Advanced Studies in Pure Mathematics 44, 2006 Potential Theory in Matsue pp. 227–232

Hyperbolic Riemann surfaces without unbounded positive harmonic functions

Hiroaki Masaoka and Shigeo Segawa

Abstract.

Let R be an open Riemann surface with Green's functions. It is proved that there exist no unbounded positive harmonic functions on R if and only if the minimal Martin boundary of R consists of finitely many points with positive harmonic measure.

$\S1.$ Introduction

Denote by O_G the class of open Riemann surfaces R such that there exist no Green's functions on R. We say that an open Riemann surface R is *parabolic* (resp. *hyperbolic*) if R belongs (resp. does not belong) to O_G .

For an open Riemann surface R, we denote by HP(R) (resp. HB(R)) the class of *positive* (resp. *bounded*) harmonic functions on R. It is well-known that if R is parabolic, then HP(R) and HB(R) consist of constant functions (cf. [5]).

Hereafter, we consider only hyperbolic Riemann surfaces R. Let $\Delta = \Delta^R$ and $\Delta_1 = \Delta_1^R$ the Martin boundary of R and the minimal Martin boundary of R, respectively. The purpose of this paper is to prove the following.

Theorem. Suppose that R is hyperbolic. Then the followings are equivalent:

Received March 25, 2005.

Revised June 7, 2005.

²⁰⁰⁰ Mathematics Subject Classification. 30F15, 30F20, 30F25, 31C35.

Key words and phrases. hyperbolic Riemann surface, positive harmonic function, Martin boundary, harmonic measure.

Partially supported by Shimane Prefecture, Matsue City, Grant-in-Aid for Scientific Research, Japan Society for the Promotion of Science, (A) (1) (No. 13304009) and (B) (2) (No. 15340046).

M. Masaoka and S. Segawa

(i) there exist no unbounded positive harmonic functions on R, i.e. $HP(R) \subset HB(R)$,

(ii) the minimal Martin boundary Δ_1^R of R consists of finitely many points with positive harmonic measure.

The above theorem combined with the Martin representation theorem yields the following.

COROLLARY. Suppose that R is hyperbolic and there exist no unbounded positive harmonic functions on R. Then the linear space HB(R)of bounded harmonic functions on R is of finite dimension.

Denote by $\omega_z(\cdot)$ the harmonic measure on Δ^R with respect to $z \in R$. We also denote by $k_{\zeta}(z)$ $((\zeta, z) \in (R \cup \Delta^R) \times R)$ the Martin kernel on R with pole at ζ . The following proposition, which is easily proved, plays fundamental role in the proof of the above theorem.

PROPOSITION. Let ζ belong to Δ_1^R . Then the Martin kernel $k_{\zeta}(\cdot)$ with pole at ζ is bounded on R if and only if the harmonic measure $\omega.(\{\zeta\})$ of the singleton $\{\zeta\}$ is positive.

$\S 2.$ **Proof of Theorem**

Let $k_{\zeta}(\cdot)$ be the Martin kernel on R with pole at ζ such that $k_{\zeta}(a) = 1$ for a fixed point $a \in R$. Consider the *canonical measure* χ of the harmonic function 1 in the Martin representation theorem, that is

(2.1)
$$1 = \int_{\Delta_1^R} k_{\xi}(z) d\chi(\xi).$$

As a relation between χ and harmonic measure ω_z , the following is known (c.f. [1, Satz 13.4]):

(2.2)
$$d\omega_z(\xi) = k_{\xi}(z)d\chi(\xi).$$

We first give the proof of Proposition in the introduction.

Proof of Proposition. We assume that the Martin kernel $k_{\zeta}(z)$ with pole at $\zeta \in \Delta_1^R$ is bounded on R. Take a positive constant M such that $k_{\zeta}(z) \leq M$ on R. Then, by the Martin representation theorem, we deduce that

$$\int_{\Delta_1^R} k_{\xi}(z) d\delta_{\zeta}(\xi) = k_{\zeta}(z) \leq M = \int_{\Delta_1^R} M k_{\xi}(z) d\chi(\xi),$$

where δ_{ζ} is the Dirac measure on Δ_1^R supported at ζ . Hence, by virtue of the fact that the mapping of HP functions to their canonical measures are lattice isomorphic (cf. [1,Forgesatz 13.1]), we see that $\delta_{\zeta} \leq M\chi$ or $(1/M)\delta_{\zeta} \leq \chi$ on Δ_1^R . From this and (2.2) it follows that

$$0 < \frac{k_{\zeta}(z)}{M} = k_{\zeta}(z) \frac{\delta_{\zeta}(\{\zeta\})}{M} \le k_{\zeta}(z)\chi(\{\zeta\}) = \omega_{z}(\{\zeta\}),$$

thus we have proved the 'only if part'.

