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Abstract. Under consideration is the hyperbolic relaxation of a semilinear reaction-

diffusion equation

εutt + ut −Δu+ f(u) = 0

on a bounded domain Ω ⊂ R3 with ε ∈ (0, 1] and the prescribed dynamic condition

∂nu+ u+ ut = 0

on the boundary Γ := ∂Ω. We also consider the limit parabolic problem (ε = 0) with

the same dynamic boundary condition. Each problem is well-posed in a suitable phase

space where the global weak solutions generate a Lipschitz continuous semiflow which

admits a bounded absorbing set. Because of the nature of the boundary condition,

fractional powers of the Laplace operator are not well-defined. The precompactness

property required by the hyperbolic semiflows for the existence of the global attractors

is gained through the approach of Pata and Zelik (2006). In this case, the optimal

regularity for the global attractors is also readily established. In the parabolic setting,

the regularity of the global attractor is necessary for the semicontinuity result. After

fitting both problems into a common framework, a proof of the upper-semicontinuity of

the family of global attractors is given at ε = 0. Finally, we also establish the existence

of a family of exponential attractors.

Contents

1. Introduction 94

2. The limit parabolic problem 99

Received February 19, 2013 and, in revised form, April 2, 2013.
2010 Mathematics Subject Classification. Primary 35B41; Secondary 35L20, 35K57.
Key words and phrases. Dynamic boundary condition, semilinear reaction diffusion equation, hyperbolic
relaxation, damped wave equation, singular perturbation, global attractor, upper-semicontinuity.
E-mail address: cgal@fiu.edu
E-mail address: jshomber@providence.edu

c©2015 Brown University
93

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf

http://www.ams.org/qam/
http://www.ams.org/jourcgi/jour-getitem?pii=S0033-569X-2015-01363-5


94 C. G. GAL AND J. L. SHOMBERG

3. The hyperbolic relaxation problem 102

3.1. The functional framework 102

3.2. Well-posedness for the hyperbolic relaxation problem 104

3.3. The global attractor Aε in Hε 107

3.4. The upper-semicontinuity of Aε for the singularly perturbed problem 117

4. Exponential attractors 122

5. Appendix 126

References 127

1. Introduction. Let Ω be a bounded domain in R
3 with boundary Γ := ∂Ω of class

C2. We consider the hyperbolic relaxation of a semilinear reaction diffusion equation

εutt + ut −Δu+ f(u) = 0 (1.1)

in (0,∞) × Ω where ε ∈ [0, 1]. The equation is endowed with the dynamic boundary

condition

∂nu+ u+ ut = 0 (1.2)

on (0,∞)× Γ and with the initial conditions

u(0, x) = u0(x), ut(0, x) = u1(x) in Ω. (1.3)

For the nonlinear term f , we assume that f ∈ C2(R) and that there is a constant

ℓ ≥ 0 such that for all s ∈ R the following growth and sign conditions are satisfied:

|f ′′(s)| ≤ ℓ(1 + |s|) (1.4)

and

lim inf
|s|→∞

f(s)

s
> −λ, (1.5)

where λ > 0 is the best Sobolev/Poincaré-type constant

λ

∫

Ω

u2dx ≤
∫

Ω

|∇u|2dx+

∫

Γ

u2dS. (1.6)

Finally, assume that there is ϑ > 0 such that for all s ∈ R,

f ′(s) ≥ −ϑ. (1.7)

Notice that the derivative f = F
′

of the double-well potential F (u) = 1
4u

4 − ku2, k > 0,

satisfies assumptions (1.4), (1.5), and (1.7). The first two assumptions made here on

the nonlinear term, (1.4) and (1.5), are the same assumptions made on the nonlinear

term in [16], [41], and [51], for example ([41] additionally assumes f(0) = 0). The third

assumption (1.7) appears in [14], [23], [27], and [44]; the bound is utilized to obtain

the precompactness property for the semiflow associated with evolution equations when

dynamic boundary conditions present a difficulty (e.g., here, fractional powers of the

Laplace operator subject to (1.2) are undefined). It is worth mentioning that (1.5) can

also be replaced by a less general (but still widely used in the literature) condition

lim inf
|s|→∞

f
′

(s) ≥ −λ,
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DYNAMIC BOUNDARY CONDITIONS 95

in which case (1.7) is automatically satisfied. Furthermore, assumption (1.4) implies

that the growth condition for f is the critical case since Ω ⊂ R3. Such assumptions are

common when one is investigating the existence of a global attractor or the existence of

an exponential attractor for a partial differential equation of evolution.

Of course, when (1.1) is equipped with Dirichlet, Neumann, or periodic boundary

conditions, (1.6) simplifies. Moreover, if (1.1) is equipped with a Robin boundary condi-

tion, then an estimate like (1.6) holds, but λ possesses an explicit description as the first

eigenvalue of the Laplacian with respect to the Robin boundary condition. The relation

between the dynamic condition (1.2) with the acoustic boundary condition is discussed

below. The hyperbolic equation (1.1) is a well-known nonlinear wave equation motivated

from (relativistic) quantum mechanics (cf., e.g., [3, 15, 36, 49]). However, as mentioned,

most sources study the asymptotic behavior of (1.1) with a static boundary condition

such as Dirichlet, Neumann, periodic, or Robin. One of the goals of this paper is to

extend some results concerning the asymptotic behavior of (1.1), now with the dynamic

boundary condition (1.2). The corresponding linear case for (1.1)–(1.3) is treated in

[46]. The existence of the global attractor for a linear damped wave equation with a

nonlinear dynamic boundary condition is considered in [53]. More general systems, with

supercritical nonlinear sources on both the interior and the boundary, are considered

in [2, 9–12]. These contributions devote their attention mainly to issues like Hadamard

local wellposedness, global existence, blow-up, and non-existence theorems, as well as

estimates on the uniform energy dissipation rates for the appropriate classes of solutions.

We also refer the reader to [13] for a unified overview of these results.

Our main goal is to compare the hyperbolic relaxation problem (1.1)–(1.3) to that of

the limit parabolic equation where, for ε = 0, we have the reaction-diffusion equation

ut −Δu+ f(u) = 0 (1.8)

in (0,∞)× Ω with the dynamic boundary condition

∂nu+ u+ ut = 0 (1.9)

on (0,∞)× Γ and the initial conditions

u(0, x) = u0(x) in Ω, u(0, x) = γ0(x) on Γ. (1.10)

For the sake of simplicity, we shall restrict our attention only to linear boundary con-

ditions of the form (1.9) even though our framework can easily allow for a complete

treatment of nonlinear dynamic boundary conditions (see Remark 3.19; cf. also [14], [23],

[27]).

Because of its importance in the physical sciences and the development of mathemat-

ical physics, the reaction-diffusion equation (1.8) and its asymptotic behavior are well

known to the literature. Many of the books referenced above contain a treatment on the

parabolic semilinear reaction-diffusion equation (1.8) with static boundary conditions.

In particular, the Chaffee-Infante reaction-diffusion equation with f(u) = u3−ku, k > 0,

and Dirichlet boundary conditions can be found in [47, Section 11.5]. A discussion on the

structure of the associated global attractor can also be found there. Additionally, the

Chaffee-Infante equation and its hyperbolic relaxation, again with Dirichlet boundary

conditions, are discussed in [40, Chapters 3–5].
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Recently there has been a great amount of research taking place in the area of par-

tial differential equations of evolution type, subject to dynamic boundary conditions.

Boundary conditions of the form (1.9) arise for many known equations of mathemati-

cal physics. This can especially be seen by the many applications given to heat control

problems, phase-transition phenomena, Stefan problems, some models in climatology,

and many others. Without being too exhaustive we refer the reader to [24, 25, 29] for

more details about the system (1.8)–(1.10) and a more complete list of references. A ver-

sion of equation (1.2), but with nonlinear dissipation on the boundary, already appears

in the literature; we refer to [17,18]. There the authors are able to show the existence of

a global attractor without the presence of the weak interior damping term ut, by assum-

ing that f is subcritical. One motivation for considering a boundary condition like (1.2)

comes from mechanical considerations: there is frictional damping on the boundary Γ

that is linearly proportional to the velocity ut. In [51], the convergence, as time goes to

infinity, of unique global strong solutions of (1.1)–(1.3) to a single equilibrium is estab-

lished provided that f is also real analytic. Note that the set of equilibria for (1.1)–(1.3)

may form a continuum so that, in general, guaranteeing this convergence is a highly

nontrivial matter. The second motivation comes from thermodynamics. Suppose that

we want to consider heat flow in a metal. The standard derivation of the heat equation is

always based on the idea that “heat in equals heat out” over a region Ω. But the classical

approach ignores the contribution of heat sources located on the boundary Γ, by taking

into account only heat sources/sinks which are present inside the region (in our case,

−f (u) is treated as a source within Ω). A new derivation of the heat equation in the

presence of heat sources/sinks located at Γ, assuming the Fourier law of cooling states

(i.e., the heat flux −→q is directly proportional to the temperature gradient, −→q = −∇u),

was given in [31], and it has lead to the precise formulation of the system in (1.8)–(1.10).

However, the derivation in [31] suffers from an important drawback which cannot be

ignored: initial perturbations in (1.8) propagate with infinite speed. This means that

the presence of a heat source located at Γ is instantaneously felt by all observers in Ω,

no matter how far away from Γ they happen to be. This behavior can be traced to the

“parabolic” character of Fourier’s law. Thus, in many relevant phenomena the system

(1.8)–(1.10) can become a bad approximation (see, e.g., [1], [35] for many examples). In

order to overcome these problems, a generalization of the standard Fourier law must be

considered, leading to a new formulation for which the heat flux −→q obeys the so-called

Maxwell–Cattaneo heat conduction law:

ε∂t
−→q +−→q = −∇u, (1.11)

in (0,∞) × Ω. Note that the Fourier law is obtained from (1.11) when ε = 0. This

expression for the heat flux −→q leads to the hyperbolic equation (1.1), which entails that

u propagates at finite speed. It is also worth mentioning that one can write (1.11) in the

equivalent form of

−→q (t, x) = −
∫ ∞

0

Θε (t− s)∇u (s, x) ds, Θε (t) :=
1

ε
e−

t
ε . (1.12)

This points to a situation in which the (past) thermal memory of the material plays a

role, but its relevance goes down quickly as we move to the past. Finally, it may be
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worth mentioning that the form of flux −→q assumed in (1.12), in which Θε is assumed to

be a generic memory kernel, also yields the following problem:

ut =

∫ ∞

0

Θε (t− s) (Δu (s)− f (u (s))) ds. (1.13)

In this case, Θε (s) = ε−1Θ(s/ε) and Θ : (0,∞) → (0,∞) is a given (smooth) summable

and convex (hence decreasing) relaxation kernel. A complete treatment of equation

(1.13), endowed with the dynamic boundary condition (1.9), will be the subject of further

investigation in the future.

It may also be interesting to note that the dynamic boundary condition given in (1.2)

can be recovered, in some sense, from the linear acoustic boundary condition,

{
mδtt + δt + δ = −ut on (0, T )× Γ,

∂nu = δt on (0, T )× Γ.
(1.14)

Here the unknown δ = δ(t, x) represents the inward “displacement” of the boundary Γ

reacting to a pressure described by −ut. The first equation (1.14)1 describes the spring-

like effect in which Γ (and δ) interacts with −ut, and the second equation (1.14)2 is the

continuity condition: velocity of the boundary displacement δ agrees with the normal

derivative of u. Together, (1.14) describes Γ as a locally reactive surface. The term

m = m(x) represents mass, so in a massless system, the inertial term disappears. In the

case when δ can be modeled by u near the boundary (i.e., if δ ∼ u near Γ), we arrive at

the boundary condition described by (1.2). In applications, the unknown u may be taken

as a velocity potential of some fluid or gas in Ω that was disturbed from its equilibrium.

The acoustic boundary condition was rigorously described by Beale and Rosencrans in

[6] and [7]. Various recent sources investigate the wave equation equipped with acoustic

boundary conditions, [19,26,42,50]. However, more recently, it has been introduced as a

dynamic boundary condition for problems that study the asymptotic behavior of weakly

damped wave equations; see [23] and [48].

The aim of this paper is to extend the asymptotic results for dissipative wave equations

(1.1) and reaction-diffusion equations (1.8) with the dynamic boundary condition (1.2), in

terms of a perturbation problem, and ultimately discuss the continuity of the attracting

sets generated by these problems. Due to the nature of the boundary condition imposed

for the model problem (1.1), we are unable to prove the existence of global attractors for

the hyperbolic relaxation problem through the compactness argument which is typical

for damped wave equations with static boundary conditions, such as Dirichlet, Neumann,

periodic, or Robin boundary conditions (cf., e.g., [40, 49, 52]). The problem arises from

our lack of defining fractional powers of the Laplacian with respect to the boundary

condition (1.2). This situation takes place because of the permanence of the ut term on

Γ, which in turn means the “Laplacian” is not selfadjoint. Thus, for example, the model

problem does not enjoy an explicit Poincaré inequality found with a Fourier series, nor

the existence of a local weak solution found with a typical Galerkin basis. Local solutions

will be sought with semigroup methods that rely on monotone operator techniques as

in [16]. Then estimates are applied to extend the local solutions to global ones and

the existence of an absorbing set is determined. For the hyperbolic relaxation problem
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98 C. G. GAL AND J. L. SHOMBERG

(1.1)–(1.3), we obtain the relatively compact part in the decomposition of the solution

by following the approach in [44].

