(z). (6.27)

The system of ‘subsidiary equations’ (6.19)–(6.21), (6.26), (6.27) is symmetric hyperbolic

with characteristic polynomial c (nµ ξµ)k (gµν ξµ ξν)
j lµν ξµ ξν . Here c is a non-vanishing

constant, k, j are positive integers, and lµν = −6nµnν + hµν . It follows that the
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characteristics of this system are timelike or null with respect to gµν . The zero quantities

either vanish because the propagation equations are satisfied or they are linear functions of

δ̃ij , δ̃k
ij , γj

l
k − γ̄j

l
k , pl , qj . Furthermore the system of subsidiary equations is homogeneous

while the data vanish on S. It follows that the zero quantities vanish on V .
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