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Abstract 
 

This paper proposes a neural network model for 
wind speed prediction, a very important task in wind 
parks management. Currently, several physical-
statistical and artificial intelligence (AI) wind speed 
prediction models are used to this end. A recently 
proposed hybrid model is based on hybridizations of 
global and mesoscale forecasting systems, with a final 
downscaling step using a multilayer perceptron 
(MLP). In this paper, we test an alternative neural 
model for this final step of downscaling, in which 
projection hyperbolic tangent units (HTUs) are used 
within feed forward neural networks. The architecture, 
weights and node typology of the HTU-based network 
are learnt using a hybrid evolutionary programming 
algorithm. This new methodology is tested over a real 
problem of wind speed forecasting, in which we show 
that our method is able to improve the performance of 
previous MLPs, obtaining an interpretable model of 
final regression for each turbine in the wind park.  
 
1. Introduction 
 
The use of alternative sources of energy such as wind 
and solar energy is becoming more and more important 
in developed countries, as an important factor to 
mitigate the impact of the current crisis and the impact 
of petroleum's high prices. One of the main problems 
that arise in wind power generation is the accurate 
forecasting of the power that will be injected in the 
distribution network: a good forecasting of the power 
produced  is crucial for the management of wind parks. 
Recently, several models which hybridize weather 

forecasting models (global and mesoscale), and 
statistical techniques have been proposed in the 
literature [1]. The majority of these models use a 
global forecasting model and one or several mesoscale 
and local-scale models to obtain wind speed 
predictions at specific points of a wind park [2]. 
Moreover, in many cases, these systems use statistical 
down-scaling processes including auto-regressive 
models [3], artificial neural networks (ANNs) [4,5] or 
support vector machines [6] as a final step to improve 
the wind speed forecasting of the system. Two works 
[7, 8] have been presented in 2009, in which the 
authors propose the hybridization of a mesoscale 
model (MM5) [9] with neural networks to obtain a 
robust system for wind speed forecasting at wind parks 
in short-time horizons. Specifically, the authors use the 
predictions of a global forecasting model (Global 
Forecasting System from the National Center for 
Environmental Prediction, USA) [10], and some local 
data from atmospheric soundings as initial and 
boundary conditions for the MM5 model. The MM5 
model performs an initial physical downscaling of the 
data from the global model, to obtain a prediction of 
the wind speed with better spatial resolution. The 
output of the MM5 model, together with other local 
variables, is processed by a neural network in order to 
obtain the wind speed prediction in each turbine of the 
park, by means of solving a regression problem. 

Different types of ANNs are nowadays being used 
for regression purposes [11], including, among others: 
multilayer perceptron neural networks (MLPs) where 
the transfer functions are logistic or hyperbolic tangent 
functions, these last ones being referred in this paper 
as Hyperbolic Tangent Unit (HTU) basis functions; 
Radial Basis Function (RBF), General Regression 
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Neural Networks (GRNN) proposed by Specht [12]; 
Product Unit Neural Networks (PUNNs) [13], etc. The 
performance of the complete forecasting system 
depend much on the specific network used, so 
different models have been tested in the literature 
[2,6,7]. An additional problem related to the 
application of ANN models is the selection of the most 
appropriate net architecture to be used. Classical 
neural network training algorithms assume a fixed 
architecture; however it is very difficult to establish 
beforehand the best structure of the network for a 
given problem.  In the last few years, Evolutionary 
algorithms (EAs) [15], have demonstrated great 
accuracy in designing near optimal architectures, with 
different networks [14,16]. 

This paper investigates on the performance of 
hybrid evolutionary-based neural networks as final 
statistical down-scaling techniques in wind speed 
forecasting systems. Specifically, we present a hybrid 
evolutionary programming algorithm for automatically 
obtaining the structure and weights of a HTU neural 
network, and how this model can be inserted in the 
hybrid forecasting model described in [7], for 
predicting wind speed in several turbines of a wind 
park. The proposed method is compared to the 
previous method used in the system described in [7], in 
order to assess its performance. The paper is organized 
as follows: Section 2 introduces data regression by 
ANNs; Section 3 explains the proposed hybrid 
algorithms; Section 4 describes the experiments 
carried out; and Section 5 states the conclusions of the 
paper. 
 
