## HYPERBOLIC VOLUMES OF FIBONACCI MANIFOLDS

## A. Yu. Vesnin and A. D. Mednykh

This article is devoted to the study of three-dimensional compact orientable hyperbolic manifolds connected with the Fibonacci groups. The Fibonacci groups

$$
F(2, m)=\left\langle x_{1}, x_{2}, \ldots, x_{m}: x_{i} x_{i+1}=x_{i+2}, i \bmod m\right\rangle
$$

were introduced by J. Conway [1]. The first natural question connected with these groups was whether they are finite or not [1]. It is known from [2-6] that the group $F(2, m)$ is finite if and only if $m=1,2,3,4,5,7$. Some algebraic generalizations of the groups $F(2, m)$ were considered in [ 7 ].

A new stage in studying the Fibonacci groups began with [5], where it was shown that the group $F(2,2 n), n \geq 4$, is isomorphic to a discrete cocompact subgroup of $\mathrm{PSL}_{2}(\mathbb{C})$, the full group of orientation-preserving isometries of the Lobachevskiĭ space $\mathbb{H}^{3}$. Moreover, the group $F(2,6)$ is isomorphic to a three-dimensional affine group.

The hyperbolic manifolds $M_{n}=\mathbb{H}^{3} / F(2,2 n), n \geq 4$, uniformized by Fibonacci groups are referred to as the Fibonacci manifolds.

It was shown in [8] that the manifold $M_{n}$ is the $n$-fold cyclic covering of the three-dimensional sphere $\mathbf{S}^{3}$ branched over the figure-eight knot. We note that $M_{n}$ are isometric to the hyperbolic manifolds described in [9].

In the present article we continue studying the algebraic, topological, and arithmetic properties of the Fibonacci manifolds. We establish that the hyperbolic volumes of the manifolds $M_{n}$ agree with the volumes of the noncompact hyperbolic manifolds arising from complementing some well-known knots and links. In consequence it is shown that there are arithmetic and nonarithmetic manifolds with the same hyperbolic volume.

## § 1. Hyperbolic Volumes. The Thurston-Jørgensen Theorem

In this section we recall some properties of the volumes of hyperbolic manifolds. An $n$-dimensional hyperbolic manifold is thought of as the quotient space $M^{n}=\mathbb{H}^{n} / \Gamma$, where $\Gamma$ is a fixed-point-free discrete group of isometries of the Lobachevskiĭ space $\mathbb{H}^{n}$. The notions of hyperbolic area and hyperbolic volume in $\mathbb{H}^{2}$ and $\mathbb{H}^{3}$ are naturally carried over to $M^{2}$ and $M^{3}$. Further we consider the set $\mathcal{M}^{n}$, $n=2,3$, of all $n$-dimensional orientable hyperbolic manifolds of finite volume.

Consider the volume function $v_{n}: \mathcal{M}^{n} \rightarrow \mathbb{R}, n=2,3$, that associates the hyperbolic volume $\operatorname{vol}\left(M^{\boldsymbol{n}}\right)$ with each manifold $M^{\boldsymbol{n}} \in \mathcal{M}^{n}$. It is worth observing that the volume functions $v_{2}$ and $v_{3}$ have essentially different properties.

The two-dimensional case is completely described by the Gauss-Bonnet theorem. If $M^{2}$ is a hyperbolic surface of genus $g$ with $k$ points removed, then

$$
\operatorname{vol}\left(M^{2}\right)=2 \pi(2 g-2+k)
$$

Therefore, the range of the function $v_{2}$ is a discrete set of the form $2 \pi \mathbb{N}$, where $\mathbb{N}$ is the set of positive integers (see Fig. 1):

| 1 | 2 | 3 | 4 |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
| $2 \pi$ | $4 \pi$ | $6 \pi$ | $8 \pi$ |  |

Fig. 1

Given $v_{0}=2 \pi n_{0}, n_{0} \in \mathbb{N}$, there are only finitely many nonhomeomorphic surfaces $M^{2}$ with area $\operatorname{vol}\left(M^{2}\right)=v_{0}$. All of them satisfy the equality

$$
2 g-2+k=n_{0}
$$

In particular, given an even $n_{0} \in \mathbb{N}$, there are compact and noncompact surfaces with the same area $v_{0}=2 \pi n_{0}$.

In the three-dimensional case the following remarkable theorem of Thurston and Jørgensen is valid: the set of the volumes of three-dimensional hyperbolic manifolds is a well-ordered subset of type $\omega^{\omega}$ in the real line. This set is plotted schematically in Fig. 2, where some well-known values of the function $v_{3}$ are listed.