We next assume that $\omega_z(\{\zeta\}) > 0$. Then, by (2.2), we have

(2.3)
$$0 < \omega_z(\{\zeta\}) = k_{\zeta}(z)\chi(\{\zeta\}).$$

Hence $c := \chi(\{\zeta\})$ is a positive constant. On the other hand, $\omega_z(\{\zeta\}) \leq 1$ on R. Therefore, in view of (2.3), we see that $k_{\zeta}(z) \leq c^{-1}$ on R. Thus we have proved the 'if part'.

Applying Proposition proved above, we next give the proof of Theorem in the introduction.

Proof of Theorem. Since the implication (ii) \Rightarrow (i) easily follows from Proposition and the Martin representation theorem, we only have to show the implication (i) \Rightarrow (ii).

Suppose that (ii) is not the case although we are assuming that $HP(R) \subset HB(R)$. Then it easily follows from Proposition that Δ_1^R does not contain a point ζ with $\omega.(\{\zeta\}) = 0$. Therefore Δ_1^R consists of countably infinitely many points ζ_n $(n \in \mathbb{N})$ with $\omega.(\{\zeta_n\}) > 0$ and moreover each Martin kernel k_{ζ_n} is bounded on R. Put $M_n := \sup_{z \in R} k_{\zeta_n}(z)$. Then we deduce that

$$\int_{\Delta_1^R} k_{\xi}(z) d\left(\frac{1}{M_n}\right) \delta_{\zeta_n}(\xi) = \frac{k_{\zeta_n}(z)}{M_n} \leq 1 = \int_{\Delta_1^R} k_{\xi}(z) d\chi(\xi),$$

where δ_{ζ_n} is the Dirac measure at ζ_n and χ is the measure in (2.1). Hence, by means of lattice isomorphic determination of canonical measures, we see that $(1/M_n)\delta_{\zeta_n} \leq \chi$ for every $n \in \mathbb{N}$. Since the supports $\operatorname{supp}(\delta_{\zeta_n})$ of $\{\delta_{\zeta_n}\}$ are mutually disjoint, this implies that $\sum_{n=1}^{\infty} (1/M_n)\delta_{\zeta_n}$ $\leq \chi$. Therefore we conclude that

$$\sum_{n=1}^{\infty} \frac{k_{\zeta_n}(z)}{M_n} = \int_{\Delta_1^R} k_{\xi}(z) d\left(\sum_{n=1}^{\infty} \frac{\delta_{\zeta_n}(\xi)}{M_n}\right) \le \int_{\Delta_1^R} k_{\xi}(z) d\chi(\xi) = 1.$$

Since $k_{\zeta_n}(a) = 1$, this yields that $\sum_{n=1}^{\infty} \frac{1}{M_n} \leq 1$ and hence

(2.4)
$$\lim_{n \to \infty} M_n = +\infty.$$

In view of (2.4), we can choose a subsequence $\{M_{n_i}\}$ of $\{M_n\}$ such that

(2.5)
$$\sum_{i=1}^{\infty} \frac{1}{\sqrt{M_{n_i}}} < +\infty.$$

 \mathbf{Put}

$$h(z) := \sum_{i=1}^{\infty} \frac{1}{\sqrt{M_{n_i}}} k_{\zeta_{n_i}}(z).$$

By (2.5) and the Harnack principle, h(z) is convergent and a positive harmonic function on R since $k_{\zeta}(a) = 1$ for every ζ . On the other hand, by the definition, $h(z) \geq \frac{1}{\sqrt{M_{n_i}}} k_{\zeta_{n_i}}(z)$ on R and therefore

$$\sup_{z \in R} h(z) \ge \frac{1}{\sqrt{M_{n_i}}} \sup_{z \in R} k_{\zeta n_i}(z) = \frac{1}{\sqrt{M_{n_i}}} M_{n_i} = \sqrt{M_{n_i}}.$$

Hence, by means of (2.4), we see that $\sup_{z \in R} h(z) = +\infty$ or $h \notin HB(R)$. This contradicts our primary assumption $HP(R) \subset HB(R)$.

