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HYPERBOLIC TRIGONOMETRY DERIVED 

FROM THE POINCAR MODEL 

1. INTRODUCTION 

The trigonometric formulae of hyperbolic geometry have 

been derived in a number of ingenious ways. As early as 

1766 Lambert (9) flotea. that the geometry of the "third 

hypothesis" could be verified on a sphere of imaginary 

radius, and all the formulae of hyperbolic plane trigo- 

nometry could be obtained from those of ordinary spherical 

trigonometry by replacing the radius r by ir. The hietori- 

cal process, developed by both Bolyal. and Lobacheweky, made 

use of the elegant fact that the geometry of horocycles on 

the horosphere is euclideen in nature (12, pp. 6O-74). 

Sommerville (14, pp. 56 ff. and 84) has presented an ex- 

cellent elementary treatment along these lines. Some early 

writers, however, regretted this appeal to solid geometry 

in order to derive formulas for a plane trigonometry. 

Clever methods were devised to remedy the seeming defect, 

one of the neatest being due to Liebmann (io, chapt. III), 

and subeequentlyreproduced by such writers as Carslaw (i, 

chapt. IV) and Wolfe (15, chapt. V). Other dodges were 

devised by Grard (7), Young (16), and Fulton (6). A very 

careful treatment based upon the fact that hyperbolic 

geometry is euclidean in character in an infinitesimal 

domain was supplied by Coolidge (3, chapt. IV). 
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In order to establish the relative consistency ot hyper-. 

bolle geometry and some second body of mathematice, it auf- 

fices to devise a model in the second body containing 

elemente, with appropriate connecting relations, which, 

when substituted for the undefined elements and relations of 

a postulate set for hyperbolic geometry, will interpret those 

postulates as true theorems in the chosen body of mathematics. 

Since it is usually desired to establish the relative con- 

sistericy of the hyperbolic and euclidean geometries, many 

euclidean models have been devised, the most famous ones 

being due to Beltraini, Cayley, Klein, and Poincar (4, chapt. 

XIV). Once such a model has been devised it is conceivable 

that some theorems of hyperbolic geometry might be more 

readily established by demonstrating the analogues in the 

model rather than the originals directly from the accepted 

postulate basis (see appendix I). In particular, it may be 

that the trigonometry of the hyperbolic plane, which is 

usually established directly within the hyperbolic system 

only by means of more or less clever and complicated devices, 

can be rather easily established from one of the euclid.ean 

models. It is the purpose of this paper to so develop hyper- 

bolic plane trigonometry, selecting for the model one that 

was exploited by Poincaz4 (ii), and which is singularly 

elementary in nature. Carslaw (i, chapt. VIII, and 2) has 

already shown the utility of this particular model by very 
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simply establishing from it several difficult theorems of 

hyperbolic geometry, arid O. D. Smith, in his Oregon State 

College Master's Thesis (13), has, in a very elementary 

manner, developed a large portion of the hyperbolic geome-. 

try In this way. 
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2. DESCRIPTION OF THE POINCAR MODEL 

As an acceptable postulate set for plane hyperbolic 

geometry let us select that of HUbert (8) (see appendix 

II). The primitive terms for this postulate set are point, 

line, between (applied to three pointa on a line), .- 

gruent segments, and congruent angles. The postulates are 

statements concerning these primitive terms. A euclidean 

model of plane hyperbolic geometry must, then, be a system 

of geometrical elements and relations which, when substi- 

tuted for the primitive terms, convert the Hubert postu- 

lates into true theorems in euclidean geometry. The 

Poinc'r model accomplishes this as follows. A fixed cir- 

cle, £ , is selected and called the fundamental circle. 