2. Data Regression by ANNs 
 
Data regression is a mayor research topic in the area of 
function approximation. The regression problem 
involves determining the relationship between some 
response dependent variable  and a set of  
independent variables 

y

1 2 ,
k

( , ..., )kx x x=x . The most 
common form of structural assumption is that the 
responses are assumed to be related to the predictor 
through some deterministic function f  and some 
additive random error component , so that: ε

( )y f ε= +x ,   (1)  
where  is a zero mean error distribution. ε

Our aim is to determine the f  function so that we 
can uncover the true relationship between the response 

 at the predictor location x, given by . The 
true regression function 
y ( )y f= x

f  is unknown and we have 
no way of determining its analytic form exactly, even 

if one actually exists. We must content ourselves with 
finding approximations to it which are close to the 
truth. To do this we must make use of the observed 
training dataset, , which consist of n  observed 
responses at some known predictor locations so 

D

{ },i iD y= x  for . 1,= 2,...,i n
It is often the case that a number of competing 

theories or models exist to describe the process that 
generated y . In our case we can use different ANN 
models, these models may have different basis sets, as 
well as different non linear structures, but in this case 
we use a linear hyperbolic tangent basis structures in 
the form 
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where  and  is the k =�D∈ ⊂x R 1 2( , ,..., Tβ β )mβ
vector of components of the hidden-output layers 
weights, that coefficients are associated to the 
hyperbolic tangent basis functions 
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jw  is the vector of input-hidden layers weights for the 
jth hidden node. The network has k inputs that 
represent the independent variables of the model, m 
nodes in the hidden layer, and one node in the output 
layer. The activation of the jth node in the hidden layer 
is 
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For the determination of the wind speed, an 
approximation based on a one hidden layer neural 
network has been used, since a considerable number of 
papers have appeared in the literature [17-18] 
discussing that an ANN with two layers of weights and 
sigmoidal or HTU hidden units can approximate 
arbitrarily any functional (one-one or many-one) 
continuous mapping from one finite-dimensional space 
to another, provided that the number of hidden units 

 is sufficiently large. The fact that the neural 
networks can approximate any given function with the 
desired accuracy is a powerful basis for the application 
of neural networks to regression. This capacity of 
ANNs for approximating any continuous function and 
the quick development of the computational power has 
motivated other researchers to adopt ANNs as an 
alternative method to predict the values of the response 
variable . Although most ANN models share a 
common goal of performing functional mapping, 
different networks architectures vary greatly in their 
ability to handle different types of problems. The MLP 
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with the efficient back-propagation training algorithm is 
probably the most frequently used type of neural network 
model in practical applications. However, owing to its 
multilayer structure and the limitations of the slow back-
propagation algorithm, the training process often settles 
in undesirable local minima of the error surface or 
converges too slowly.   
 
3. Hybrid Evolutionary Programming 
Algorithms 
 
In this work, different variants of hybrid EAs have 
been applied, as can be seen in [13], all of them based 
on an evolutionary programming (EP) algorithm. 
 
3.1. Evolutionary Programming Algorithm 

 
The EP algorithm is an EA similar to the proposed 

in [13,19]. The algorithm begins with the random 
generation of NP individuals; then the evolution 
process starts and a population-update algorithm is 
applied, where the population is subjected to the 
replication and mutation operations, but crossover is 
not considered, as this operation is usually regarded as 
being less effective for ANNs evolution. It uses two 
types of mutations: structural and parametric 
mutations. The structural mutation implies a 
modification of the structure of the function performed 
by the network and allows an exploration of different 
regions of the search space. The parametric mutation 
modifies the coefficients of the model using a 
simulated annealing algorithm;The general structure of 
the applied EA is detailed next: 

 
Evolutionary Programming (EP) 
1. Generate a random population of size NP. 
2. Repeat until the stopping criterion is fulfilled 

2.1. Apply parametric mutation to the best 10% of 
individuals  

2.2. Apply structural mutation to the remaining 90% 
of individuals. 

2.3. Calculate the fitness of every individual in the 
population.  

2.4. Add best fitness individual of the last generation 
(elitist algorithm). 

2.5. Rank the individuals with respect to their fitness. 
2.6. Best 10% of population individuals are 

replicated and substitute the worst 10% of 
individuals.  

