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H Y P E R B O L I C  V O L U M E S  OF F I B O N A C C I  M A N I F O L D S  
A. Yu.  V e s n i n  and  A. D.  M e d n y k h  UDC 515.16 + 512.817.7 

This article is devoted to the study of three-dimensional compact orientable hyperbolic manifolds 
connected with the Fibonacci groups. The Fibonacci groups 

F(2,  m) = (Zl, z 2 , . . . ,  z,n : ziZi+l = zi+2, { mod m) 

were introduced by J. Conway [1]. The first natural question connected with these groups was whether 
they are finite or not [1]. It is known from [2-6] that  the group F(2,  m) is finite if and only if 
m = 1,2,3,  4,5, 7. Some algebraic generalizations of the groups F(2,m) were considered in [7]. 

A new stage in studying the Fibonacci groups began with [5], where it was shown that the 
group F(2,  2n), n >_ 4, is isomorphic to a discrete cocompact subgroup of PSL2(C), the full group 
of orientation-preserving isometrics of the Lobachevskil space H a. Moreover, the group F (2 ,  6) is 
isomorphic to a three-dimensional affine group. 

The hyperbolic manifolds Mn = H3/F(2, 2n), n >_ 4, uniformized by Fibonacci groups are referred 
to as the Fibonacci manifolds. 

It was shown in [8] that  the manifold Mu is the n-fold cyclic covering of the three-dimensional 
sphere S 3 branched over the figure-eight knot. We note that  Mn are isometric to the hyperbolic 
manifolds described in [9]. 

In the present article we continue studying the algebraic, topological, and arithmetic properties 
of the Fibonacci manifolds. We establish that the hyperbolic volumes of the manifolds MT, agree with 
the volumes of the noncompact hyperbolic manifolds arising from complementing some well-known 
knots and links. In consequence it is shown that there are arithmetic and nonarithmetic manifolds 
with the same hyperbolic volume. 

w 1. H y p e r b o l i c  V o l u m e s .  T h e  T h u r s t o n - J C r g e n s e n  T h e o r e m  

In this section we recall some properties of the volumes of hyperbolic manifolds. An n- dimensional 
hyperbolic manifold is thought of as the quotient space M n - ~ / r ,  where F is a fixed-point-free dis- 
crete group of isometrics of the Lobachevskil space ~ .  The notions of hyperbolic area and hyperbolic 
volume in ~ and H 3 are naturally carried over to M 2 and M 3. Further we consider the set .M n, 
n - 2, 3, of all n-dimensional orientahle hyperbolic manifolds of finite volume. 

Consider the volume function vn : . ~ n  __+ R, n - 2, 3, that  associates the hyperbolic volume 
vol(M") with each manifold M n E ~ , .  It is worth observing that  the volume functions v2 and v3 
have essentially different properties. 

The two-dimensional case is completely described by the Gauss-Bonnet theorem. If M 2 is a hy- 
perbolic surface of genus g with k points removed, then 

vol(M 2) = 2~" ( 2 9 -  2 + k). 

Therefore, the range of the function v2 is a discrete set of the form 27rN, where N is the set of positive 
integers (see Fig. 1): 
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Fig. 1 
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Given v0 = 2~rn0, no E N, there are only finitely many nonhomeomorphic surfaces M 2 with area 
vol(M 2) = vo. All of them satisfy the equality 

2 g -  2 + k = no. 

In particular, given an even no E N, there are compact and noncompact surfaces with the same area 
v0 = 27rn0. 

In the three-dimensional case the following remarkable theorem of Thurston and Jcrgensen is 
valid: the set of the volumes of three-dimensional hyperbolic manifolds is a well-ordered subset of 
type w w in the real line. This set is plotted schematically in Fig. 2, where some well-known values of 
the function v3 are listed. 
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Fig. 2 

In particular, it follows from the Thurston-Jcrgensen theorem that  there exists a three-dimensional 
hyperbolic manifold of the least volume. Some conjecture on the structure of the initial segment of 
the set of volumes was suggested in [10]. The manifold constructed independently by J. Weeks [11] 
and S. V. Matveev and A. T. Fomenko [10] has the least volume, 0 .94 . . . ,  among the manifolds known 
so far. The manifold obtained by W. Thurston [12] by the (5,1)-Dehn surgery on the figure-eight knot 
has the second known volume 0.98 . . . .  The third known value 1.01 . . .  is equal to the volume of the 
Meyerhoff-Neumann manifold [13]. We point out that this value is not on the list of [10]. The minimal 
manifold among known noncompact hyperbolic manifolds is the complement of the figure-eight knot. 
Its volume equals 2 .02. . .  and corresponds to the first limit ordinal number in the set of volumes. 

