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1 Introduction

In this paper we are going to present the proofs of the following two theorems
on the hyperbolicity of generic hypersurfaces of sufficiently high degree and of
their complements, together with a number of related results, obtained by the
same methods, such as: (i) a Big-Picard-Theorem type statement concerning
extendibility, across the puncture, of holomorphic maps from a punctured disk
to a generic hypersurface of high degree, (ii) entire holomorphic functions
satisfying polynomial equations with slowly varying coefficients, and (iii)
Second Main Theorems for jet differentials and slowly moving targets.

Theorem 1.1 For any integer n > 3 there exists a positive integer 8, (Which
is explicitly expressible as a function of n) with the following property. For
any generic hypersurface X in P, of degree 8§ > §,, there is no nonconstant
holomorphic map from C to X.

Theorem 1.2 For any integer n > 2 there exists a positive integer & (which
is explicitly expressible as a function of n) with the following property. For
any generic hypersurface X in P, of degree § > & there is no nonconstant
holomorphic map from C to P,, — X.

Theorem 1.1 was presented with a sketch of its proof in [22] and [23]. The
methods used, though rather tedious in some of their details, consist essentially
just of some skillful manipulations in linear algebra and the chain rule of
differentiation. The underlying ideas in these methods can be traced to the
techniques which Bloch developed in his 1926 paper [2]. To explain this link
to Bloch’s paper [2], we first very briefly describe Bloch’s techniques with
explanations about how they foreshadow to a certain extent our techniques in
this paper.
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Hyperbolicity of generic high-degree hypersurfaces 1071

1.1 Bloch’s technique of construction of jet differential

In his 1926 paper [2] Bloch proved the nonexistence of nonconstant holomor-
phic maps from C to a submanifold Y of an abelian variety A, which does
not contain a translate of a positive-dimensional abelian subvariety of A, by
producing sufficiently independent holomorphic jet differentials w on Y van-
ishing on some ample divisor of ¥ and using the fact that the pullbacks of such
jet differentials by holomorphic maps from C to Y vanish identically.

He produced such holomorphic jet differentials @ on Y, not by applying to Y
the theorem of Riemann—Roch (which was not yet readily available at the time
of Bloch’s paper for the case needed for its application to Y), but explicitly
by pulling back to ¥ constant-coefficient polynomials P (with homogeneous
weight) of differentials of the coordinates (including higher-order differentials)
of the universal cover A of the abelian variety A. When the constant-coefficient
polynomials P of differentials of coordinates of A are pulled back to Y, the
condition of Y not containing a translate of a positive-dimensional abelian
subvariety of A causes new vanishing of the pullbacks on Y. Moreover, the
new vanishing is on some ample divisor of ¥ when the constant-coefficient
polynomials P of differentials of coordinates of A are appropriately chosen.
The reason why it is possible to choose P so that its pullback w to Y vanishes
on an ample divisor of Y is that the condition of not containing a translate of
a positive-dimensional abelian subvariety of A guarantees that the dimension
of the C-vector space of the pullbacks to Y of all possible such polynomials P
is so high that at least one C-linear combination w of such pullbacks vanishes
on some ample divisor of Y.

Bloch’s construction is related to the classical construction of a C-basis
of holomorphic 1-forms for a regular plane curve C defined by an equation
R(x,y) = 0 of degree § > 3 in the inhomogeneous coordinates x, y of P,
which are constructed by pulling back to C meromorphic 1-forms

P, y) o = Pr )
TR TRy

of “low pole order” on P;, where Ry (x,y) and Ry(x, y) are the first-order
partial derivatives of R(x, y) and P(x, y) is a polynomial of degree < 6§ — 3.
The adjunction formula for the plane curve C causes new vanishing to cancel
the “low pole order” of the meromorphic 1-forms on [P, to yield holomorphic
1-forms on C when the meromorphic 1-forms on P, are pulled back to the
plane curve C.

In this paper, the construction of holomorphic jet differentials on a generic
hypersurface X of sufficiently high degree 6 in P,, combines Bloch’s method
and the classical construction of holomorphic 1-forms on plane curves of high
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degree. We take meromorphic jet differentials of low pole orders (of magnitude
817¢ for some appropriate 0 < ¢ < 1) on P, and pull them back to X. The
high degree § of X will guarantee (according to Lemma 4.4 concerning the
injectivity of the pullback map for certain jet differentials) that the dimension of
the C-vector space of such pullbacks is so high that some C-linear combination
of such pullbacks will be a non identically zero holomorphic jet differential
on X vanishing on some ample divisor of X (see Proposition 4.8 below). One
key point in this argument is that, because the dimension of P, is higher than
that of X, there are more degrees of freedom in constructing meromorphic
(n — 1)-jet differentials of low pole order on [P, and, if the pullback map to X
of such meromorphic (n — 1)-jet differentials is injective, there are sufficient
independent pullbacks to X to form anon identically zero C-linear combination
which vanishes on an ample divisor of X.

1.2 Key technique of slanted vector fields

After so many decades of impasse, the real key which opens the way to the proof
of the hyperbolicity of generic hypersurface of sufficiently high degree (in the

sense stated in Theorem 1.1) is the introduction in [22,23] of the technique

of slanted vector fields in the subspace J,fv_elrt) (X) of vertical (n — 1)-jets in

the (n — 1)-jet space J,—1(X) of the universal hypersurface X of degree § in
P, x Py (where N = (*1") —1).

For a complex manifold Y the space Ji (Y) of k-jets of Y consists of all k-jets
of Y (each of which is represented by a parametrized complex curve germ).
The universal hypersurface X of degree § in P, x Py (with N = (‘SJ;”) -1
is defined by

Yo v
E Oyy,...vp20 %y =0, (1.1)
VoA Up =8
where o = [o,...v, ], 1.4, s 1S the homogeneous coordinate of Py and

[zo, - - -, zn] is the homogeneous coordinate of P,. For ¢ € Py let X @ pe
the hypersurface of degree 6 defined by (1.1) when « is fixed as constant.
A vertical k-jet of X is a k-jet in X representable by some (parametrized)
complex curve germ lying completely in some fiber X @ of X. We denote
by Jk(vem (X) the space of all vertical k-jets on X. There is a projection map
Tk vert : Jk(vert) (X) — Py such that an element Py of Jk(ven)
by a (parametrized) complex curve germ in X @ with @ = 7k, vert (Po).

A slanted vector field £ on Jk(vert) (X) means a vector field of Jk(ven) (X)

which at a generic point Py of J, k(vert) (&) is not tangential to the space Jj (X ("‘))

(X) isrepresented

@ Springer



Hyperbolicity of generic high-degree hypersurfaces 1073

of k-jets of the fiber X at the point Py of Jx (X®) with & = g vert (Po).
When a local k-jet differential form on X (¥ defined for « in some open sub-
set U of Py is regarded as a local function on Jk(vm) (X) and is differen-

tiated with respect to &, the result is a local function on Jk(vert) (X) which
is represented by a local k-jet differential on X@ for « € U. In the case
of k = n — 1, meromorphic slanted vector fields & of low vertical pole-
order (of the magnitude Op, (nz) on the vertical fiber), whose existence is
given in Proposition 3.11 below, play the following indispensable role in
generating sufficiently independent holomorphic (n — 1)-jet differentials on
X vanishing on an ample divisor for a generic o and for § sufficiently
large.

On aregular hypersurface X *) of high degree 8, there cannot be any nonzero
meromorphic vector fields on X @ of low pole order. However, the universal
hypersurface X' of degree é in P, x Py has bidegree (§, 1) with respect to
the two hyperplane section line bundles Op, (1) and Op,, (1). Because of the
second component 1 in the bidegree (5, 1) of X', when slanted vector fields
are used, it is possible to get meromorphic slanted vector fields of Jk(vert) (X)
with low vertical pole order.

For a generic & € P, the holomorphic (n — 1)-jet differential @ on
X @ vanishing on an appropriate ample divisor (constructed by pulling back
an appropriate meromorphic (n — 1)-jet differential of low pole order on P,
according to Proposition 4.8 below) can be extended to a holomorphic fam-
ily ®® on X@ for « in some open neighborhood U of & in Py so that
successive application of different finite sets of meromorphic slanted vec-
tor fields &, ...,&, of low vertical pole order (as constructed in Proposi-
tion 3.11 below) would yield sufficiently independent holomorphic jet dif-
ferentials vanishing on ample divisor on X @) 5o that the application of the
Schwarz lemma of the vanishing of pullbacks, to C by a holomorphic map
C - X@ of holomorphic jet differentials vanishing on ample divisor
of X@ would force every holomorphic map from C to X @ to be con-
stant (see Proposition 5.1, and the proof of Theorem 1.1 given in Sect. 5.1
below).

We would like to remark that the Schwarz lemma of the vanishing of pull-
backs, to C by a holomorphic map C — X @ of holomorphic jet differentials
vanishing on ample divisor of X @) also has its origin in Bloch’s 1926 paper
[2], though its formulation and its proof there are in a form very different
from our current way of mathematical presentation. Bloch’s proof of applying
Nevanlinna’s logarithmic derivative lemma (p. 51 of [17]) to local coordinates
which are the logarithms of global meromorphic functions still is the best proof
of the Schwarz lemma. It is recast in the current language of mathematical pre-
sentation on pp. 1162—-1164 of [24].
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1074 Y.-T. Siu

1.3 Slanted vector fields and Bloch’s technique of maps by translation

The technique of slanted vector fields in a way also finds some remote ancestry
in the 1926 paper of Bloch [2], though the connection is not so transparent.
We point this out here in order to dispel the wrong perception that the tech-
nique of slanted vector fields is applicable to generic hypersurfaces of high
degree because of the variation of complex structure of hypersurfaces as the
coefficients of their defining functions vary.

In his proof of the hyperbolicity of a submanifold Y in an abelian variety A
which contains no translate of positive-dimensional abelian subvariety of A,
Bloch used the vector fields from translations in A to do the differentiation of
jetdifferentials. That is the reason why when such differentiations cannot yield
enough independent holomorphic jet differentials to give hyperbolicity of Y, Y
must contain a translate of some positive-dimensional abelian subvariety of A.
This link of the use of slanted vector fields to Bloch’s technique of using vector
fields of maps by translation is obscured by the fact that in Bloch’s technique
the result of differentiation with respect to vector fields of maps by translation
is just the same as the use of a different constant-coefficient polynomial in
differentials of the coordinates of the universal cover A of A.

Let us return to our situation at hand of using slanted vector fields £ on
Jk (X ("‘)) of low vertical pole order for k = n — 1. Though the complex
structure of the hypersurface X® changes as o varies in Py, the slanted
vector fields & in general do not respect the fibers in the sense that for two
distinct points Py and P§ on Jx (X®)) the two projections 7k vert (£p,) and

Tk vert (“;‘ P(;) are in general different vectors in the tangent space of Py at «.

