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ABSTRACT This paper investigates the robust finite-time rendezvous maneuver control for spacecraft via

sliding mode control technology. Two control architectures are devised for realizing the control objective,

where a novel-developed sliding mode surface (SMS) is designed by resorting to the hyperbolic tangent

function.Without considering the chattering problem inherent in slidingmode control, a basis control scheme

is constructed to force the tracking errors entering a compact set in finite time. To reduce the effect of the

chattering phenomenon, a modified controller is established by resorting to the well-designed adaptive laws.

Both of these two controllers can ensure finite-time convergence for the entire system. Theoretical analysis

and numerical simulations have shown the effectiveness and superiorities of the proposed methods.

INDEX TERMS Spacecraft rendezvous maneuver, finite-time control, sliding mode control, chattering

problem, adaptive control.

I. INTRODUCTION

For the indispensable role in numerous space activities,

including docking, removing space debris, Mars exploration,

etc., spacecraft rendezvous maneuver control has gained

popularity during the last decades. However, the complexity

of the external environment and strongly coupled nonlinear

dynamics make it a tough work to design controllers for ren-

dezvous maneuver. Besides, controllers with high precision

and satisfactory disturbance rejection performance become

more and more desirable for different space missions, which

is an urgent issue for aerospace applications. Fortunately,

fruitful research achievement for spacecraft control has

emerged recently, such as adaptive control [1]–[4], [32],

backstepping control [5]–[8], neural network-based con-

trol [9]–[12], sliding mode control (SMC) [13]–[16], model

predictive control [31] as well as control based on hybrid

actuators [35].

The associate editor coordinating the review of this manuscript and

approving it for publication was Fangfei Li .

Though effective, the aforementioned methods cannot

be directly utilized for spacecraft rendezvous maneuver.

During the controller synthesis process in rendezvous mis-

sions, the external disturbance, system parameter uncer-

tainties and coupled nonlinear dynamics must be carefully

treated, otherwise degradation of control performance or

unstable phenomenon will occur in space missions. To handle

the disturbance, backstepping based controllers have been

established in [17]–[19], where the parameter uncertainties

are neglected. Considering that the mass and initial matrix of

the pursuer spacecraft are unknown for designers, Zhang et.al

have proposed output feedback controllers for relative pose

control problem during rendezvous maneuver [20]. It is

noticeable that rendezvous maneuver control with collision

avoidance is not considered in [17]–[20], probably leading to

unexpected casualty. Actually, when the pursuer spacecraft

is moving towards the target spacecraft, they may collide

with each other. Moreover, there always exist variety of

obstacles in space environment, such as space debris, which

will threaten the safety of the pursuer spacecraft. In order to

endow the control systems with collision avoidance ability,
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artificial potential function-based SMC and backstepping

control has been presented in [21] and [22], respectively.

Recalling the results in [20]–[22], it is obviously that actu-

ator faults and input saturation constraints are not consid-

ered, which will limit the application of these researches.

By utilizing the anti-saturation controllers designed in [19],

rendezvous and docking maneuver can be realized with

acceptable performance for rigid spacecraft. In view of

the reliability of spacecraft system in rendezvous tasks,

fault-tolerant controllers are constructed in [23].

Obviously, results mentioned above can only achieve

asymptotic stability for the spacecraft rendezvous maneu-

ver. In contrast to these asymptotically stable methods,

finite-time control methods have much more superior

qualities in convergence rate, robustness against distur-

bance and control accuracy [14]–[16], and leading to wide

applications in spacecraft rendezvous maneuver [24]–[27].

In [24], nonsingular terminal sliding mode control technol-

ogy (NTSMCT) was utilized to solve the control issue for

spacecraft rendezvous maneuver by incorporation with a

finite-time disturbance observer. Totally different from the

method proposed in [24], a finite-time algorithm was pre-

sented in [25] by resorting to the line-of-sight based control

strategy. For the purpose of improving the system robustness

against the input saturation constraints, adaptive laws and

NTSMCT has been exploited for the anti-saturation issue

of rendezvous maneuver [26]. As a technology extension

of [26], a novel SMC method was given in [27], which could

ensure the accomplishment of rendezvous maneuver without

violation of the safe constraints.

Among these existing methods, SMC possesses good abil-

ity for disturbance rejection, especially when there exists

disturbances and system uncertainties simultaneously. Never-

theless, controllers in [24] suffers severely from the chattering

problem, which is the main cause for actuator damage. Thus,

it still needs efforts to improve this disadvantage in controller

design for aerospace engineering. In this paper, the finite-time

rendezvous control for spacecraft will be investigatedwith the

consideration of chattering problem in sliding mode control.

Contributions of this paper are given as follows:
i) A novel SMS will be designed by resorting the

hyperbolic tangent function. In contrast to literatures

[15], [16], the presented SMS is not only nonsingular

but also concise and intuitionistic. Specifically speak-

ing, a nonlinear piecewise function was applied for sin-

gularity avoidance purpose, which gives rise to much

complexity in implementation. By the utilization of

the hyperbolic tangent function, this problem will be

solved in this paper.

ii) The presented algorithm in this paper can reduce chat-

tering even the sliding mode method is adopted. With

the aid of a nonlinear term, the sign function in the

control law is replaced, thus avoiding the adverse effect

in chattering.

iii) Compared with the results in [18]–[22], global finite-

time convergence will be derived for the entire system,

effectively improve the convergence rate for spacecraft

rendezvous maneuver.