The main novelties of the present paper with respect to previous results on the damped

wave equation (1.1) are the following:

• We extend the results on the existence of global attractors {Aε}ε∈(0,1] for the

damped wave equation (1.1) with a critical nonlinearity and a “dynamic” bound-

ary condition instead of the usual Dirichlet boundary condition (see, e.g., [33],

[34]). This is achieved through the decomposition method exploited in [44] which

allows us to establish that Aε has also optimal regularity (see Theorem 3.18).

• We show that a certain family
{
Ãε

}

ε∈[0,1]
of compact sets, which is topolog-

ically conjugated to {Aε}ε∈[0,1] in a precise way, is also upper-semicontinuous

as ε goes to zero. Roughly speaking, we show that these sets Ãε converge to

the “lifted” global attractor Ã0 associated with the parabolic problem. The ar-

gument utilizes the sequential characterization of the global attractor (cf., e.g.,

[40, Proposition 2.15]). The main difficulty comes from the fact that the phase

spaces for the perturbed and unperturbed equations are not the same; indeed,

solutions of the hyperbolic problem are defined for (u0, u1) ∈ Hs+1 (Ω)×Hs (Ω),

s ∈ {0, 1}, while solutions of the parabolic problem make sense only in spaces

like L2 (Ω)×L2 (Γ) and Hs+1 (Ω)×Hs+1/2 (Γ) , respectively (see (1.10)). Thus,

previous constructions obtained for parabolic equations with Dirichlet boundary

conditions cannot be applied and have to be adapted.

• We prove the existence of a family of exponential attractors {Mε} , ε ∈ (0, 1],

which entails that Aε is also finite dimensional even in the critical case. We recall

that the same result was shown in [16] for the wave equation (i.e., (1.1) without

any damping in Ω) subject to the boundary condition (1.9). Unfortunately, we

are unable to show that this dimension is uniform with respect to ε > 0 as ε goes

to zero. Some other open questions are formulated at the end of the article.

The article is organized as follows. The limit (ε = 0) reaction-diffusion problem is

discussed in Section 2. The section is mostly devoted to citing the already known main

results of the parabolic problem: the existence and uniqueness of global solutions in an

appropriate phase space (see Theorem 2.3), the definition of the (Lipschitz) semiflow, the

existence and regularity of the global attractor (see Theorem 2.6). Section 3 contains our

treatment of the hyperbolic relaxation problem, for all ε ∈ (0, 1]. We discuss the existence

and uniqueness of solutions defined for all positive times in Section 3.2 (see Theorem 3.6).

The solutions generate a semiflow on the phase space, and thanks to the continuous

dependence estimate, we know that the semiflow is locally Lipschitz continuous. The

existence of a bounded absorbing set is also shown (see Lemma 3.10). The global attractor

and its properties are established in Section 3.3, while the upper-semicontinuous result

is established in Section 3.4. The existence of exponential attractors for the hyperbolic

problem is presented in Section 4. The statement of a Grönwall-type inequality, used

frequently in the estimates, is included in the appendix.
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2. The limit parabolic problem. In this short section, we recall some results for

the limit parabolic problem (1.8)–(1.10), i.e., (1.1)–(1.3) with ε = 0. Unlike the hy-

perbolic problem, a full general treatment of the limit parabolic problem with dynamic

boundary conditions already appears in the literature (cf., e.g., [24, 25, 29, 39] and ref-

erences there in); in particular, this section will summarize some of the main results

from [25]. It should be noted for the interest of the reader that all formal calculations

made with the weak solutions of the parabolic problem can be rigorously justified using

the Galerkin discretization scheme that appears, for instance, in [29, Theorem 2.6]. In-

deed, it is through the use of the Galerkin approximations that the existence of weak

solutions for the parabolic problem is shown. The solution operator associated with the

parabolic problem generates a locally Lipschitz continuous semiflow on the appropriate

phase space. We also know that this semiflow admits a connected global attractor that

is bounded in a more regular phase space. It follows that solutions, when restricted to

the global attractor, are in fact strong solutions, exhibiting further regularity that will

become essential when we later consider the continuity properties of the family of global

attractors produced by the hyperbolic relaxation problem (ε > 0) and the limit parabolic

problem (ε = 0).

We need to introduce some notation and definitions. From now on, we denote by

‖ · ‖ and ‖ · ‖k the norms in L2(Ω) and Hk(Ω), respectively. We use the notation 〈·, ·〉
and 〈·, ·〉k to denote the products on L2(Ω) and Hk(Ω), respectively. For the boundary

terms, ‖ · ‖L2(Γ) and 〈·, ·〉L2(Γ) denote the norm and, respectively, product on L2(Γ). We

will require the norm in Hk(Γ) to be denoted by ‖ · ‖Hk(Γ), where k ≥ 1. The Lp(Ω)

norm, p ∈ (0,∞], is denoted by | · |p. The dual pairing between H1(Ω) and its dual

(H1(Ω))∗ is denoted by (u, v). We denote the measure of the domain Ω by |Ω|. In many

calculations, functional notation indicating dependence on the variable t is dropped; for

example, we will write u in place of u(t). Throughout the paper, C ≥ 0 will denote a

generic constant, while Q : R+ → R+ will denote a generic increasing function. All these

quantities, unless explicitly stated, are independent of ε. Further dependencies of these

quantities will be specified on occurrence.

The following inequalities are straightforward consequences of the Poincaré-type in-

equality (1.6) and assumptions (1.5) and (1.7). From (1.5) it follows that, for some

constants μ ∈ (0, λ] and c1 = c1(f, |Ω|) ≥ 0 and for all ξ ∈ H1(Ω),

〈f (ξ) , ξ〉 ≥ − (λ− μ) ‖ξ‖2 − c1 (2.1)

≥ − (λ− μ)

λ

(
‖∇ξ‖2 + ‖ξ‖2L2(Γ)

)
− c1.

Let F (s) =
∫ s

0
f(σ)dσ. For some constant c2 = c2(f, |Ω|) ≥ 0 and for all ξ ∈ H1(Ω),

∫

Ω

F (ξ)dx ≥ −λ− μ

2
‖ξ‖2 − c2

≥ −λ− μ

2λ
‖ξ‖21 − c2.

(2.2)
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100 C. G. GAL AND J. L. SHOMBERG

See [17, p. 1913] for an explicit proof of (2.2). The proof of (2.1) is similar. Finally, using

(1.7) and integration by parts on F (s) =
∫ s

0
f(σ)dσ, we have the upper bound

∫

Ω

F (ξ)dx ≤ 〈f(ξ), ξ〉+ ϑ

2
‖ξ‖2

≤ 〈f(ξ), ξ〉+ ϑ

2λ
‖ξ‖21.

(2.3)

The natural energy phase space for the limit parabolic problem (1.8)–(1.10) is the

space

Y = L2(Ω)× L2(Γ),

which is Hilbert when equipped with the norm whose square is given by, for all ζ =

(u, γ) ∈ Y ,

‖ζ‖2Y := ‖u‖2 + ‖γ‖2L2(Γ).

It is well known that the Dirichlet trace map trD : C∞ (
Ω
)
→ C∞ (Γ) , defined by

trD (u) = u|Γ, extends to a linear continuous operator trD : Hr (Ω) → Hr−1/2 (Γ) , for

all r > 1/2, which is onto for 1/2 < r < 3/2. This map also possesses a bounded right

inverse tr−1
D : Hr−1/2 (Γ) → Hr (Ω) such that trD

(
tr−1

D ψ
)
= ψ, for any ψ ∈ Hr−1/2 (Γ).

Identifying each function ψ ∈ C
(
Ω
)
with the vector V = (ψ, trD (ψ)) ∈ C

(
Ω
)
× C (Γ),

it follows that C
(
Ω
)
is a dense subspace of Y = L2 (Ω) × L2 (Γ) (see, e.g., [43, Lemma

2.1]). Also, we introduce the subspaces of Hr (Ω)×Hr−1/2 (Γ), for every r > 1/2,

Vr :=
{
(u, γ) ∈ Hr (Ω)×Hr−1/2 (Γ) : γ = trD (u)

}
,

and we note that we have the following dense and compact embeddings Vr1 →֒ Vr2 , for

any r1 > r2 > 1/2. The linear subspace Vr is densely and compactly embedded into

Y, for any r > 1/2. We emphasize that Vr is not a product space and that, due to the

boundedness of the trace operator trD, the space Vr is topologically isomorphic to Hr (Ω)

in the obvious way. Thus, we can identify each u ∈ Hr (Ω) with a pair (u, trD (u)) ∈ Vr.

Finally, note that both spaces Hr (Ω) and Vr are normed spaces with equivalent norms.

The following definition of weak solution to problem (1.8)–(1.10) is taken from [29]

(see, e.g., [24, Definition 2.1] for the more general case).

Definition 2.1. Let T > 0 and (u0, γ0) ∈ Y = L2(Ω) × L2(Γ). The pair ζ(t) =

(u(t), γ(t)) is said to be a (global) weak solution of (1.8)–(1.10) on [0, T ] if, for almost all

t ∈ (0, T ], γ(t) = u|Γ(t) and ζ fulfills

ζ ∈ C ([0, T ] ;Y ) ∩ L2
(
0, T ;V1

)
,

∂tζ ∈ L2(0, T ;
(
V1

)∗
), u ∈ H1

loc

(
(0, T ];L2 (Ω)

)
,

γ ∈ H1
loc

(
(0, T ];L2 (Γ)

)

such that the following identity holds: for almost all t ∈ [0, T ] and for all ξ = (χ, ψ) ∈ V1,

(∂tζ, ξ)(V1)∗,V1 + 〈∇u,∇χ〉+ 〈f(u), χ〉+ 〈u, ψ〉L2(Γ) = 0. (2.4)

Moreover,

ζ(0) = (u0, γ0) =: ζ0 a.e. in Y.

The map ζ = (u, γ) is a weak solution on [0,∞) (i.e., a global weak solution) if it is a

weak solution on [0, T ], for all T > 0.
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Remark 2.2. It is important to observe, for the weak solutions of Definition 2.1,

that γ0 = u|Γ (0) need not be the trace of u0 = u|Ω (0) at the boundary, and so in this

context the boundary equation (1.9) is interpreted as an additional parabolic equation,

now acting on the boundary Γ. However, the weak solution does fulfill γ(t) = trDu(t),

for almost all t > 0.

The existence part of the (global) weak solutions is from [29, Theorem 2.6], and the

continuous dependence with respect to the initial data ζ0, local Lipschitz continuity on

Y , uniformly in t on compact intervals, and the uniqueness of the weak solutions follow

from [24, Proposition 2.8] (cf. also [29, Lemma 2.7]).

Theorem 2.3. Assume (1.4), (1.5), and (1.7) hold. For each ζ0 = (u0, γ0) ∈ Y , there

exists a unique global weak solution in the sense of Definition 2.1. Moreover, the following

estimate holds: for all t ≥ 0,

‖ζ(t)‖2Y +

∫ t+1

t

‖ζ(s)‖2V1ds ≤ C‖ζ0‖2Y e−ρt + C, (2.5)

for some positive constants ρ, C > 0. Furthermore, let ζ(t) = (u(t), γ(t)) and θ(t) =

(χ(t), ψ(t)) denote the corresponding weak solutions with initial data ζ0 = (u0, γ0) and

θ0 = (χ0, ψ0), respectively. Then, for all t ≥ 0,

‖ζ(t)− θ(t)‖Y ≤ Ceνt‖ζ0 − θ0‖Y , (2.6)

where C = C (R) > 0 is such that ‖ζ0‖Y ≤ R, ‖θ0‖Y ≤ R.

Proof. Since the proofs in [29], [24], [25] involve quite different assumptions on the

nonlinearity other than the ones in the statement of the theorem, we will sketch a short

proof of (2.5). This is the main estimate on which the proof for the existence of a weak

solution is based (of course, (2.5) can be rigorously justified using a suitable Galerkin

discretization scheme). To this end, testing (2.4) with ζ and appealing to (2.1), we deduce

the following inequality:

1

2

d

dt
‖ζ (t)‖2Y +

(
1− λ− μ

λ

)(
‖∇u (t)‖2 + ‖u (t)‖2L2(Γ)

)
≤ C, (2.7)

for all t ≥ 0, where we recall that μ ∈ (0, λ] . Exploiting now the continuous embedding

V1 →֒ Y , (2.5) follows from the application of Gronwall’s inequality (see Proposition 5.1

in the appendix) to (2.7). The claim is proven. �

Remark 2.4. Theorem 2.3 still holds if we keep (1.7) and we drop the assumptions

(1.4) and (1.5) and replace them by the following:

η1 |y|p − Cf ≤ f (y) y ≤ η2 |y|p + Cf , (2.8)

for some η1, η2 > 0, Cf ≥ 0, and any p > 2. In this case, the same weak formulation (2.4)

must be satisfied a.e. on [0, T ], for all ξ = (χ, ψ) ∈ V1, with χ ∈ Lp (Ω) (see, e.g., [24,25]).