We then set up the following "dictionary": 

1. a point of the hyper- 
bolic plane 

2. a line of the hyper- 

bolic plane 

3. point C lies between 

A and B 

1. a point interior to 

(hereafter called a 

nominal point) 

2. the arc interior to E 
of any circle orthogonal 

to Z ìereafter called 

a nominal line) 

3. nominal point C lies be- 

tween nominal points A and 

B on the nominal segment 

determined by A and B 

We now define the (positive) nominal length of a nominal 

segment AB as 

log(AB,TS) = k ln(AB,TS), k = - ln a, 

where S and T are the points where the nominal line AB meets 
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A lying between S and B, and (AB,T5) denotes the 

anharmonic ratio (AT/BT)/(AS/BS) of the circular range A, 

B, T, S. Also, we define the nominal measure of the angle 

between two intersecting nominal lines as the ordinary 

radian measure of the angle between the two circles on 

which the nominal lines lie. Concluding our "dictionary" 

we then take 

4. segment AB is congruent 
to segment A'B' 

4. nominal segments AB and 
AtBt have equal nominal 

lengths (hereafter said 

to be nominally con- 

gruent) 

5. angle ACB le congruent 5. nominal angles ACE and 

to angle A'C'B' A'C'B' have equal nom- 

ina]. measures (hereafter 

said to be nominally 

congruent ) 

It can be shown that with this "dictionary" the 

Hubert postulates for plane hyperbolic geometry become 

true theorems in euclidean geometry. For every theorem 

in hyperbolic plane geometry there is the euclidean 

counterpart in the Poincar model, and the establishment 

of the latter carries with it that of the former. We now 

proceed to establish hyperbolic plane trigonometry by 

obtaining the necessary counterparts in the Polncax4 model. 



3. PRELIMINARY THEOREMS 

Consider any nomina]. right triangle O'P'Q', right 

angled at (see fig. i), and let the circles determined 

by the nomina]. lines OP1 and O'Q' intersect again in C. 

Invert the figure with respect to C as center and with a 

power that carries into itself. Since inversion is a 

conforma]. transformation, the circles CP'O', C'O', being 

orthogonal to and. passing through the center of iriver- 

eton C, invert into two diametral lines of . Thus, by 

the inversion, the right triangle OP'Q' is carried into 

the right triangle OP, where OP and. O are radi.aJ. lines 

of . Since both angles and anharmonto ratios are pre- 

served under inversion, it follows that nominal triangles 

OIPl' and. OPQ are nominally congruent, and, to obtain the 

fundamental formulas of hyperbolic plane trigonometry, it 

suffices to study the relations connecting the nominal 

lengths of the sides and the nominal measures of the angles 

of the specially placed right triangle OPQ. We shall con- 

sistently distinguish euclidean lengths from nomina]. lengths 

by placing bare over the latter. Since angles have the same 

nomina]. and euclidean measures, no bars are here needed. 

Let the circle IT determined by the nominal line Q.P cut 

in S and T, Q lying between S and P (see fig. 2), and let 

IOQI and MOPN be diameters of IJ cutting IT again in W. 
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We now establish a short chain of theorems connected with 

fIg. 2. 

THEOREN 3.1. If WS and WT cut again in U and V, 

then UV is the diameter of perpendicular to diameter IJ. 

Select W as center of inversion, and choose a power BUCh 

that inverts into itself. Then S inverts into U, and T 

into V. Since IT is orthogonal to both and IJ, it follows 

that UV is the diameter of perpendicular to diameter IJ. 

THEOREM 3.2. Let WP cut UV in R, and designate the 

lengths of OW and OR m and n, and radius r. 

K center 2.. lT M and N be the feet of the 

perpendiculars dropped from P ori OW and OR respectively. Then 

(a) KP = (m2 - r2)/2m, 

(b) 0M = m(n2 + r2)/(m2 + n2), 

(c) OP = (m2n2 + r4)/(m2 + 

(d) QQ = r2/m. 

Since KP = OW _ OK = m - (r2 + KP2), it follows that 

KP = (m2 r2)/2m. 