Fig. 2
In particular, it follows from the Thurston-Jørgensen theorem that there exists a three-dimensional hyperbolic manifold of the least volume. Some conjecture on the structure of the initial segment of the set of volumes was suggested in [10]. The manifold constructed independently by J. Weeks [11] and S. V. Matveev and A. T. Fomenko [10] has the least volume, $0.94 \ldots$, among the manifolds known so far. The manifold obtained by W. Thurston [12] by the (5,1)-Dehn surgery on the figure-eight knot has the second known volume $0.98 \ldots$. The third known value $1.01 \ldots$ is equal to the volume of the Meyerhoff-Neumann manifold [13]. We point out that this value is not on the list of [10]. The minimal manifold among known noncompact hyperbolic manifolds is the complement of the figure-eight knot. Its volume equals $2.02 \ldots$ and corresponds to the first limit ordinal number in the set of volumes.

In [12] W. Thurston constructed two noncompact manifolds with the different number of cusps, but with the same volume which corresponds to a limit ordinal of the set $\omega^{\omega}$. In the same article he posed the question of existence of a compact hyperbolic manifold whose volume corresponds to a limit ordinal. Below (see the theorem in §5) we show that the compact Fibonacci manifolds enjoy this property.

## § 2. Fibonacci Manifolds as Branched Coverings

It was shown in [8] that the Fibonacci manifold $M_{n}$ can be represented as the $n$-fold cyclic covering of the three-dimensional sphere $\mathbb{S}^{3}$ branched over the figure-eight knot (see Fig. 3). It means that $M_{n}$ is the $n$-fold covering of the orbifold $\mathcal{O}(n)$ whose underlying space is $\mathbb{S}^{3}$ and whose singular set is the figure-eight knot with index $n$.


Fig. 3


Fig. 4

The orbifold $\mathcal{O}(n)$ has a rotational symmetry of order 2 whose set of fixed points is disjoint from the singular set of the orbifold. After factorizing by this symmetry we obtain the orbifold $6_{2}^{2}(2, n)$
with underlying space $\mathbf{S}^{3}$ and singular set the link $6_{2}^{2}$ (in notations of [14]) of two components with indices 2 and $n$ (see Fig. 4).

The above implies that the following diagram of coverings holds for the Fibonacci manifolds $M_{n}$ and the orbifolds $\mathcal{O}(n)$ and $6_{2}^{2}(2, n)$ (see Fig. 5):


Fig. 5
Therefore, the hyperbolic volumes satisfy the relation

$$
\begin{equation*}
\operatorname{vol}\left(M_{n}\right)=\operatorname{nvol}(\mathcal{O}(n))=2 \operatorname{nvol}\left(6_{2}^{2}(2, n)\right) \tag{1}
\end{equation*}
$$

In the general case, denote by $6_{2}^{2}(m, n), m, n \in \mathbb{N} \cup\{\infty\}$, the orbifold with underlying space $\mathbb{S}^{3}$ and singular set the link $6_{2}^{2}$ of two components with indices $m$ and $n$. Observe that the orbifold $6_{2}^{2}(m, n)$ can be obtained by the generalized Dehn surgery with parameters $(m, 0)$ and $(n, 0)$ on the two components of the link $6_{2}^{2}$. The index $\infty$ indicates the removal of the corresponding component. In this case we deal with a noncompact orbifold.

Now, consider noncompact manifolds connected with the link $6_{2}^{2}$. Denote by $T h_{n}, n \geq 2$, the closed 3 -strings braid $\left(\sigma_{1} \sigma_{2}^{-1}\right)^{n}$. Observe that the members of the family $T h_{n}$ are well known. In particular, $T h_{2}$ is the figure-eight knot, $T h_{3}$ are the Borromean rings, $T h_{4}$ is the Turk's head knot $8_{18}$ and $T h_{5}$ is the knot $10_{123}$ in the notation of [14]. It was shown in [12] that the manifolds $\mathbb{S}^{3} \backslash T h_{n}$, $n \geq 2$, are hyperbolic and can be represented as the $n$-fold cyclic coverings of the orbifold $62(n, \infty)$. In particular, for the hyperbolic volumes we have

$$
\begin{equation*}
\operatorname{vol}\left(\mathbb{S}^{3} \backslash T h_{n}\right)=n \operatorname{vol}\left(6_{2}^{2}(n, \infty)\right) \tag{2}
\end{equation*}
$$

The values of the volumes in (1) and (2) will be calculated in $\S 3$ and $\S 4$.

## § 3. Volumes of Compact Orbifolds and Manifolds

In this section, we calculate the volumes of the above-introduced compact hyperbolic orbifolds by means of the Lobachevskiil function.

We recall that an ideal tetrahedron $T$ in $\mathbb{H}^{3}$ with four ideal vertices is described completely (up to isometry) by a single complex parameter $z$ with $\operatorname{Im} z>0$. In this case the dihedral angles of the tetrahedron $T=T_{z}$ equal $\arg z, \arg \frac{z-1}{z}$, and $\arg \frac{1}{1-z}$; and each value occurs twice for a pair of opposite edges.