3. Select the best individual of the population in the 
last generation and return it as the final solution. 
 

The algorithm begins with the random generation 
of a larger number of networks than the number used 
during the evolutionary process. 10NP networks are 
generated, from which the best NP best individuals are 
considered to form the initial population to be trained 
during the evolutionary process. Two error 
measurements are used for determining the precision 
of the neural network model, the mean squared error 
(MSE): 

2

1

1( )  ( ( ))
Tn

l l
lT

MSE f y f
n =

= −� x , (4) 

where  is l-th observed value, and  is the 
predicted value for pattern , and the standard error 
of prediction (SEP): 

ly ( )lf x

lx

 100( ) ( )SEP f MSE f
y

= ,  (5) 

where y  is the average output of all patterns in 
dataset. 

The fitness function ( )A f  is defined by means of a 
strictly decreasing transformation of the MSE: 

1( )  ,      0 ( ) 1
1 ( )

A f A f
MSE f

= <
+

≤  (6) 

The adjustment of both weights and structure of the 
ANNs is performed by the complementary action of 
two mutation operators: parametric and structural 
mutation. Parametric mutation implies a modification 
in the coefficients ( jβ and ) of the model, using a 
self adaptive simulated annealing algorithm. Structural 
mutation modifies the topology of the neural nets, 
helping the algorithm to avoid local minima and 
increasing the diversity of the trained individuals. Five 
structural mutations are applied sequentially to each 
network: node deletion, connection deletion, node 
addition, connection addition and node fusion. When 
node deletion is applied, number of hidden nodes to be 
removed is obtained as a uniform value in a previously 
specified interval. Apart from this mutation, if 
connection deletion is applied, the number of 
connections to be deleted in the neural net is also 
obtained as a uniform value, but in this case, as the 
mutation is less disruptive, the selected interval is 
selected to be a wider one. More details about this EP 
algorithm can be found in [13]. 

jiw

 
3.2. Hybrid Evolutionary Programming Algorithms 
We apply a hybrid evolutionary algorithm based on the 
use of a clustering algorithm for deciding which 
individuals are subject to local optimization. The basic 
aim of this methodology is the minimization of the 
number of times the local optimization algorithm is 

 195



 

applied without reducing the performance of the 
algorithm. This is especially important when the 
algorithm involves a high computational cost. On the 
other hand, removing the local optimization procedure 
usually yields a worse performance, as we will show in 
the experimental section. Thus, this method offers a 
good trade-off between performance and efficiency, 
since we apply the optimization algorithm to a reduced 
number of individuals. Moreover, the clustering 
process allows us to select a subset of individuals with 
different features. In this way, the optimization 
algorithm is more efficient. The local optimization 
algorithm used in our work is the Levenberg-
Marquardt (L-M) optimization method. This algorithm 
is designed specifically for minimizing a sum-of-
squares error [20]. In any case, any other local 
optimization algorithm can be used in a particular 
problem. As we have mentioned, the hybrid 
evolutionary algorithms are based on the combination 
of an evolutionary algorithm, a clustering process and 
a local search procedure. 