The proof is herewith complete.

$\S 3.$ Examples

In this section we will give examples of open Riemann surfaces R satisfying the condition $HP(R) \subset HB(R)$ in Theorem. We can moreover require for Δ_1^R to consist of p points of positive harmonic measure for an arbitrarily given integer $1 \leq p < \infty$ in advance.

Let O_{HP} be the class of open Riemann surfaces on which there exists no nonconstant positive harmonic functions. Recall the class O_G of open Riemann surfaces on which there exist no Green's functions. Then it holds that $O_G \subset O_{HP}$ (cf. e.g. [5]). Moreover the inclusion $O_G \subset O_{HP}$ is strict, that is, there exists an open Riemann surface T belonging to $O_{HP} \setminus O_G$ (cf. [6], [5]). Since HP(T) consists of only constant functions, the Martin boundary Δ^T of T and hence the minimal Martin boundary Δ_1^T of T also consists of a single point ζ_0 and the Martin kernel k_{ζ_0} on T with pole at ζ_0 is equal to the constant function 1.

Consider a *p*-sheeted $(1 \leq p < \infty)$ unlimited (possibly branched) covering surface \tilde{T} of T with its projection map π . Here we say that \tilde{T} is unlimited if the following condition is satisfied: for any arc C in Twith a as its initial point and any point \tilde{a} over a, i.e. $\pi(\tilde{a}) = a$, there exists an arc \tilde{C} in \tilde{T} with \tilde{a} as its initial point such that $\pi(\tilde{C}) = C$. By our preceding result (cf. [2]), the minimal Martin boundary $\Delta_1^{\tilde{T}}$ of \tilde{T} consists of at most p points. Moreover, there exists \tilde{T} such that $\Delta_1^{\tilde{T}}$ consists of exactly p points. Put $\Delta_1^{\tilde{T}} = \{\tilde{\zeta}_1, \cdots, \tilde{\zeta}_q\}$ $(1 \le q \le p)$ and denote by $\tilde{k}_{\tilde{\zeta}_i}$ the Martin kernel on \tilde{T} with pole at $\tilde{\zeta}_i$. As a relation between $\tilde{k}_{\tilde{\zeta}_i}$ and the Martin kernel k_{ζ_0} on T, it holds that

$$\sum_{ ilde{z}\in\pi^{-1}(z)} ilde{k}_{ ilde{\zeta}_i}(ilde{z})\leq c_ik_{\zeta_0}(z),$$

where c_i is a positive constant (cf. [3]). Hence \tilde{k}_{ζ_i} is bounded on \tilde{T} for every i $(1 \leq i \leq q)$ since $k_{\zeta_0}^T = 1$. Consequently, by virtue of the Martin representation theorem, we see that $HP(\tilde{T}) \subset HB(\tilde{T})$.

Acknowledgments

ź

The authors wish to thank to the referee for helpful comments.

References

- [1] C. Constantinescu and A. Cornea, Ideale RänderRiemanncher Flächen, Springer, 1969.
- [2] H. Masaoka and S. Segawa, Martin boundary of unlimited covering surfaces, Jour. d'Analyse Math., 82 (2000), 55–72.
- [3] H. Masaoka and S. Segawa, Harmonic functions on finitely sheeted unlimited covering surfaces, Jour. Math. Soc. Japan, 55 (2003), 323–334.
- [4] M. Nakai, Densiteis without unbounded positive solutions, Jour. d'Analyse Math., 28 (1975), 300–302.
- [5] L. Sario and M. Nakai, Classification Theory of Riemann Surfaces, Springer, 1970.
- [6] Y. Toki, The examples in the classification of open Riemann surfaces, Osaka Math. Jour., 5 (1953), 267–280.

M. Masaoka and S. Segawa

Hiroaki Masaoka Department of Mathematics Faculty of Science Kyoto Sangyo University Kyoto 603-8555 Japan E-mail address: masaoka@cc.kyoto-su.ac.jp

Shigeo Segawa Department of Mathematics Daido Institute of Technology Nagoya 457-8530 Japan E-mail address: segawa@daido-it.ac.jp

232