The remainder of this paper is presented as follows. The

preliminaries and problem formulation are given. The ren-

dezvous maneuver controller is developed in section III.

Numerical simulations are conducted to illustrate the effec-

tiveness of the proposed method. Finally, it comes to the

conclusions of this paper.

II. ATTITUDE DYNAMICS AND PROBLEM FORMULATION

A. RELATIVE ATTITUDE DYNAMIC MODEL

In this paper, the relative attitude dynamic will be established

via the unit quaternion. Firstly, we define R ∈ SO(3) as the

rotation matrix, which can realize the coordinate transforma-

tion. The unit quaternion is described as Q =
[

q0, q
T
v

]T ∈ 4

with4 =
{

Q ∈ R × R
3×3

∣

∣q20 + qTv qv = 1
}

. If the attitude of

the pursuer and the target spacecraft are denoted asQp andQt ,

respectively, the relative attitude between Qp and Qt can be

expressed as Q̃ =
[

q̃0, q̃
T
v

]T
= Q−1

t ⊙Qp with⊙ denoting the

unit quaternion product. Then, the relative attitude kinematics

model is given as [28]:

˙̃q0 = −1

2
q̃Tv ω̃ (1)

˙̃qv = 1

2

(

q̃×
v + q̃0I3

)

ω̃ (2)

where ω̃ = ωp − R̃ωt is relative angular velocity; ωp is the

angular velocity of the pursuer; ωt is the angular velocity of

the target. For a vector a = [a1, a2, a3]
T, a× is defined as

Eq. (3). The rotation matrix is defined as Eq. (4).

a× =





0 −a3 a2
a3 0 −a1

−a2 a1 0



 (3)

R̃ , R (q̃) =
(

q̃20 − q̃Tv q̃v

)

I3 + 2q̃vq̃
T
v − 2q̃0q̃

×
v (4)

Based on the above expression, the corresponding attitude

dynamics of pursuer and the target spacecraft are shown as:

Jt ω̇t + ω×
t Jtωt = 0 (5)

Jω̇p + ω×
p Jωp = τ + τ d (6)

where J ∈ R
3×3 and Jt ∈ R

3×3 are the given inertia matrices

of target and pursuer; τ ∈ R
3 and τ d ∈ R

3 denote the control

torque and the external disturbance torque, respectively.

The derivative of ω̃ can be calculated as:
˙̃ω = ω̇p − ˙̃

Rωt − R̃ω̇t (7)

Utilizing the fact that
˙̃
R = R̃ω̃× and combining

Eqs. (5)-(7), we can conclude that

J ˙̃ω = −Cr ω̃ − nr + τ + τ d (8)

where Cr = J
(

R̃ωt

)×
+
(

R̃ωt

)×
J−

(

J
(

ω̃ + R̃ωt

))×
and

nr =
(

R̃ωt

)×
JR̃ωt + JR̃ω̇t .
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B. RELATIVE ORBIT DYNAMICS MODEL

According to the relative motion between the pursuer and the

target, the donation rp and νp are implemented to express

the pursuer’s position and velocity, respectively, which are

expressed as [30]:

rp = r̃+ R̃ (rt + δt) (9)

νp = ν̃ + R̃
(

νt + ω×
t δt

)

(10)

where δt ∈ R3 is the desired rendezvous position; rt and νt
are the target’s position and velocity; r̃ and ν̃ are the relative

position and velocity. By the calculation, one can obtain

ṙp = ˙̃r+ ˙̃
R (rt + δt) + R̃ṙt (11)

Then, from the similar analysis in [28], the kinematics can

be established as follows:

ṙt = νt − ω×
t rt (12)

ṙp = νp − ω×
p rp (13)

Combining Eq. (11) and (13) yields

νp − ω×
p rp = ˙̃r+ ˙̃

R (rt + δt) + R̃ṙt (14)

Based on the above analysis, the derivative of r̃ will be

given as Eq. (15) with Ct =
(

ω̃ + R̃ωt

)×
.

˙̃r = ν̃ − Ct r̃ (15)

The derivative of Eq. (10) can be derived as

ν̇p = ˙̃ν + ˙̃
R
(

νt + ω×
t δt

)

+ R̃
(

ν̇t + ω̇×
t δt

)

(16)

Through the theory in [28], the position dynamics can be

established as follows:

mt ν̇t + mtω
×
t νt = 0 (17)

mpν̇p + mpω
×
p νp = f+ fd (18)

where mt and mp are constants defining masses of the target

and the purser, respectively; f ∈ RN and fd ∈ R3 denote the

control force and the external disturbance force. Combining

Eq. (16) and (18), it follows that [30]

mp

[

˙̃v+ ˙̃
R
(

vt+ω×
t δt

)

+ R̃
(

v̇t+ω̇×
t δt

)

]

+ mpω
×
p νp = f+fd

(19)

That is

mp ˙̃v = −mpCt ṽ− mpnt + f+ fd (20)

where nt =
(

R̃ωt

)×
R̃vt + R̃v̇t + ω̃×R̃δ×

t ωt − R̃δ×
t ω̇t .