Also, since tan PWO = n/rn, and since angle PKO is twice angle 

PWO, it follows that 

tan PKO 2mn/(m2 - n2), sin PKO = 2rnn/(rn2 + n2). 

Therefore 

MP = K? sin PKO = n(rn2 - r2)/(rn2 + n2). 



And, from similar triangles R1W and ROW, 

0M NP = (OW)(NR)/oN m(n _MP)/n = m(n2 + r2)/(m2 + n2). 

Then 

Finally, 

OP2 MP2 + 0M2 = (m2n2 + r4)/(m2 + n2). 

QQ, 0W - 2KP = m - 2 (ni2 - r2 )/2m = r2/m. 

THEOREM 3.3. The segments OP, QQ, OR are connected 

relation 

r2+OP2r2+0R2 r2+0Q2 

r2 r2 OR2 r2 - QQ2 

For, by theorem 

r2 + OP2 r2(m2 + 

r2 OP2 r2(m2 + 

r2 + n2 
= 

r2 - n2 

3.2 (c), 

. m2n2 + r4 (r2 + n2)(in2 + r2) 

22 _ r4(r2 n2)(m2 - r2) 

r2 + r4/m2 r2 + OR2 r2 + QQ.2 
. 

r2 - r4/m2 r2 - OR2 r2 - QQ2 

since OR = n and, by theorem 3.2 (a), QQ. = r2/m. 

THEOREM 3.4. If QQ is any radial segment of , then 

(a) cosh(/k) = (r2 + 0Q2)/(r2 - QQ,2), 

(b) einh(/k) = 2rOQ,/(r2 - QQ2), 

(c) tanh(/k) = 2rOQ/(r2 + QQ2). 

For, since ,/k = ln(OQ,,IJ), we have 



coeh(/k) = Lexp(/k) + exp(_/k)]/2 

= [oQ,IJ) + (oQ,JIj/2 

= [(oI/Q.I)/(oJ/Q.J) + (oJ/QJ)/(oI/Q,I)]/2 

= [J/IQ + IQ/QJJ/2 

= [(r - OQ)/(r + OQ) + (r + - OQ)] /2 

= (r2 + 0Q2)/(r2 

and relation (a) is established. Relations (b) and (c) 

follow in a similar manner, or from the identities 

sinh2 x = coeh2 x - i and tanh x (sirth x)/(cosh x). 



4. HYPERBOLIC PLANE TRIONOMETRY 

We are now ready to derive the formulas of hyperbolic 

plane trigonometry. It is well known that the formulas 

for the general hyperbolic triangle, such as the law of 

sines, the law of cosines, etc., are readily derived by 

purely analytical procedures from the formulas for the 

hyperbolic right triangle. If we are given such a right 

triangle ABC, right angled at C, and if we designate the 

lengths of the sides opposite A, B, C by a, b, e, and. let 

k be the parameter of hyperbolic geometry, the formulas 

for the hyperbolic right triangle are 

(i) cosh c/k = cosh a/k cosh b/k, 

(2.1) cos A = (tanh b/k)/(tanh c/k), 

(2.2) cos B = (tanh a/k)/(tanh c/k), 

(3.1) sin A = (sirth a/k)/(sinh c/k), 

(3.2) sin B = (slnh b/k)/(sinh c/k), 

(4.1) tan A = (tanh a/k)/(si.nh b/k), 

(4.2) tan B = (tanh b/k)/(sinh a/k), 

(5.1) cosh a/k cos A / sin B, 

(5.2) cosh b/k = cos B / sin A, 

(6) cot A cot B cosh c/k. 

We shall now establish the first two formulas, (i) arid 

(2.1), and then show that all the other formulas of the 
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list can be obtained from these two by purely analytical 

procedures. 

THEOREM 4.1. In figure 2 

cosh(P/k) = cosh(/k) cosh(/k). 

As an immediate consequence of theorems 3.3 and 3.4 

(a) we have 

cosh(5P/k) = coehÇ5/k) cosh(/k). 