Finally, we note that without assumption (1.7), the uniqueness of weak solutions (given

in Definition 2.1) is not known in general (see [24]).

Corollary 2.5. Let the assumptions of Theorem 2.3 be satisfied. We can define a

strongly continuous semigroup

S0 (t) : Y → Y
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by setting, for all t ≥ 0,

S0(t)ζ0 := ζ (t)

where ζ (t) = (u (t) , u|Γ (t)) is the unique weak solution to problem (1.8)–(1.10).

The existence of a bounded absorbing set in V1 was shown for the first time in [29,

Theorem 2.8] and the existence of the global attractor for (1.8)–(1.10) can be found

in [24, 25]. The following theorem concerns the existence and regularity of the global

attractor A0 admitted by the semiflow S0 and is taken from [25, Theorem 2.3]. The

proof relies on a uniform estimate which states that problem (1.8)–(1.10) possesses the

Y − V2 smoothing property and exploits (2.5).

Theorem 2.6. The semiflow S0 possesses a connected global attractor A0 in Y , which is

a bounded subset of V2. The global attractor A0 contains only strong solutions. Finally,

S0 also admits an exponential attractor M0 which is bounded in V2 and compact in Y.

Remark 2.7. The boundedness of A0 in V2, shown in [25, Theorem 2.3], is essential

for the proof of the continuity property at ε = 0 of the global attractors associated with

problem (1.1)–(1.3). The last assertion follows from results in [28, Theorem 4.2], where

(1.8)–(1.10) is a special case of a phase-field system endowed with dynamic boundary

conditions.

3. The hyperbolic relaxation problem. In this section, we study the hyperbolic

relaxation problem (1.1)-(1.3) with ε ∈ (0, 1]. Our first goal is to prove the existence of

a global attractor for (1.1)-(1.3). As indicated in [51], semigroup methods are applied to

obtain local mild solutions whereby a suitable estimate is used to extend the solution to a

global one. We will offer a detailed presentation on the well-posedness of the hyperbolic

relaxation problem in this section for the reader’s convenience. The solution operators

define a semiflow on the phase space and because of the continuous dependence estimate

on the solutions, the semiflow is locally Lipschitz continuous, uniformly in t on compact

intervals. Further estimates are used to establish the existence of an absorbing set for the

semiflow. As discussed above, we will follow the decomposition method in [44] to obtain

the existence of the global attractor in H1(Ω) × L2(Ω) for the corresponding semiflow

Sε, for each ε ∈ (0, 1]. The (optimal) regularity result for the global attractors Aε and a

proof of their continuity properties conclude the section.

3.1. The functional framework. Here we consider the functional setup associated with

problem (1.1)–(1.3). The finite energy phase space for the hyperbolic relaxation problem

is the space

Hε = H1(Ω)× L2(Ω).

The space Hε is Hilbert when endowed with the ε-weighted norm whose square is given

by, for ϕ = (u, v) ∈ Hε = H1(Ω)× L2(Ω),

‖ϕ‖2Hε
:= ‖u‖21 + ε‖v‖2 =

(
‖∇u‖2 + ‖u‖2L2(Γ)

)
+ ε‖v‖2.
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As introduced in [51] (cf. also [16]), ΔR : L2(Ω) → L2(Ω) is the Robin-Laplacian

operator with domain

D(ΔR) = {u ∈ H2(Ω) : ∂nu+ u = 0 on Γ}.
Easy calculations show that the operator ΔR is selfadjoint and positive. The Robin-

Laplacian is extended to a continuous operator ΔR : H1(Ω) →
(
H1(Ω)

)∗
, defined by, for

all v ∈ H1(Ω),

(−ΔRu, v) = 〈∇u,∇v〉+ 〈u, v〉L2(Γ).

Next, [16, 51] also define the Robin map R : Hs(Γ) → Hs+(3/2)(Ω) by

Rp = q if and only if Δq = 0 in Ω and ∂nq + q = p on Γ.

The adjoint of the Robin map satisfies, for all v ∈ H1(Ω),

R∗ΔRv = −v on Γ.

Define the closed subspace of H2(Ω)×H1(Ω),

Dε := {(u, v) ∈ H2(Ω)×H1(Ω) : ∂nu+ u = −v on Γ},
endowed with norm whose square is given by, for all ϕ = (u, v) ∈ Dε,

‖ϕ‖2Dε
:= ‖u‖22 + ‖v‖21.

Let D(Aε) = Dε (note that ε-dependance does not enter through the norm of Dε, but

rather in the definition of Aε below). Define the linear unbounded operator Aε : D(Aε) →
Hε by

Aε :=

(
0 1

1
εΔR

1
ε (ΔRR trD − 1)

)
,

where trD denotes the Dirichlet trace operator (i.e., trD(v) = v|Γ). Notice that if (u, v) ∈
Dε, then u+RtrD(v) ∈ D(ΔR). By the Lumer-Phillips theorem (cf., e.g., [45, Theorem

I.4.3]) and the Lax-Milgram theorem, it is not hard to see that, for all ε ∈ (0, 1], the

operator Aε, with domain Dε, is an infinitesimal generator of a strongly continuous

semigroup of contractions on Hε, denoted by eAεt.

Define the map F : Hε → Hε by

F(ϕ) :=

(
0

− 1
εf(u)

)

for all ϕ = (u, v) ∈ Hε. Since f : H1(Ω) → L2(Ω) is locally Lipschitz continuous [52, cf.,

e.g., Theorem 2.7.13], it follows that the map F : Hε → Hε is as well.

The hyperbolic relaxation problem (1.1)–(1.3) may be put into the abstract form in

Hε, for ϕ(t) = (u(t), ut(t))
tr,

d

dt
ϕ(t) = Aεϕ(t) + F(ϕ(t)); ϕ(0) =

(
u0

u1

)
. (3.1)

Lemma 3.1. For each ε ∈ (0, 1], the adjoint of Aε, denoted by A∗
ε, is given by

A∗
ε := −

(
0 1

1
εΔR − 1

ε (ΔRR trD − 1)

)
,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



104 C. G. GAL AND J. L. SHOMBERG

with domain

D(A∗
ε) := {(χ, ψ) ∈ H2(Ω)×H1(Ω) : ∂nχ+ χ = −ψ on Γ}.

Proof. The proof is a calculation similar to, e.g., [5, Lemma 3.1]. �

3.2. Well-posedness for the hyperbolic relaxation problem. The notion of weak solution

to problem (1.1)–(1.3) is as follows (see [4]).

Definition 3.2. A function ϕ = (u, ut) : [0, T ] → Hε is a weak solution of (3.1)

on [0, T ] if and only if F(ϕ(·)) ∈ L1(0, T ;Hε) and ϕ satisfies the variation of constants

formula, for all t ∈ [0, T ],

ϕ(t) = eAεtϕ0 +

∫ t

0

eAε(t−s)F(ϕ(s))ds.

It can be easily shown that the notion of weak solution given in Definition 3.2 is also

equivalent to the following notion of a weak solution (see, e.g., [5, Definition 3.1 and

Proposition 3.5]).

Definition 3.3. Let T > 0 and (u0, u1) ∈ Hε. A map ϕ = (u, ut) ∈ C([0, T ];Hε) is

a weak solution of (3.1) on [0, T ] if for each θ = (χ, ψ) ∈ D(A∗
ε) the map t �→ 〈ϕ(t), θ〉Hε

is absolutely continuous on [0, T ] and satisfies, for almost all t ∈ [0, T ],

d

dt
〈ϕ(t), θ〉Hε

= 〈ϕ(t), A∗
εθ〉Hε

+ 〈F(ϕ(t)), θ〉Hε
. (3.2)

The map ϕ = (u, ut) is a weak solution on [0,∞) (i.e., a global weak solution) if it is a

weak solution on [0, T ], for all T > 0.

The above definitions are equivalent to the standard concept of a weak (distributional)

solution to (1.1)–(1.3).

Definition 3.4. Let ε ∈ (0, 1]. A function ϕ = (u, ut) : [0, T ] → Hε is a weak solution

of (3.1) (and thus of (1.1)–(1.3)) on [0, T ] if

ϕ = (u, ut) ∈ C([0, T ] ;Hε), ut ∈ L2([0, T ]× Γ)

and, for each ψ ∈ H1 (Ω) , (ut, ψ) ∈ C1 ([0, T ]) with

d

dt
(εut (t) , ψ) + 〈∇u (t) ,∇ψ〉+ 〈ut (t) , ψ〉+ 〈ut (t) + u (t) , ψ〉L2(Γ) = −〈f (u (t)) , ψ〉 ,

(3.3)

for almost all t ∈ [0, T ] .

Indeed, by [5, Lemma 3.3] we have that f : H1 (Ω) → L2 (Ω) is sequentially weakly

continuous and continuous, on account of the assumptions (1.4) and (1.5). Moreover,

(ϕt, θ) ∈ C1 ([0, T ]) for all θ ∈ D (A∗
ε), and (3.2) is satisfied. The assertion in Definition

3.4 follows then from the explicit characterization of D (A∗
ε) and from [5, Proposition

3.4].

Finally, the notion of strong solution to problem (1.1)–(1.3) is as follows.

Definition 3.5. Let ϕ0 = (u0, u1) ∈ Dε, ε > 0, i.e., (u0, u1) ∈ H2(Ω)×H1(Ω) such

that it satisfies the compatibility condition

∂nu0 + u0 + u1 = 0 on Γ.
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A function ϕ (t) = (u (t) , ut (t)) is called a (global) strong solution if it is a weak solution

in the sense of Definition 3.4 and if it satisfies the following regularity properties:

ϕ ∈ L∞(0,∞;Dε), ϕt ∈ L∞(0,∞;Hε),

utt ∈ L∞(0,∞;L2(Ω)), utt ∈ L2(0,∞;L2(Γ)).
(3.4)

Therefore, ϕ (t) = (u (t) , ut (t)) satisfies the equations (1.1)–(1.3) almost everywhere;

i.e., it is a strong solution.

We can now state the main theorems of this section.

Theorem 3.6. Assume (1.4) and (1.5) hold. For each ε ∈ (0, 1] and ϕ0 = (u0, u1) ∈ Hε,

there exists a unique global weak solution ϕ = (u, ut) ∈ C([0,∞);Hε) to (1.1)–(1.3). In

addition,

∂nu ∈ L2
loc([0,∞)× Γ) and ut ∈ L2

loc([0,∞)× Γ). (3.5)

For each weak solution, the map

t �→ ‖ϕ(t)‖2Hε
+ 2

∫

Ω

F (u(t))dx (3.6)

is C1([0,∞)) and the energy equation

d

dt

{
‖ϕ(t)‖2Hε

+ 2

∫

Ω

F (u(t))dx

}
= −2‖ut(t)‖2 − 2‖ut(t)‖2L2(Γ) (3.7)

holds (in the sense of distributions) a.e. on [0,∞). Furthermore, let ϕ(t) = (u(t), ut(t))

and θ(t) = (v(t), vt(t)) denote the corresponding weak solution with initial data ϕ0 =

(u0, u1) ∈ Hε and θ0 = (v0, v1) ∈ Hε, respectively, such that ‖ϕ0‖Hε
≤ R, ‖θ0‖Hε

≤ R.

Then there exists a constant ν1 = ν1(R) > 0 such that, for all t ≥ 0,

‖ϕ(t)− θ(t)‖2Hε
+

∫ t

0

(
‖ut (τ )− vt (τ ) ‖2 + ‖ut (τ )− vt (τ ) ‖2L2(Γ)

)
dτ (3.8)

≤ eν1t‖ϕ0 − θ0‖2Hε
.

Theorem 3.7. For each ε ∈ (0, 1] and (u0, u1) ∈ Dε, problem (1.1)–(1.3) possesses a

unique global strong solution in the sense of Definition 3.5.

Remark 3.8. The proof of Theorem 3.7 is outlined in [51] (cf. also [16]) when ε = 1.

Proof of Theorem 3.6. We only give a sketch of the proof.

Step 1. As discussed in the previous section, for each ε ∈ (0, 1], the operator Aε with

domain D(Aε) = Dε is an infinitesimal generator of a strongly continuous semigroup of

contractions on Hε, and the map F : Hε → Hε is locally Lipschitz continuous. Therefore,

by [52, Theorem 2.5.4], for any ε ∈ (0, 1] and for any ϕ0 = (u0, u1) ∈ Hε, there is a

T ∗ = T ∗(‖ϕ0‖Hε
) > 0 such that the abstract problem (3.1) admits a unique local weak

solution on [0, T ∗) satisfying

ϕ ∈ C([0, T ∗);Hε).

The next step is to show that T ∗(‖ϕ0‖Hε
) = ∞. Since the map (3.6) is absolutely

continuous on [0, T ∗) (cf., e.g., [5, Theorem 3.1]), then integration of the energy equation
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(3.7) over (0, t) yields, for all t ∈ [0, T ∗),

‖ϕ(t)‖2Hε
+ 2

∫

Ω

F (u(t))dx+ 2

∫ t

0

‖ut(τ )‖2dτ + 2

∫ t

0

‖ut(τ )‖2L2(Γ)dτ

= ‖ϕ0‖2Hε
+ 2

∫

Ω

F (u0)dx.