In this paper, it is assumed that all the motion information

of the target spacecraft can be provided to the tracker space-

craft by the measuring device. Then, the control objective of

this paper is designing signals εr and εt for the dynamics

expressed by Eqs. (8) and (20) such that finite-time stability

of the close-loop system will be obtained with the control

scheme.

For the purpose of facilitating the controller design, the fol-

lowing assumptions, lemmas and notations are given.

Assumption 1: The target spacecraft is stable. By using

Eqs. (1), (2), (15) and (20) one can deduced that ωt , ω̇t, νt, ν̃t
all have upper boundwhich satisfying ‖ωt‖ ≤ a1, ‖ω̇t‖ ≤ a2,

‖νt‖ ≤ a3, ‖ν̃t‖ ≤ a4, where a1, a2, a3, a4 are unknown

constants.

Assumption 2: drare dt unknown disturbances satisfying

‖dr‖ ≤ Dr , ‖dt‖ ≤ Dt , where Dr and Dt are positive

constant.

Assumption 3: The inertia parameters J is unknown

bounded and satisfying λ1I3×3 ≤ J ≤ λ2I3×3, where

λ1 and λ2 are positive constants.

Lemma 1 [29]: For arbitrary real number x ∈ R, µ > 0

and κ = 0.2785, the relation Eq. (25) exists.

0 < |x| − x tanh(µx) ≤ κ

µ
(21)

Lemma 2 [15]: For arbitrary positive constants

1 < σ < 2 and ∂i, i = 1, 2, . . . , n, one can be obtained

that
(

∂21 + · · · + ∂2n

)σ

≤
(

∂σ
1 + · · · + ∂σ

n

)2
(22)

Lemma 3 [29]: For the system ẋ = f (x), f (0) = 0,

x ∈ Rn, V (x) converges to the equilibrium point in finite

time when the continuous function V (x) :U → R satisfying

Eq. (23), where γ1 > 0, 0 < γ2 < 1.

V̇ (x) + γ1V
γ2 (x) ≤ 0 (23)

Notations: The notation ‖·‖ denotes the Euclidean norm

of a vector or the induced norm of a matrix. For arbitrary

scalar ξ ∈ R, sig(ξ )α is introduced to represent sig(ξ )α =
[

sign(ξ ) |ξ |α
]

. For a vector ξ = [ξ1, . . . , ξn]
T, sig(ξ )α is

defined as sig(ξ )α =
[

sign(ξ1) |ξ1|α , . . . , sign(ξn) |ξn|
]T
.

III. CONTROL DESIGN

A. BASIC CONTROLLER DESIGN

In this section, two finite-time controllers for spacecraft ren-

dezvous maneuver are synthesized via the combination of

SMC and adaptive control when there exist external distur-

bances. Initially, a novel SMS has been proposed, which can

ensure global finite-time convergence for the tracking errors.

Furthermore, a basic control scheme is presented to guarantee

that the SMS could be stabilized in finite time. Though it

is effective for the rendezvous task, chattering problem is a

threat to the safety of the actuators. Considering this draw-

back, a modified method is proposed in the second controller.

As for the finite-time stability, the SMS will be redevised via

adding a proportional term, which will be elaborated in the

following part.

To develop the attitude and orbit control schemes, two

sliding mode variables are defined as:

s1 = ˙̃qv + k1 tanh
(

q̃v
)

(24)

s2 = ˙̃r+ k2 tanh (r̃) (25)
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where k1 and k2 are positive constants. In consideration of

Eqs. (2), (8), (15), (19), (24) and (25) mentioned above,

the following relations of s1 and s2 can be obtained:

Jṡ1 = J ¨̃qv + k1J
[

1 + tanhT
(

q̃v
)

tanh
(

q̃v
)

]

˙̃qv

= 1

2
J
(

˙̃q×
v + ˙̃q0I3

)

ω̃ + 1

2

(

q̃×
v + q̃0I3

)

× (−Cr ω̃ − nr + εr + dr )

+ k1J
[

1 + tanhT
(

q̃v
)

tanh
(

q̃v
)

]

˙̃qv (26)

mṡ2 = m
{

¨̃r+ k2

[

1 + tanhT (r̃) tanh (r̃)
]

˙̃r
}

= m ˙̃ν − mCt ˙̃r− mĊt r̃

+mk2

[

1 + tanhT (r̃) tanh (r̃)
]

˙̃r

= −mCt ν̃ − mnt + εt + dt − mCt ˙̃r− mĊt r̃

+mk2

[

1 + tanhT (r̃) tanh (r̃)
]

˙̃r

= −mCt ν̃ − mnt + εt + dt − mCt ˙̃r
−mĊt r̃+ k2

[

1 + tanhT (r̃) tanh (r̃)
]

˙̃r (27)

Control laws for attitude and orbit tracking systems can be

developed as

εr = Cr ω̃ + nr − 2
(

q̃×
v + q̃0I3

)−1

×
[

k3sign (s1) + k4s1 + s1D̂r

2 ‖s1‖

]

− 2
(

q̃×
v + q̃0I3

)−1
J

[

1

2

(

˙̃q×
v + ˙̃q0I3

)

ω̃

+ k1

(

1 + tanhT
(

q̃v
)

tanh
(

q̃v
)

)

˙̃qv
]

(28)