In [12] W. Thurston constructed two noncompact manifolds with the different number of cusps, 
but with the same volume which corresponds to a limit ordinal of the set w w. In the same article 
he posed the question of existence of a compact hyperbolic manifold whose volume corresponds to 
a limit ordinal. Below (see the theorem in w 5) we show that  the compact Fibonacci manifolds enjoy 
this property. 

w 2. F ibonacc i  Mani fo lds  as Bra nched  Cover ings  

It was shown in [8] that  the Fibonacci manifold Mn can be represented as the n-fold cyclic covering 
of the three-dimensional sphere S 3 branched over the figure-eight knot ~see Fig. 3). It means that  Mn 
is the n-fold covering of the orbifold O(n) whose underlying space is S ~ and whose singular set is the 
figure-eight knot with index n. 

Fig. 3 Fig. 4 

n 

The orbifold O(n) has a rotational symmetry of order 2 whose set of fixed points is disjoint from 
the singular set of the orbifold. After factorizing by this symmetry we obtain the orbifold 622(2, n) 
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with underlying space S s and singular set the link 622 (in notations of [14]) of two components with 
indices 2 and n (see Fig. 4). 

The above implies that the following diagram of coverings holds for the Fibonacci manifolds M,, 
and the orbifolds O(n) and 622(2,n) (see Fig. 5): 

MII 

O(n) 
t2 

622(2,n) 
Fig. 5 

Therefore, the hyperbolic volumes satisfy the relation 

vol(Mn) = nvol(O(n)) = 2nvol(f22(2,n)). (1) 
In the general case, denote by 62(re, n), m, n E N U {co}, the orbifold with underlying space S 3 

and singular set the link 622 of two components with indices m and n. Observe that the orbifold 
622(re, n) can be obtained by the generalized Dehn surgery with parameters (m, 0)and  (n ,0)on  the 
two components of the link 622. The index co indicates the removal of the corresponding component. 
In this case we deal with a noncompact orbifold. 

Now, consider noncompact manifolds connected with the link 622. Denote by Thn, n > 2, the 
--1 n closed 3-strings braid (al~r2) . Observe that the members of the family Th,, are well known. In 

particular, Th2 is the figure-eight knot, Th3 a r e  the Borromean rings, Th4 is the Turk's head knot 81s 
and Ths is the knot 10123 in the notation of [14]. It was shown in [12] that the manifolds $3 \ Th,,, 
n > 2, are hyperbolic and can be represented as the n-fold cyclic coverings of the orbifold 622(n, co). 
In particular, for the hyperbolic volumes we have 

vol ($3 \ Thn) = nvol(f22(n, co)). (2) 

The values of the volumes in (1) and (2) will be calculated in w and w 

w 3. Volumes of Compac t  Orbifolds and Manifo lds  

In this section, we calculate the volumes of the above-introduced compact hyperbolic orbifolds by 
means of the LobachevskiY function. 

We recall that an ideal tetrahedron T in I{ 3 with four ideal vertices is described completely (up 
to isometry) by a single complex parameter z with Imz > 0. In this case the dihedral angles of 
the tetrahedron T = T~ equal arg z, arg z-1 T ,  and arg 1--~; and each value occurs twice for a pair of 
opposite edges. 

It is well known [15, 16] that the volume of the ideal tetrahedron T~ is given by ( 1 )  
vo l (T , )=A(argz )+A arg + A  argl---L-~z , (3) 

where 

= - / in 12 sin CI dC A(z) 
t /  

0 

is the LobachevskiY function. We recall some properties of the function A(z): 

A(-x)  = -A(x) ,  A(z + z) = A(z) .  