(3.9)

Applying inequality (2.2) to (3.9) and applying (2.3) to the integral on the right-hand

side, we find that there is a function Q(‖ϕ0‖Hε
) > 0 such that, for all t ∈ [0, T ∗),

‖ϕ(t)‖Hε
≤ Q(‖ϕ0‖Hε

). (3.10)

Since the bound on the right-hand side of (3.10) is independent of t ∈ [0, T ∗), T ∗(‖ϕ0‖Hε
)

can be extended indefinitely, and therefore, for each ε ∈ (0, 1], we have that T ∗(‖ϕ0‖Hε
) =

∞.

We now show the boundary property (3.5). Applying (2.2), (2.3), and (3.10) to identity

(3.9), we obtain a bound of the form, for all ϕ0 ∈ Hε and t ≥ 0, in which
∫ t

0

‖ut(τ )‖2L2(Γ)dτ ≤ Q(‖ϕ0‖Hε
).

It follows that ut ∈ L2
loc([0,∞) × Γ). By the trace theorem, u ∈ L∞(0,∞;H1(Ω)) →֒

L∞(0,∞;L2(Γ)), so u ∈ L2
loc([0,∞) × Γ). Comparison with (1.2) yields that ∂nu ∈

L2
loc([0,∞)× Γ).

Step 2. To show that the continuous dependence estimate (3.8) holds, consider the

difference z(t) := u(t)− v(t), t ≥ 0. We easily get

d

dt
‖(z, zt)‖2Hε

+ 2‖zt‖2 + 2‖zt‖2L2(Γ) = 2〈f(v)− f(u), zt〉. (3.11)

Since f : H1(Ω) → L2(Ω) is locally Lipschitz continuous,

2|〈f(v)− f(u), zt〉| ≤ Q(R)‖z‖21 + ‖zt‖2, (3.12)

where R > 0 is such that ‖ϕ0‖Hε
≤ R, ‖θ0‖Hε

≤ R. Combining (3.11) and (3.12)

produces, for almost all t ≥ 0,

d

dt
‖(z, zt)‖2Hε

≤ Q(R)‖(z, zt)‖2Hε
. (3.13)

Hence (3.8) follows immediately from (3.13), using the standard Gronwall lemma. This

completes the proof of the theorem. �

In view of Theorem 3.6, the following is immediate.

Corollary 3.9. Let the assumptions of Theorem 3.6 be satisfied. Then, for each ε ∈
(0, 1] we can define a strongly continuous semigroup

Sε (t) : Hε → Hε,

by setting, for all t ≥ 0,

Sε (t)ϕ0 = ϕ (t) = (u (t) , ut (t)) ,

where ϕ (t) is the unique weak solution to problem (1.1)–(1.3).
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3.3. The global attractor Aε in Hε. In this section, we aim to show the existence of

a global attractor and prove some additional regularity properties. We point out that

all the computations we will perform below can be rigorously justified by means of an

approximation procedure which relies upon the result in Theorem 3.7. Indeed, we shall

use the usual procedure of approximating weak solutions by strong solutions and then

pass to the limit by using density theorems in the final estimates (see, also, [16]). Thus,

in what follows we can proceed formally.

We begin our analysis with a uniform estimate for the weak solutions of Theorem

3.6. The estimate provides the existence of a bounded absorbing set Bε ⊂ Hε, for the

semiflow Sε, for each ε ∈ (0, 1].

Lemma 3.10. For all ε ∈ (0, 1] and ϕ0 = (u0, u1) ∈ Hε, there exist a positive function

Q, constants ω0 > 0, P0 > 0, all independent of ε, such that ϕ(t) satisfies, for all t ≥ 0,

‖ϕ (t)‖2Hε
≤ Q(‖ϕ0‖Hε

)e−ω0t + P0. (3.14)

Consequently, the ball Bε in Hε,

Bε := {ϕ ∈ Hε : ‖ϕ‖Hε
≤ P0 + 1}, (3.15)

is a bounded absorbing set in Hε for the dynamical system (Sε (t) ,Hε) .

Proof. Let ε ∈ (0, 1] and ϕ0 = (u0, u1) ∈ Hε. For α > 0 yet to be chosen, multiply

(1.1) by αu in L2(Ω). Adding the result to the energy equation (3.7) above yields the

differential identity, which holds for almost all t ≥ 0,

d

dt

{
‖ϕ‖2Hε

+ αε〈ut, u〉+ 2

∫

Ω

F (u) dx

}

+ (2− εα)‖ut‖2 + α〈ut, u〉+ α‖u‖21
+ 2‖ut‖2L2(Γ) + α〈ut, u〉L2(Γ) + α〈f(u), u〉 = 0.

(3.16)

For each ε ∈ (0, 1], define the functional Eε : Hε → R by

Eε(ϕ (t)) = ‖ϕ (t) ‖2Hε
+ αε〈ut (t) , u (t)〉+ 2

∫

Ω

F (u (t))dx. (3.17)

It is not hard to see that the map t �→ Eε(ϕ(t)) is C1([0,∞)); this essentially follows

from equation (3.6) of Theorem 3.6. First, we estimate, for all η > 0,

α|〈ut, u〉L2(Γ)| ≤ αη‖ut‖2L2(Γ) +
α

4η
‖u‖2L2(Γ), (3.18)

and with (2.1), we have,

α|〈f(u), u〉| ≥ −α(λ− μ)

λ
‖u‖21 − αC. (3.19)

Combining (3.16) with (3.18) and (3.19) gives

d

dt
Eε + (2− α)ε‖ut‖2 + α〈ut, u〉 (3.20)

+ α

(
1− 1

4η
− λ− μ

λ

)
‖u‖21 + (2− αη) ‖ut‖2L2(Γ)

≤ αC.
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Hence, for any η > λ
4μ and any 0 < α < min{2, 2

η}, we have 2− η > 0 and 2− αη > 0,

ω0 := min

{
2− α, α

(
μ

λ
− 1

4η

)}
> 0,

and estimate (3.20) becomes, for almost all t ≥ 0,

d

dt
Eε + ω0Eε + (2− αη)‖ut‖2L2(Γ) ≤ Cα. (3.21)

Applying Gronwall’s inequality (see, e.g., [44, Lemma 5]; cf. also Proposition 5.1 in the

appendix) to (3.21) produces, for all t ≥ 0,

Eε (ϕ (t)) ≤ Eε (ϕ (0)) e−ω0t + C. (3.22)

We now apply (2.2) to (3.17) to attain the bound

Eε (ϕ) ≥ ε
(
1− α

2

)
‖ut‖2 +

(
1− α

2λ
− λ− μ

λ

)
‖u‖21 − C. (3.23)

After updating the smallness condition on α to 0 < α < min{2, 2
η , 2μ}, we see that for

ω1 := min

{
1− α

2
, 1− α

2λ
− λ− μ

λ

}
> 0,

we have, for all t ≥ 0,

Eε(ϕ(t)) ≥ ω1‖ϕ(t)‖2Hε
− C. (3.24)

On the other hand, by estimating in a similar fashion, using (2.2), it follows for all t ≥ 0

that

Eε(ϕ(t)) ≤ Q (‖ϕ(t)‖Hε
) . (3.25)

Thus, estimate (3.14) follows now from (3.24), (3.25), and (3.22). The assertion (3.15)

is an immediate consequence of (3.14). This concludes the proof. �

Remark 3.11. The following bounds are an immediate consequence of estimate (3.14):

lim sup
t→∞

‖ϕ(t)‖2Hε
≤ P0 (3.26)

and ∫ ∞

0

(
‖ut (τ )‖2 + ‖ut (τ )‖2L2(Γ)

)
dτ ≤ Q

(
‖ϕ0‖Hε

)
. (3.27)

The last bound is found by integrating the energy equation (3.7) with respect to t over

(0,∞) and estimating the result with (1.4), (1.5), (2.2), (2.3), and (3.26).

Remark 3.12. Note that the last assumption (1.7) (which is f
′

(s) ≥ −ϑ, for all s ∈ R)

is nowhere needed in the proofs of Theorem 3.6, Theorem 3.7 (cf. [51, Theorem 1.1 and

Lemma 2.2]), and Lemma 3.10. It will only become important later (see (3.28)) when

we establish the optimal regularity of the global attractor for the hyperbolic problem

(1.1)–(1.3).

The semiflow Sε admits a bounded absorbing set Bε in Hε. To obtain a global attrac-

tor, it suffices to prove that the semiflow admits a decomposition into the sum of two

operators, Sε = Zε+Kε, where Zε = (Zε(t))t≥0 and Kε = (Kε(t))t≥0 are not necessarily

semiflows, but operators that are uniformly decaying to zero and uniformly compact for

large t, respectively. To obtain the compactness property for the operator Kε, recall

that, when fractional powers of the Laplacian are well-defined, one usually multiplies the
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PDE by the solution and a suitable fractional power of the Laplacian (i.e., (−Δ)su for

some s > 0) and then estimates using a stronger norm while keeping in mind the uniform

bound on u and the null initial conditions. However, in our case, the dynamic boundary

condition does not allow us to proceed with the usual argument to obtain the relative

compactness of Kε. This is because the Laplacian equipped with the dynamic boundary

condition (1.2) is not selfadjoint or positive. In turn, we cannot apply the standard

spectral theory to define fractional powers of the Laplacian. So to obtain the relative

compactness of Kε, we follow the approach in [44]. The main tool is to differentiate the

equations with respect to time and obtain uniform estimates for the new equations. Such

strategies also proved useful when dealing with a damped wave equation with acoustic

boundary conditions [23] or a wave equation with a nonlinear dynamic boundary condi-

tion [16], and hyperbolic relaxation of a Cahn-Hilliard equation with dynamic boundary

conditions [14], [27].

Following an approach similar to the one taken in the above references, first define

ψ(s) := f(s) + βs (3.28)

for some constant β ≥ ϑ to be determined later (in this case, ψ′(s) ≥ 0 thanks to

assumption (1.7)). Set Ψ(s) :=
∫ s

0
ψ(σ)dσ. Let ϕ0 = (u0, u1) ∈ Hε. Then rewrite the

hyperbolic relaxation problem into the system of equations in v and w, where v+w = u,
⎧
⎨
⎩

εvtt + vt −Δv + ψ(u)− ψ(w) = 0 in (0,∞)× Ω,

∂nv + v + vt = 0 on (0,∞)× Γ,

v(0) = u0, vt(0) = u1 + f (0)− βu0 in Ω

(3.29)

and ⎧
⎨
⎩

εwtt + wt −Δw + ψ(w) = βu in (0,∞)× Ω,

∂nw + w + wt = 0 on (0,∞)× Γ,

w(0) = 0, wt(0) = −f (0) + βu0 in Ω.

(3.30)

In view of Lemmas 3.13 and 3.15 below, we define the one-parameter family of maps

Kε(t) : Hε → Hε by

Kε(t)ϕ0 := (w(t), wt(t)) ,

where (w,wt) is a solution of (3.30). With such w, we may define a second function

(v, vt) as the solution of (3.29). Through the dependence of v on w and ϕ0 = (u0, u1),

the solution of (3.29) defines a one-parameter family of maps Zε(t) : Hε → Hε defined

by

Zε(t)ϕ0 := (v(t), vt(t)) .

Notice that if v and w are solutions to (3.29) and (3.30), respectively, then the function

u := v + w is a solution to the original hyperbolic relaxation problem (1.1)–(1.3).

The first lemma shows that the operators Kε are bounded in Hε, uniformly with

respect to ε. The result essentially follows from the existence of a bounded absorbing set

Bε in Hε for Sε (recall (3.26)).

Lemma 3.13. Assume (1.4), (1.5), and (1.7) hold. For each ε ∈ (0, 1] and ϕ0 = (u0, u1) ∈
Hε, there exists a unique global weak solution (w,wt) ∈ C([0,∞);Hε) to problem (3.30)

satisfying

∂nw ∈ L2
loc([0,∞)× Γ) and wt ∈ L2

loc([0,∞)× Γ). (3.31)
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Moreover, for all ϕ0 ∈ Hε with ‖ϕ0‖Hε
≤ R for all ε ∈ (0, 1], it follows for all t ≥ 0 that

‖Kε(t)ϕ0‖Hε
≤ Q(R). (3.32)

The following result will be useful later on.

Lemma 3.14. For all ε ∈ (0, 1] and η > 0, there is a function Qη (·) ∼ η−1 such that for

every 0 ≤ s ≤ t and ϕ0 = (u0, u1) ∈ Bε,
∫ t

s

(
‖wt(τ )‖2 + ‖ut(τ )‖2

)
dτ ≤ η

2
(t− s) +Qη (R) , (3.33)

where R > 0 is such that ‖ϕ0‖Hε
≤ R, for all ε ∈ (0, 1].