It is well known $[15,16]$ that the volume of the ideal tetrahedron $T_{z}$ is given by

$$
\begin{equation*}
\operatorname{vol}\left(T_{z}\right)=\Lambda(\arg z)+\Lambda\left(\arg \frac{z-1}{z}\right)+\Lambda\left(\arg \frac{1}{1-z}\right) \tag{3}
\end{equation*}
$$

where

$$
\Lambda(x)=-\int_{0}^{x} \ln |2 \sin \zeta| d \zeta
$$

is the Lobachevskiil function. We recall some properties of the function $\Lambda(x)$ :

$$
\Lambda(-x)=-\Lambda(x), \quad \Lambda(x+\pi)=\Lambda(x)
$$

Below we express the hyperbolic volumes of the orbifolds $\mathcal{O}(n)$ and $6_{2}^{2}(2, n)$ and the manifolds $M_{n}$ in terms of the Lobachevskiil function.

Lemma 1. For $n \geq 4$ the hyperbolic volume of the orbifold $\mathcal{O}(n)$ is equal to

$$
\operatorname{vol}(\mathcal{O}(n))=2(\Lambda(\beta+\delta)+\Lambda(\beta-\delta))
$$

where $\delta=\pi / n$ and $\beta=1 / 2 \arccos (\cos (2 \delta)-1 / 2)$.
Proof. Consider the orbifold $\mathcal{O}(n)$ as the result of performing the generalized ( $n, 0$ )-Dehn surgery to the complement of the figure-eight knot. By analogy to [17], the orbifold $\mathcal{O}(n)$ can be obtained by the completion of the noncomplete hyperbolic structure on the union of two ideal tetrahedra $T_{z}$ and $T_{w}$ whose complex parameters $z$ and $w$ satisfy the conditions

$$
\begin{equation*}
z w(z-1)(w-1)=1, \quad(w(1-z))^{n}=1, \quad \operatorname{Im} z>0, \quad \operatorname{Im} w>0 \tag{4}
\end{equation*}
$$

From here we obtain the following equation in $z$ :

$$
z^{2}+\left(2 i \sin \frac{2 \pi}{n}-1\right) z+e^{-2 \pi i / n}=0
$$

It has the solution

$$
z=\frac{1}{2}-i \sin \left(\frac{2 \pi}{n}\right) \pm i \sqrt{1-\left(\cos \left(\frac{2 \pi}{n}\right)-\frac{1}{2}\right)^{2}} .
$$

Setting $\varphi=2 \pi / n, n \geq 4$, we have $-1 / 2 \leq \cos \varphi-1 / 2<1 / 2$. Choose $\psi, 0<\psi<\pi$, such that $\cos \psi=\cos \varphi-1 / 2$. Then $z=1 / 2+i( \pm \sin \psi-\sin \varphi)$. By virtue of the condition $\operatorname{Im} z>0$, we choose the solution with the plus sign:

$$
\begin{equation*}
z=\frac{1}{2}+i(\sin \psi-\sin \varphi) . \tag{5}
\end{equation*}
$$

Therefore, from (4) we have

$$
\begin{equation*}
w=\frac{\cos \varphi+i \sin \varphi}{1 / 2-i(\sin \psi-\sin \varphi)} \tag{6}
\end{equation*}
$$

For $n \geq 5$ expressions (5) and (6) satisfy conditions (4). In the case $n=4$ we have $\operatorname{Im} z<0$ and $\operatorname{vol}\left(T_{z}\right)<0$. It means that the volume of the orbifold equals the difference of the volumes of the tetrahedra $T_{w}$ and $T_{z}$.

For finding the volume of the ideal tetrahedron $T_{z}$ with complex parameter $z$, we shall calculate the values of the following arguments of complex numbers:

$$
\arg z, \quad \arg \frac{z-1}{z}, \quad \arg \frac{1}{1-z} .
$$

Proposition 1. With the above notation, the following equalities hold:

$$
\arg z=\arg \frac{1}{1-z}=\frac{\pi-\varphi-\psi}{2}, \quad \arg \frac{z-1}{z}=\varphi+\psi .
$$

Proof. By straightforward computation from (5) we have

$$
\tan (\arg z)=\frac{\sin \psi-\sin \varphi}{1 / 2}=\frac{\sin \psi-\sin \varphi}{\cos \varphi-\cos \psi}=\cot \frac{\psi+\varphi}{2}=\tan \frac{\pi-\varphi-\psi}{2} .
$$

Similarly, for the second complex parameter we obtain

$$
\frac{1}{1-z}=\frac{1}{1 / 2-i(\sin \psi-\sin \varphi)}=\frac{1 / 2+i(\sin \psi-\sin \varphi)}{1 / 4+(\sin \psi-\sin \varphi)^{2}}
$$

$$
\tan \left(\arg \frac{1}{1-z}\right)=\frac{\sin \psi-\sin \varphi}{1 / 2}=\tan \frac{\pi-\varphi-\psi}{2}
$$