But, by theorem 3.1, (Q.P,ST) = w(QP,sT) = (OR,UV), whence 

= 
, and the theorem is established. 

THEOREI4 4.2. In figure 2 

cos QOP = tanh(/k) / tanh(/k). 

For, by theorem 3.4 (e), 

tanh(cJk) / tanh(6/k) = OQ,(r2+0P2)/OP(r2+0Q2). 

Substituting the expressions for OP and QQ as given by 

theorem 3.2 (e) ana. (a.), and simplifying, we find 

tanh(/k) / tarth(/k) 

= m(r2+ n2)/(m2n2+r4)(m2+ 
2) 

= [m(r2+ n2)/(m2+ n2)]/ {(m2n2+ r4)/(m2 

= ON/OP (theorem 3.2 (b) ana. (e)) 

= COB QOP, 

and the theorem is established. 

Relation (2.2) follows because A in (2.1) was arbitrary. 
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We now establish (3.1) from (i), (2.1), and elernen- 

tary hyperbolic identities. We have 

sin2 A = j. - A i - (tanh2 b/k)/(tarìh2 c/k) 

= (tanh2 c/k - tanh2 b/k)/(tanh2 c/k) 

= (sech2 b/k - sech2 c/k)/(tanh2 c/k) 

= [(cosh2 c/k)/(cosh2 b/k) 1)/(sinh2 

(coeh2 a/k - l)/(sinh2 c/k) 

(sixth2 a/k)/(sinh2 c/k). 

Thus, choosing the positive square root since A is an 

acute angle, relation (3.1) is established, and with it 

falls (3.2). 

Relation (4.1) follows from (i), (2.1), and (3.1), for 

tan A = (sixth a/k)(tanh c/k)/(sinh c/k)(tsnh b/k) 

= (sinh a/k)(cosh b/k)/(cosh c/k)(sinh b/k) 

= (tanh a/k)/(sirìh b/k). 

Relation (4.2) follows similarly from (i), (2.2), and (3.2). 

Relation (5.1) follows from (1), (2.1), and (3.2), for 

cog A / sin B = (tanh b/k)(sinh c/k)/(tanh c/k)(sinh b/k) 

= (cosh c/k)/(cosh b/k) 

= cosh a/k. 

Relation (5.2) follows similarly from (1), (2.2), and (3.1). 

Finally, from (1), (5.1), and (5.2), we have 
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cosh c/k = (cash a/k)(cosh b/k) 

= (cos A / sin B)(cos B / sin A) 

cot A cot B, 

which is relation (6), and we conclude our derivations. 
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5. APPENDIX I 

Eisenhart, in his text on coordinate geometry (5, 

appendix to chapt. I), gives an exposition of the relation 

between a set of postulates for euclidean geometry and the 

algebraic foundations of cartesian coordinate geometry. 

He uses a slight modification of a set of postulates by 

Hubert. It is interesting to note that he answers in 

the affirmative the question: Do the methods of cartesian 

coordinate geometry enable one to solve any problem in 

euclidean plane geometry? This, of course, is dependent 

upon establishing a one-to-one correspondence between the 

primitive terms of euclidean geometry and appropriate alge- 

braic elements ana. equalities. 

So we see thet the idea of developing euclidean geo- 

metry to a high degree of perfection by the use of a model 

is not new but is employed in analytical geometry and the 

calculus. These subjects develop geometry by means of a 

model based in the real number system. The power of de- 

velopirig a subject from a model is thus adequately illus- 

trat ed. 
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6. APPENDIX II 

The following, paraphrased from Eisenhartts coor-. 

dina.te geometry (5, appendix to chapt. I), is a simpli- 

fied presentation of Hubert's postulate set for plane 

hyperbolic geometry. 

AXIOM 1. There is one and only one line passing 

through any two given (distinct) points. 

AXIOM 2. Every line cont8ins at least two points, 

end given any line there is at least one point not on it. 