Proof. Let ε ∈ (0, 1] and ϕ0 = (u0, u1) ∈ Hε, with ‖ϕ0‖Hε
≤ R. Adding the identity

−2β
d

dt
〈u,w〉 = −2β〈ut, w〉 − 2β〈u,wt〉

to equation

d

dt

{
‖(w,wt)‖2Hε

+ 2

∫

Ω

Ψ(w)dx

}
+ 2‖wt‖2 + ‖wt‖2L2(Γ) = 2β〈u,wt〉 (3.34)

produces, for almost all t ≥ 0,

d

dt

{
‖(w,wt)‖2Hε

+ 2

∫

Ω

Ψ(w)dx− 2β〈u,w〉
}
+ 2‖wt‖2 + ‖wt‖2L2(Γ)

= −2β〈ut, w〉.
(3.35)

Using (3.32), we estimate, for all η > 0,

2β|〈ut, w〉| ≤ η +Qη (R) ‖ut‖2. (3.36)

For each ε ∈ (0, 1], define the functional Wε : H
1(Ω)×H1(Ω)× L2(Ω) → R,

Wε(t) := ‖(w(t), wt(t))‖2Hε
+ 2

∫

Ω

Ψ(w(t))dx− 2β〈u(t), w(t)〉.

Because of (2.3), (1.4), (1.5), (3.28), (3.26), and (3.32), we can easily check that for all

t ≥ 0 and ε ∈ (0, 1],

|Wε(t)| ≤ Q (R) . (3.37)

We now combine (3.35) and (3.36) together as, for all η > 0 and for almost all t ≥ 0,

d

dt
Wε + 2‖wt‖2 + ‖wt‖2L2(Γ) + 2‖ut‖2 ≤ η + (Qη (R) + 2) ‖ut‖2. (3.38)

Integrating (3.38) over (0, t) and recalling (3.37) and (3.27) gives the desired estimate in

(3.33). This proves the claim. �

The next result shows that the operators Zε are uniformly decaying to zero in Hε.

Lemma 3.15. Assume (1.4), (1.5), and (1.7) hold. For each ε ∈ (0, 1] and ϕ0 = (u0, u1) ∈
Hε, there exists a unique global weak solution (v, vt) ∈ C([0,∞);Hε) to problem (3.29)

satisfying

∂nv ∈ L2
loc([0,∞)× Γ) and vt ∈ L2

loc([0,∞)× Γ). (3.39)
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Moreover, for all ϕ0 ∈ Dε with ‖ϕ0‖Hε
≤ R for all ε ∈ (0, 1], there exists ω > 0,

independent of ε, such that, for all t ≥ 0,

‖Zε(t)ϕ0‖Hε
≤ Q(R)e−ωt. (3.40)

Proof. In a similar fashion to the arguments in Section 3.2, the existence of a global

weak solution as well as (3.39) can be found. Because of (3.26) and (3.32), we know that

the functions (u(t), ut(t)) and (w(t), wt(t)) are uniformly bounded in Hε with respect to

t and ε. It remains to show that (3.40) holds.

Let ε ∈ (0, 1] and ϕ0 = (u0, u1) ∈ Hε, with R > 0 such that ‖ϕ0‖Hε
≤ R. Observe

that

2〈ψ(u)− ψ(w), vt〉 =
d

dt
{2〈ψ(u)− ψ(w), v〉 − 〈ψ′(u)v, v〉}

− 2〈(ψ′(u)− ψ′(w))wt, v〉+ 〈ψ′′(u)ut, v
2〉.

(3.41)

Multiply the first equation of (3.29) by 2vt + αv in L2(Ω), for α > 0 to be chosen later.

We find that, with (3.41),

d

dt

{
ε‖vt‖2 + αε〈vt, v〉+ ‖v‖21 + 2〈ψ(u)− ψ(w), v〉 − 〈ψ′(u)v, v〉

}

+ (2− αε)‖vt‖2 + α〈vt, v〉+ α‖v‖21 + 2‖vt‖2L2(Γ) + α〈vt, v〉L2(Γ)

+ α〈ψ(u)− ψ(w), v〉 = 2〈(ψ′(u)− ψ′(w))wt, v〉 − 〈ψ′′(u)ut, v
2〉.

(3.42)

For each ε ∈ (0, 1], define the functional

Vε : H
1(Ω)×H1(Ω)×H1(Ω)× L2(Ω) → R

by

Vε(t) :=ε‖vt(t)‖2 + αε〈vt(t), v(t)〉+ ‖v(t)‖21
+ 2〈ψ(u(t))− ψ(w(t)), v(t)〉 − 〈ψ′(u(t))v(t), v(t)〉.

As with the functional Eε above, the map t �→ Vε(t) is AC(R≥0;R≥0). We now will

show that, given that (u, ut), (w,wt) ∈ Hε are uniformly bounded with respect to t and

ε, there are constants C1, C2 > 0 independent of t and ε (possibly depending on R > 0)

in which, for all (v, vt) ∈ Hε,

C1‖(v, vt)‖2Hε
≤ Vε ≤ C2‖(v, vt)‖2Hε

. (3.43)

We begin by estimating the products in Vε that involve ψ; with (1.4), (1.5), the embedding

H1(Ω) →֒ L6(Ω), and (3.26), it follows that

|〈ψ′(u)v, v〉| ≤ CΩ

(
1 + ‖u‖21

)
‖v‖1‖v‖

≤ 1

2
‖v‖21 +Q(R)‖v‖2.

(3.44)

From assumption (1.7) and the definition of ψ, cf. (3.28),

2〈ψ(u)− ψ(w), v〉 ≥ 2(β − ϑ)‖v‖2. (3.45)
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Hence, for β sufficiently large, β ≥ (C (R) + 2ϑ) /2, the combination of (3.44) and (3.45)

produces

2〈ψ(u)− ψ(w), v〉 − 〈ψ′(u)v, v〉 ≥ 2(β − ϑ)‖v‖2 − 1

2
‖v‖21 − C(R)‖v‖2

≥ −1

2
‖v‖21.

Then we attain the lower bound on Vε,

Vε ≥
(
1− α

2

)
ε‖vt‖2 +

(
1

2
− α

2λ

)
‖v‖21.

So for 0 < α < min{2, λ}, set

ω2 := min

{
1− α

2
,
1

2
− α

2λ

}
> 0;

then, for all t ≥ 0, we have that

Vε(t) ≥ ω2‖(v(t), vt(t))‖2Hε
. (3.46)

Now by the (local) Lipschitz continuity of f and the uniform bounds on u and w, it is

easy to check that

2〈ψ(u)− ψ(w), v〉 ≤ 2‖ψ(u)− ψ(w)‖‖v‖ ≤ Q(R)‖v‖21.
Also, using (1.4), (1.5), and the bound (3.26), it follows that

|〈ψ′(u)v, v〉| ≤ Q(R)‖v‖21. (3.47)

Thus, the assertion in (3.43) holds. Exploiting the fact that

α|〈vt, v〉L2(Γ)| ≤
α

2
‖vt‖2L2(Γ) +

α

2
‖v‖2L2(Γ),

we see that (3.42) becomes

d

dt
Vε + (2− α)ε‖vt‖2 + α〈vt, v〉+ α‖∇v‖2 + α

2
‖v‖2L2(Γ)

+
(
2− α

2

)
‖vt‖2L2(Γ) + α〈ψ(u)− ψ(w), v〉 − 〈ψ′(u)v, v〉

≤ −〈ψ′(u)v, v〉+ 2〈(ψ′(u)− ψ′(w))wt, v〉 − 〈ψ′′(u)ut, v
2〉.

(3.48)

Recall that 0 < α < min{2, λ}, so when we set

ω3 := min
{
2− α, 1,

α

2

}
> 0,

we write (3.48) as

d

dt
Vε + ω3Vε ≤ −〈ψ′(u)v, v〉+ 2〈(ψ′(u)− ψ′(w))wt, v〉 − 〈ψ′′(u)ut, v

2〉. (3.49)

Using the uniform bound on u and w (recall assumptions (1.4), (1.5), (3.26), and (3.32)),

there is a positive function Qη(R) > 0, depending on η, such that, for all η > 0,
∣∣∣
〈(

ψ′(u)− ψ
′

(w)
)
wt, v

〉∣∣∣ ≤ CΩ (1 + ‖u‖1 + ‖w‖1) ‖wt‖ ‖v‖21 (3.50)

≤ η

2
‖v‖21 +Qη (R) ‖wt‖2 Vε.
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The last inequality in the above estimate follows from (3.46). In a similar fashion we

estimate using assumption (1.4) and the bound (3.26):

|〈ψ′′

(u)ut, v
2〉| ≤ CΩ (1 + ‖u‖1) ‖ut‖ ‖v‖21 (3.51)

≤ η

2
‖v‖21 +Qη (R) ‖ut‖2 Vε.

Applying (3.44) to (3.49) and inserting (3.50) and (3.51) into (3.49), we then have

d

dt
Vε + ω3Vε − η‖v‖21 ≤ Qη (R)

(
‖ut‖2 + ‖wt‖2

)
Vε. (3.52)

There is a sufficiently small η, precisely 0 < η < ω3/2, so that (3.52) becomes

d

dt
Vε + ηVε ≤ Qη (R)

(
‖ut‖2 + ‖wt‖2

)
Vε. (3.53)

At this point, we remind the reader of Lemma 3.14. Applying a suitable Gronwall-type

inequality (see, e.g., [44, Lemma 5]; cf. also Proposition 5.1 in the appendix) to (3.53)

yields

Vε(t) ≤ Vε(0)e
Qη(R)e−ηt/2. (3.54)

By virtue of (3.43), for all ε ∈ (0, 1],

Vε(0) ≤ Q (R) ‖(v (0) , vt (0))‖2Hε

≤ Q (R)
(
‖u0‖21 + ε ‖u1 + f (0)− βu0‖2

)

≤ Q (R) ,

for some positive function Q independent of ε. Therefore (3.54) shows that the operators

Zε are uniformly decaying to zero. �

The following lemma establishes the uniform compactness of the operators Kε.

Lemma 3.16. For all ϕ0 = (u0, u1) ∈ Hε such that ‖ϕ0‖Hε
≤ R for all ε ∈ (0, 1], the

following estimate holds:

‖Kε(t)ϕ0‖Dε
≤ Q(R),

for all t ≥ 0. Furthermore, the operators Kε are uniformly compact in Hε.

Proof. Let ε ∈ (0, 1] and let ϕ0 = (u0, u1) ∈ Hε with R > 0 such that ‖ϕ0‖Hε
≤ R.

Differentiate (3.30) with respect to t and set h = wt. Then h satisfies the equations

⎧
⎨
⎩

εhtt + ht −Δh+ ψ′(w)h = βut in (0,∞)× Ω,

∂nh+ h+ ht = 0 on (0,∞)× Γ,

h(0) = wt (0) , ht(0) = wtt (0) in Ω.

(3.55)

Note that, by the choice of data in (3.30), we actually have h (0) = −f (0) + βu0 and

ht (0) = 0. Multiply the first equation of (3.55) by 2ht + αh, where α > 0 is yet to be

determined, and integrate over Ω. Adding the result to the identity

2〈ψ′(w)h, ht〉 =
d

dt
〈ψ′(w)h, h〉 − 〈ψ′′(w)wt, h

2〉
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produces
d

dt

{
ε‖ht‖2 + αε〈ht, h〉+ ‖h‖21 + 〈ψ′(w)h, h〉

}

+ (2− αε)‖ht‖2 + α〈ht, h〉+ α‖h‖21
+ 2‖ht‖2L2(Γ) + α〈ht, h〉L2(Γ) + α〈ψ′(w)h, h〉
= 〈ψ′′(w)wt, h

2〉+ 2β〈ut, ht〉+ αβ〈ut, wt〉.

(3.56)

For each ε ∈ (0, 1], define the functional

Ψε : H
1(Ω)×H1(Ω)× L2(Ω) → R

by

Ψε(t) := ε‖ht(t)‖2 + αε〈ht(t), h(t)〉+ ‖h(t)‖21 + 〈ψ′(w(t))h(t), h(t)〉. (3.57)

The map t �→ Ψε(t) is AC(R≥0;R≥0). Because of the bound given in Lemma 3.13, we

obtain the estimate similar to (3.47)

α|〈ψ′(w)h, h〉| ≤ αQ(R)‖h‖21. (3.58)

Obviously, we have

αε|〈ht, h〉| ≤
αε

2
‖ht‖2 +

α

2λ
‖h‖21. (3.59)

After combining (3.57)–(3.59), we find

Ψε ≥
(
1− α

2

)
ε‖ht‖2 +

(
1− α

2λ
− αQ(R)

)
‖h‖21.