Therefore,

$$
\arg z=\arg \frac{1}{1-z}=\frac{\pi-\varphi-\psi}{2}
$$

To prove the remaining part of Proposition 1, observe that

$$
\arg z+\arg \frac{z-1}{z}+\arg \frac{1}{1-z}=\pi .
$$

Hence,

$$
\arg \frac{z-1}{z}=\pi-(\pi-\varphi-\psi)=\varphi+\psi
$$

which completes the proof.
From Proposition 1 and formula (3) we infer that

$$
\operatorname{vol}\left(T_{z}\right)=\Lambda(\varphi+\psi)+2 \Lambda\left(\frac{\pi-\varphi-\psi}{2}\right)
$$

Now, we turn to considering the tetrahedron $T_{w}$ with complex parameter $w$.
Proposition 2. With the above notation, the following equalities hold:

$$
\arg w=\arg \frac{1}{1-w}=\frac{\pi-\psi+\varphi}{2}, \quad \arg \frac{w-1}{w}=\psi-\varphi .
$$

Proof. Using Proposition 1, from (6) we obtain

$$
\arg w=\arg \frac{e^{i \varphi}}{1-z}=\varphi+\frac{\pi-\varphi-\psi}{2}=\frac{\pi-\psi+\varphi}{2}
$$

Similarly,

$$
\frac{w-1}{w}=1-\frac{1}{w}=1-\frac{1 / 2-i(\sin \psi-\sin \varphi)}{\cos \varphi+i \sin \varphi}=\frac{\cos \varphi-1 / 2+i \sin \psi}{\cos \varphi+i \sin \varphi}=\frac{\cos \psi+i \sin \psi}{\cos \varphi+i \sin \varphi}=e^{i(\psi-\varphi)}
$$

and therefore $\arg ((w-1) / w)=\psi-\varphi$. Thus,

$$
\arg \frac{1}{1-w}=\pi-\arg w-\arg \frac{w-1}{w}=\pi-\frac{\pi-\psi+\varphi}{2}-(\psi-\varphi)=\frac{\pi-\psi+\varphi}{2}
$$

which completes the proof.
From Proposition 2 and formula (3) we infer that

$$
\operatorname{vol}\left(T_{w}\right)=\Lambda(\psi-\varphi)+2 \Lambda\left(\frac{\pi+\varphi-\psi}{2}\right)
$$

The volume of the orbifold $\mathcal{O}(n)$ equals

$$
\begin{gathered}
\operatorname{vol}(\mathcal{O}(n))=\operatorname{vol}\left(T_{z}\right)+\operatorname{vol}\left(T_{w}\right) \\
=2 \Lambda\left(\frac{\pi-\psi-\varphi}{2}\right)+\Lambda(\varphi+\psi)+2 \Lambda\left(\frac{\pi-\psi+\varphi}{2}\right)+\Lambda(\psi-\varphi) \\
=2\left(\Lambda\left(\frac{\psi+\varphi}{2}\right)+\Lambda\left(\frac{\psi-\varphi}{2}\right)\right)
\end{gathered}
$$

In the last equality we used the following property of the Lobachevskiĭ function [16]:

$$
2 \Lambda(x)=\Lambda(2 x)+2 \Lambda\left(\frac{\pi}{2}-x\right)
$$

We return to the proof of Lemma 1. Assign $\delta=\varphi / 2$ and $\beta=\psi / 2$. Then $\delta=\pi / n$ and $\beta=1 / 2 \arccos (\cos (2 \delta)-1 / 2)$. Therefore, $\operatorname{vol}(\mathcal{O}(n))=2(\Lambda(\beta+\delta)+\Lambda(\beta-\delta))$, which completes the proof of Lemma 1.

From the diagram of coverings (Fig. 5) and Lemma 1 we obtain

Corollary 1. For $n \geq 4$ the hyperbolic volume of the Fibonacci manifold $M_{n}$ is equal to

$$
\operatorname{vol}\left(M_{n}\right)=2 n(\Lambda(\beta+\delta)+\Lambda(\beta-\delta)),
$$

where $\delta=\pi / n$ and $\beta=1 / 2 \arccos (\cos (2 \delta)-1 / 2)$.
Corollary 2. For $n \geq 4$ the orbifold $6_{2}^{2}(2, n)$ is hyperbolic and

$$
\operatorname{vol}\left(6_{2}^{2}(2, n)\right)=\Lambda(\beta+\delta)+\Lambda(\beta-\delta)
$$

where $\delta=\pi / n$ and $\beta=1 / 2 \arccos (\cos (2 \delta)-1 / 2)$.
For some values of $n$ the arguments of the Lobachevskiĭ function in Lemma 1 admit simpler expressions.