Below we express the hyperbolic volumes of the orbifolds O(n) and 622 (2, n) and the manifolds mn in 
terms of the LobachevskiY function. 
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L e m m a  1. For n > 4 the hyperbolic volume of the orbifold O(n) is equal to 

vol(O(n)) = 2(A(fl + 6) + A(,8 - $)), 

where $ = ~r/n and fl = lh  arccos(cos(2~ ) - 1 / 2 ) .  
PROOF. Consider the orbifold O(n) as the result of performing the generalized (n, 0)-Dehn surgery 

to the complement of the figure-eight knot. By analogy to [17], the orbifold O(n)  can be obtained by 
the completion of the noncomplete hyperbolic structure on the union of two ideal tetrahedra Tz and 
Tw whose complex parameters z and w satisfy the conditions 

z w ( z - 1 ) ( w - 1 ) = l ,  ( w ( 1 - z ) )  n = l ,  I m z > O ,  I m w > O .  

From here we obtain the following equation in z: 

(4) 

z2 + (2isin 21r --1) z + e-2xi/n = 

It has the solution 

1 ~ (cos ( ~ ) 1 )  2 . z= ~-is in(2-~) +i 1 -  

Setting ~ = 2~r/n, n > 4, we have  - 1 / 2  _< cos~ - 1/2 < 1/2. Choose r  0 < r < ~r, such that 
cos r = cos 7~ - 1/2. Then z = 1/2 + i(=t= sin r - sin ~). By virtue of the condition Im z > 0, we choose 
the solution with the plus sign: 

1 
z = ~ + i (sin r - sin ~). (5) 

Therefore, from (4) we have 
cos ~o + i sin ~0 

w = 1 / 2 -  i ( s i n r  sin~)" (6) 

For n _> 5 expressions (5) and (6) satisfy conditions (4). In the case n = 4 we have Imz  < 0 and 
rot(G) < 0. It means that  the volume of the orbifold equals the difference of the volumes of the 
tetrahedra Tw and G .  

For finding the volume of the ideal tetrahedron T, with complex parameter z, we shall calculate 
the values of the following arguments of complex numbers: 

z - 1  1 
argz ,  a r g o ,  a r g o .  

z 1 - z  

P r o p o s i t i o n  1. With the above notation, the following equalities hold: 

1 r - ~ - r  z - 1  
a r g z = a r g l _ z  2 , arg z = ~ o + r  

PROOF. By straightforward computation from (5) we have 

tan(arg z) = sin r - sin ~ _ sin r - sin ~ r + ~o _ tan 
1/2 - cos ~o - cos r = cot 

7r - ~ o  - r  

2 

Similarly, for the second complex parameter  we obtain 

1 1 
1 - - Z  112 - / ( s i n  r - sin ,p) 

1/2 +/ ( s in  r - sin ~,) 

1/4 + (sin r - sin ~o) 2' 
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Therefore,  

1 '~ s in  r - s in  T 
t an  arg ~ )  = 1/2 = tan  2 

1 7 r - T -  r 
a r g z  = arg 1 - z - 2 

To prove the  remain ing  par t  of Proposi t ion 1, observe tha t  

z - 1  1 
arg z + arg - -  + arg - -  -- 7r. 

z 1 - z  

Hence, 
z - 1  

arg - -  
Z 

which completes  the  proof. 
From Proposi t ion  1 and formula  (3) we infer tha t  

voI(T=) = A(T -t- r -t- 2A Cr - T - r ) 
2 

Now, we tu rn  to considering the  t e t rahedron  Tw wi th  complex pa rame te r  w. 