In the hybrid EP (HEP), the EP is run without the 
local optimization algorithm and then it is applied to 
the best solution obtained by the EP in the final 
generation. This allows the precise local optimum 
around the final solution to be found. Another version 
of hybrid EA is the HEP with the clustering algorithm 
(HEPC), which applies the clustering process over a 
large enough subset of the best individuals in the final 
population. The number of individuals in this subset 
and the number of clusters to be created are critical 
parameters of the clustering process. Once clusters 
have been determined, the best individual in each 
cluster is selected and then optimized using the local 
search algorithm. The main objective of these 
methodologies is to reduce the number of times it is 
necessary to apply the local optimization procedure, 
since local search algorithms commonly involve a high 
computational cost. The clustering process selects the 
most representative groups of the population, 
providing a subset of individuals with different 
features. The selected clustering method selected is k-
means clustering, using a distance measure defined for 
the vectors of the different values obtained for each 
individual over the training dataset. Further 
information can be found in Martínez-Estudillo et al. 
[13]. The hybrid algorithms applied are detailed next: 
 
Hybrid Evolutionary Programming (HEP) 
1. Generate a random population of size NP. 
2. Repeat EP algorithm until the stopping criterion is 

fulfilled 
3. Apply L-M algorithm to best solution obtained in 

the EP algorithm. 

4. Return the optimized individual as the final 
solution. 

 
Hybrid Evolutionary Programming with Clustering 
(HEPC) 
1. Generate a random population of size NP. 
2. Repeat EP algorithm until the stopping criterion is 

fulfilled 
3. Apply k-means process to best NC individuals of 

the population in the last generation and assign a 
cluster to each individual. 

4. Apply L-M algorithm to best solution obtained in 
each cluster. 

5. Select the best individual among optimized ones 
and return it as the final solution. 

 
4. Experiments 
 
As previously stated, we are facing a wind speed 
prediction problem in this paper. A first process of 
downscaling (physical downscaling) can be carried out 
from these initial and bounding data, using the fifth 
generation Mesoscale Model (MM5 model) [21]. The 
result of this physical downscaling is a forecast of the 
wind speed and direction in a more realistic orography 
than the one giving by the global forecasting model. 
The MM5 model interpolates the values of wind speed 
to obtain mean hourly predictions. The output of the 
MM5 model, integrated using the initial and bounding 
conditions specified by the global model and local 
conditions, will not properly cover the complete 
surface of a wind park. The input variables of the ANN 
must be selected with care. In our case, we have 
chosen as input of the neural network the following: 
the wind speed series at two grid points surrounding 
the park (the procedure for the selection of the two 
point of the park can be seen in [8]); the wind direction 
and temperature at one of the previous points and two 
temporal series to obtain a measure of the solar cycle, 
strongly related to atmospheric circulation. Note that 
all these data are collected from the MM5 results at a 
given height, approximately equal for all the turbines, 
considering the orography of the park. We use the 
following equations to express the solar cycle: 

 1
2sin( )
24

S H π= ,  (7) 

 2
2cos( )
24

S H π=   (8) 

where  is an integer vector. [0, 23]H =
The experimental design was conducted using a 

holdout cross-validation procedure with approximately 
 instances for the training dataset, 6284 patterns, 3 / 4n
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and  instances for the generalization dataset, 1572 
patterns, where  is the size of the dataset. We tested 
the methodology for three turbines of the wind park 
“La Fuensanta”, located in Albacete, Spain (Figure 1). 
All parameters of the hybrid evolutionary algorithms 
are common for the three turbines, for all 
methodologies: the coefficients are initialized in the [–
5, 5] interval; the maximum number of hidden nodes is 

; the size of the population is . The 
number of nodes that can be added or removed in a 
structural mutation is within the [1, 3] interval, 
whereas the number of connections that can be added 
or removed in a structural mutation is within the [1, 7] 
interval. The only parameter of the L–M algorithm is 
the tolerance of the error to stop the algorithm; in our 
experiment, this parameter has the value 0.01. The k-
means algorithm is applied to  best individuals in 
the population. The number of clusters is 4 for the 
HEPC algorithm. The input variables were scaled in 
the interval [0.1,0.9], and the output variable (the wind 
speed) in the interval [0.1,0.9]. Results obtained with 
the different algorithms were evaluated by using both 
MSE and SEP. Table 1 shows the statistical results, 
mean value and standard deviation (Mean±SD) of the 
generalization errors obtained by the models in the 30 
runs for three turbines, using the EP and the other two 
hybrid algorithms (HEP and HEPC). The results also 
include the best MSE model obtained in the 30 runs, 
which is compared to the best model obtained by using 
the neural network in [8]. From a purely descriptive 
point of view, the best result is obtained using the 
HEPC methodology for the three turbines. 