εt = mCtν̃ + mnt + mCt ˙̃r+ mĊt r̃

− k2m
[

1 + tanhT (r̃) tanh (r̃)
]

˙̃r

− k5sign (s2) − k6s2 − s2D̂t

‖s2‖
(29)

where ki > 0, i = 3, 4, 5, 6, D̂r and D̂t are estimations of Dr
andDt , respectively. The definition of D̂r and D̂t are given as

follows:
˙̂
Dr = c1 ‖s1‖

2
(30)

˙̂
Dt = c2 ‖s2‖ (31)

where ci > 0, i = 1, 2,. The estimation errors are defined as:

D̃r = Dr − D̂r (32)
˙̃
Dt = Dt − D̂t (33)

Remark 1: In Eqs. (24)-(25), the SMS is proposed

by resorting the hyperbolic tangent function, which will

ensure finite-time stability for the tracking error systems.

Comparing with the existing sliding mode methods

[13]–[16], the proposed possesses the advantage of simplicity

and non-singularity.

Remark 2: Global finite-time convergence is achievable

for tracking errors q̃v and r̃, which will improve the conver-

gence rate for spacecraft rendezvous maneuver missions.

Based on the foregoing illustration, the following conclu-

sion is obtained:

Theorem 1: For the spacecraft tracking control system

Eqs. (1), (2), (8), (15) and (20) satisfying Assumptions 1-3,

finite-time convergence for tracking errors q̃v and r̃ is achiev-

able when the control laws are devised as Eqs. (28)-(31).

Additionally, the estimation errors D̃rand D̃t are uniformly

ultimately bounded.

Proof: To show the stability of the entire system, the

Lyapunov function (LF) is given as follows:

V1 = 1

2
sT1Js1 + 1

2
sT2ms2 + 1

2c1
D̃2
r + 1

2c2
D̃2
t (34)

Upon the utilization of the relevant system dynamics and

control laws, the derivative of V1 is calculated as follows:

V̇1 = sT1Jṡ1 + sT2mṡ2 + 1

c1
D̃r

˙̃
Dr + 1

c2
D̃t

˙̃
Dt

= sT1

[

1

2
J
(

˙̃q×
v + ˙̃q0I3

)

ω̃ + 1

2

(

q̃×
v + q̃0I3

)

× (−Cr ω̃ − nr + εr + τ d )

+ k1J
(

1 + tanhT
(

q̃v
)

tanh
(

q̃v
)

)

˙̃qv
]

+ sT2

[

−mCt ν̃ − mnt + εt + fd − mCt ˙̃r

− mĊt r̃+ k2m
(

1 + tanhT (r̃) tanh (r̃)
)

˙̃r
]

− 1

c1
D̃r

˙̂
Dr − 1

c2
D̃t

˙̂
Dt

= sT1

(

1

2

(

q̃×
v + q̃0I3

)

τ d − k3sign (s1)

− k4s1 − s1D̂r

2 ‖s1‖

)

+ sT2

(

fd − k5sign (s2)

− k6s2 − s2D̂t

‖s2‖

)

− 1

c1
D̃r

˙̂
Dr − 1

c2
D̃t

˙̂
Dt

≤ ‖s1‖
2

Dr − k3 ‖s1‖ − k4 ‖s1‖2 − ‖s1‖
2

D̂r + ‖s2‖Dt

− k5 ‖s2‖ − k6 ‖s2‖2 − ‖s2‖ D̂t − 1

c1
D̃r

˙̂
Dr − 1

c2
D̃t

˙̂
Dt

= ‖s1‖
2

D̃r − k3 ‖s1‖ − k4 ‖s1‖2 − 1

c1
D̃r

˙̂
Dr + ‖s2‖ D̃t

− k5 ‖s2‖ − k6 ‖s2‖2 − 1

c2
D̃t

˙̂
Dt (35)

Inserting Eqs. (30)-(31), Eq. (35) is further obtained as:

V̇1 ≤ −k3 ‖s1‖ − k4 ‖s1‖2 − k5 ‖s2‖ − k6 ‖s2‖2

≤ 0 (36)

which implies s1, s2, D̃r , D̃t are uniformly ultimately

bounded. Thus, there must exist two constantsD̄r and D̄r
satisfying D̄r ≥ Dr , D̄r ≥ D̂r , D̄t ≥ Dt , D̄t ≥ D̂t .
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Then, the following LF is presented:

V2= 1

2
sT1Js1+

1

2
sT2ms2+

1

c1

(

D̄r−D̂r
)2

+ 1

c2

(

D̄t−D̂t
)2

(37)

The derivative of V2 is derived as:

V̇2 = sT1Jṡ1+sT2mṡ2−
2

c1

(

D̄r−D̂r
) ˙̂
Dr−

2

c2

(

D̄t−D̂t
) ˙̂
Dt

= sT1

[

1

2
J
(

˙̃q×
v + ˙̃q0I3

)

ω̃ + 1

2

(

q̃×
v + q̃0I3

)

× (−Cr ω̃ − nr + εr + τ d )

+ k1J
(

1 + tanhT
(

q̃v
)

tanh
(

q̃v
)

)

˙̃qv
]

+ sT2

[

−mCt ν̃ − mnt + fd − mCt ˙̃r

− mĊt r̃+ k2

(

1 + tanhT (r̃) tanh (r̃)
)