P r o p o s i t i o n  2. With the above notation, the following equalities hold: 
1 7 r - r  T w - 1  

- arg - -  - r - T- a r g w  - arg 1 - w 2 ' w 

PROOF. Using Proposi t ion 1, f rom (6) we obtain 

e'~ ~r - T - r ~r - r + T 
a r g w  = arg 1 - z - T + 2 - 2 

Similarly, 

w -  1 _ 1 1 _ 1 1/2 - i ( s i n r  s inT)  = cos T - 1/2 + i s i n r  _ c o s r  + i s i n r  ei(r 

w w cos T + i sin T cos T + i sin T cos T + i sin T 

and therefore a rg( (w - 1) /w) = r - T- Thus,  

1 w - 1  ~ r - r  
- -  - ~ r -  a r g w  - a r g - -  - ~r 

arg 1 - w w 2 

which completes  the  proof. 
From Proposi t ion  2 and formula  (3) we infer tha t  

The  volume of the  orbifold O(n) equals 

vol(O(n)) = vol(T,) + vol(Tw) 

(C-T) - 2 

= 2 A ( r - ~  - T ) + A ( T + r  ~ r - r  + A ( r  

In the  last equal i ty  we used the  following proper ty  of the  LobachevskiY funct ion [16]: 

2 A ( x ) = A ( 2 z ) + 2 A  7 - z  . 

We r e tu rn  to the  proof of L e m m a  1. Assign 6 = T/2  and fl = r  T h e n  6 = r /n  and 
/~ = 1/2 a r c c o s ( c o s ( 2 6 ) -  1/2).  Therefore,  vol(O(n))= 2(A(/~ + 6 ) +  A ( / ~ -  6)), which  comple tes  the  
proof of L e m m a  1. 

From the  d iagram of coverings (Fig. 5) and L e m m a  1 we obta in  
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C o r o l l a r y  1. For n > 4 the hyperbolic volume of the Fibonacci manifold M,  is equal to 

vol(M,) = 2n(A(~ + ~) + A(~ - ~)), 

where ~ = ~ /n  and ~ = 1/2 arccos(cos(2~)-  1/2). 

C o r o l l a r y  2. For n > 4 the orbifold 62(2, n) is hyperbolic and 

vol(62(2,n)) = A(fl + ~ )+  A ( f l -  g), 

where ~ = ~ / n  and Z = 1/2 arccos(cos(2~)-  1/2). 
For some values of n the arguments of the LobachevskiT function in Lemma 1 admit simpler 

expressions. 

C o r o l l a r y  3. For n = 4 the following equality holds: 

2 -3  " 

P a o o r .  For n = 4 we have ~ = ~'/4, ~ = ~r/3. In this case Lemma 1 implies 

v o i ( 0 ( 4 ) ) - 2  h ~ + ~  + h  ~ = 2  h - ~  + h  ~ . 

Recall that  the LobachevskiY function has the following property [15]: 

m--1 

k=0 

For m = 4 and 0 = r /12 ,  from (7) we obtain h ( r / 4 )  = 4(A(r/12) + A(r /3)  + A(7r/12)  - h ( r / 6 ) )  by 
straightforward computation. For m = 2 and 0 = r / 6 ,  from (7) we have 2A(r/6) = 3A(Tr/3); hence, 
3A(r/3)  = 4(A(7r/12) + A(r/12)) ,  which completes the proof of the corollary. 

C o r o l l a r y  4. For n = 6 the following equality holds: 

8 

PROOF. For n = 6 we have 6 = r / 6  and ~ = ~r/4. By Lemma 1, 

v o l ( 0 ( 6 ) ) = 2  A ~ - + ~  + A  ~ = 2  h - ~  + A  ~-~ . 

For m = 3 and 0 = ~r/12, from (7) we obtain 4A(r /4)  = 3(A(5r/12) + h ( r / 1 2 ) )  by straightforward 
computation, and the corollary follows. 

A similar argument yields 
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C o r o l l a r y  5. For n = 10 the following equality holds: 

vo,,o,10,  



w 4. V o l u m e s  of  N o n c o m p a c t  Orbifolds and M a n i f o l d s  

To calculate the volume of the manifold S 3 \ Thn ,  we need the following 

L e m m a  2. For n _> 2 the orbffold 62(n, oo) is hyperbol ic  and 

vol (62(n ,  oo)) = 4 ( h ( a  + 7) + A ( a -  7)), 

where  7 = ~r/2n and a = lh arccos(cos(27 ) - 1/2). 

PROOF. Choose generators a and r of the fundamental group ~rl (SS\  62) in the manner indicated 
in Fig. 6. 