For our situation at hand, the geometric picture is not the pulling back
of k-jet differential from a neighboring fiber by the slanted vector field &,
even in the infinitesimal setting. What is relevant is the existence of slanted
vector fields pointing in sufficiently many different directions on Jk(ven) (X)
at the prescribed point in question. The realization of the irrelevancy of the
variation of the complex structure X @ a5 o varies in Py, as well as the
interpretation of Bloch’s technique of differentiation with respect to vec-
tor fields of maps by translation, points to the promise of the applicability
of our method even to the case of some rigid complex manifolds Z inside
some P, as a submanifold of possibly high codimension. In certain cases,
though Z may be rigid as a compact complex manifold, yet there is a possi-
bility that appropriate meromorphic vector fields on P, applied to pullbacks
to Z of low pole-order meromorphic jet differentials on PP, may yield suffi-
ciently independent holomorphic jet differentials on Z vanishing on an ample
divisor.
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Hyperbolicity of generic high-degree hypersurfaces 1075

1.4 Necessity of use of vertical jet space

The reason why the more complicated space Jrfv_elrt) (&) of vertical (n — 1)-jets
of X has to be used instead of the simpler (n — 1)-jet space J,,_1(X) of X is
that, while it is possible to extend a holomorphic (n — 1)-jet differential 0@
on a hypersurface X @ for a generic & € Py to a holomorphic family of o
on X @ for & in an open neighborhood U of & in Py, it is in general impossible
to find a holomorphic (n — 1)-jet differential on the part of J,_1(X) above
some open neighborhood U of & in Py whose pullback to X @ g equal to
0@,

Difficulty of the latter kind of extension can be illustrated easily in the case
of a holomorphic family of plane curves C, given by R(x, y,a) = O witha in
the open unit disk A of C as a holomorphic parameter. A holomorphic 1-form
on a single plane curve C, can be constructed as

dx B dy
Ry(x,y,a)  Re(x,y,a)

from the vanishing of the differential dR = R,dx + R,dy on C, when a
is considered as a constant, but in the total space |J,.5 Cq of the family of
plane curves it is not easy to carry out a similar construction, because when a
is regarded as a variable, the differential d R becomes R,dx + Rydy + R,da
and the same method cannot be applied.

Furthermore, it is for this kind of difficulty of constructing (n — 1)-jet
differentials on the universal hypersurface X’ that the additional condition
(6.1); for 1 < j < n — 1is introduced into Theorem 6.9 on entire function
solutions of polynomial equations with slowing varying coefficients, so that
families of vertical (n — 1)-jet differentials on the fibers can be used instead.

1.5 Algebraic geometric counterpart of slanted vector fields

In his 1986 paper [ 7] Clemens introduced a technique (later generalized by Ein
[9,10], and Voisin [25]) to prove the nonexistence of rational and elliptic curves
in generic hypersurfaces of high degree by showing that the normal bundle of
one such curve in the family of such curves is globally generated by sections
with vertical pole order 1. His technique can be considered the counterpart of
our method of slanted vector fields and as a matter of fact serves as motivation
for our method.

On its face value Clemens’s technique of using normal bundle to estimate
the genus of a curve is algebraic in nature and cannot possibly have anything
to do with the problem of hyperbolicity of transcendental in nature. Its rel-
evancy was realized for the first time in [22] and [23] partly because of our
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1076 Y.-T. Siu

seemingly completely unrelated earlier work on the deformational invariance
of the plurigenera [20,21].

Like jet differentials, pluricanonical sections can be naturally pulled back
by amap and, as aresult, their Lie differentiation can be naturally defined with-
out specifying any special connection. In a hitherto unsuccessful attempt to
study deformational invariance of sections of other bundles associated with the
tangent bundle (besides pluricanonical sections), we investigated the obstruc-
tion of moving jet differentials out of a fiber in a family of compact complex
manifolds and considered their Lie derivatives with respect to slanted vector
fields. Such investigations, though unsuccessful so far as its original goal is
concerned, serendipitously led to the use of slanted vector fields in the study of
hyperbolicity problems and to the realization that Clemens’s technique is rel-
evant to, and can serve as motivation for, the differentiation of jet differentials
by slanted vector fields to produce new ones.

1.6 Linear algebra versus theorem of Riemann—Roch

As already pointed out in the paragraph straddling p. 445 and p. 446 in [22],
a non identically zero holomorphic (n — 1)-jet differential on X @ vanishing
on an ample divisor can be constructed from the theorem of Riemann—Roch
by using the sufficient positivity of the canonical line bundle of X® and the
lower bound of the negativity of jet differential bundles of X®. Such a jet
differential can also be directly obtained by using the linear algebra method
of solving a system of linear equations with more unknowns than independent
linear equations, which is the method used here in Proposition 4.8 below, as
sketched on p. 446 of [22]. This direct method of construction by linear algebra
has the important advantage of better control over the form of the resulting
jet differential so that the application of slanted vector fields can produce
sufficiently independent jet differentials vanishing on an ample divisor of X (*)
for a generic point « of Py (see Proposition 5.1, and the proof of Theorem 1.1
given in Sect. 5.1 below).

Of course, the use of the theorem of Riemann—Roch also uses the linear alge-
bratechnique of counting the dimension of sections modules and the dimension
of obstructional higher cohomology groups, but the process of going through a
labyrinth of exact sequences so obscures the eventual form of the resulting jet
differential that not enough control can be retained to get beyond the weaker
conclusion that holomorphic maps from C to X® is contained in some proper
subvariety of X @,

Recently Diverio, Merker, and Rousseau in [8] used the theorem of
Riemann—Roch to construct a holomorphic jet differential on X® vanishing
on an ample divisor and then used Merker’s work [16] involving our method
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Hyperbolicity of generic high-degree hypersurfaces 1077

of slanted vector fields to arrive at the conclusion that holomorphic maps from
C to X@ is contained in some proper subvariety of X @,

1.7 Simplified treatment in going from non Zariski density of entire curves
to hyperbolicity

In the original sketch of the proof of Theorem 1.1 in [22], for the last step dis-
cussed on p. 447 of [22] of going from the non Zariski density of entire curves
to hyperbolicity, the method of construction of jet differentials is applied to a
hypersurface Xin IP;; constructed from the hypersurface X *) in P, with alarger
71 so that more jet differentials on X @ can be obtained from jet differentials on
X. The idea is that the zero-set of the jet differentials constructed on X @ from
linear algebra would be defined by the vanishing of polynomials of low degree
in low-order partial derivatives of the polynomial f® defining X® and, in
order to take care of such zero-set, the low-order partial derivatives of f are
introduced as additional new variables. The genericity condition of f enters
in a certain form of independence of the low-order partial derivatives of f.

In this paper we use a simplified treatment of this step which just uses
the fact that our construction of holomorphic jet differentials depends on the
choice of an affine coordinate system of the affine part C" of PP, so that differ-
ent choices of the affine coordinate system in the construction would give us
sufficient independent holomorphic jet differentials to conclude hyperbolicity
of a generic hypersurface of high degree. An earlier version of this paper uses
the alternative argument that a meromorphic (n — 1)-jet differential on P,
defined by a low-degree polynomials of the inhomogeneous coordinates of P,
and their differentials have only low vanishing order at every point of X®).
The current simplified treatment is used here, because the complete rigorous
details of the alternative argument on low vanishing order in the earlier version
of this paper turn out to be quite tedious. Moreover, the current argument is
related to the technique of slanted vector fields so that the two arguments of
generating sufficient holomorphic vector fields are two just different aspects
of the same idea. The relation with the technique of slanted vector fields is that
the technique of slanted vector fields is actually the infinitesimal or differential
version of the current argument which can be regarded as using affine coordi-
nate transformations to pull back holomorphic jet differentials on neighboring
fibers to reduce the common zero-set of holomorphic jet differentials.

1.8 Techniques parallel to those in Gelfond—Schneider—Lang—Bombieri
theory

Paul Vojta presented in [26] a formal parallelism between the results in dio-
phantine approximation and those in value distribution theory. Along this line,
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1078 Y.-T. Siu

the techniques presented here for the proof of the hyperbolicity of generic
hypersurfaces of sufficiently high degree are, in certain ways, quite parallel
to the techniques used for the theory of Gelfond—Schneider—Lang—Bombieri
[3,4,11-15,18].

(i) The construction of holomorphic jet differentials in Proposition 4.8 by
solving a system of linear equations with more unknowns than equations is
parallel to the use of Siegel’s lemma in the theory of Gelfond—Schneider—
Lang—Bombieri to construct a polynomial with estimates on its degree
and the heights of its coefficients.

(i) Therequirement that the constructed jet differential vanishing on an ample
divisor of high degree in Proposition 4.8 is parallel to the requirement of
the vanishing of the constructed polynomial in the theory of Gelfond—
Schneider-Lang—Bombieri to high order at certain points.

(iii) Lemma 4.4 concerning the injectivity of the pullback map for certain
jet differentials is parallel to the constructed polynomial in the theory of
Gelfond—Schneider—Lang—Bombieri being not identically zero due to the
assumption of the degree of transcendence of the given functions.

(iv) The use of Nevanlinna’s logarithmic derivative lemma and the use of
logarithms of global meromorphic functions as local coordinates in the
Schwarz lemma to estimate the contribution from the differentials to be
of lower order is parallel to the use of the differential equations in the
theory of Gelfond—Schneider—Lang—Bombieri.

Such a parallelism between the techniques used in this paper and those
in theory of Gelfond—Schneider—Lang—Bombieri lends support to the prefer-
ability of the approach used in this paper for the hyperbolicity problem of
hypersurfaces.

1.9 Notations and terminology

For r > 0 we use A, to denote the open unit disk in C of radius r centered
at the origin. When » = 1, we simply use A to denote A; when there is no
confusion.

For a real number A denote by |A] the round-down of A which means the
largest integer <A and denote by [A] be the round-up of A which means the
smallest integer >A.

We use [zo, . . ., zn] to denote the homogeneous coordinates of P, and we
use (x1, ..., X,) to denote the inhomogeneous coordinates of P, with x; = i—é
for 1 < j < n. Sometimes we also go to the inhomogeneous coordinates by
fixing zo = 1 in the homogeneous coordinates when notationally it is more

advantageous to do so.
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Hyperbolicity of generic high-degree hypersurfaces 1079

Denote by N the set of all positive integers. For an (n + 1)-tuple v €
(NU {0})”Jrl of nonnegative integers, we write v = (v, vy, ..., Vy) and [v| =
vo + v + -+ -+ v, and let

Vo _V
V= ZOOZII g,

For 0 < p < n, let ¢, denote the unit vector in C"*+1 such that all components
are zero except that the component in the p-th placeis 1. We use §,, ,, to denote
the Kronecker delta for the indices v, & € (N U {0})"*!, which assumes the
value 1 for v = p and assumes the value O when v # .

If from the context there is no risk of confusion, we use N to denote (51'") -1
so that Py is the moduli space for all hypersurface of degree §, without further
explicit mention. The homogeneous coordinates of Py will be denoted by
o= [oz,,o _____ ,,n]vO =8 The hypersurface defined by

o 2 vo V1 VY,
f( ) = aVO 77777 VnZO Zl o 'Znn
Vo+V e, =8

is denoted by X . For notational simplicity, sometimes the superscript («) in
£ and X is dropped when there is no risk of confusion. Also sometimes
wesimplyusef(“) (X1, ..., xp)or f (x1,...,x,) tomean Z%f(“) (Zoy - -+ s 2n)

when the context makes it clear what is being meant. This Onotational simpli-
fication by dropping superscript () applies also to other symbols such as
replacing Q@ by Q (respectively »® by w) when there is no risk of confu-
sion or replacing Q by Q@ (respectively w by »(®) when there is a need to
keep track of the dependence on the parameter a € Py.