/ 4n

9

n

m = P 1,000N =

250

According to this study, the following final 
optimal network model for turbine 1 were those 
reported in Table 2; in which quantitative equation 
systems are presented for the direct determination of 
accurate wind speed predictions including: (a) the wind 
speed series at two grid points surrounding the park, 
the wind direction and temperature at one of the 
previous points, and only one measure of the solar 
cycle, S2, because the x5 independent variable does not 
appear in the model; (b) the optimized network 
weights; and (c) the hyperbolic tangent transfer 
functions for the MLP models. According to the MSE 
values, this model can be readily used for the 
determination of the wind speed for turbine 1. It can be 
seen in Table 2, that HTUs enable a neural network to 
form function of inputs with increased information 
capacity and smaller network architecture.  
 
5. Conclusions 

 

This study demonstrated the potential of HTU 
neural networks models trained using a hybrid 
evolutionary algorithm for a problem of short-term 
wind speed prediction. We hybridized HTU neural 
networks models with global and mesoscale physical 
forecasting models, in such a way that the neural 
networks tackle the final statistical downscaling 
process. We have described the characteristics of the 
different hybrid algorithms used, and the complete 
system of forecasting including the evolutionary 
artificial neural network implemented. We have 
applied our models for three turbines in the short-term 
wind speed prediction in a wind park in Spain, with 
absolutely competitive results when compared to other 
neural network methodologies. 

Table 1.  Statistical results of generalization SEP 
and MSE errors for several turbines, for 30 
executions of the EP, HEP, and HEPC algorithms, 
statistical results of the #links of the EP and HEPC 
algorithms and best MSE model generalization 
error of the EP and the MLP in [8] algorithms. The 
best result for the MSE and the #links has been 
represented in bold face. 

  Mean± SD  
Method Turbine 1 Turbine 15 Turbine 21 
SEPEP 41.50±0.75 41.83±0.64 41.57±0.47 
SEPHEP 40.54±0.71 40.79±1.09 40.69±0.73 
SEPHEPC 40.40±0.79 40.94±1.10 40.69±0.83 
MSEEP 6.07±0.22 5.77±0.18 5.55±0.13 
MSEHEP 5.79±0.20 5.49±0.29 5.38±0.19 
MSEHEPC 5.75±0.23 5.53±0.30 5.32±0.22 
MSEBest 
(HEPC) 

5.36 
(3 nodes) 

5.05 
(4 nodes) 

4.95 
(6 nodes) 

MSEBest 
(MLP [8]) 

5.53 
(14 nodes)

5.10 
(15 nodes) 

5.06 
(12 nodes) 

  # links  
EP 18.13±5.85 17.27±5.26 17.33± 5.67 
HEPC 17.93±6.15 16.93±5.64 17.26± 5.96 
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Table 2.  Best model obtained with a feed forward neural network with hyperbolic tangent basis function 
trained by the HEPC algorithm.  

Best Model    Turbine 1 Hyperbolic Tangent Unit 
WS(HTU)= 0.78-0.30*HTU1+3.17*HTU2+2.55*HTU3 

HTU1= (exp[2(4.84*x4-5.92*x3-1.56*x1+0.75]-1) / (exp[2(4.84*x4-5.92*x3-1.56*x1+0.75]+1)  
HTU2= (exp[2(0.05*x6+1.31*x4+0.31*x2-2.55]-1) / (exp[2(0.05*x6+1.31*x4+0.31*x2-2.55]+1)  
HTU3= (exp[2 -2.97*x3+0.41*x1+3.67]-1) / (exp[2(-2.97*x3+0.41*x1+3.67]+1)  
# hidden nodes: 3;  #parameters : 15;  SEPG= 39.02; MSEG=5.36; HEPC. #gen=400 

 

 
Figure 1. Wind park orography (La Fuensanta, Albacete, Spain) and location of the wind turbines in this study. 
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