Corollary 3. For $n=4$ the following equality holds:

$$
\operatorname{vol}(\mathcal{O}(4))=\frac{3}{2} \Lambda\left(\frac{\pi}{3}\right) .
$$

Proof. For $n=4$ we have $\delta=\pi / 4, \beta=\pi / 3$. In this case Lemma 1 implies

$$
\operatorname{vol}(\mathcal{O}(4))=2\left(\Lambda\left(\frac{\pi}{3}+\frac{\pi}{4}\right)+\Lambda\left(\frac{\pi}{3}-\frac{\pi}{4}\right)\right)=2\left(\Lambda\left(\frac{7 \pi}{12}\right)+\Lambda\left(\frac{\pi}{12}\right)\right) .
$$

Recall that the Lobachevskiĭ function has the following property [15]:

$$
\begin{equation*}
\Lambda(m \theta)=m \sum_{k=0}^{m-1} \Lambda\left(\theta+\frac{k \pi}{m}\right) . \tag{7}
\end{equation*}
$$

For $m=4$ and $\theta=\pi / 12$, from (7) we obtain $\Lambda(\pi / 4)=4(\Lambda(\pi / 12)+\Lambda(\pi / 3)+\Lambda(7 \pi / 12)-\Lambda(\pi / 6))$ by straightforward computation. For $m=2$ and $\theta=\pi / 6$, from (7) we have $2 \Lambda(\pi / 6)=3 \Lambda(\pi / 3)$; hence, $3 \Lambda(\pi / 3)=4(\Lambda(7 \pi / 12)+\Lambda(\pi / 12))$, which completes the proof of the corollary.

Corollary 4. For $n=6$ the following equality holds:

$$
\operatorname{vol}(\mathcal{O}(6))=\frac{8}{3} \Lambda\left(\frac{\pi}{4}\right) .
$$

Proof. For $n=6$ we have $\delta=\pi / 6$ and $\beta=\pi / 4$. By Lemma 1 ,

$$
\operatorname{vol}(\mathcal{O}(6))=2\left(\Lambda\left(\frac{\pi}{4}+\frac{\pi}{6}\right)+\Lambda\left(\frac{\pi}{4}-\frac{\pi}{6}\right)\right)=2\left(\Lambda\left(\frac{5 \pi}{12}\right)+\Lambda\left(\frac{\pi}{12}\right)\right) .
$$

For $m=3$ and $\theta=\pi / 12$, from (7) we obtain $4 \Lambda(\pi / 4)=3(\Lambda(5 \pi / 12)+\Lambda(\pi / 12))$ by straightforward computation, and the corollary follows.

A similar argument yields
Corollary 5. For $n=10$ the following equality holds:

$$
\operatorname{vol}(\mathcal{O}(10))=2\left(\Lambda\left(\frac{3 \pi}{10}\right)+\Lambda\left(\frac{\pi}{10}\right)\right)
$$

## §4. Volumes of Noncompact Orbifolds and Manifolds

To calculate the volume of the manifold $\mathbf{S}^{3} \backslash T h_{n}$, we need the following
Lemma 2. For $n \geq 2$ the orbifold $6_{2}^{2}(n, \infty)$ is hyperbolic and

$$
\operatorname{vol}\left(6_{2}^{2}(n, \infty)\right)=4(\Lambda(\alpha+\gamma)+\Lambda(\alpha-\gamma)),
$$

where $\gamma=\pi / 2 n$ and $\alpha=1 / 2 \arccos (\cos (2 \gamma)-1 / 2)$.
Proof. Choose generators $a$ and $\tau$ of the fundamental group $\pi_{1}\left(\mathbb{S}^{3} \backslash 6_{2}^{2}\right)$ in the manner indicated in Fig. 6.


Fig. 6


Fig. 7

Using the Wirtinger algorithm [18], we obtain the following presentation for $\pi_{1}\left(\mathbb{S}^{3} \backslash 6_{2}^{2}\right)$ :

$$
\left\langle a, \tau \mid\left(\tau a^{-1} \tau a \tau^{-1} a \tau^{-1}\right)\left(\tau^{2} a^{-1} \tau a \tau^{-1} a \tau^{-2}\right)\left(\tau a^{-1} \tau a \tau^{-1} a \tau^{-1}\right)^{-1}=a\right\rangle .
$$