When we present the main ideas of an argument and refer to high vanishing
order without explicitly giving a precise number, we mean a quantity of the
order of §. In such a situation, when we refer to low pole order without explicitly
giving a precise number, we mean a quantity of the order of §!~¢ for some
appropriate 0 < ¢ < 1.

The notation at the end of the inequality

A(r) < B(r) |

means that there exist o > 0 and a subset £ of R N {r > rg} with finite
Lebesgue measure such that the inequality holds for » > rg and not in E. This
is the condition needed for the logarithmic derivative lemma of Nevanlinna as
given at the bottom of p. 51 of [17].

For a meromorphic function F on C and ¢ € C U {oo} with F(0) # c the
counting function is
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1080 Y.-T. Siu

r dp
N(V,F,C): n(p’FaC)_a
0 p

where n(p, F, ¢) is the number of roots of F' = ¢ in A, with multiplicities
counted. The characteristic function is

1 2 )
T(r, F) = N(r, F, 00) + —/ log* ‘F (rele) ‘ 6
4 9=0

under the assumption that 0 is not a pole of F, where log™ means the maximum
of log and 0.

For a complex manifold Y with a (1, 1)-form » and for a holomorphic map
¢ : C — Y, the characteristic function of ¢ with respect to 7 is

r d
T(r,¢,n) =/ (/ ¢*n)—p-
p=0 A, 1Y

1.10 Twice integration of Laplacian in Nevanlinna theory

The technique of twice integrating the Laplacian of a function introduced by
Nevanlinna for his theory of value distribution will be used a number of times
in this paper. We put it down here for reference later. For any smooth function
g(¢), from the divergence theorem

2
0 .
/ Ag = / (—g (rele)) rdo
[¢]<r 0=0 ar

and A = 48;83 it follows that

r d r d
L () ()
p=ri [Sl<p p p=r1 lzl<p 1Y

2 ) 2 )
:/ g(re’e)dQ—/ g(r1e'%)do.
0 0

=0

1.11 Function associated to pullback of jet differential to part of complex
line

Let o be a holomorphic k-jet differential on a complex manifold ¥ of complex
dimension n and ¢ be a holomorphic map from an open subset U of C (with
coordinate ¢) to Y. The map ¢ induces a map Ji , from the space Ji(U) of
k-jets on U to the space Ji(Y) of k-jets on Y, which sends a k-jet n on U
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Hyperbolicity of generic high-degree hypersurfaces 1081

at {o represented by a parametrized complex curve germ y : A — U with
y(0) = ¢o to the k-jet represented by the parametrized complex curve germ
poy : A — Y at 9(£y). The pullback ¢*w of w by ¢ means the holomorphic
k-jet differential on U whose value at a k-jet n of U at g is the value of w at
the k-jet Ji o (1) of Ji(Y) at ¢ (o).

The crucial tool in the study of the hyperbolicity problem is the result,
usually referred to as the Schwarz lemma, of the vanishing of the pullback of a
holomorphic jet differential on a compact complex manifold vanishing on an
ample divisor by a holomorphic map from C. Its proof, by Bloch’s technique
of using the logarithmic derivative lemma of Nevanlinna (p. 51 of [17]) with
logarithms of global meromorphic functions as local coordinates, first shows
the vanishing of a function associated to the pullback of the jet differential and
then obtains the vanishing of the pullback of the jet differential by composing
the map from C with appropriate holomorphic maps C — C.

In the later part of this article, when the analogues of the Big Picard Theorem
are introduced for generic hypersurfaces X of high degree to extend holomor-
phic maps from C—A,, — X to holomorphic maps from CU{oo}—A,, — X,
appropriate holomorphic maps C — A, to itself are unavailable for proof the
full Schwarz lemma. Instead only the vanishing of the function associated to
the pullback of the jet differential can be obtained. We now introduce a notation
for this function. The function on U, denoted by eval;4 (¢*w), at the point g
is the value of the k-jet ¢*w evaluated at the k-jet of U at ¢y represented by
the parametrized curve defined by the identity map of C. In other words, the
value of eval;q (¢* ) at &y € U is the value of w at the k-jet on Y represented
by the parametrized complex curve germ ¢ : U — Y at ¢({p).

When for some local coordinates yy, ..., y, of Y the k-jet differential w is
written as

DG ] (dzyj)w'j

where v = (vz,j)

by
d¢ Ve,
> G@©.....om@) ] (Ww(;)) ,
v I<j<n, 1<t<k
where ¢ is represented by (¢, . .., ¢,) with respect to the local coordinates
Y1, ..., yn Of Y, so thatif y; is locally equal to log F'; for some global mero-

morphic function F; on Y (for 1 < j < n), the logarithmic derivative lemma
of Nevanlinna (p. 51 of [17]) can be applied to %(pj ) = j_;z log F(¢(¢)).
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2 Approach of vector fields and lie derivatives
2.1 Moduli space of hypersurfaces

The moduli space of all hypersurfaces of degree § in [P, is the same as the
complex projective space Py of complex dimension N = (‘SJ;") — 1. The
defining equation for the universal hypersurface X in P, x Py is

f= Z a,z".

ve(NU{o})"+!
lv|=8

The number of indices v € (NU {O})”Jrl with |[v]| = 4§ is (5;:”) = N + 1. For
a € Py we use X@ to denote X N (P, x {a}).

Lemma 2.1 X is a nonsingular hypersurface of P,, x Py of bidegree (3, 1).

Proof Take an arbitrary point (y, «) of X with y € P, and o € Py. Choose
a homogeneous coordinate system [zg, z1, ..., 2,] of P, so that y is given
by [z0,21,-..,2n] = [1,0,...,0]. In other words, y is the origin in the
inhomogeneous coordinate system

21 22 Zn
(xl""’xn): _’ _7"'5_
20 <0 20

associated to the homogeneous coordinate system [zg, z1, - . ., Zn]-

The hypersurface X in P, x Py is nonsingular if and only if its pullback
X to (CNHL —0) x (C"H —0) is nonsingular, because locally at points of X’
the pullback X is simply equal to the product of X’ with (C — 0) x (C — 0).

To determine whether X is nonsingular, we differentiate the defining func-
tion

Vot =4

with respect to each a,, ..., and each z; and evaluate the results at zg =
1, z1 = --- =z, = 0 to see whether we get a nonzero (N + 1) + (n + 1))-
vector. We choose v = 8, vi = --- = v, = 0 and get

(L) _1
005,0,..,0 ) 7917, = =2, =0

and conclude that the ((N + 1) + (n 4+ 1))-vector is nonzero. Thus X is non-
singular at every point (y, «) € P, x Py which belongs to X. |
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Remark 2.2 Though & is nonsingular at every point (y, «) € P, x Py which
belongs to X', the hypersurface X *) in P, which corresponds to « and is equal
to X N (P, x {«}) may have singularities.

Lemma 2.3 Let ¢ be a positive integer and let L be a homogeneous polynomial
of degree { in the variables {a,}y=s. Let 0 < p # q < nand v, €
(NU{OD" ! such that v + eq = W+ ep. Then the Op, (1) x Opy (£ — 1)-
valued global holomorphic vector field

- (Zq (az) o (%))

on P, x Py is tangential to X.

(i) o ()

isaOp, (1) x Op, (£ — 1)-valued global holomorphic vector field on P, x Py,
because the tangent bundle of Py is generated by global holomorphic vector
fields of the form

Proof The expression

9
> Az
v

lul=]v|=8
with A, , € C.
The hypersurface X is defined by f = ZM:(S ayz”. From
0
fo_
dory

and v + e, = u + e, it follows that

(o) (@) vt e

Hence the Op, (1) x Op, (£ — 1)-valued global holomorphic vector field

(o) o ()

on P, x Py is tangential to the hypersurface X of P, x Py. O
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Remark 2.4 The use of L is to make sure that we have a line-bundle-valued
global holomorphic tangent vector field on P, x P . We will only use the case
=1.

Lemma 2.5 For any global holomorphic vector field & on P, there exists a
global holomorphic vector field & on P, x Py such that

(1) % is tangential to X, and
(1) & is projected to & under the natural projection from P, x Py onto the
second factor IP,,.

Proof Consider the Euler sequence

0— O0s, % 05, @D L 15, 0,

where

n n n n a
v z'a‘j,OZj, E,a‘,-,lzj-,..., 2 4jnZj | = z AjkZjg
j=0 j=0 j=0 ¢

k=0

¢ (1) = (20, - -, Zn)-
Since H'(P,, Op, ) vanishes, it follows from the exact cohomology sequence
of the Euler sequence that & is of the form > , _ a;xz; % for some complex
numbers a; k.
For 0 < j, k < n with j # k we define
g (NU (0D — (VU {op"*!

as follows. Forv € (NU {O})”Jrl we set

(®ja(w), =ve VL# jk,
(@jum); =v; -1,
(@jx(v), = + 1.
For {av}ve(NU{O})”+l we define
n
By =— Z o, ajk(e+ 1) — Zavo,vl,...,unaj,j‘)j-

0<j.k=<n,j#k Jj=0
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Then for f = Z|v|=5 o, z", we have

£(f) = Z ajrzj—— 82 - > B

j.k=0 [v|=8

The verification is as follows. Since

2 : 1 V= 1_Vk+1 Vn
oy VkZ . Z _ Z g
(8Zk) 0 k 1%k k+1 n

[v|=8

it follows that

Z aJkZJa f

Jj.k=0

1%} Vk—1 _vk—1_Vi41 v,
= Z ajzj Y awwzjzg gt s e @)
j.k=0 lv|=8

So, the term on the right-hand side of (2.1) when j = k is
aj,jaVO,Vl,...,Un vkzgoz‘l)l v Z";n .

This means that the net effect is multiplication by v; when j = k. The contri-
bution to the term on the right-hand side of (2.1) with j # k is

. Vo vi—1 _vit+l vjyg Vk 1 vk 1 Vkt1 v
A IR A B T S IR SE R S SE TR
We now change the dummy indices v; and vy to look at the coefficient of the

monomial
Y, v
SR

We change the dummy index v; to v; — 1 and change the dummy index vy to
v + 1 to get

Vo Vi v,
(vk + 1)aj,kav0,---vj,1,vj—l,vjur],.‘.,vk,l,vk+1,vk+1,...,anO 2y gy

This concludes the verification.
It now suffices to set
n

§= Z ij/'aZ +Z,8v

J-k=0 [v|=8

O
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Lemma 2.6 Tx ® Op, (1) is globally generated.

Proof Take an arbitrary point (y, o) of X with y € PP, and o € Py. Again
choose a homogeneous coordinate system [zg, z1, . . ., 2,] of PP, so that y is
given by [z0, 21, ..., 2,] = [1,0,...,0]. We choose a homogeneous linear
polynomial L of the variables {a, }|,|=s such that L (s) # 0.