˙̃r
]

− 2

c1

(

D̄r − D̂r

) ˙̂
Dr − 2

c2

(

D̄t − D̂t

) ˙̂
Dt

= sT1

(

1

2

(

q̃×
v + q̃0I3

)

τ d − k3sign (s1)

− k4s1 − s1D̂r

2 ‖s1‖

)

+ sT2

(

fd − k5sign (s2)

− k6s2−
s2D̂t

‖s2‖

)

− 2

c1

(

D̄r−D̂r
) ˙̂
Dr−

2

c2

(

D̄t−D̂t
) ˙̂
Dt

≤ ‖s1‖
2

(

Dr−D̂r
)

− k3 ‖s1‖−k4 ‖s1‖2+‖s2‖
(

Dt−D̂t
)

− k5 ‖s2‖ − k6 ‖s2‖2 − ‖s2‖ D̂t −
(

D̄r − D̂r

)

‖s1‖

− 2
(

D̄t − D̂t

)

‖s2‖ (38)

According to the fact that D̄r ≥ Dr , D̄r ≥ D̂r , D̄t ≥ Dt ,

D̄t ≥ D̂t , Eq. (38) is rearranged as:

V̇2 ≤ −k3 ‖s1‖ − k4 ‖s1‖2 − k5 ‖s2‖ − k6 ‖s2‖2

−
(

D̄r − D̂r

) ‖s1‖
2

−
(

D̄t − D̂t

)

‖s2‖

≤ −ρ1V
1
2

2 (39)

where ρ1 = min

(√
c1‖s1‖
2

,
√
c2 ‖s2‖ , k3

√

2
λ2

, k5

√

2
m

)

.

According to Lemma 3, we conclude that the SMS s1 and s2
converge to the origin in finite time.

When the SMS s1 = 0, s2 = 0 is reached, it implies:
˙̃qv + k1 tanh

(

q̃v
)

= 0 (40)

˙̃r+ k2 tanh (r̃) = 0 (41)

The stability of q̃v and r̃ can be validated by reselecting a LF

as following:

V3 = 1

2
q̃Tv q̃v + 1

2
r̃Tr̃ (42)

Utilizing Eqs. (40)-(41), V̇3 satisfies:

V̇3 = q̃Tv
˙̃qv + r̃T ˙̃r

= −k1q̃Tv tanh
(

q̃v
)

− k2r̃
T tanh (r̃) (43)

In terms of Lemma 1, Eq. (43) is equivalent to the following

equation:

V̇3 ≤ −k1
3
∑

i=1

|q̃vi| − k2

3
∑

i=1

|r̃i| + 3 (k1 + k2) κ

≤ −ρ2V
1
2

3 + 3 (k1 + k2) κ (44)

where ρ2 = min
(√

2 k1,
√
2 k2

)

. Consequently, q̃v
and r̃ will converge to a compact set defined as
{

(

q̃v, r̃
)

∣

∣

∣

∥

∥q̃v
∥

∥ ≤ 3
√
2 (k1 + k2) κ, ‖r̃‖ ≤ 3

√
2 (k1 + k2) κ

}

in finite time.

Thus, it completes the proof of Theorem 1.

B. CHATTERING-FREE CONTROLLER DESIGN

As a matter of fact, the so-called chattering problem will

be introduced by controller Eqs. (28)-(31). Additionally,

by observing the definitions of the adaptive laws expressed

by Eqs. (30)-(31), it is found that D̂r and D̂t tends to infinity

when time goes infinite as long as their initial values satisfy

D̂r (0) > 0 and D̂t (0) > 0. To overcome these two disad-

vantages, the SMS and the corresponding control laws are

redesigned as follows:

s1 = ˙̃qv + k1q̃v + k2 tanh
(

q̃v
)

(45)

s2 = ˙̃r+ k3r̃+ k4 tanh (r̃) (46)

εr = Cr ω̃ + nr − 2
(

q̃×
v + q̃0I3

)−1

×
[

k5sig
γ1 (s1) + k6s1 + D̂rs1

2 ‖s1‖ + ε1

]

− 2
(

q̃×
v + q̃0I3

)−1
J

[

1

2

(

q̃×
v + ˙̃q0I3

)

ω̃

+ k2

(

1 + tanhT
(

q̃v
)

tanh
(

q̃v
)

)

˙̃qv + k1 ˙̃qv
]

(47)

εt = mCtν̃ + mnt + mCt ˙̃r+ mĊt r̃

− k4m
[

1 + tanhT (r̃) tanh (r̃)
]

˙̃r

− k7sig
γ2 (s2) − k8s2 − D̂ts2

‖s2‖ + ε2
− k3m˙̃r (48)

ε1 = k9

1 + D̂r
(49)

ε2 = k10

1 + D̂t
(50)

˙̂
Dr = c1

(‖s1‖
2

− c3D̂r

)

(51)

˙̂
Dt = c2

(

‖s2‖ − c4D̂t

)

(52)

60842 VOLUME 8, 2020



Z. Shi et al.: Hyperbolic Tangent Function-Based Finite-Time SMC for Spacecraft Rendezvous Maneuver Without Chattering

where ki, i = 1, 2, . . . , 10 are positive constants satisfying

k1 > 1, k3 > 1, cj > 0, j = 1, 2, 3, 4.