With new generators $x$ and $y$ such that $a=x^{-1} y^{-1}$ and $\tau=y^{-1}$, the group has presentation

$$
\begin{align*}
\pi_{1}\left(\mathbb{S}^{3} \backslash 6_{2}^{2}\right) & =\left\langle x, y \mid\left(x y^{-1} x^{-2}\right)\left(y^{-1} x y^{-1} x^{-2} y\right)\left(x y^{-1} x^{-2}\right)^{-1}=x^{-1} y^{-1}\right\rangle \\
& =\left\langle x, y \mid y^{-1}\left(x^{2} y x^{-1} y x^{2}\right)^{-1} y\left(x^{2} y x^{-1} y x^{2}\right)=1\right\rangle \\
& =\left\langle x, y \mid\left(x^{2} y x^{-1} y x^{2}\right) y\left(x^{2} y x^{-1} y x^{2}\right)^{-1} y^{-1}=1\right\rangle . \tag{8}
\end{align*}
$$

Demonstrate that this group is isomorphic to a discrete group of isometries of the Lobachevskiir space. Consider some polyhedron in $\mathbb{H}^{3}$ composed of four ideal regular tetrahedra (see Fig. 7). Denote the ideal vertices of the polyhedron by $A, B, C, D, E, F$, and $\infty$. Let $u, v, t$, and $r$ be isometries of the hyperbolic space $\mathbb{H}^{3}$ which identify the following faces of the polyhedron pairwise:

$$
\begin{array}{rlll}
u: A B E & \rightarrow & E D B, \\
v: A E F & \rightarrow & B D C, \\
t: A F \infty & \rightarrow & C D \infty, \\
r: A B C \infty & \rightarrow & F E D \infty .
\end{array}
$$

Let $\Gamma$ be the group generated by $u, v, t$, and $r$. By the Poincaré theorem, the complete list of relations for $\Gamma$ is as follows:

$$
\begin{array}{ll}
0: & u^{2}=v, \\
1: & u=r v t^{-1} v r, \\
2: & t r t^{-1} r^{-1}=1, \\
3: & r r^{-1}=1 .
\end{array}
$$

Moreover, the ideal vertices of the polyhedron fall into two equivalence classes whose link diagrams are shown in Fig. 8.

Fig. 8.


The polygons in Fig. 8 consist of regular Euclidean triangles. Their edges are pairwise identified by Euclidean isometries. Consequently, the two cusps have a complete hyperbolic structure and the group

$$
\begin{aligned}
\Gamma & =\left\langle u, v, t, r \mid u^{2}=v, u=r v t^{-1} v r, t r t^{-1} r^{-1}=1\right\rangle \\
& =\left\langle u, t, r \mid u=r u^{2} t^{-1} u^{2} r, t r t^{-1} r^{-1}=1\right\rangle \\
& =\left\langle u, r \mid\left(u^{2} r u^{-1} r u^{2}\right) r\left(u^{2} r u^{-1} r u^{2}\right)^{-1} r^{-1}=1\right\rangle
\end{aligned}
$$

has the polyhedron in Fig. 7 as a fundamental set in $\mathbb{H}^{3}$. As is easily seen from (8), the correspondence $x \rightarrow u, y \rightarrow r$ determines an isomorphism between the groups $\pi_{1}\left(\mathbb{S}^{3} \backslash 6_{2}^{2}\right)$ and $\Gamma$.

Now we turn to studying the orbifold $6_{2}^{2}(n, \infty)$ which results from applying the generalized $(n, 0)$ Dehn surgery to one of two cusps of the hyperbolic manifold $\mathbb{S}^{3} \backslash 6_{2}^{2}$. It means that the orbifold $6_{2}^{2}(n, \infty)$ can be obtained by completing the noncomplete hyperbolic structure on the union of four ideal tetrahedra (see Fig. 7) whose complex parameters $z_{1}, z_{2}, z_{3}$, and $z_{4}$ satisfy some system of algebraic equations. For finding these equations, consider the link diagrams of the two cusps of the manifold $\mathbb{S}^{3} \backslash 6_{2}^{2}$ (see Fig. 9 and Fig. 10, where $z^{\prime}=(z-1) / z$ and $z^{\prime \prime}=1 /(1-z)$ ).


Fig. 9. The generalized ( $n, 0$ )-surgery on the cusp of the manifold $\mathbb{S}^{3} \backslash 6_{2}^{2}$.


Fig. 10. The complete cusp of the manifold $\mathbb{S}^{3} \backslash 6_{2}^{2}$.