It is equivalent to look at the tangent bundle of the pullback X of
X c (€1 —0) x (CN*! —0) under the natural projection (C"™! —0) x
(CN+1 — 0) — P, x Py. Take v with v, > 0 for some 1 < p < n. Then
there exists a unique u € (NU {0})'”rl such that v +ep = u +e),. At (y, a)

the value of
L 0 0
0 day r \ ba “

isequal to L(s) ( ) Thus we conclude that the global holomorphic sections

of Tx x Op, (1) generate W forv # (6,0,...,0). By Lemma 2.5 the global
holomorphic sections of Ty x Op, (1) also generate 3 -for0 < j < n. We

thus conclude that global holomorphic sections of Ty x Op, (1) generate a
codimension 1 vector subspace of the tangent space of P, x Py at (y, ).
Since & is nonsingular at (o, y), it follows that global holomorphic sections
of Tx ® Op, (1) generate Ty @ Op, (1). O

Lemma 2.7 Let g be a nonnegative integer. Global holomorphic sections of
Tx @ Op,(qg + 1) ® Op, (q) generate all of its q-jets of X.

Proof Global holomorphic section of Op, (¢) ® Op, (¢) generate all of its g-
jets. Thus we can use the product of a global holomorphic section of Op, (¢) ®
Op, (g) and a global holomorphic section of Tx ® Op, (1) to generate any
prescribed g-jet of X. O

2.2 Lie derivatives

Let X be a complex manifold and & be a holomorphic vector field on X. Let ¢¢ ;
be a 1-parameter local biholomorphism defined by the vector field £ so that

9
atﬁpg '8 o =£(8)

for any local holomorphic function g on X. For any k-jet differential w on X,
we define the Lie derivative Lieg (@) of w with respect to & by
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0
Lieg(w) = goX RO

t=0
Since
a2 =d (1l l( Y0 — o)
at(px’w ) o0 Pxa® T
1 1
=t11_r)r(1) (doyx o — a’a))_llm (0% do — do)
8 *
at ( X,t ) =0

it follows that
d (Lieg(w)) = Liez (dw) .

Let n be a holomorphic ¢-jet differential on X. The Leibniz product formula
holds for the Lie derivatives of the product of @ and 7 so that

Lieg(wn) = Lieg(w)n + wlies(n).

Let (wy, ..., w,) be alocal coordinate system of X. Fix some 1 <i < n.If
w=d'wandg=3"_ gj(w)%j, then

- 9
Eieg (w) = d* Zgj (w) (3_) w; | = dkgi(w)-
j=1 i

Lemma 2.8 Let k be a positive integer. Let X be a complex manifold and D be
a complex hypersurface in X. Let w be a holomorphic k-jet differential on X
which vanishes at points of D to order p. Let & be a meromorphic vector field
on X whose only possible poles are those of order at most q at D. If p > q +k,
then Lieg (w) is a holomorphic k-jet differential on X which vanishes at points
of D to order p — (q + k).

Proof Locally we can write

¢ Ao j
w = Z Pt et hi e b (W) H (d wj)

AL Lsees A nseens M 1o A n 20 1<t<k,1<j<n

SR IS

with 213, Ay dkr i (W) Vanishing at points of D to order p.
Locally we can write £ = 27:1 gj (w)%j with the pole order of g; at
most ¢ at D. When we apply Lieg, by the Leibniz product rule we apply it
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only to one factor of each term separately and sum up. When it is applied to
h)"l.lﬂ'-'ﬂ)"l,n _____ Moo hien> WE end up with

ig;(w)i(m YRR TN (7))
j=1 8wj LI Liseees Klseorheon

which vanishes at points of D toorder p—(g+1) > p—(g+k). Since the pole
order of deg‘,- is at most ¢ + £ at D, when it is applied to d* w; and then multi-
phed by hqul,...,klyn ..... Melseenshkn> WE end up with hM,l ,,,,, Aljseees )\.k.],...,)\.k,ndzgj
which vanishes at points of D to order p — (¢ +4€) > p — (¢ + k). O

3 Construction of slanted vector fields for jet space

In the preceding Sect. 2 we constructed global vector fields on X of low
vertical pole order. The construction in Lemma 2.3 involves the use of two
indices v, u € (NU {0})”‘H with v + ¢, = 1 + ¢, and the construction in
Lemma 2.6 involves also the two indices @ and v for the case of ¢ = 0. In
this Sect. 3 we are going to carry out a similar construction with X" replaced
by the space Jk(vert) (X) of all vertical k-jets on X for k > 1 by induction on
k, with the similarity interpreted from identifying X with the space the space
Jévert) (X) of all vertical O-jets on X. For each step of this construction by
induction, just as in the construction in Lemma 2.3 and Lemma 2.6 a pair
of indices will be used, leading to some binary tree of indices whose precise
definition will be given in Sect. 3.1. Because of the number of indices involved
in the construction given in this Sect. 3, the details seem to be complicated, but
the key argument is simply a natural extension of what is used in the preceding
Sect. 2 and all the steps are straightforward.

3.1 Binary trees of indices

In order to conveniently describe vector fields on the total space of k-jets, we
now introduce the binary trees of indices. A binary tree of indices of order k,
which we denote by p(k), is a collection

[pm,yz,.,.,yj 1 <j <k, eachofy,...,y; =0, 1}

of indices, where each py, y,, .., 1s an integer satisfying 0 < py, 5, .., < n.
We will use the interpretation of this collection of indices as a tree as follows.
The binary tree starts with two nodes pg, p; at its root and each of these two
notes pg, p1 branches out into a pair of nodes. On top of the node pg there

@ Springer



Hyperbolicity of generic high-degree hypersurfaces 1089

are two nodes po o and po.1. On top of the node p; there are two nodes pj g
and pp 1. Each of the four nodes pg o, po.1, P1,0. P1,1 again branches out into
a pair of nodes. On top of the node p,, ,, (y1 =0, 1; y» =0, 1) there are two
nodes py, 1,0 and py, ,, 1. At the j-th branching into a pair of two nodes for
each node, we have two nodes

Pyiva...v;.00 Priya...yj.l

.....

on top of the node py, y,....y; for

Y1 :0,1; )/2:0,1;...,]/]' :O,l.
At the top the tree, after the (k — 1)-th branching we have the notes

Pryee 1 =0,1; y2=0,1;...,%=0,1).

We will use the convention that the binary tree, as a collection of indices, will
be denoted by a lower case Gothic letter and its indices are denoted by the
corresponding lower case Latin letter. When £k = 0, we use the convention
that p(© is just the empty set.

We now introduce the truncation of a binary tree of order k to form a binary
subtree of order k — j. We denote by p:71--7)) the binary tree

of order k — j. We call p&:71-+-71) the truncation of p® atits node p;, TV

In this paper we work only with the following special kind of binary trees.
A binary tree p© of order k is said to have level-wise homogeneous branches
if for every 1 < j < [ and for any pairs

(71,72, 7)) and (91, 72,..., 7))
of j-tuples of 0’s and 1°s, the two truncations
p(k;fl,?z ,,,,, J7j)’ p(k;)?l,ﬁz ,,,,, Vi)
of p® are identical binary trees of order k — j.
Lemma 3.1 Let
&) =d'logz; (i=1,0=j=n
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and
60 = (5.6, &)

Let f = Y, ayz” be a polynomial of homogeneous degree 5. Let dD,(,O) =1
and inductively for k > 0,

Pk+D (5(1)’ L 5(k+1))

(Z ves<”)<1><k)+225“+” e GDis

=0 i=1

Then
df= aoP (V... &0z, (32)
v

where for the differentiation «,, is regarded as a constant and CI)f,k) is of

homogeneous weight k when &, W)

of (zo, - .., Zn). Moreover, the coefficients of d>,()k) in €W £® are poly-
nomials inv = (v, ..., V) of degree at most k with universal coefficients. As
a polynomial inv = (vg, ..., v,), the degree of

o® _ (Z v@g“))

Proof To prove the lemma, we define <I>l(,k) by (3.2) and verify (3.1); and
(3.1)r41 for k > 1. The verification is as follows. Clearly,

n

1

B =3 M
=0

and is homogeneous of weight 1. To verify (3.2) when k is replaced by k£ + 1,
we apply d to both sides of (3.2). The effect of applying d to z" is to replace

the factor z" by " which is Do vgéél) . The effect of applying d to the
other factor <I>]()k) (5(1), o, S(k)) is

8<I>
225(14—1) (l)

=0 i=1

is given the weight j and is independent

is at most k — 1.
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by the chain rule. We now consider the question of weights and homogeneous
degrees. For k > 1 the first term on the right-hand side of (3.1)z is the product
of the factors <I>1(,1) CI>,(,k) which are respectively homogeneous of weights 1 and
k by induction hypothesis. The second term on the right-hand side of (3.1)x41
is the sum of a product of two factors

(k)
£+ 9Py
as(l)

which are respectively homogeneous of weights i 4+ 1 and k — i by induction
hypothesis. This finishes the verification of (3.1);4; and the homogeneity of
d>,()k+1) of weight k 4+ 1. From (3.1)x4 it is clear by induction on k that the
coefficients of CDS,k) ingM ... &% are polynomials in v of degree at most k
with universal coefficients.

Finally, in (3.1)g4 the term

8<I>
ZZE(H—I) (l)

=0 i=1

on the right-hand side as a polynomial in v is of degree no higher than that of

d>(k) which is no higher than k. Thus for the induction process of going from
step k to step k + 1, if the degree of

o® _ (z b S(”)

isatmostk — 1 in v = (v, ..., v,), then by (3.1)x4 the degree of

k4 § 1

isatmostkinv = (vg, ..., vy,). a

3.2 Construction by induction
Let p® be a binary tree of indices of order k. We denote by A*) a multi-index

of n + 1 components with total degree § — k. For 1 < j < k and for the choice
of each y1, ..., y; being 0 or 1, we denote by A&V1-Y)) the multi-index
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with total degree [1(57171)| = § — k+ j. Recall thate,, _ is the index of

,,,,,,

n+1 components whose only nonzero componentis the p,
which is 1.

For 0 < k < n — 1, for any multi-index A® of n 4+ 1 components with
total degree 8 — k, and for any binary tree p®) of order k which has level-wise
homogeneous branches, we are going to explicitly construct by induction on &,

y;i-thcomponent

.....

®(j) ‘1’% p® (k<j=<n)

AK) ph)?
such that
1. lIJi{k)) & 1s a rational function of the entries of A® and 5,;4) with g equal

to some DPyi.ya,.ye for 1 < £ <k,
2. @;’E,Z)’p(k) is a meromorphic vector field on the parameter space with coordi-
nates «,, (for multi-indices v of n + 1 components of total degree &) which

is a linear combination of % (for |v| = §) whose coefficients are rational
functions of
200z &) (1< j<k 0<<n)
and which satisfies
o® (d f) —0 for0<j<k—1
A0 pk) = =J= )

k .
®§(1)<> p® (d] f) ‘I’i{k)) o) fork <j<n-—1.