Fig. 6 
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D 

Using the Wirtinger algorithm [18], we obtain the following presentation for 71"1 ( $3 \ 62) : 

(a, T i (Ta--ITaT--laT--l)(T2a--ITaT--laT--2)(Ta--ITaT--laT--l)  - I =  a). 

With new generators x and y such that  a = x - l y  - I  and r = y - I ,  the group has presentation 

r l (S3  \ 6~) = ( x , y  l ( z y - l z - 2 ) C y - l z y - l z - 2 y ) C z y - l z - 2 )  -1 = x - l y  -1)  

= ( . , y  I y - l ( x ~ y ~ - i y . 2 ) - l y ( . 2 y . - i y .  2) = 1) 
= (~,y I ( . 2 y ~ - l y . 2 ) y ( ~ y . - i y ~ 2 ) - ~ y  -~ = 1). (8) 

Demonstrate that  this group is isomorphic to a discrete group of isometries of the LobachevskiY 
space. Consider some polyhedron in H 3 composed of four ideal regular tetrahedra (see Fig. 7). Denote 
the ideal vertices of the polyhedron by A, B, C, D, E, F ,  and oo. Let u, v, t, and r be isometries of 
the hyperbolic space H 3 which identify the following faces of the polyhedron pairwise: 

u :  A B E  --+ E D B ,  

v :  A E F  --+ B D C ,  

: A F o o  --+ C D o o ,  

r:  A B C o o  --+ F E D o o .  

Let F be the group generated by u, v, t, and r. By the Poincar~ theorem, the complete list of relations 
for F is as follows: 

0 : ~2 - - V ,  

1 : u = r v ~ - l v r ,  

2 : t r t - l r  -1 - 1, 

3:  rr  -1 -- 1. 
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Moreover, the ideal vertices of the polyhedron fall into two equivalence classes whose link diagrams 
are shown in Fig. 8. 

2 d 3 / ~  2 ~ t  

Fig. 8. 1 g 1 A 3 # 1 

The polygons in Fig. 8 consist of regular Euclidean triangles. Their edges are pairwise identified 
by Euclidean isometries. Consequently, the two cusps have a complete hyperbolic structure and the 
group 

r = ( u , v , t , r ] u  2 = v ,  u = r v t - l v r ,  t r t - l r  -1  = 1) 

-- (u,  t ,  r I u = r u 2 t - l u 2 r ,  t r t - l r  -1  = 1) 

= ( u , r  I (u r -lr 2) ( 2r -lru2)-lr -1  = 1) 

has the polyhedron in Fig. 7 as a fundamental set in H 3 . As is easily seen from (8), the correspondence 
x ---, u, y ~ r determines an isomorphism between the groups 7rl ($3 \ 62) and F. 

Now we turn to studying the orbifold 62 (n, co) which results from applying the generalized (n, 0)- 
Dehn surgery to one of two cusps of the hyperbolic manifold S 3 \ 622. It means that the orbifold 
62(n, co) can be obtained by completing the noncomplete hyperbolic structure on the union of four 
ideal tetrahedra (see Fig. 7) whose complex parameters zl, z2, z3, and z4 satisfy some system of 
algebraic equations. For finding these equations, consider the link diagrams of the two cusps of the 
manifold $3 \ 62 (see Fig. 9 and Fig. 10, where z ' =  ( z -  1 ) ] z  and z " =  1/(1 - z)). 

II 
4 I 

.),l 

Fig. 9. The generalized (n, 0)-surgery on the cusp of the manifold S 3 \ 62. 

z,Z , ' 

Fig. 10. The complete cusp of the manifold $3 \ 6 2. 
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Looking at Fig. 9 and Fig. 10, we obtain the following system of equations:  

(Zl- 1)Z2Z3(Z4- I)= 1, 

Zl(Z2 - 1)(z3- 1)z4 = I, 
(Z2(1 -- Zl)) n = 1, 

z3(1 - Zl) = 1, 

I m z i  > O, i = 1,2,3 ,4 .  