Remark 3: To handle the chattering problem, terms s1D̂r
2‖s1‖

and s2D̂t
‖s2‖ in Eqs. (28)-(29) are replaced by D̂r s1

2‖s1‖+ε1
and

D̂t s2
‖s2‖+ε2

, respectively; k3sign (s1) and k5sign (s2) are replaced

by k5sig
γ1 (s1) and k7sig

γ2 (s2). In this way, the chattering

phenomenon will be reduced extensively.

Remark 4: Compared with the SMS proposed in

Eqs. (24)-(25), proportional terms are added in

Eqs. (45)-(46), which are used for enhancing the robustness

of the controller and ensuring finite-time stability for the

tracking errors when the SMS can only be stabilized to a

compact set rather than zero.

Remark 5: By introducing proportional terms c3D̂r
and c4D̂t in the adaptive laws Eqs. (51)-(52), estima-

tions of D̂r and c4D̂t will not tends to infinity. Thus,

the mentioned drawback in the basic controller will be

improved.

Theorem 2: For the spacecraft tracking control system

Eqs. (1), (2), (8), (15) and (20) satisfying Assumptions 1-3,

tracking errors q̃v and r̃ will be stabilized to a compact

set in finite time when the control laws are devised as

Eqs. (47)-(52). Additionally, the estimation errors D̃rand D̃t
are uniformly ultimately bounded.

Proof: To demonstrate convergence of the sliding mode

surface, the following LF is selected:

V4 = 1

2
sT1Js1 + 1

2
sT2ms2 + 1

2c1
D̃2
r + 1

2c2
D̃2
t (53)

By taking the derivative of V1 and utilizing the proposed

control scheme Eqs. (45)-(50), one has:

V̇4 = sT1Jṡ1 + sT2mṡ2 + 1

c1
D̃r

˙̃
Dr + 1

c2
D̃t

˙̃
Dt

= sT1

[

1

2
J
(

˙̃q×
v + ˙̃q0I3

)

ω̃ + 1

2

(

q̃×
v + q̃0I3

)

× (−Cr ω̃ − nr + εr + τ d )

+ k2J
(

1 + tanhT
(

q̃v
)

tanh
(

q̃v
)

)

˙̃qv + k1 ˙̃qv
]

+ sT2

[

−mCt ν̃ − mnt + εt + fd − mCt ˙̃r + k3m˙̃r

− mĊt r̃+ k4m
(

1 + tanhT (r̃) tanh (r̃)
)

˙̃r
]

− 1

c1
D̃r

˙̂
Dr − 1

c2
D̃t

˙̂
Dt

= sT1

(

1

2

(

q̃×
v + q̃0I3

)

τ d − k5sig
γ1 (s1) − k6s1

− D̂rs1

2 ‖s1‖ + ε1

)

+ sT2

(

fd − k7sig
γ2 (s2)

− k8s2 − D̂ts2

‖s2‖ + ε2

)

− 1

c1
D̃r

˙̂
Dr − 1

c2
D̃t

˙̂
Dt (54)

Noting that terms sT1
s1D̂r

2‖s1‖+ε1
and sT2

D̂t s2
‖s2‖+ε2

satisfy the follow-

ing relation:

−sT1
s1D̂r

2 ‖s1‖ + ε1
= −D̂r

‖s1‖
2

+
(

D̂rε1

2

)

‖s1‖
2 ‖s1‖ + ε1

= −D̂r ‖s1‖ + k9D̂r

2
(

1 + D̂r

) × ‖s1‖
‖s1‖ + ε1

≤ −D̂r ‖s1‖ + k9

2
(55)

−sT2
D̂ts2

‖s2‖ + ε2
= −D̂t ‖s2‖ +

(

D̂tε2

) ‖s2‖
‖s2‖ + ε2

= −D̂t ‖s2‖ + k10D̂t

1 + D̂t
× ‖s2‖

‖s2‖ + ε2

≤ −D̂t ‖s2‖ + k10 (56)

Substituting Eqs. (55)-(56) into Eq. (54), one has:

V̇4 ≤ ‖s1‖
2

Dr − sT1

(

k5sig
γ1 (s1) + k6s1

+ D̂rs1

2 ‖s1‖ + ε1

)

+ ‖s2‖ D̃t − sT2

(

k7sig
γ2 (s2)

+ k8s2 + D̂ts2

‖s2‖ + ε2

)

− 1

c1
D̃r

˙̂
Dr − 1

c2
D̃t

˙̂
Dt

≤ ‖s1‖
2

D̃t − k5s
T
1 sig

γ1 (s1) − k6s
T
1 s1

+ k9

2
+ ‖s2‖ D̃t − k7s

T
2 sig

γ2 (s2) + k10

− 1

c1
D̃r

˙̂
Dr − 1

c2
D̃t

˙̂
Dt (57)

Considering the adaptive laws Eqs. (51)-(52), one has

V̇4 ≤ −k6sT1 s1 + k9

2
− k8s

T
2 s2 + k10 + c3D̃r D̂r + c4D̃t D̂t

= −k6sT1 s1 + k9

2
− k8s

T
2 s2 + k10

− c3

(

Dr − D̂r

)2
+ ϑr − c4

(

Dt − D̂t

)2
+ ϑt (58)

where ϑr = c23D
2
r

4(c3−1)
and ϑr = c24D

2
t

4(c4−1)
. Thus, Eq. (58) is

further written as:

V̇4 ≤ −ρ3V4 + ϑ1 (59)

with ϑ1 and ρ3 denoting as ϑ1 = ϑr + ϑt + k9
2

+ k10,

ρ1 = min
{

k4
λmax(J)

,
k6
m

, 2c1, 2c2

}

.