Here we regard @%),p(k) as a vector field on the space with variables «,, for

|[v| = & while the variables zo, ..., z, and Ee(j) (1 <j<k 0<¥¢<n)are
regarded as constants. It is the same as regarding @;’E,Z) plb 38 @ vector field on
the space with variables «,, for [v| = § and the Variables 205 -~ zn and 5(1 )

(1 <j <k, 0 < ¥ < n)when the coefficients for 3 and for ; are all 0

dS(J
for1 < j <k, 0 <€ < n. The construction is as follows.
For k = 0 with the convention that p© is the empty set, we simply set

0

0)
0f =
20O B, )
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and

v _ W)

70) O O (3.3)

for 0 < j < n — 1. It is clear that \Di{g)’p(o) is of homogeneous weight j
in&” (1 < ¢ < j,0 <t < n)and is independent of (2o, ..., z,) and is
a polynomial in the n + 1 components of A(?) of degree < j. Moreover, it
follows from f = Zv o,z" and the definition of CDSj ) that

0) j 205, ()
®A<O),p(0) d f)=z \Ijx(o),p(o) (3.4)

for 0 < j < n — 1. Suppose the construction has been done for the step k£ and
we are going to construct for the step k + 1. Define

e® eo®

@(kJr]) . )L(k+1;po)7p(k+l;po) B )L(k+1;p1>’p(k+l;p1)
AEHD g1 T \D(k) LIJ(k)

LpoE Uettipg) plketlipg)  LPUE(kLipy) p(etLipy)

and
() v
() Ak+1p) p(k+1:pg) A+ Lpy) pktLipy)
lpx(k+l),p(k+l) = T ® - o® (3.5)
)\(k+1:po)’p(k+l;po) )L(k+l;p1)7p(k+l;p1)
for j > k+1.

Lemma 3.2 For any integer k with 0 < k < § the following two identities
hold.

k j .
®§L(/)C),p(k) (djf) =0 for0<j=<k—1,

) j 20 g () .
®k(k),p(k) (dff) =z \IJA{k),p(k) fork < j <n.

Proof We prove by induction on k > 0. Since the positive integer § is fixed
once for all, the induction on £ > 0 is the same as descending induction on
the total degree 8 — k of A©). In the case k = 0 the statement is simply (3.4).
To go from step k to step k + 1, we have

k+1 i .
®;<k+1)>,p(k+1> (djf) =0 forO0<j=<k-—1,

because

k j .
®(k(£>,p<k> (djf) =0 for0<j<k—1
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and

(k) (k)

®(k+1) _ ®)L(k+121)())’p(k+1:p0) _ ®)L(k+1;171)7p(k+121’1)
k(k+l),p(k+l) \Il(k) \p(k)
Lpo ;s Uttipg) plketlip)  LP1UE (eHipy) pletipp)

We have

(k+1) k e\

®)L(k+1),p(k+1) d"f) =0,

because

(k+1) k
®)\(k+1),p(k+l) (d f)

(k) k (k) k
®)L(k+l;po)’p(k+1:po) (d f) ®}L(k+1lpl),p(k+1?1’1) (d f)

(k) (k)
Zpo ka(k+1;p0)?p(k+1;P0) ipi \p)h(k+1;[)1)’p(k+1;p1)
Ak+Lipo) o (k+1) Ak+LpD) o ()
2 AktLipg) perlpg) L HUHLpD) pketipp)
- (k) B (k)
Zpo \Ijk(k+l;po)’p(k+1;po) <pi lIJ)L(k+1;p1)’p(k+1;p1)

= kD kD — g,
Moreover, fork +1 < j <n—1,

(k+1) j
O s (@)

(k) j (k) '
®)\(k+l;p0)’p(k+l;1io) (djf) ®)\(k+l;p1)7p(k+l:p1) (d‘/f)

- (k) (k)
ZPO\IJ)L(kH;pO)’p(kH;pO) Zpl\ljk(k+l;p1),p(k+l;p1)
A k+1:po) o () Ak+Lpp) S ()
< Ab+ipo) p+lpg) < AHLDD) pkt1ipD)
) - )
Zpo \Ijk(k+1;p0),p(k+1:p0) ipi \Ij)h(k+1;p1)’p(k+l:p1)
) )
_aAGD \D;L(k+1;po),p(k+lypo> LIJA<k+1:m),p(k+1;p1)
o (k) g ®
A&+15po) (k1 po) Akt Lipy) pktLipp)
(k+1) i
— Z)\_ lIJ(J)

)L(k+1),p(k+1) .

O

Lemma 3.3 Fork < j < n—1 thefunction \IJ}(L{/‘)),p(k) is homogeneous of weight

j — k + 1 in the variables Sq(e) O0O<qg<n,1<t<n)when Sq(e) is assigned
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the weight £. Moreover, fork < j < n, as a function of the n + 1 components
of the multi-index A®) | the function \Ij)i{k))’p(k) is a polynomial of degree at most

J — k. In particular, ‘Pi]fg)’p(k) is independent of the multi-index \**) and

v ! () g
A0 p T (k—1) 2 k:po) pkipo) Akpy) pleipy) |
A(k:po),p(k:po)

Proof We prove the lemma by inductionon0 <k <n —1.
First we look at the weight of \Di{,g)’p(k) and show that \Ifi{k))’p(k) is homoge-

neous of weight j —k+ 1 in the variables ";‘L;Z) 0<g=<n,1=<¢<n). Again,
since the positive integer § is fixed once for all, the inductionon0 < k <n—1
is the same as the descending induction on the total degree 8§ — k of AX). For
k = 0 the conclusion clearly follows from (3.3). The derivation of step k + 1
from step k simply follows from (3.5), because, for y; = 0, 1, with the weight

of ) being j — k and the weight of g®) being

3 k+Lipyy )’p(k+l;pyl) A&y )7p(/<+1;]7y1)
1, the weight
)]
k(k+1?Py1 )’p(k+]1,[’y|)

k)

)“(/H—l;l?yl )’p(k+llpy1 )

isequalto j — (k + 1).
Now we show that \Ili]fk))’p(k) is a polynomial of degree no more than j — k

in the n + 1 components of AX). Again for k = 0 the conclusion clearly
follows from (3.3). For the derivation of Step k 4+ 1 from Step k, since the
total degree of A&+ EP) is s — (k4 1) — 1 = 8 — k, it follows from Step

k that w")

LGy (L) is a polynomial of degree no more than zero in the
Py ket

n + 1 components of A**1:Pn) and is therefore independent of A*+1:Pn)

for y; = 0, 1. Since the binary tree p**1 is assumed to have level-wise

homogeneous branches (see the paragraph preceding Lemma 3.1), it follows

that the two truncations p*+19 and p*+1:1 are identical binary trees and

(k) (k)

AGHLp0) pkt1ipg) = \Ijk(k+1;p1)’p(k+l;m)’

Hence by (3.5),

() ()
\If(j) . qj)h(k+1;po)’p(k+1;po) qjk(k+1;p1>’p(k+l;171)
A D) = )

)L(k+l;po)7p(k+l:po) LI";\(k+l:p])’F,(kJrl;m)
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_ ! o )
- \If(k) )\(k+1:po)’p(k+l:1¢0) )\(k+1;p1),p(k+l;p1) :
)L(k+l;po)7p(k+l;po)

k)

By induction assumption \IIN i)

pkling) 183 polynomial in the n + 1 com-

ponents of the multi-index A**1:70) of degree j — k and \Ili]fk)ﬂ;pl),p(k%m) is

a polynomial of the n 4+ 1 components of the multi-index A*+1:P1 of degree
at most j — k. Now
k+1; k+1; _

AkF1po) _ oy t1ip1) —
which means that the multi-index A*T1:70) is a translate of the multi-index
A*F+LPD by the multi-index e, — ¢, and is independent of the n + 1 com-
ponents of the multi-index A**1 Thus the difference

() g

)\(k+l:po),p(k+l:po) )L(k+l:p|),p(k+1;p1)

is a polynomial of the n + 1 components of the multi-index A**+1 of degree
atmost j — k — 1. The last statement follows from Lemma 3.2. O

Lemma 3.4 If \©) is a multi-index of n + 1 components with total degree
8 —k and p® is any binary tree of order k which has level-wise homogeneous
branching, then

(k) _ ) )
‘I’A(/o,p(k) =k (Spo - gm ) ’

where the nodes of p® are denoted by Pyi...y; With 1 < j < k and each y;
taking on the value 0 or 1 for 1 < £ < j. As a consequence,

W 1 ) )
wk(k),p(k) - (1) (1) [\p)h(k;m)’p(k;l'o) - lIJ)L(kQPl)?p(k;Pl)] °
k( Po T Spi )
Proof First we make the following simple observation. Let G (vg, ..., v,) be
a polynomial in vy, . .., v, of degree no more than M. For any p # g define

(Ap,qG) (vo, ..., V) = G(vo,...,v,,q,vp—l— l,vp+1,...,v,1)
-G (vo,...,vq_l,vq + l,vq+1,...,vn).

Then (Ap,qG) (vo, ..., vy) is a polynomial in vy, ..., v, of degree no more
than M — 1, because we can write
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(Ap.qG) (vo, ..., vy
G(vo,.. s Vp— 1,vp+1vp+1,...,v,,)—G(vo,...,vn)]
—[G (vo. - s vg—1.vg + Lvgst1, .oy vn) — G (vo, ..., )]

and clearly each of the two terms

G(vo,...,vp,l,vp—i—1,v,,+1,...,vn) —G vy, ...,Vy)
and

G(vo,...,vq_l,vq+1,vq+1,...,v,,) —G vy, ...,Vy)
isapolynomial in v, ..., v, of degree no more than M — 1. As a consequence,
if

FLFE S - TMAL 7 SM41, (3.6)
then
Arlm U AVM,SMG

is of degree zero in vy, ..., v, and Ay 5 -+ Ay sy, G 18 identically zero
for any polynomial G (vg, ..., v,) in vy, ..., v, of degree no more than N.

Letrj = py,,.. ¥i1,0 and 5; = Pyivyiorl- Since the binary tree p<k) of
order k has level-wise homogeneous branches, the values of r; = p,, ¥i1,0
and s; = py, .. yi_1,1 are independent of the choices of the values O or 1
for y1,...,yj—1. Let pk=7) = pkri¥i-)  Again we know that p*—7) is
independent of the choices of the values O or 1 for yy, ..., y;j_ because the
binary tree p®) of order & has level-wise homogeneous branches. By the last
statement of Lemma 3.3, we have

0 _ 1 () ()
\IJ)L(k) p® — ‘IJ(k D [\yx(k;po),p(k:po) - \Pk(k:p1)7p(k;p1):|
Ak:po) pk=1)
1 ) )
%D [\p wro) pe-n — Yyen) p<k71>] (3.7
plk=1D)

for any multi-index A®) of n + 1 components and total degree § — k. Here,

because of the independence of \I!ilzk p10)> .
the multi-index A*:70) by Lemma 3.3, we drop A*:70) from the subscript of
(k=1)

)\(k;po) p

(:py Of the n 4+ 1 components of

1) From

(k—
kipgy A8V p(kipo)”

(k—1)
(kipyy and simply write \IIN ") p
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)] )
‘I’Mm,pm) = o0
in the formula (3.3) and from (3.7) it follows that

o) I N
)\(kl)’lw-’Vk—l),p(l) \IJ(O)
p(O) v:)\(k;yl,..”,yk,l)

TSk CD1(;]

for any A®) of n+ 1 components and total degree § —k, because the total degree
of the multi-index A%:¥1--¥-1 js § — 1, which corresponds to the situation of
k = 11n (3.7). Inductively for 1 < ¢ < k we are going to verify that