Hence, when

0 < α < min

{
2,

(
1

2λ
+Q(R)

)−1
}
,

we have

ω4(R) := min
{
1− α

2
, 1− α

2λ
− αQ(R)

}
> 0;

thus, for all t ≥ 0

Ψε(t) ≥ ω4‖(h(t), ht(t))‖2Hε
. (3.60)

On the other hand, again with (3.58),

Ψε ≤
(
1 +

α

2

)
ε‖ht‖2 +

(
1 +

α

2λ
+ αQ(R)

)
‖h‖21,

and with

ω5(R) := max
{
1 +

α

2
, 1 +

α

2λ
+ αQ(R)

}
,

an upper bound for Ψε is given by, for all t ≥ 0,

Ψε(t) ≤ ω5‖(h(t), ht(t))‖2Hε
. (3.61)

Using the bounds found in (3.26) and (3.32), we estimate the following terms from (3.56):

for all η > 0,

α|〈ht, h〉L2(Γ)| ≤ αη‖ht‖2L2(Γ) +
α

4η
‖h‖2L2(Γ) (3.62)

and
2β|〈ut, ht〉|+ αβ|〈ut, wt〉| ≤ Q(R)‖ht‖+Q(R)

≤ η‖ht‖2 +Qη(R).
(3.63)
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Also, similar to (3.51), but when we now employ (3.60), we have that, for all η > 0,

〈ψ′′(w)wt, h
2〉 ≤ Qη(R)‖wt‖Ψε. (3.64)

Combine (3.62)–(3.64) with (3.56) and obtain the following estimate (note that when

2− α− η > 0, we have (2− α− η)ε < 2− αε− η):

d

dt
Ψε + (2− α− η)ε‖ht‖2 + α〈ht, h〉+ α‖∇h‖2 + α

(
1− 1

4η

)
‖h‖2L2(Γ)

+ (2− αη)‖ht‖2L2(Γ) + α〈ψ′(w)h, h〉 ≤ Qη(R)‖wt‖Ψε +Qη(R).

(3.65)

With some 1
4 < η < 2 now fixed, then, for

0 < α < min

{
2− η, 1,

2

η

}
and ω6 := 1− 1

4η
,

we have
d

dt
Ψε + ω6Ψε + (2− αη)‖ht‖2L2(Γ) ≤ Q (R) ‖wt‖Ψε +Q(R). (3.66)

An immediate consequence of (3.27) is the bound on the integral
∫ ∞

0

‖wt(τ )‖2dτ ≤ Q (R) .

Applying a suitable version of the Gronwall inequality (see, e.g., [32, Lemma 2.2]; cf.

also Proposition 5.1 in the appendix) it follows that

Ψε(t) ≤ Q (R)Ψε(0)e
−ω6t/2 +Q (R) . (3.67)

Using (3.60) and (3.61) and the fact that Ψε(0) ≤ ω5‖(h(0), ht(0))‖2Hε
≤ Q (R), we arrive

at the bound

‖wt(t)‖21 + ε‖wtt(t)‖2 ≤ Q (R) , (3.68)

for all t ≥ 0, ε ∈ (0, 1], and ϕ0 ∈ Hε, with R > 0 such that ‖ϕ0‖Hε
≤ R.

In order to bound ‖(w,wt)‖Dε
, we need to bound the term ‖w‖2. We have due to

standard elliptic regularity theory (see, e.g., [38, Theorem II.5.1]) that

‖w(t)‖2 ≤ C
(
‖Δw(t)‖+ ‖∂nw(t)‖H1/2(Γ)

)
. (3.69)

Thus, using the first equation of (3.30), the bounds (3.26), (3.32), and (3.68), and also

(1.4), (1.5), and (3.28), we have

‖Δw (t) ‖ ≤ √
ε‖wtt (t) ‖+ ‖wt (t) ‖+ ‖ψ(w (t))‖+ β‖u (t) ‖ ≤ Q(R). (3.70)

Also, by (3.68), we have that wt ∈ L∞ (
R≥0, H

1/2(Γ)
)
. Thus, from the second equation

of (3.30),

‖∂nw (t) ‖H1/2(Γ) ≤ ‖w (t) ‖H1/2(Γ) + ‖wt (t) ‖H1/2(Γ) ≤ Q(R). (3.71)

Combining (3.70) and (3.71) with (3.69) together with applying (3.68) proves that for

all t ≥ 0,

‖(w(t), wt(t))‖Dε
≤ Q(R).

It follows that the operators Kε are uniformly compact (with tc = 0). �

Next, we will discuss regularity properties of the weak solutions.
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Theorem 3.17. For each ε ∈ (0, 1], there exists a closed and bounded subset Cε ⊂ Dε

such that for every nonempty bounded subset B ⊂ Hε,

distHε
(Sε(t)B, Cε) ≤ Q(‖B‖Hε

)e−ωt, (3.72)

where Q and ω > 0 are independent of ε.

Proof. Let ε ∈ (0, 1]. Define the subset Cε of Dε by

Cε := {ϕ ∈ Dε : ‖ϕ‖Dε
≤ Q(R)} ,

where Q(R) > 0 is the function from Lemma 3.16 and R > 0 is such that ‖ϕ0‖Hε
≤ R.

Now let ϕ0 = (u0, u1) ∈ Bε (endowed with the same topology of Hε). Then, for all

t ≥ 0 and for all ϕ0 ∈ Bε, Sε(t)ϕ0 = Zε(t)ϕ0 + Kε(t)ϕ0, where Zε(t) is uniformly and

exponentially decaying to zero by Lemma 3.15, and, by Lemma 3.16, Kε(t) is uniformly

bounded in Dε. In particular,

distHε
(Sε(t)Bε, Cε) ≤ Q(R)e−ωt.

(Recall that ω > 0 is independent of ε due to Lemma 3.15.)

Recall that, by Lemma 3.10, we already know that for each ε ∈ (0, 1] and for every

nonempty bounded subset B of Hε,

distHε
(Sε(t)B,Bε) ≤ Q(R)e−ω0t,

for all t ≥ 0. In light of these estimates, (3.72) can now be accomplished by appealing

to the transitivity property of the exponential attraction (see, e.g., [22, Theorem 5.1]).

Note that (3.72) entails that Cε is a compact attracting set in Hε for Sε(t). The proof is

finished. �

By standard arguments of the theory of attractors (see, e.g., [34,49]), the existence of

a compact global attractor Aε ⊂ Cε for the semigroup Sε(t) follows.

Theorem 3.18. For each ε ∈ (0, 1], the semiflow Sε generated by the solutions of the

hyperbolic relaxation problem (1.1)–(1.3) admits a unique global attractor

Aε = ω(Bε) :=
⋂

s≥t

⋃

t≥0

Sε(t)Bε

Hε

in Hε. Moreover, the following hold:

(i) For each t ≥ 0, Sε(t)Aε = Aε.

(ii) For every nonempty bounded subset B of Hε,

lim
t→∞

distHε
(Sε(t)B,Aε) = 0. (3.73)

(iii) The global attractor Aε is bounded in Dε and trajectories on Aε are strong

solutions.

Remark 3.19. We can extend all the results in Sections 3.2 and 3.3 (with the appro-

priate modifications; see [14, 27]) to the case when the linear boundary condition (1.2)

is replaced by

∂nu+ g (u) + ut = 0 on (0,∞)× Γ
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such that g ∈ C2 (R) satisfies

|g ′′ (s) | ≤ Cg

(
1 + |s|2

)
, g ′ (s) ≥ −θg, g (s) s ≥ s2 − C ′

g,

for all s ∈ R and some constants Cg > 0, C ′
g ≥ 0.

3.4. The upper-semicontinuity of Aε for the singularly perturbed problem. This section

contains one of the main results of the paper, the proof of the upper-semicontinuity of

the family of global attractors given by the model problems for ε ∈ [0, 1]. Recall that the

case ε = 0, the limit parabolic problem, admits a global attractor A0 that is bounded in

V2. Naturally, we will study the continuity at ε = 0. For ε ∈ (0, 1], we know that the

hyperbolic relaxation problem admits a global attractor Aε in Dε. However, the spaces

involved with the parabolic problem invoke the trace of the solution on the boundary

Γ, whereas the spaces involved with the hyperbolic relaxation problem do not contain

prescribed traces. Before we lift the global attractor A0 for the parabolic problem into

the finite energy phase space for the hyperbolic relaxation problem, we need to make an

extension of Hε so that it also includes the information of the traces of u and ut.

To begin, we recall that the natural phase space for the parabolic problem (1.8)–(1.10)

is Y = L2(Ω)× L2(Γ), while the finite energy phase space for the hyperbolic relaxation

problem (1.1)–(1.3) is Hε = H1(Ω)×L2(Ω). Thus, we need to find a suitable extension of

the phase space for the hyperbolic relaxation problem so that, when we lift the parabolic

problem, both problems will be situated in the same framework. A natural way to make

this extension is to introduce the space

X0 = H1(Ω)× L2(Γ)

and then the extended phase space for the hyperbolic relaxation problem

Xε = X0 × Y = H1(Ω)× L2(Γ)× L2(Ω)× L2(Γ).

The space Xε is Hilbert when endowed with the ε-weighted norm whose square is given

by, for all ζ = (u, γ, v, δ) ∈ Xε,

‖ζ‖2Xε
:= ‖u‖21 + ‖γ‖2L2(Γ) + ε‖v‖2 + ε‖δ‖2L2(Γ).

It is then in the space Xε that we can lift A0 and estimate the Hausdorff semidistance

between (an extension of)Aε and LA0 (for a proper lifting map L) with the new extended

topology. However, it must be noted that the lifted attractor LA0 is not necessarily a

global attractor when set in the extended phase space. Finally, the topology that we

will use to show the convergence of the attractors at ε = 0 will be defined with the

four-component norm of Xε.

For both problems, we also recall that trajectories on the attractor are strong solutions

due to the regularity results obtained in Sections 2 and 3.3 (see Theorems 2.6 and 3.17).

The regularized phase space Dε for the hyperbolic relaxation problem is isomorphically

extended to

D̃ε := {(u, γ, v, δ) ∈ H2(Ω)×H3/2(Γ)×H1(Ω)×H1/2(Γ) : γ = trD(u),

δ = trD(v), ∂nu+ γ = −δ on Γ}. (3.74)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



118 C. G. GAL AND J. L. SHOMBERG

Of course, D̃ε ⊂ V2 × V1 and the injection D̃ε →֒ Xε is compact. Recall that, for each

(u0, u1) ∈ Dε, problem (1.1)–(1.3) generates a dynamical system (Sε (t) ,Dε) of strong

solutions (cf. Theorem 3.7; see also [51]). By appealing once more to the continuity of

the trace map trD : Hs (Ω) → Hs−1/2 (Γ), s > 1/2, and exploiting the results in Section

3.2, it is not difficult to realize that we can extend the semiflow Sε (t) to a strongly

continuous semigroup

S̃ε (t) : D̃ε → D̃ε (3.75)

such that S̃ε (t) is also Lipschitz continuous in D̃ε, endowed with the metric topology of

V2 × V1 (see Lemma 3.20 below). Recall that, by definition for p, q ≥ 1,

Vp × Vq

=
{
(u, γ, v, δ)∈Hp (Ω)×Hp−1/2 (Γ)×Hq (Ω)×Hq−1/2 (Γ) : γ = trD (u) , δ = trD (v)

}
;

see Section 2 (as before, Vp × Vq is topologically isomorphic to Hp (Ω)×Hq (Ω)).

Lemma 3.20. Let ϕ0, θ0 ∈ D̃ε be such that ‖ϕ0‖D̃ε
≤ R, and ‖θ0‖D̃ε

≤ R, for every

ε ∈ (0, 1]. Then the following estimate holds:

∥∥∥S̃ε (t)ϕ0 − S̃ε (t) θ0

∥∥∥
D̃ε

≤ Q (R)√
ε

eν1t ‖ϕ0 − θ0‖D̃ε
, (3.76)

where Q (R) > 0 and ν1 > 0 are independent of ε > 0.

Proof. Let

ϕ(t) = (u1(t), u1|Γ (t) , ∂tu1(t), ∂tu1|Γ(t))

and

θ(t) = (u2(t), u2|Γ (t) , ∂tu2(t), ∂tu2|Γ(t))

denote the corresponding strong solutions with initial data ϕ0 and θ0, respectively. Then

the difference u (t) := u1 (t)− u2 (t) satisfies
{ −Δu (t) = f ′ (u2 (t))− f ′ (u1 (t))− ut (t)− εutt (t) , a.e. in R+ × Ω,

∂nu (t) + u (t) = −ut (t) , a.e. in R+ × Γ,
(3.77)

subject to the initial condition

u (0) = u1 (0)− u2 (0) .