Thus, it demonstrates that s1, s2, D̃r , D̃t will exponen-

tially coverage to a bounded region with respect to ϑ1. As a

result, there must exist two constants D̄r and D̄r satisfying

D̄r ≥ Dr , D̄r ≥ D̂r , D̄t ≥ Dt , D̄t ≥ D̂t . Then, the following

LF is presented:

V5= 1

2
sT1Js1+

1

2
sT2ms2+

1

c1

(

D̄r−D̂r
)2

+ 1

c2

(

D̄t−D̂t
)2

(60)
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Upon utilizing the proposed method, the derivative of V5
satisfies:

V̇5 = sT1Jṡ1+sT2mṡ2−
2

c1

(

D̄r−D̂r
) ˙̂
Dr−

2

c2

(

D̄t−D̂t
) ˙̂
Dt

= sT1

[

1

2
J
(

˙̃q×
v + ˙̃q0I3

)

ω̃ + 1

2

(

q̃×
v + q̃0I3

)

× (−Cr ω̃ − nr + εr + τ d ) + k1 ˙̃qv
+ k2J

(

1 + tanhT
(

q̃v
)

tanh
(

q̃v
)

)

˙̃qv
]

+ sT2

[

−mCt ν̃ − mnt + εt + fd − mCt ˙̃r + k3 ˙̃r

− mĊt r̃+ k4

(

1 + tanhT (r̃) tanh (r̃)
)

˙̃r
]

− 2

c1

(

D̄r − D̂r

) ˙̂
Dr − 2

c2

(

D̄t − D̂t

) ˙̂
Dt

= sT1

(

1

2

(

q̃×
v + q̃0I3

)

τ d − k5sig
γ1 (s1) − k6s1

− D̂rs1

2 ‖s1‖ + ε1

)

+ sT2

(

fd − k7sig
γ2 (s2)

− k8s2 − D̂ts2

‖s2‖ + ε2

)

− 2

c1

(

D̄r − D̂r

) ˙̂
Dr

− 2

c2

(

D̄t − D̂t

) ˙̂
Dt

≤ ‖s1‖
2

D̃t + ‖s2‖ D̃t − k5s
T
1 sig

γ1 (s1) + k9

2

− k7s
T
2 sig

γ2 (s2) + k10 − 2

c1

(

D̄r − D̂r

) ˙̂
Dr

− 2

c2

(

D̄t − D̂t

) ˙̂
Dt (61)

Inserting the adaptive laws defined in Eqs. (51)-(52) into

Eq. (61) yields:

V̇5 ≤ ‖s1‖
2

(

D̄r − D̂r

)

+ ‖s2‖
(

D̄r − D̂r

)

− k5s
T
1 sig

γ1 (s1) − k7s
T
2 sig

γ2 (s2) + k9

2

+ k10 − 2c3

(

D̄r − D̂r

)

D̂r − 2c4

(

D̄t − D̂t

)

D̂t

≤ −ρ4min

(

V
1
2

5 ,V
γ1+1

2

5 ,V
γ2+1

2

5

)

+ ϑ2 (62)

where ρ4 = min







2
γ1+1
2 k5

λ

γ1+1
2

2

,
2

γ2+1
2 k7

m
γ2+1
2

,
√
c1‖s1‖
2

,
√
c1 ‖s2‖







,

ϑ2 = c3D̄
2
r+c4D̄2

t

2
+ k9

2
+ k10. Thus, the s1 and s2 will converge

to the region12 in finite time, where12is a positive constant.

Based on this fact, the following equation can be obtained:
˙̃qvi + k1q̃vi + k2 tanh (q̃vi) ≤ 12 (63)

˙̃ri + k3r̃i + k4 tanh (r̃i) ≤ 12 (64)

The following LF is constructed to illustrate the stability of

the tracking errors:

V6 = 1

2
q̃2vi +

1

2
r2i (65)

According to Eqs. (63)-(64), the derivative of V6 satisfies

V̇6 = q̃vi ˙̃qvi + r̃i ˙̃ri
≤ q̃vi (12 − k1q̃vi − k2 tanh (q̃vi))

+ r̃ (12 − k3r̃i − k4 tanh (r̃i))

≤ −k1 |q̃vi| − k3 |r̃i| + (k1 + k3) κ + 12

4

≤ −
√
2min (k3 + k1)V

1
2

6 + (k1 + k3) κ + 12

4
(66)

Thus, tracking errors q̃vi and r̃i will converge to a small region

containing zero in finite time.

Thus, Theorem 2 has been proven.

IV. SIMULATION RESULTS

To show that the achievability of the control objective under

the developed control algorithm, the rendezvous maneuver

scenario is adopted in this section, where a pursuer space-

craft is forced to rendezvous with the target spacecraft in an

elliptical orbit. Detailed information about the orbit and these

two spacecrafts is presented in the following table.