)]
\Ilk(k;)/l,4.4,yk7[)’p(()
= —1 A A q)(i) 38
- (0) —1) Th—t+1:5k—t+1 """ S rese (3.8)
\ij(O) e \pr(Zfl) v:)»(k;yl"“’ykfl)

for any A% of n 4 1 components and total degree § — k. To go from Step £ to
Step £ + 1, by (3.7) we have

@)
ly)\(k:m-wrk—zq)’p<e+1>
_ 1 () o)
q,(f@)) A(EV1thg10) o) NG R) ING
p
__L lyw )
v® arieve10) o (kveriee-11) o
p
_ 1 1 A A oW
- \D(Z) \IJ(O) ---\If(g_l) Th—4+1:8k—e+1 """ 2Tk,Sk X v
p([) p(O) p(l—l) v:k(k;yl*“"ykflfl'())
1 .
\IJ(O) \Ij(é—l) AV SIITRLE Ark,SkCDSJ) }
p© " F e v (Bv1e v —g1.0)
1 .
p©@ T F 0 vy (Krtevis)

This finishes the verification of (3.8) by induction. Setting ¢ = j = k in (3.8)
yields
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1 A d®
HON (0) (k—1) Arpsy o B @y
\ij(O) lIJp(k D =2 )

for any A of n 4+ 1 components and total degree § — k. We rewrite it as

k () ) (k)
Arisy o A @0 = =¥ p(1>‘IJ;L<2> p® " Ve p® (3.9)

when <I>1(,k) is regarded as a polynomial in the n + 1 components of v. Note that
by (3.6) the left-hand side

Arlm e Ark,Schgk)

is independent of the value of v because the degree of CD,()k) as a polynomial in
v is no more than k.

Since by Lemma 3.1 as a polynomial in vy, ..., v, the degree of
n k
1
o - (z " >)
£=0

is at most k — 1, it follows from (3.6) that

1
Arpsi oo Drese CD‘()k) B (Z Wg( )) -

and
n k
N (z ws,f“) B
=0
We have
n k
A st (Z %g(l))
=0

(Z”f(l) <1)) (ng(l) (1))k

k—1—j
(5(1) (1)) Z(Z"f(l)Jff(l)) (Z”S(l) (1)) ’

j=0 \¢=0
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Now for j > 1,

" i on k—1—j " k—1
(St ) (o) (S ee0)

=0 =0 =0

k—1—j
(ZU g(l) (1)) ! (ZV 5(1) +5(1))
(Zv £V + “))j
k—1—j
(z veé(l) (1)) ! (%_(1) g(l))
i—1—¢
Z(Zv S(l) +§(1)) (ZU 5(1) (1))J

=0

is a polynomial of degree no more than kK — 2 in the n 4+ 1 components of v.

Since
k—1 n k—1
(z v 5(1) (1)) _ (Z 1)Zgg(l))
k—2—¢
(1) Z(ZU 5(1) (1)) (Zveé(l))

£=0

is a polynomial of degree no more than k — 2 in the n + 1 components of v, it

follows that
n k—1
Ares, (Z 1)de(l)) —k (Z v 5(1))
=0

a polynomial of degree no more than k — 2 in the n + 1 components of v and

n k—1
1 1
Arpsi o Br_sicr | Arese (Z Ve:‘:-é )) —k (Z v f( ))
£=0
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is zero. By induction on k, we conclude that

k k
1
Arl,sl o rk Sk (Z Vﬂs( >) H ( () _ (1)) .

and
Ay Bp s @) = k! H (5(1) (1)) '
=1

It follows from (3.9) that

(H (2) (k) n (1
‘I'm) pD ‘I’A@ p@ ‘I’Mk) p = = k! H (5( )) :
=1

Finally (3.10) yields

(k) 1 1
\p)\(k),p(k) =k (g( ) S( ))

(3.10)

by induction on k for any multi-index A®) of n + 1 components with total
degree § — k and for any binary tree p*) of order k which has level-wise

homogeneous branching.

O

Remark 3.5 The reason for explicitly computing the function \Ili]fk))’p(k) is to

determine the pole set of the vector field ek Mk) o

Lemma 3.6 (a) The function

k—1
) 1 1
qj;b(k) o (S( ) &-( ))

(=1

is of homogeneous weight j in %‘,(e) (1 <¢<j,0<t <n)andisindependent
of (20, . . . , zn) and is a polynomial in the n + 1 components of X of degree

=J
(b) The vector field

k k—1
(/)
O % o0 (H ZreZse )H (50) ,E(l))
(=1

=1
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is a polynomial in zg, ..., z, of degree < k and is independent of ft(é) 1<
L <n-—1,0 <t < n). Moreover, the dependence of @;J(.,z)’p(k) on L0 g
only through the partial differentiation with respect to o, with ju depending
on A8,

(c) The vector field ®§§l)<>,p(k> is equal to

(k)
ZA

3
A oo A v ,
! ( ) _ <1>)[ T ok (Z aO‘V):|v=A(k)

=1 Se

where Ay, g, -+ Ay g, 15 applied to

as a function of v.

3.3 Generation of vector fields in the parameter direction

We now look at the special case of Lemma 3.6(c) with kK = n, then

&) AL (o te —v d
®A(11) m =< Ticilenren) Arpsp o Drys, \ 2
P day J |,y

satisfies
~ (1) i _
®x(n),p<n) (dj f) =0

for 0 < j < n — 1. We fix a point y in X,, where o = {(xv}|v|:5. We can
choose homogeneous coordinates in P, so that

(z0, 21, --+>2n) ) = (1,0, ...,0).

We choose also s = --- =5, =0andr; # Ofor1 < j < n. Then at y we
end up with

om  _ 9
A pn = :
P a(xk(n)+z'é:l er

For the choice of A we can choose any multi-index of total degree § — n.

When we worry about the generation of the vector fields by global sections, for
differentiations in the direction of the parameters o = {a, }|,|=s at the origin,
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we can capture in inhomogeneous coordinates the differentiation with respect
to all coefficients for monomials of degree at least n, because we must include
> iy er withrj #0for 1 < j <ninv which is equal to A 4 Dy e

3.4 Example of vector fields on jet spaces of low order

Let f =, ayz”. We introduce

éj = de,
e 9% _ 5
/ Zj Zj

Then

df=2a,, Zvjéj(-l) z".
v J

Proposition 3.7 Let 0 < p 2 g <nand 0 <r # s < n. Let u be a
multi-index of total weight 5 — 2. Then

1 1 a 1 a
Zr Zp aaﬂ+er+ep 2q 8aﬂ+er+€q
1 1 0 1 0 ;
-\l - @f)=0
r \\2p 0uterte,  2g 0pte,te,

for j =0, 1.

Proof We have

1 0 1 0
— = @f) = (0 - &)
Zp aa}d—e,, 2q aak+eq

for any A with |A] = § — 1. Choose u with || = 6 — 2. Apply the above
equation to A = p + ¢, and get

1 0 1 d
_ _ (df) — (&-‘51) _ gl()l)) ZM+€r
2p 0pyete,  Zq 0Uute, te,
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and

1 1 a 1 0
(L -1 @f) = (& — ")
Zr Zp aOll,H-er-Fep Zq aaﬂ+er+eq

Since the right-hand side is independent of », we can replace r by s and take
the difference to get

1 1 0 1 0
ir ip aau+er+ep 2q 80{u+e,-+eq
1 1 0 1 d
- — - — df)=0.
Zr \\2p 0%uterte,  2q 0pterte,

Remark 3.8 We can rewrite the vector field

1 1 a 1 el
[ z ((; 0 ve,+e, - 5 At +eg ))
1 1 d 1 d
- Z_ ((Zp ao‘u—l—er—i-ep B Z 8au+er+eq ))]

u 1 0
25| A Ap,q z_”ﬁ )
v/ dv=p

as

where
A sFv)=F@W4e)—F@+e).

To illustrate the situation of vector fields on jet spaces of low order, we do
the case of the next order.

2
:Zav Zvjfg‘;l) +Zo¢§2) z’,
v j v
2
1

1 2
—vgdz Zvﬁ“ 287
v
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2
1

2 (1) 1
s () = (S
2

>ovig el ) - (50 -6?)
J
= (&0 -&") (22 vig" +e 162 | + (67 - 7).
J

138 5 1 1 1 1
ArsApg (z_‘)aTzvd f) =2 (5r( ) — g )) (5,(, ) —5,5 )),
1

ad
AM,UAV,SA[),Q (Z_ngzf) = O
%

Thus for any multi-index u of total degree § — 3, the vector field

1 9
AuvArvqu ZVaOl
v V=p

annihilates djf for j =0, 1, 2, because

d ad .
— J
[aav ]v:k B [aav]v:k (d f)

We can now formulate the case of higher-order jets.

Proposition 3.9 Let O < r; # s¢ < nfor1 < { < k. Let u be a multi-index
of total weight § — k. Let © ., ri:5,,...5, denote the vector field

M 1 0
Z Arl,sl e Ark,sk Z_VM s .

Then ®/L;r1,...,rk;S1,...,Sk (djf) =0for0<j<k-1

In the above proposition the vector field O ./, . r:sq,....5 1S @ linear com-
bination of the partial differentiation operators

0

aOlu+gril +...+g,,l_p +esfl +m+esjk—p

for 0 < j < k. The process of generating such vector fields is not independent
of coordinate transformations from the general linear group GL (n + 1, C).
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Suppose we have the coordinate transformation

n
Zj = Zajzwg 0O=j=<9

=0
from the elementa = (a j g) 0<j.t<n of the general linear group GL (n 4+ 1, C).
Then
n Vo n Vn
ZU :Z(‘;OZ;’JLH :(Zaogwg) (Zanﬁwﬁ) — Z AV’Mwl‘L.
£=0 £=0 [p|=6
Let (BM,U) l=Iv|=5 be the inverse matrix of the matrix (AML) l=|v]=5" Write
f= Z o,z = Z Buwh.
[v]=6 l|=6
Then
IBM = Z O[VAV,;Lv
lv|=48
ay = Z BuBu.v-
lul=38
When the generation of the vector field ® in the coordinate system (zg, . - . , Z»)
gives
0= Y a0y,
= Z ,
z - 8v e,
the procedure applied to the coordinate system (wy, ..., w;,) gives
Ou =Y 8w,
w = . 8un 9B, .
When we transform back to the coordinate system (zo, .. ., z,), we get

doy 0
0By dary

Oassiiry.oraist oy = D gu(W(2))
n,v

Now we would like to show that when & = n, the dimension of the quotient
space

@ Springer



Hyperbolicity of generic high-degree hypersurfaces 1107

a
@ (Caoc / Z COu;pisrirnist, sy
v

Floeevs ¥y Slsen-sSn

is no more than n over C. For this we need only show that modulo the linear
space generated by all such ®gy. . . r:s1,....5,> EVETY generator % can be

. . . v
expressed as a linear combination of n fixed

(I<t=n,
o, e

where v{*! is a multi-index of total weight 8. We use the linear transformations
defined by a € GL (n + 1, C) simply to make sure that, for any given point,
we are free to do the checking in an appropriate coordinate system which
depends on the point.