(9)  

Denoting r = 1/(1 - zl) ,  f rom (9) we have 

( - 1, e2~ilnr = 
Zl  - -  Z2 = Z3 ~ r 

1 
z4 = 1 e 2"i'n'', t~ (I0) 

Furthermore,  sys tem (9) reduces to the  equation 

�9 1 
e~r162 + e,ril.r 

2 

(e vi + e -~'i) = 1, 

where v = ~/n .  Choose 0 such that  e~i/n( = e si. Then  (2 cos 0 - 2 cos v) 2 = 1, and hence cos 0 = 
cos v -I- 1/2. Since cos 0 < 1, we choose the solution with the minus sign: cos0 = cos v - 1/2. 
Subst i tut ing ~ = e i(s-v) into (10), we arrive at 

zl = 1 - 1/e  i(~ z2 = e i(~ z3 e i(~ = , z4 = 1 - 1/e i(~ 

Straightforward computa t ion  yields the following result: 

P r o p o s i t i o n  3. With  the above notation, the following equalities hold: 

(i) a r g z s = a r g Z l - 1 -  ~-0+v arg 1 = 0 - v ;  
Zl -- 2 ' l--Zl 

(ii) arg z2 = 0 + v, arg z2-1 = arg 1 _ ~r-o-v. 
z 2  l - - z 2  - -  2 

(iii) arg z3 = 0 - v, arg x~-I = arg 1 _ _  ~-O+v. 
z 3  l--z3 - -  2 

(iv) arg z4 = arg z4-1 ~--o-v arg 1 - "  0 + U. 
z 4  - -  2 ' l - - z 4  

Since a t e t rahedron  in H 3 is de termined uniquely from its dihedral  angles, we see that  Tzl 
and Tz2 = Tz4. Therefore,  using (3) we conclude: 

= T ~  3 

To comple te  the  proof of L e m m a  2, we assign 7 = v /2  and ~ = 0/2. Then  7 = ~r/2n and 
a = 1/2 arccos (cos(27) - 1/2). Therefore, the expression for the  volume of the  orbifold takes the  form 

v o l ( 6 z z ( . ,  = 4(A(  + + - 

The proof of L e m m a  2 is complete.  
In view of (2), we arrive at 

C o r o l l a r y  6. For n > 2 the  volume of the noncompact  hyperbolic manifoM S 3 \ Thn  equals 

vol(S a \ Thn)  = 4 n ( h ( a  + 7) + A(a  - 7)), 

w h e r e  = a n d .  = l h  arr - 1 / 2 ) .  
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w 5. Volumes of Fibonacci Manifolds 

The principal result of the present article is: 

Theorem 1. For n ~ 2 the following equality holds 

vol(M2n) = vol(S 3 \ Thn). 

PROOF. The claim is a consequence of Lemmas 1 and 2. Namely, we achieve the assertion by 
applying Corollary 1 to the manifold M2n, n _~ 2, and Corollary 6 to the manifold $3 \ Thn, n >_ 2. 

Thus, the volumes of the compact Fibonacci manifolds M2n correspond to limit ordinals in the 
Thurston-Jcrgensen theorem. In particular, the following assertions hold: 

Corol lary 7. The volume of the manifold M4 is equal to the volume of the complement of the 
figure-eight knot. 

Corollary 8. The volume of the manifold M6 is equal to the volume of the complement of the 
Borromean rings. 

Many properties of hyperbolic manifolds are determined by arithmeticity or nonarithmeticity of 
their fundamental groups [19]. As shown in [5, 8], the manifold Mn is arithmetic for n = 4, 5, 6, 8, 12 
and nonarithmetic for the other values of n. It is proven in [20] that the figure-eight knot Th2 is the 
only arithmetic knot. Furthermore, it is known [21] that the link Ths of Borromean rings is arithmetic 
too. 

Corol lary 9. Manifolds with the same volume can be both arithmetic and nonarithmetic: 

n M2,, S 3 \ Th,, 
2 arithmetic arithmetic 
3 arithmetic arithmetic 
4 arithmetic nonarithmetic 
5 nonarithmetic nonarithmetic 

We remark that, while discussing Corollary 9, A. Reid kindly informed the authors about the 
possibility of a number-theoretic approach to the construction of compact and noncompact arithmetic 
manifolds with the same volume. 
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