AXIOM 3. If a point B lies between the points A and 

C, then A, B, and C all lie on the seine line, and B lies 

between C and A, and C does not lie between B and A, and 

A does not lie between B and C. 

AXIOM 4. Given any two (distinct) points A and C, 

there can always be found a point B which lies between A 

and C, and a point D such that C lies between A and D. 

AXIOM 5. If A, B, C are (distinct) points on the 

same line, one of the three points lies between the other 

two. 

DEFINITION. The segment (or closed interval) AC con- 

siete of the points A and. C and. of all points which lie 

between A and C. A point B is said to be on the segment 

AC if it lies between A and C, or is A or C. 
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DEFINITION. Two 1ine, a line and a segment, or two 

segmente, are said to Intersect each other if there Is a 

point which is on both of them. 

DEFINITION. The triangle ABC consists of the three 

segments AB, BC, and CA (called the sides of the triangle), 

provided the points A, B, and C (called the vertices of the 

triangle) are not on the same line. 

AXIOM 6. A line which intersects one side of a tri- 

angle and does not pass through any of the vertices must 

also intersect one other side of the triangle. 

AXIOM 7. If A and B are (distinct) points and A' is 

a point on a line L, there exist two and only two (dis- 

tinct) pointe B' and B" on L such that the pair of pointa 

A', B' is congruent to the pair A, B and the pair of 

pointe At, B" is congruent to the pair A, B; moreover A' 

lies between B' and B". 

AXIOM 8. T'ïo pairs of points congruent to the same 

pair of points are congruent to each other. 

AXIOM 9. If B lies between A arid C, and B' lies be- 

tween A' and C', and A, B is congruent to A', B', and B, 

C is congruent to B', C', then A, C is congruent to A', C'. 

DEFINITION. Two segments are congruent if their end 

points are congruent pairs of points. 

DEFINITION. The AC consists of all points B 

which lie between A and C, the point C itself, and all 
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points D such that C 11es between A an D. (In conse- 

quence or preceding axioms lt Is readIly proved that 1f 

CI Is any point on the ray AC the rays AC' and AC are 

identical. ) The r.y AC is said to be from the point A. 

DEFINITION. The angle BAC consists of the point A 

(the vertex of the ng1e) and the two rays AB and AC (the 

sides of the angle). 

DEFINITION. If ABC is a triangle, the three angles 

BAC, ACB, OBA are called the angles of the triangle. More- 

over the angle BAC is said to be included between the sides 

AB and AC of the triangle (and similarly for the other two 

angles of the triangle). 

AXIOM 10. If BAC is an angle whose sides do not lie 

in the same line, and Et and At are (distinct) points, 

there exist two and only two (distinct) rays, A'C' and 

A'C", from A' such that the angle B'A'C' is congruent to 

the angle BAC, and the angle BIAtCU is congruent to the 

angle BAC; moreover if E' is any point on the ray A'C' and 

E" is any point on the ray A'C", the segment EtEtt inter- 

sects the line A'B'. 

AXIOM 11. Every angle is congruent to itself. 

AXIOM 12. If two sides and the included angle of one 

triangle are congruent respectIvely to two sides and the 

included angle of another triangle, then the remaining 

angles of the first triangle are congruent each to the 



corresponding angle of th second triangle. 

AXIOM 13. Through a given point A not on a given line 

L there passes more than one line which does not intersect 

L. 

AXIOM 14. If A, B, C, D are (distinct) points, there 

exist on the ray AB a finite set of (distinct) points A1, 

A2, ..., A such that (1) each of the pairs A, A1; A1, A2; 

A2, A3; ...; A is congruent to the pair C, D and 

(2) B lies between A and A. 

AXIOM 15. The points of a line form a system of 

points such that no new points can be added to the space 

and assigned to the line without causing the line to vio- 

late one of the first eight axioms or Axiom 14. 
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