For the convenience of bookkeeping we let M be an integer > § and intro-
duce a new weight ||v||y; for any multi-index v of total degree § which is
defined as follows.

n

0

vl =D veM".
£=0

We single out the n multi-index v of total degree § which has the n lowest
weight ||v|| s possible, namely,

—C+n—-1—0M O<tl<n-—1).
These n — 1 multi-indices are

v =@6—-tn—1-¢0,...,00 O<t<n-1).

Fix a point Py in the space Jnvir{ (X) of vertical (n—1)-jets. Choose a coordinate

system (zo, . . ., z,) so that all the coefficients of

0

oo
;H—eril—i- +erip+esjl+ +esjk_p

occurring in

1 9
"
Ouirt,ristyonsn =2 | Brisi o Brys =
zVoay ) 1=y
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are all nonzero. Then modulo © ., . ..., WE Can express

0
Ot e,, +ortep,
as a linear combination of

0

a“u+eril Hoer, by okes

for p < n. Now take any multi-index v with total degree § which is different
from any one of pl0 . v["=11 In other words,

Wiy >8—n+14+m—-1)M.

Then for some 1 < ry,...,r, <n,all the n + 1 components of
n
3
=1
are nonnegative. Let

n
I"L = V_Zerg,
=1

s1]=---=s, =0.
Then modulo ®Ou; ry, ..., ry; S1, ..., S, We can express
0
doy
in terms of
0

oo te,
u+eri1 + +e,l-p +e"1'1 + +esjk_p
for p < n with
HM T €riy RIS €rip + Esj) Tt es.ik—p HM < Vil
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We thus conclude that modulo

2 COapuiryoooraistvsns
aeGL(n+1,C);|u|=6—n;
FlyeesTn3 8150580

the space

is generated by

ad d
o, 01 oy in—11

and we conclude that the dimension of the quotient space

@ Cai / Z (C@a;u;rl,...,rn;sl,...,sn
v

N aeGL(n+1,C);|u|=56—n;
FlseesFniS15.0058n

is no more than n over C. Note that the pole order of each of the meromorphic
vector field

®3§M;rl seestny815400,80
is no more than 2n along the infinity hyperplane of P,,.
Remark 3.10 The reason why in the above argument we fail to get generation

of all vectors in parameter space is that we can only expect to get generation

all vectors in parameter space up to codimension n for (n — 1)-jets. The vector

fields have to be tangential to the space Jrfv_elrt) (X) of vertical (n — 1)-jets of

X which is of codimension 7 in the product
-]n—l (]Pn) X ]PN
of the space J,,—1 (P,) of (n — 1)-jets of P, and the parameter space Py .
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3.5 Generation of vectors in vertical directions

Now we construct holomorphic vector fields which generate the vertical direc-
tions modulo the horizontal directions.

Zj% (@) =2 cwjo (60, 6®) 2
J 1%
8é§€( ) Z““[ © (k)(sm ’S(k))}v

To unify the notations, we use 7 to denote any one of

d d
Zj—, — 0=<j=<n 1=<{€=<n)
oz ael 0=
and write
() yape

This means that

d
El()k) = —avvjcb‘(,k) (5(1), e S(k)) when 7' = ng
J

and
— k) I k) (=) *) 9
B0 = g, | -2 @l (g E ) when 7 = .
§

The function :5) is homogeneous of weight k — ¢ and is independent of

20y« -+ 2n-
We also unify the notations for the vector fields @Eﬁ,z) o) and write ®1(;k) as
the vector field with effective low pole order such that

em (dff) —0 for0 <)<k,
em (dkf) =7,
oW (¢7f) = —wiDz" for j > k.
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This means the following. Choose a binary tree p*~! of order n — I which has
level-wise homogeneous branches. Letrj = py, .y, j0ands; = py, .y, .1
for 1 < j <n — 1. Since the binary tree p""~1 of order n — 1 has level-wise
homogeneous branches, the values of rj = py, .y, j0andsj = py,, _y; ;1

are independent of the choices of the values O or 1 for y,...,y;—1and 1 <
j <n—1 Let p@® 17D = p=Lvi¥i) for 1 < j < n — 1. We know
that p®*~1=7) is independent of the choices of the values 0 or 1 for y, . . ., Vj

and 0 < j < n because the binary tree p”*~1 of order n — 1 has level-wise
homogeneous branches.
Given any multi-index v of n + 1 components and total degree &, we choose

a multi-index A\()"_l) of n 4+ 1 components and total degree § — n + 1 such that

k,(,"_l) < v in the sense that the j-th component of k,(,"_l) < v is no more than

v; for 0 < j < n. Though the binary tree p(”_l) of order n — 1 has level-wise

1; ; .
homogeneous branches, yet k(n T does depend on the choices of the

values O or 1 for y1, ...,y and 1 < j < n. The dependence is as follows. If
we denote r; by rj o and s; = r; 1, then

) _a1h e S

By Lemma 3.2,

k M") () .
®((12> NG (d f) v {k) p® fork<j<n

for any multi-index A®) of n + 1 components and total degree § — k. So we
can set

YO
(S AR L ,
P
(n—1—k)
wli — Z% h 0
p

By Lemma 3.6, the function

k) H (%_(1) <1))
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is of homogeneous weight j in S,(e) (1 <¢<j,0<t <n)andisapolynomial
in the variables zo, ..., z, of degree < n — 1 — k and in the n 4+ 1 components
of v of degree < j. The vector field

k
(k) H () (D
®l) ,@Z] ( ZZSZ (g S ))

is a polynomial in zg, ..., z, of degree < n — 1 and is independent of 5(1{)
1<t¢<n—-1,0<t< n) Moreover, the dependence of ®x<k> o On Y is

only through the partial differentiation with respect to o, with v depending
onv.
To make sure that a modification of 7 annihilates f, we modify 7 to T +

> 220 To make sure that our constructed vector field annihilates d f,
we use

(T +> ag°>@50>) dfy=-> aPwlby > ab.
V

Vv v

This means that we have to modify 7 + > "‘(0)(91(,0) to

— ) 1 1 = 1
T+ 20600 + 3 eOulel + 3 ENel.
v v v

To go one step further to make sure that our constructed vector field annihilates
d?f, we use

(T +3 2000 + 3 E0u0ed + 3 agw@gw) (@)
V v v

= Z EOg0.2 v _ Z SO g Oy (1.2

v

v
B SR oo

Thus we have to modify
T+ 5000 +3 50y 0eD 1S 5he)
% % %
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to
—~(0 0 = (0 0,1 1
T+> 800 +> aPybed
v Vv
—~(0 0,2 2 =0 0,1 1,2 2
+ > EQPuPel + > ePwbyPe

v v
—~(1 1 —~(1 1,2 2 —~(2 2
3 Ehel + 3 shu2e® 13 gPe®.
v v v

In general, to make sure that we have the annihilation of all d J ffor0<j <
n — 1, we need to write

k—jo—1

T + Z Z g (o) z Z g (iel H lIJ(./q JJg+1) o®.

Vv 0<jo<k<n-—I =0 jo<--<je<k

The main point is to control the pole order of the vector fields and make the

pole order bounded and independent of §. That is the reason why we want to

(k)

remove z" by using the vector fields ® . We now count the degree in

A6 k)
20, - - -, Zn and the weight in f;‘j@) after we clear the denominators. We need to
multiply
-1
\p‘()Jz,k) H \I-',qu’jqﬂ) ®$;k)
q=0
by
(3 jq k
ITI(T1 (5(1) 5(1)) I1 ( (M _ (1))
g=0 \i=1 i=1

to get rid of the denominator involving éj(.z). The worst that can occur is

k
H((l) (1>) -

(=1

whose weight is @ Since

k) H (%_(1) <1))
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is of homogeneous weight j in é,(e) (1 <€ <j,0<t <n),itfollows that
the worst situation is that after multiplication by the above factor to clear the
denominator we end up with a weight of jo 4+ ji + - - - + j¢ plus the weight of
the factor which is no greater than the weight

o . onn—1)
Jotijit- it ——F—=nk—1

When it comes to the degree in zo, . .., z,, we have degree 1 from 7', multi-
plication by the factor

k
[ o)
=1

to clear the denominator of ®$}k) to yield degree < n — 1, and the degree of

k) H (E(” (1))

no more than n — 1 — k. So after clearing the denominators, we have no than
2(n — 1) 4+ 1 in degree for T and no more than

nm=1—jo+---+m—-1—j+mn—-1+2n
<nn—D+m—D+2n<n>—1+2n

for
—1 o o)
\II‘S_][,]() H\pvjqdqﬂ ®‘()k).
q=0

Finally we conclude that, after clearing the denominators, we end up with
weight no more than n(n — 1) in ";‘t(z) (1 <¢<j,0<t <n)anddegree no
more than n® — 1 +2nin zo, . . ., Zn.

3.6 Vector fields in terms of differentiation with respect to inhomogeneous
coordinates

The introduction of homogeneous coordinates is simply for the notational

convenience of our discussion. We now return to inhomogeneous coordinates
by specializing to zg = 1. First of all we would like to go back to the coordinates
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Az 0<j<n—1,0<t<n)
from the coordinates

ZOaZI"-'azna
d/logzy 1<j<n—1,0<¢<n)

which is the same as

ZOazlv""Z}’l’
g (l<j<n—1,0<t<n)

(because EJ(.k) =d*logz ;j)- We are going to use the chain rule for the transfor-
mation of vector fields.
9 _zzaé@ 9
9 (d'zp) ox 0 (d*zp) 3§j(~k)

Since sj(.k) = dk-! (ﬁ), it follows that

2j
gj(.k) = g;k) (ZO, v Znydzo, .. dzn, ..., d" 20, .. .,d”zn)

is a rational function which is homogeneous of weight 0 when d*z p is assigned
weight 1 and is homogeneous of weight k when d‘z p 1s assigned weight £.
Thus

(£)
0&!
3 (d’zp)

is of weight —1 when d*z p 18 assigned weight 1 and is homogeneous of weight
k — ¢ when d’z p 1s assigned weight £. It follows from weight considerations

that
% ()
8(d£zp) P zj)’

where §, ; is the Kronecker delta. We conclude that, so far as the independence
of the constructed vector fields are concerned, it makes no difference whether
we are using the coordinate system
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ZOvzlv"'vzl’l’
d/logzy (1<j<n—1,0<(<n)

or the coordinate system

ZOvzlv""Z}’h
) (<j<n—1,0<t<n).

Now we pass from the homogeneous coordinates to the inhomogeneous coor-
dinates. It is equivalent to restricting all the objects to the linear subspace

20=1l,dzg=d*z0=---=d"z0 = 0.

So far as

0 ad
og" 9 (d'zp)

are concerned, the linear subspace is part of the line defined by setting some
coordinates equal to constant and the argument is not affected. Since the pole
order of d*z j is no more than £+ 1, we have the following proposition. A point
of the space J,‘l’ir{ (X) of vertical (n — 1)-jets is represented by a nonsingular
complex curve germ in P, precisely when the value of z1dzo—zodz1 is nonzero
at it for some homogeneous coordinate system zo, .. ., 2, of P,.