Setting v := ∂tu1 − ∂tu2, we have (vt, ψ) ∈ C1 ([0, T ]) for every ψ ∈ H1 (Ω) (see the

definition of strong solution). Then v solves the identity

d

dt
(εvt (t) , ψ) + 〈∇v (t) ,∇ψ〉+ 〈vt (t) , ψ〉+ 〈vt (t) + v (t) , ψ〉L2(Γ)

= −〈f ′ (u1 (t))− f ′ (u2 (t)) u1 (t) , ψ〉 − 〈f ′ (u2 (t))u (t) , ψ〉 ,

for almost all t ∈ [0, T ] . Testing with ψ = vt, we obtain

1

2

d

dt

{
ε ‖vt‖2 + ‖∇v‖2 + ‖v‖2L2(Γ)

}
+ ‖vt‖2 + ‖vt‖2L2(Γ) (3.78)

= −〈f ′ (u1)− f ′ (u2)u1, vt〉 − 〈f ′ (u2)u, vt〉 .
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We can bound the terms on the right-hand side in a standard way:

〈f ′ (u1)− f ′ (u2) u1, vt〉+ 〈f ′ (u2)u, vt〉 ≤ Q (|ui|∞) ‖u‖2 + 1

2
‖vt‖2

(which follows easily on account of the fact that ‖(ui (t) , ∂tui (t))‖Dε
≤ R, i = 1, 2, and

the embedding H2 (Ω) →֒ C0
(
Ω
)
). Then we insert them into (3.78). By virtue of (3.8)

we get

ε ‖vt (t)‖2 +
(
‖∇v (t)‖2 + ‖v (t)‖2L2(Γ)

)
(3.79)

≤ Q (R) eν1t ‖ϕ0 − θ0‖2Xε
+ ε ‖vt (0)‖2 +

(
‖ϕ0 − θ0‖2D̃ε

)
,

for almost all t ∈ [0, T ] . It remains to note that, from (3.77), it follows for every ε ∈ (0, 1]

that

ε ‖vt (0)‖2 ≤ 1

ε

(
‖Δu (0)‖2 + ‖f ′ (u2 (0))− f ′ (u1 (0))‖2 + ‖ut (0)‖2

)
(3.80)

≤ Q (R)

ε
‖ϕ0 − θ0‖2D̃ε

.

Summing up, we obtain from (3.79) and (3.80) that

ε ‖vt (t)‖2 + ‖v (t)‖21 ≤ Q (R)

ε
eν1t ‖ϕ0 − θ0‖2D̃ε

. (3.81)

We can now bound the term ‖u1 (t) − u2 (t) ‖2. As before, due to standard elliptic

regularity theory, we have in (3.77), using (3.81), that

‖u (t) ‖22 ≤ C
(
ε2 ‖vt (t)‖2 + ‖f ′ (u2 (t))− f ′ (u1 (t))‖2 + ‖v (t)‖21

)
(3.82)

≤ Q (R) ‖ϕ0 − θ0‖2D̃ε
.

Finally, (3.81) and (3.82) together with the fact that the trace map Hs (Ω) → Hs−1/2 (Γ),

s > 1/2, is bounded yields the desired inequality (3.76). �

By Lemma 3.20, the family of global attractors {Aε}ε∈(0,1] ⊂ Dε can be naturally

extended to the family of compact sets
{
Ãε

}

ε∈(0,1]
,

Ãε =
{
(u, γ, v, δ) ∈ D̃ε : (u, v) ∈ Aε

}
, (3.83)

which are bounded in D̃ε and compact in Xε. Note that we do not claim that Ãε is a global

attractor for (S̃ε (t) ,Xε); see Remark 3.21 below. Also, it is in the space V2 × Y ⊂ Xε

where we lift the parabolic problem. Since the global attractor A0 for (1.8)–(1.10) is a

bounded subset of the space V2 ⊂ C
(
Ω
)
×C (Γ) (since Ω ⊂ R3), the canonical extension

map

E : V2 → Y (3.84)

is well-defined with

(u, u|Γ) �→ (Δu− f(u),−∂nu− u|Γ), (3.85)

and so the corresponding lift map

L : V2 → V2 × Y (3.86)
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is defined by

(u, u|Γ) �→ (u, u|Γ,Δu− f(u),−∂nu− u|Γ). (3.87)

Let A0 denote the global attractor of the limit parabolic problem (see Theorem 2.6)

and let Ãε, ε ∈ (0, 1], be the sets defined in (3.83). Define the family of compact sets in

Xε by

Aε :=

{
Ã0 := LA0 for ε = 0,

Ãε for ε ∈ (0, 1].
(3.88)

Remark 3.21. The compact set Ãε is not a global attractor for S̃ε (t) acting on

the phase-space Xε since traces of functions in L2 (Ω) are not well-defined in L2 (Γ).

By construction (3.83), Ãε is only topologically conjugated to the global attractor Aε

associated with the dynamical system (Sε,Hε) .

The main result of this section can now be stated as follows.

Theorem 3.22. The family {Aε}ε∈[0,1], defined by (3.88), is upper-semicontinuous at

ε = 0 in the topology of X1. More precisely,

lim
ε→0

distX1
(Aε,A0) := lim

ε→0
sup
a∈Ãε

inf
b∈Ã0

‖a− b‖X1
= 0. (3.89)

Proof. Our proof essentially follows the classical argument in [33, 34] and also [40,

Theorem 3.31]. Of course, modifications are required to account for the terms on the

boundary. Let ζ = (u, γ, v, δ) ∈ Ãε and ζ̄ = (ū, γ̄, v̄, δ̄) ∈ Ã0. We need to show that

sup
(u,γ,v,δ)∈Ãε

inf
(ū,γ̄,v̄,δ̄)∈Ã0

(
‖u− ū‖21 + ‖γ − γ̄‖2L2(Γ)

+‖v − v̄‖2 + ‖δ − δ̄‖2L2(Γ)

)1/2

→ 0 as ε → 0.

(3.90)

Assuming to the contrary that (3.90) did not hold, then there exist η0 > 0 and sequences

(εn)n∈N ⊂ (0, 1], (ζn)n∈N = ((un, γn, vn, δn))n∈N ⊂ Ãεn such that εn → 0 and for all

n ∈ N,

inf
(ū,γ̄,v̄,δ̄)∈Ã0

(
‖un − ū‖21 + ‖γn − γ̄‖2L2(Γ) + ‖vn − v̄‖2 + ‖δn − δ̄‖2L2(Γ)

)
≥ η20 . (3.91)

By Theorem 3.17, the compact sets Ãεn are bounded in the space D̃1 (see (3.74) with

ε = 1) and we have the following uniform bound for some positive constant C > 0

independent of n:

‖un‖22 + ‖γn‖2H3/2(Γ) + ‖vn‖21 + ‖δn‖2H1/2(Γ) ≤ C.

This means that there is a weakly converging subsequence of (ζn)n∈N (not relabeled) that

converges to some (u∗, γ∗, v∗, δ∗) weakly in D̃1. By the compactness of the embedding

D̃1 →֒ X1, the subsequence converges strongly in X1. It now suffices to show that

(u∗, γ∗, v∗, δ∗) ∈ Ã0 since this is a contradiction to (3.91).

With each ζn = (un, γn, vn, δn) ∈ Ãεn , then, for each n ∈ N, there is a complete orbit

(un(t), un
|Γ(t), u

n
t (t), u

n
t|Γ(t))t∈R = (S̃εn(t)(un, γn, vn, δn))t∈R
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contained in Ãεn and passing through (un, γn, vn, δn) where

(un(0), un
|Γ(0), u

n
t (0), u

n
t|Γ(0)) = (un, γn, vn, δn)

(cf., e.g., [40, Proposition 2.39]).

In view of the regularity Ãεn ⊂ D̃1 (see (3.4)), we obtain the uniform bounds:

εn‖un
tt(t)‖2 + ‖un

t (t)‖21 + ‖un
t (t)‖2H1/2(Γ) + ‖un(t)‖22 + ‖un(t)‖2H3/2(Γ) ≤ C, (3.92)

where the constant C > 0 is independent of t and εn. Now, for all T > 0, the func-

tions uεn , uεn
|Γ , u

εn
t , uεn

t|Γ, and
√
εnu

εn
tt are, respectively, bounded in L∞(−T, T ;H2(Ω)),

L∞(−T, T ;H3/2(Γ)), L∞(−T, T ;H1(Ω)), L∞(−T, T ;H1/2(Γ)), and L∞(−T, T ;L2(Ω)).

Thus, there is a function u and a subsequence (not relabeled) in which

uεn ⇀ u in L∞(−T, T ;H2(Ω)) (weakly*), (3.93)

uεn
|Γ ⇀ u|Γ in L∞(−T, T ;H3/2(Γ)) (weakly*), (3.94)

uεn
t ⇀ ut in L∞(−T, T ;H1(Ω)) (weakly*), (3.95)

uεn
t|Γ ⇀ ut|Γ in L∞(−T, T ;H1/2(Γ)) (weakly*), (3.96)

εnu
εn
tt → 0 in L∞(−T, T ;L2(Ω)) (strongly). (3.97)

The above convergence properties yield

uεn → u in C(−T, T ;H1(Ω)) (strongly) (3.98)

due to the embedding

{u ∈ L∞(−T, T ;H2(Ω)) : ut ∈ L∞(−T, T ;H1(Ω))} →֒ C(−T, T ;H2−η(Ω)), (3.99)

which is compact for every η ∈ (0, 1) (see, e.g., [37]). The strong property (3.98) allows

us to identify the correct limit in the nonlinear term when εn → 0. Moreover, from (3.93)

and the fact that H2 (Ω) →֒ C0
(
Ω
)
, it follows that

sup
t∈[−T,T ]

‖f (uεn)− f (u)‖2 ≤ sup
t∈[−T,T ]

Q∗ (|uεn (t)|∞ , |u (t)|∞) ‖uεn (t)− u (t)‖2 (3.100)

≤ C (Ω) sup
t∈[−T,T ]

‖uεn (t)− u (t)‖2 ,

for some positive (increasing) function Q∗ : R+ × R+ → R+, independent of n and εn.

By virtue of (3.98) it is then easy to see that

f(uεn) → f(u) in C(−T, T ;L2 (Ω)) (strongly).

It follows that u is a weak solution of the limit parabolic problem on R. In particular,

(un, γn) = (un(0), un
|Γ(0)) → (u(0), u|Γ(0)) in V1. Hence, we have that (u(0), u|Γ(0)) =

(u∗, γ∗), and therefore (u(0), u|Γ(0)) ∈ V2. As (u, u|Γ) is a complete orbit through

(u∗, γ∗), it follows that (u∗, γ∗) ∈ A0. It remains to show that v∗ = Δu∗ − f(u∗)

and δ∗ = −∂nγ
∗ − γ∗, in which case (u∗, γ∗, v∗, δ∗) ∈ Ã0.

Now by (3.97) and (3.92), it follows that

‖εnun
tt(0)‖ =

√
εn‖

√
εnu

n
tt(0)‖ ≤ √

εnC,
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and so εnu
n
tt(0) → 0 in L2(Ω) as εn → 0. With this at hand,

un
t (0) = −εnu

n
tt(0) + Δun(0)− f(un(0))

= −εnu
n
tt(0) + Δu∗ − f(u∗),

so that

un
t (0) ⇀ Δu∗ − f(u∗) in L2(Ω) (weakly). (3.101)

Since un
t (0) = vn, with (3.101) we have that

v∗ = Δu∗ − f(u∗). (3.102)

Similarly, since

un
t|Γ(0) = −∂nu

n(0)− un
|Γ(0)

and since un
|Γ(0) = γ∗ and un

t|Γ(0) = δ∗,

δ∗ = −∂nγ
∗ − γ∗. (3.103)

We know (u∗, γ∗) ∈ A0, so (3.102) and (3.103) imply that (u∗, γ∗, v∗, δ∗) ∈ Ã0, in

contradiction to (3.91). This proves the assertion and completes the proof. �

4. Exponential attractors. Exponential attractors (sometimes called inertial sets)

are positively invariant sets possessing finite fractal dimension that attract bounded

subsets of the phase space exponentially fast. It can readily be seen that when both a

global attractor A and an exponential attractor M exist, then A ⊆ M, and so the global

attractor is also finite dimensional. The existence of an exponential attractor depends on

certain properties of the semigroup, namely, the smoothing property for the difference

of any two trajectories and the existence of a more regular bounded absorbing set in the

phase space (see, e.g., [20], [21]).

The main result of this section is the following.

Theorem 4.1. For each ε ∈ (0, 1], the dynamical system (Sε,Hε) associated with (1.1)–

(1.3) admits an exponential attractor Mε compact in Hε and bounded in Cε. Moreover,

the following are true:

(i) For each t ≥ 0, Sε(t)Mε ⊆ Mε.

(ii) The fractal dimension of Mε with respect to the metric Hε is finite, namely,

dimF (Mε,Hε) ≤ Cε < ∞,

for some positive constant Cε which depends on ε.

(iii) There exist ̺ > 0 and a positive nondecreasing function Qε such that, for all

t ≥ 0,

distHε
(Sε(t)B,Mε) ≤ Qε(‖B‖Hε

)e−̺t,

for every nonempty bounded subset B of Hε.

Remark 4.2. Above,

dimF(Mε,Hε) := lim sup
r→0

lnμHε
(Mε, r)

− ln r
< ∞,

where μHε
(Z, r) denotes the minimum number of r-balls from Hε required to cover

Z ⊂ Hε.
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Corollary 4.3. It is true that

dimF(Aε,Hε) ≤ dimF(Mε,Hε).

As a consequence, Aε has finite fractal dimension which depends on ε > 0.

Remark 4.4. Unfortunately, we cannot show that the fractal dimension of Mε is

uniform with respect to ε > 0 (see the subsequent lemmas).

The proof of Theorem 4.1 follows from the application of an abstract result tailored

specifically to our needs (see, e.g., [21, Proposition 1], [22], [30]; cf. also Remark 4.10

below).