Looking at Fig. 9 and Fig. 10, we obtain the following system of equations:

$$
\left\{\begin{array}{l}
\left(z_{1}-1\right) z_{2} z_{3}\left(z_{4}-1\right)=1  \tag{9}\\
z_{1}\left(z_{2}-1\right)\left(z_{3}-1\right) z_{4}=1 \\
\left(z_{2}\left(1-z_{1}\right)\right)^{n}=1 \\
z_{3}\left(1-z_{1}\right)=1 \\
\operatorname{Im} z_{i}>0, \quad i=1,2,3,4
\end{array}\right.
$$

Denoting $\zeta=1 /\left(1-z_{1}\right)$, from (9) we have

$$
\begin{equation*}
z_{1}=\frac{\zeta-1}{\zeta}, \quad z_{2}=e^{2 \pi i / n} \zeta, \quad z_{3}=\zeta, \quad z_{4}=1-\frac{1}{e^{2 \pi i / n} \zeta} \tag{10}
\end{equation*}
$$

Furthermore, system (9) reduces to the equation

$$
\left(e^{\pi i / n} \zeta+\frac{1}{e^{\pi i / n} \zeta}-\left(e^{\nu i}+e^{-\nu i}\right)\right)^{2}=1
$$

where $\nu=\pi / n$. Choose $\theta$ such that $e^{\pi i / n} \zeta=e^{\theta i}$. Then $(2 \cos \theta-2 \cos \nu)^{2}=1$, and hence $\cos \theta=$ $\cos \nu \pm 1 / 2$. Since $\cos \theta \leq 1$, we choose the solution with the minus sign: $\cos \theta=\cos \nu-1 / 2$. Substituting $\zeta=e^{i(\theta-\nu)}$ into (10), we arrive at

$$
z_{1}=1-1 / e^{\mathrm{i}(\theta-\nu)}, \quad z_{2}=e^{i(\theta+\nu)}, \quad z_{3}=e^{i(\theta-\nu)}, \quad z_{4}=1-1 / e^{i(\theta+\nu)}
$$

Straightforward computation yields the following result:
Proposition 3. With the above notation, the following equalities hold:
(i) $\arg z_{1}=\arg \frac{z_{1}-1}{z_{1}}=\frac{\pi-\theta+\nu}{2}, \arg \frac{1}{1-z_{1}}=\theta-\nu$;
(ii) $\arg z_{2}=\theta+\nu, \arg \frac{z_{2}-1}{z_{2}}=\arg \frac{1}{1-z_{2}}=\frac{\pi-\theta-\nu}{2}$;
(iii) $\arg z_{3}=\theta-\nu, \arg \frac{z_{3}-1}{z_{3}}=\arg \frac{1}{1-z_{3}}=\frac{\pi-\theta+\nu}{2}$;
(iv) $\arg z_{4}=\arg \frac{z_{4}-1}{z_{4}}=\frac{\pi-\theta-\nu}{2}, \arg \frac{1}{1-z_{4}}=\theta+\nu$.

Since a tetrahedron in $\mathbb{H}^{3}$ is determined uniquely from its dihedral angles, we see that $T_{z_{1}}=T_{z_{3}}$ and $T_{z_{2}}=T_{z_{4}}$. Therefore, using (3) we conclude:

$$
\begin{aligned}
\operatorname{vol}\left(6_{2}^{2}(n, \infty)\right) & =2\left(\Lambda(\theta+\nu)+\Lambda(\theta-\nu)+2 \Lambda\left(\frac{\pi-\theta-\nu}{2}\right)+2 \Lambda\left(\frac{\pi-\theta+\nu}{2}\right)\right) \\
& =4\left(\Lambda\left(\frac{\theta+\nu}{2}\right)+\Lambda\left(\frac{\theta-\nu}{2}\right)\right)
\end{aligned}
$$

To complete the proof of Lemma 2, we assign $\gamma=\nu / 2$ and $\alpha=\theta / 2$. Then $\gamma=\pi / 2 n$ and $\alpha=1 / 2 \arccos (\cos (2 \gamma)-1 / 2)$. Therefore, the expression for the volume of the orbifold takes the form

$$
\operatorname{vol}\left(6_{2}^{2}(n, \infty)\right)=4(\Lambda(\alpha+\gamma)+\Lambda(\alpha-\gamma))
$$

The proof of Lemma 2 is complete.
In view of (2), we arrive at
Corollary 6. For $n \geq 2$ the volume of the noncompact hyperbolic manifold $\mathbb{S}^{3} \backslash T h_{n}$ equals

$$
\operatorname{vol}\left(\mathbb{S}^{3} \backslash T h_{n}\right)=4 n(\Lambda(\alpha+\gamma)+\Lambda(\alpha-\gamma))
$$

where $\gamma=\pi / 2 n$ and $\alpha=1 / 2 \arccos (\cos (2 \gamma)-1 / 2)$.

## § 5. Volumes of Fibonacci Manifolds

The principal result of the present article is:
Theorem 1. For $n \geq 2$ the following equality holds

$$
\operatorname{vol}\left(M_{2 n}\right)=\operatorname{vol}\left(\mathbb{S}^{3} \backslash T h_{n}\right) .
$$

Proof. The claim is a consequence of Lemmas 1 and 2. Namely, we achieve the assertion by applying Corollary 1 to the manifold $M_{2 n}, n \geq 2$, and Corollary 6 to the manifold $\mathbb{S}^{3} \backslash T h_{n}, n \geq 2$.