TABLE 1. Orbit and spacecraft information [30].

The target spacecraft is supposed to service with the fol-

lowing position:

rt = [rt , 0, 0]
T , rt =

a
(

1 − e2
)

1 + ecosv
(67)

where a = RE + rpa
1−e denotes the semimajor axis, v is

expressed as:

v̇ = n (1 + ecosv)2

(

1 − e2
)
3
2

, v̈ = 2n2e (1 + ecosv)3 sinv
(

1 − e2
)3

(68)

where n =
√

u/a3. For the pursuer spacecraft, its rendezvous

position is expected as δt = [0, 5, 0]T in the target’s body

coordinate frame. The angular velocity of the target and the

external disturbances are given as:

τ d = 0.002×
(

1+cos
( π

150
t
)

+sin
( π

150
t
))

[1; 1; 1]T N · m

fd = 0.001×
(

1+cos
( π

150
t
)

+sin
( π

150
t
))

[1; 1; 1]T N · m
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FIGURE 1. Euler angle.

FIGURE 2. Regular angular velocity.

According to the ingenious initial parameters in [34],

the initial states are set as: the initial Euler angle error is

2 (0) = [19.9984 − 9.9987 15.0050]T deg, ω̃ = [000]T,

r̃ (0) = [2,2, −2]T and ṽ (0) = [000]T.

Inspired by the algorithms in [33], simulations are con-

ducted via MATLAB such that the effectiveness of the pre-

sented methods can be validated. There are eight parameters

in the first controller and sixteen parameters in the second

controller. For the first controller, the settling time is mainly

decided by k1, k2, k3, k4 k5 and k6. More specifically, the set-

tling time will increase as k1 and k2 increase while it will

decrease as k4 and k6 increase. However, increasing k3 and k5
will aggravate chattering phenomenon. The relative attitude

and position heavily depend on k4 and k6. Nevertheless,

improving the control accuracy will need much more control

input.

Considering the external disturbance, c1 and c2 must be

selected properly. For the second controller, there are another

four parameters: k7, k8, c3and c4. These four parameters

are added to accommodate the influence of the disturbance

FIGURE 3. Relative position.

FIGURE 4. Relative velocity.

and ensure upper bounds for the estimates of the adaptive

parameters.

A. SIMULATION RESULTS OF THE BASIC CONTROLLER

In the basic controller, the design parameters are selected as:

k1 = 2, k2 = 0.1, k3 = 0.05, k4 = 4, k5 = 0.5, k6 = 5,

c1 = 0.01, c2 = 0.01, D̂r (0) = 0, D̂t (0) = 0. The simula-

tion results are presented in Figs. 1-8. Fig. 1 and Fig. 2 depict

he Euler angle error and relative angular velocity, which

implies that the attitude control will be completed within

20s under the basic controller. Figs. 3-4 present the orbit

control results, where the relative position and velocity are

depicted. Figs. 5-8 are the control torques τ , f and estimated

parameters D̂r , D̂r , respectively. From the foregoing results,

one can find that the rendezvous maneuver will be achieved

in finite time.

B. SIMULATION RESULTS OF THE CHATTERING-FREE

CONTROLLER

Observing the presented results in Figs 5-6, it is con-

cluded that chattering problem exists in the basic controller.
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FIGURE 5. The control torque τ .

FIGURE 6. The control torque f.

FIGURE 7. The estimated parameter D̂r .

To overcome this defect, the chattering-free controller will be

adopted in this subsection. The control parameters are given

as: k1 = 2, k2 = 2, k3 = 1.1, k4 = 0.1, k5 = 0.05, k6 = 4,

k7 = 0.5, k8 = 5, k9 = 0.001, k10 = 0.001, c1 = 0.01,

FIGURE 8. The estimated parameter D̂t .

FIGURE 9. Euler angle.

FIGURE 10. Regular angular velocity.

c2 = 0.01, c3 = 0.01, c4 = 0.01, γ1 = 1, γ2 = 1,

D̂r (0) = 0, D̂t (0) = 0. The corresponding simulation

results are shown in Figs. 9-16. Fig. 9 and Fig. 10 depict the

Euler angle error and relative angular velocity, which implies
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FIGURE 11. Relative position.

FIGURE 12. Relative velocity.

FIGURE 13. The control torque τ .

that the attitude control will be completed within 10s under

the basic controller. Comparing with the basic controller,

the chattering free control scheme possesses faster conver-

gence rate. The relative position, relative velocity and control

FIGURE 14. The control torque f.

FIGURE 15. The estimated parameter D̂r .

FIGURE 16. The estimated parameter D̂t .

torques are presented in Figs. 11-14. Obviously, the chat-

tering phenomenon will not exist in the second controller,

thus effectively prolonging the service life of the space-

craft. The estimated parameters are depicted in Figs. 15-16,
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which imply that the upper bound of the disturbance will be

well estimated.

V. CONCLUSION

The robust rendezvous maneuver control problem for space-

craft was solved via finite-time theorem and sliding mode

technology. The proposed SMS possesses finite-time con-

vergence and the singularity problem is tackled via the

hyperbolic tangent function. Additionally, the chattering

phenomenon is eliminated even when the sliding mode

method is used. The effectiveness of the proposed methods is

illustrated by theoretical analysis and numerical simulations.
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