Proposition 4.5. Let (Sε,Hε) be a dynamical system for each ε > 0. Assume the

following hypotheses hold:

(C1) There exists a bounded absorbing set B1
ε ⊂ Dε which is positively invariant for

Sε (t) . More precisely, there exists a time t1 > 0, which depends on ε > 0, such

that

Sε(t)B1
ε ⊂ B1

ε

for all t ≥ t1 where B1
ε is endowed with the topology of Hε.

(C2) There is t∗ ≥ t1 such that the map Sε(t
∗) admits the decomposition, for each

ε ∈ (0, 1] and for all ϕ0, θ0 ∈ B1
ε ,

Sε(t
∗)ϕ0 − Sε(t

∗)θ0 = Lε(ϕ0, θ0) +Rε(ϕ0, θ0)

where, for some constants α∗ ∈ (0, 12 ) and Λ∗ = Λ∗(Ω, t∗) ≥ 0 with Λ∗ depending

on ε > 0, the following hold:

‖Lε(ϕ0, θ0)‖Hε
≤ α∗‖ϕ0 − θ0‖Hε

(4.1)

and

‖Rε(ϕ0, θ0)‖Dε
≤ Λ∗‖ϕ0 − θ0‖Hε

. (4.2)

(C3) The map

(t, U) �→ Sε(t)U : [t∗, 2t∗]× B1
ε → B1

ε

is Lipschitz continuous on B1
ε in the topology of Hε.

Then (Sε,Hε) possesses an exponential attractor Mε in B1
ε .

We now show that the assumptions (C1)–(C3) hold for (Sε (t) ,Hε). We begin with a

higher-order dissipative estimate in the norm of Dε.

Lemma 4.6. Condition (C1) holds for fixed ε ∈ (0, 1].

Proof. The proof is very similar to the proof of Lemma 3.16. Indeed, let ε ∈ (0, 1],

ϕ0 = (u0, u1) ∈ Dε, and ϕ (t) = Sε (t)ϕ0. In this setting, we differentiate (1.1)–(1.3)

with respect to t and let h = ut. We set β in (3.28) to be β = ϑ where we recall that

ϑ > 0 is due to assumption (1.7). Then we easily obtain the analogue of the differential

inequality (3.67) except that the size of the initial data now depends on the norm of Dε,

i.e., ϕ0 = (u0, u1) ∈ Dε (here the initial conditions are not necessarily equal to zero).
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Thus, after applying (3.60) and (3.61), there exist a positive and nondecreasing function

Q and a constant C > 0 such that

‖(h(t), ht(t))‖2Hε
≤ Q(‖ (h(0), ht(0)) ‖Hε

)e−ω6t/2 + C (R) (4.3)

(Q, ω6, and C are independent of ε) with R > 0 such that ‖ϕ0‖Hε
≤ R. Arguing as in

Theorem 3.16 by exploiting H2-elliptic regularity theory, we also deduce

‖ϕ (t)‖2Dε
≤ Qε(‖ϕ0‖Dε

)e−ω6t/2 + C (R) , (4.4)

for some new function Qε which depends on ε > 0. Indeed, using the equations (1.1)–

(1.3), it is not difficult to show that ‖ (h(0), ht(0)) ‖Hε
≤ C√

ε
‖ϕ0‖Dε

, from (4.4). Con-

sequently, there exists R1 > 0 (independent of time, ε > 0, and initial data) such that

Sε (t) possesses an absorbing ball B1
ε = BDε

(R1) of radius R1 centered at 0, which is

bounded in Dε. This establishes condition (C1). �

Remark 4.7. Unfortunately, the bound in the space Dε is not uniform as ε → 0+.

Indeed the function Qε (·) in (4.4) blows up as ε → 0+. Finally, arguing in a standard

way as in Theorem 3.17, B1
ε is in fact exponentially attracting in Hε.

Lemma 4.8. Condition (C2) holds for each fixed ε ∈ (0, 1].

Proof. Let ε ∈ (0, 1]. Let ϕ0, θ0 ∈ B1
ε . Define the pair of trajectories, for t ≥ 0,

ϕ(t) = Sε(t)ϕ0 = (u(t), ut(t)) and θ(t) = Sε(t)θ0 = (v(t), vt(t)). For each t ≥ 0,

decompose the difference ζ̄(t) := ϕ(t)− θ(t) with ζ̄0 := ϕ0 − θ0 as follows:

ζ̄(t) = ϕ̄(t) + θ̄(t)

where ϕ̄(t) = (ū(t), ūt(t)) and θ̄(t) = (v̄(t), v̄t(t)) are solutions of the problems
⎧
⎨
⎩

εūtt + ūt −Δū = 0 in (0,∞)× Ω,

∂nū+ ū+ ūt = 0 on (0,∞)× Γ,

ϕ̄(0) = ϕ0 − θ0 in Ω

(4.5)

and ⎧
⎨
⎩

εv̄tt + v̄t −Δv̄ = f(v)− f(u) in (0,∞)× Ω,

∂nv̄ + v̄ + v̄t = 0 on (0,∞)× Γ,

θ̄(0) = 0 in Ω.

(4.6)

By estimating along the usual lines, multiplying (4.5)1 by 2ūt + ū in L2(Ω), we easily

obtain the differential inequality, for almost all t ≥ 0,

d

dt
Nε + ω7Nε ≤ 0, (4.7)

for some positive constant ω7 sufficiently small and independent of ε and for

Nε = Nε(ϕ̄(t)) := ε‖ūt(t)‖2 + ε〈ūt(t), ū(t)〉+ ‖∇ū(t)‖2 + ‖ū(t)‖2L2(Γ). (4.8)

Obviously, Nε is the square of an equivalent norm on Hε; i.e., there is a constant C > 0,

independent of ε, such that

C−1‖ϕ̄‖2Hε
≤ Nε(ϕ̄) ≤ C‖ϕ̄‖2Hε

. (4.9)

Following (4.7) and (4.9), we have that, for all t ≥ 0,

‖ϕ̄(t)‖2Hε
≤ C‖ϕ̄0‖2Hε

e−ω7t. (4.10)
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Set t∗ := max{t1, 1
ω7

ln (4C)}. Then, for all t ≥ t∗, (4.1) holds with Lε = ϕ̄(t∗) and

α∗ = Ce−ω7t
∗

<
1

2
.

We now show that (4.2) holds for some Λ∗ ≥ 0. First we observe that

2〈f(v)− f(u), v̄tt〉L2(Γ) =
d

dt
2〈f(v)− f(u), v̄t〉L2(Γ)

− 2〈(f ′(v)− f ′(u))vt, v̄t〉L2(Γ) + 2〈f ′(u)zt, v̄t〉L2(Γ).
(4.11)

Next we differentiate the second equation of (4.6) with respect to t, multiply the first

equation of (4.6) by 2(−Δ)v̄t in L2(Ω), and insert (4.11) into the result to produce the

differential identity, which holds for almost all t ≥ 0,

d

dt

{
ε‖v̄t‖21 + ‖v̄t‖2L2(Γ) + ‖Δv̄‖2 + 2〈f(u)− f(v), v̄t〉L2(Γ)

}

+ 2ε‖v̄tt‖2L2(Γ) + 2‖v̄t‖21
= 2〈(f ′(v)− f ′(u))∇v,∇v̄t〉 − 2〈f ′(u)∇z,∇v̄t〉
+ 2〈f(v)− f(u), v̄t〉L2(Γ) − 2〈(f ′(v)− f ′(u))vt, v̄t〉L2(Γ) + 2〈f ′(u)zt, v̄t〉L2(Γ).

(4.12)

Recall that z := u − v denotes the difference of any two weak solutions of (1.1)–(1.3)

and is estimated in (3.8). Arguing, for instance, as in [23, (6.11)–(6.13)], we estimate the

products on the right-hand side of (4.12), for all t ∈ (0, t∗), using (1.4), Lemma 4.6, and

the embedding H2(Ω) →֒ C0(Ω), as follows:

2|〈(f ′(u)− f ′(v))∇v,∇v̄t〉| ≤ C (1 + ‖u‖1 + ‖v‖1) ‖z‖1‖v‖2‖∇v̄t‖

≤ Cε(t
∗)‖ζ̄0‖2Hε

+
1

4
‖∇v̄t‖2,

(4.13)

2|〈f ′(u)∇z,∇v̄t〉| ≤ C
(
1 + ‖u‖22

)
‖∇z‖‖∇v̄t‖

≤ Cε(t
∗)‖ζ̄0‖2Hε

+
1

4
‖∇v̄t‖2,

(4.14)

2|〈f(u)− f(v), v̄t〉L2(Γ)| ≤ C‖z‖1‖v̄t‖L2(Γ)

≤ C(t∗)‖ζ̄0‖2Hε
+

1

4
‖v̄t‖2L2(Γ),

(4.15)

2|〈(f ′(u)− f ′(v))vt, v̄t〉L2(Γ)| ≤ C
(
1 + ‖u‖C0(Γ) + ‖v‖C0(Γ)

)
‖z‖C0(Γ)‖vt‖L2(Γ)‖v̄t‖L2(Γ)

≤ C(t∗)‖ζ̄0‖2Hε
+

1

4
‖v̄t‖2L2(Γ),

(4.16)

and

2|〈f ′(u)zt, v̄t〉L2(Γ)| ≤ C
(
1 + ‖u‖2C0(Γ)

)
‖zt‖L2(Γ)‖v̄t‖L2(Γ)

≤ C(t∗)‖ζ̄0‖2Hε
+

1

4
‖v̄t‖2L2(Γ).

(4.17)

We emphasize again that by Lemma 4.6 the constants C = Cε(t
∗) in estimates (4.13)

and (4.14) depend on ε > 0. After combining (4.13)–(4.17) with the identity (4.12), we

arrive at the differential inequality,

d

dt

{
ε‖v̄t‖21 + ‖v̄t‖2L2(Γ) + ‖Δv̄‖2 + 2〈f(u)− f(v), v̄t〉L2(Γ)

}
≤ Cε(t

∗)‖ζ̄0‖2Hε
. (4.18)
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(Recall that by the definition of a strong solution in Definition 3.5, v̄tt ∈ L2(0,∞;L2(Γ)).)

Now by integrating (4.18) over (0, t∗) and once again applying the estimate (4.15), we

are left with the bound

ε‖v̄t(t∗)‖21 + ‖Δv̄(t∗)‖2 ≤ Cε(t
∗)‖ζ̄0‖2Hε

.

By standard H2-elliptic regularity estimates (see (3.70) and (3.71) above), we obtain

‖θ̄(t∗)‖Dε
≤ Cε(t

∗)‖ζ̄0‖Hε
. (4.19)

Inequality (4.2) now follows with Rε = θ̄(t∗) and Λ∗ = Cε(t
∗) ≥ 0. This finishes the

proof. �

Lemma 4.9. Condition (C3) holds.

Proof. We proceed exactly as in the proof of Lemma 4.6, differentiating (1.1)–(1.3)

with respect to t and letting h = ut. This time we obtain the bound

‖ϕt(t)‖Hε
≤ Qε(R)

for ϕt = (ut, utt) and some function Qε depending on ε > 0, where the size of the initial

data now depends on the norm of B1
ε . Hence, on the compact interval [t∗, 2t∗], the map

t �→ Sε(t)ϕ0 is Lipschitz continuous for each fixed ϕ0 ∈ B1
ε ; i.e., there is a constant

Lε = Lε(t
∗) > 0 (which depends on ε > 0) such that

‖Sε(t1)ϕ0 − Sε(t2)ϕ0‖Hε
≤ Lε(t

∗)|t1 − t2|.

Together with the continuous dependence estimate (3.8), (C3) follows. �

Remark 4.10. According to Proposition 4.5, the semiflow Sε : Hε → Hε possesses an

exponential attractor Mε ⊂ B1
ε , which attracts bounded subsets of B1

ε exponentially fast

(in the topology of Hε). In order to show that the attraction property in Theorem 4.1(iii)

also holds, we can appeal once more to the transitivity of the exponential attraction

[22, Theorem 5.1] and the result of Theorem 3.17 (also see Remark 4.7).

In contrast to the standard case of Dirichlet boundary conditions, where we have a

complete treatment, due to [22] and [41], the situation with boundary condition (1.2)

remains essentially less clear. Important questions remain open about the following:

• higher-order dissipative estimates which are uniform with respect to ε > 0,

• finite dimensionality of the exponential attractor Mε (and global attractor Aε)

which is uniform in ε > 0,

• existence of a robust (Holder continuous in ε ∈ [0, 1]) family of exponential

attractors {Mε} .

5. Appendix. To make the paper reasonably self-contained, we include the state-

ment of a frequently used Grönwall-type inequality [44, Lemma 5].

Proposition 5.1. Let Λ : R+ → R+ be an absolutely continuous function satisfying

d

dt
Λ(t) + 2ηΛ(t) ≤ h(t)Λ(t) + k,
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where η > 0, k ≥ 0, and
∫ t

s
h(τ )dτ ≤ η(t − s) + m, for all t ≥ s ≥ 0 and some m ≥ 0.

Then, for all t ≥ 0,

Λ(t) ≤ Λ(0)eme−ηt +
kem

η
.
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