Thus, the volumes of the compact Fibonacci manifolds $M_{2 n}$ correspond to limit ordinals in the Thurston-Jørgensen theorem. In particular, the following assertions hold:

Corollary 7. The volume of the manifold $M_{4}$ is equal to the volume of the complement of the figure-eight knot.

Corollary 8. The volume of the manifold $M_{6}$ is equal to the volume of the complement of the Borromean rings.

Many properties of hyperbolic manifolds are determined by arithmeticity or nonarithmeticity of their fundamental groups [19]. As shown in [5, 8], the manifold $M_{n}$ is arithmetic for $n=4,5,6,8,12$ and nonarithmetic for the other values of $n$. It is proven in [20] that the figure-eight knot $T h_{2}$ is the only arithmetic knot. Furthermore, it is known [21] that the link $T h_{3}$ of Borromean rings is arithmetic too.

Corollary 9. Manifolds with the same volume can be both arithmetic and nonarithmetic:

| $n$ | $M_{2 n}$ | $S^{3} \backslash T h_{n}$ |
| :---: | :---: | :---: |
| 2 | arithmetic | arithmetic |
| 3 | arithmetic | arithmetic |
| 4 | arithmetic | nonarithmetic |
| 5 | nonarithmetic | nonarithmetic |

We remark that, while discussing Corollary 9, A. Reid kindly informed the authors about the possibility of a number-theoretic approach to the construction of compact and noncompact arithmetic manifolds with the same volume.

## References

1. J. Conway, "Advanced problem 5327," Amer. Math. Monthly, 72, 915 (1965).
2. J. Conway, "Solution to Advanced problem 5327," Amer. Math. Monthly, 74, 91-93 (1967).
3. G. Havas, "Computer aided determination of a Fibonacci group," Bull. Austral. Math. Soc., 15, 297-305 (1976).
4. M. F. Newman, "Proving a group infinite," Arch. Math., 54, No. 3, 209-211 (1990).
5. H. Helling, A. C. Kim, and J. Mennicke, A Geometric Study of Fibonacci Groups [Preprint/SFB343, Diskrete Strukturen in der Mathematik], Bielefeld (1990).
6. R. M. Thomas, "The Fibonacci groups $F(2,2 m)$," Bull. London Math. Soc., 21, No. 5, 463-465 (1989).
7. D. L. Johnson, J. W. Wamsley, and D. Wright, "The Fibonacci groups," Proc. London Math. Soc., 29, 577-592 (1974).
8. H. M. Hilden, M. T. Lozano, and J. M. Montesinos, "The arithmeticity of the figure eight knot orbifolds," in: Topology'90, Contrib. Res. Semester Low Dimensional Topology, Columbus/OH (USA) 1990, Ohio State Univ. Math. Res. Inst. Publ., 1992, pp. 169-183.
9. J. Hempel, "The lattice of branched covers over the figure-eight knot," Topology Appl., 34, No. 2, 183-201 (1990).
10. S. V. Matveev and A. T. Fomenko, "Constant energy surfaces of Hamiltonian systems, enumeration of three-dimensional manifolds in increasing order of complexity, and computation of volumes of closed hyperbolic manifolds," Uspekhi Mat. Nauk, 43, No. 1, 5-22 (1988).
11. J. Weeks, Hyperbolic Structures on 3-Manifolds, Ph. D. Thesis, Princeton Univ., Princeton (1985).
12. W. P. Thurston, The Geometry and Topology of Three-Manifolds, Princeton Univ., Princeton (1980) (Lecture Notes in Math.).
13. R. Meyerhoff and W. D. Neumann, "An asymptotic formula for the eta invariants of hyperbolic 3-manifolds," Comment. Math. Helv., 67, 28-46 (1992).
14. D. Rolfsen, Knots and Links, Publish or Perish Inc., Berkeley, Ca. (1976).
15. J. Milnor, "Hyperbolic geometry: the first 150 years," Bull. Amer. Math. Soc., V. 6. P. 9-25 (1982).
16. E. B. Vinberg, "Volumes of non-Euclidean polyhedrons," Uspekhi Mat. Nauk, 48, No. 2, 17-46 (1993).
17. W. D. Neumann and D. Zagier, "Volumes of hyperbolic three-manifolds," Topology, 24, No. 3, 307-322 (1985).
18. R. H. Crowell and R. H. Fox, Introduction to Knot Theory, Ma.: Ginn and Co., Boston (1963).
19. A. Borel, "Commensurability classes and hyperbolic volumes," Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 8, 1-33 (1991).
20. A. W. Reid, "Arithmeticity of knot complements," J. London Math. Soc. (2), 43, No. 1, 171-184 (1991).
21. R. Riley, "An elliptical path from parabolic representations to hyperbolic structures," Lecture Notes in Math., 722, 99-133 (1979).

Translated by A. Yu. Vesnin