Proposition 3.11 (Global generation on jet space by slanted vector fields at
points representable by regular curve germs) Let Py be a point of the space
JV (X)) of vertical (n — 1)-jets such that Py can be represented by a non-
singular complex curve germ in P,. Then the meromorphic vector fields on
P, x Py tangential to

{f:df:...:d”fzo}
of pole order < n*>+2n+n(n—1) = n(2n+ 1) (along the infinity hyperplane
of P,,) generate at Py the tangent space of the total space of fiber-direction
(n—1)-jets, where d* f is taken with o, regarded as constants. In terms of inho-

mogeneous coordinates, the statement is equivalent to that of the formulation
in terms of homogeneous coordinates on the restriction to

{zj=1dzj=d’zj=---=d"z; =0}

foreachQ < j <n.
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Proof Since Py can be represented by a nonsingular complex curve germ in
P, there exists some homogeneous coordinate system zo, ..., z, such that
zo # 0and z1dzg — zodz1 # 0 atit. Since one of zg and z; must be nonzero at
Py, we assume without loss of generality that z¢ is nonzero at Py. Let x; = Z—é

for1 < j <n.Thendx| = M # 0 at Py. We then apply a translation

to the affine coordinates (xi, .. xn) to make sure that x, # 0 at Py for
1 < ¢ < n. Then we apply a hnear transformation to the affine coordinates
(x1,...,xy) that xp = 0 at Py for 1 < £ < n and dx| # dxp at Py. We are
goingtosetr; = lands; =2for1 < j < n. Also we will restrict the vector
fieldsto zo = 1 and zy = x¢ for 1 < £ < n so that

S(l) 5(1) — 51(1) _ 52(1) £0

at Py and z; # 0 at Py for 0 < £ < n. The above construction now gives the
generation of the tangent bundle of J)*'] (X) at Po. O

Remark 3.12 Inthe global generation of the tangent bundle of X' in Lemma 2.6
there is no reference to the tangent vector being representable by nonsingular
complex curve germ, because a tangent vector which is not representable by a
nonsingular complex curve germ must be zero and the identically zero global
vector field already generates the zero tangent vector. However, a higher-order
jet which cannot be represented by a nonsingular complex curve germ need
not be zero. The condition of representability by a nonsingular complex curve
germ can be technically suppressed by formulating global generation over
some suitably defined projectivization of the jet space which includes only
those jets which have well-defined images in the projectivization of the tangent
bundle.

For the hyperbolicity of generic hypersurface X of sufficiently high degree,
the generation by slanted vector fields of low vertical pole order only at jets
representable by nonsingular complex curve germs offers no difficulty, because
any nonconstant holomorphic map ¢ from the affine complex line C to X must
have a nonzero tangent vector at some point ¢y of C and we need only use
slanted vector fields of low vertical pole order at the jet represented by ¢ at

¥ (o).

The slanted vector fields on J,ffr{ (X) of low vertical pole order constructed
in Sect. 3.5 for the proof of Proposition 3.11 start out with the vector field T
which is any one of

0 0
z2j—, — 0<j<n, 1<{€<n).
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The constructed slanted vector fields on Jnvir{ (X) of low vertical pole order
are actually restrictions to Jnvfl} (X) of vector fields on J,_| (P,) x Py of
low vertical pole order which are tangential to J "} (X). We formulate below
a proposition about the slanted vector fields on J,—1 (P,) x Py of low ver-
tical pole order which are tangential to J)*' (X') before their restrictions to
Jnvir} (X). This formulation is needed in Sect. 5.2 where the proof of Theo-
rem 1.1 is modified to give a proof of Theorem 1.2.

Proposition 3.13 Let @ € Py and Py be a point of the space J,—1 (P,) x Py
such that Py can be represented by a nonsingular complex curve germ in
P, x{a} which lies in X. Then the meromorphic vector fields on J,—1 (P,) xPy
of pole order < n*>+2n+n(n—1) = n(2n+ 1) (along the infinity hyperplane
of P,) which are tangential to J\*" (X) generate at Py the tangent space of
Jn—1 (Py) x Py.

3.7 Use of slanted vector fields to lower vanishing order of jet differentials
and to generate linearly independent jet differentials

First we would like to make a remark about the weight of a jet differential after
the application of the vector fields which we have constructed. The weight of
d/x; is Jj- The coordinates x, has weight zero and does not contribute at all
to the computation of weights. When we consider the vector field which starts
with

0
3 (dkxe)’

to clear the denominator we have to multiply the result by the factor

dx; dx» k
X1 X2
so that one ends up with

(d x| dx )k B

X1 X2 0 (dk)Cg)

which means that the action of the vector field after clearing out the denom-
inator preserves the weight of the jet differential. Moreover, by the explicit
construction of the slanted vector fields of low vertical pole order, we can-

not apply them to (n — 1)-jet differentials to lower their orders to get k-jet
differentials for some k < n — 1.
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For the hyperbolicity problem there are two ways to apply the constructed
slanted vector fields of low vertical pole order. One is to lower the vanishing
order of an (n — 1)-jet differential on a generic hypersurface at a prescribed
point by applying slanted vector fields to the extensions of the (n — 1)-jet
differential on neighboring hypersurfaces.

The other is, from a given (n— 1)-jet differential on a generic hypersurface of
a given weight which is nonzero at a prescribed point, to generate more (n — 1)-
jet differentials so that the resulting (n — 1)-jet differentials at the prescribed
point span the finite-dimensional vector space of all (n — 1)-jet differentials of
that particular weight defined only at the prescribed point. Again the slanted
vector fields have to be applied to the extensions of the given (n — 1)-jet
differential to neighboring hypersurfaces. For the hyperbolicity problem, in
both applications the given (n — 1)-jet differential to which slanted vector
fields are applied, as well as its extension on neighboring hypersurfaces, is
assumed to be holomorphic and vanish to sufficiently high order on some
ample divisor in order that the resulting (n — 1)-jet differential is holomorphic
and still vanishes on some ample divisor, after part of the vanishing order on
the ample divisor of the given (n — 1)-jet differential (as well as its extensions
to neighboring hypersurfaces) is used to cancel the low vertical pole orders of
the constructed slanted vector fields.

Note that for a generic hypersurface a holomorphic (n — 1)-jet differential
vanishing to a sufficiently high order on an ample divisor is automatically
extendible to a holomorphic (n — 1)-jet differential on a neighboring hyper-
surface vanishing also to a sufficiently high order on an ample divisor (see
Proposition 3.15 below).

The following proposition is a precise formulation of the applications of
the constructed slanted vector fields. The jet differentials to which the slanted
vector fields are applied will be constructed in Sect. 4 below. The polynomials
g are introduced in the proposition in order to use the coefficients of g®)
to control the linear independence of the resulting jet differentials, because of
other Lie differentiations coming after the Lie differentiation by g® times a
slanted vector field.

Proposition 3.14 (Slanted vector fields to reduce vanishing order and to gen-
erate independent jet differentials) Let & € Py and U be an open neighborhood
of & such that X© is nonsingular fora € U. Let § € X@ and C be a nonsin-
gular curve germ in X @ gt y. Let gy and m be positive integers. For o € U
let 0 be a holomorphic (n — 1)-jet differential on X of weight m which
vanishes to order > qq at the intersection of X @ and some hyperplane sec-
tion of P, and which varies holomorphically as « varies in U. Assume that the
pullback of @D to C asan (n — 1)-jet differential on C has a coefficient with
vanishing order < rq at y for some nonnegative integer ro and assume also
that qo > (ro+ 1)(m + 1)(n — 1)n(2n + 1). Then for some J € N there exist
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holomorphic (n — 1)-jet differentials a)ﬁ.&) on X(&)for 1 < j < J whichvanish
on an ample divisor of X @ and which have no common zeroes, as functions
of homogeneous weight, on J,_| (X (5‘)) _ other than the zero (n — 1)-jet of
¥
X@ g v, where J,_; (X (‘3‘)) _is the finite-dimensional C-vector space of
¥

all (n — 1)-jets of X@ g 9. Moreover, each of the (n — 1)-jet differentials
a)ﬁ.a) for1 < j < J can be given as the restriction to X @) of the ro-times

iterated Lie derivative of ' with respect to ro slanted vector fields, each
of which is a slanted vector field of the kind constructed in Proposition 3.11
and Proposition 3.13 multiplied by some polynomial g}a) of degree < rq in
the inhomogeneous coordinates of P, whose coefficients are holomorphic in
aeU.

Aslong as & is a generic point of the parameter space [P, in Proposition 3.14
it suffices to assume the existence of one single 0@ on X@ instead of a family
of @@ on X@ for @ € U which is holomorphic in « € U, because of the
following general abstract statement.

Proposition 3.15 (Extendibility of jet differentials on generic fiber to neigh-
boring fibers) Let 7w : ) — S be a flat holomorphic family of compact complex
spaces and L — Y be a holomorphic vector bundle. Then there exists a proper
subvariety Z of S such that for s € S — Z the restriction map

T (Us, L) — T (77 '(s), Llz-1(5))

is surjective for some open neighborhood Us of s in S.

In Proposition 3.14, if for some point & of Py and for every point § of X @
the assumption of Proposition 3.14 is satisfied, then the hypersurface X@ is
hyperbolic in the sense that there is no nonconstant holomorphic map from C
to X@ . The following proposition formulates precisely this result and will be
applied to prove Theorem 1.1 after the construction of the required holomor-
phic jet differentials in Sect. 4 below and after the analysis in Proposition 5.1
of the effect on them from the change of inhomogeneous coordinates of PP,
used in the construction.

Proposition 3.16 (Hyperbolicity from existence of appropriate jet differen-
tials) Let & € Py such that the hypersurface X @ g nonsingular. Suppose,
for every y € X@ and for every C whose (n — 1)-jet at y is generic, the
assumption of Proposition 3.14 is satisfied for some C, U, a)ia) Yy a)(Ja), q0,
ro which may depend on the point y of X @), Then the hypersurface X @ jg
hyperbolic in the sense that there is no nonconstant holomorphic map from C
10 X,
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Proof Suppose the contrary and there is some nonconstant holomorphic map
¢ from C to X@ . For some ¢y € C where the differential dg of ¢ at ¢y is
nonzero. We let § = ¢(&p). By the argument of Proposition 3.14 there exist
holomorphic (n — 1)-jet differentials a);a) on X@ forl < Jj < J which vanish

on an ample divisor of X (@ and which, as J functions of homogeneous weight

on the finite-dimensional Euclidean space J,,—| (X (‘5‘)) _ofall (n — 1)-jets of
y

X@® at the point $, have no common zeroes other than the zero (n — 1)-jet of
X@ at §. By applying the Schwarz lemma of the vanishing of pullbacks, by a
holomorphic map from C to a compact algebraic manifold, of jet differentials
vanishing on an ample divisor of X @, we conclude that the pullbacks of each
(@
1

ofw; . ..., a)(J&) by ¢ is identically zero on C. This means that the nonzero

(n — 1)-jet of X @) at y defined by the map ¢ is a common zero of the J
functions of homogeneous weight on J;,_1 (X (5‘)) _defined by a)ia), cees a)(Ja)
))

at y. This is a contradiction. O

Remark 3.17 In the application of Proposition 3.16 for the proof of Theo-
rem 1.1 given in Sect. 5.1, only the special case of ro = 0 is used.

4 Construction of holomorphic jet differentials

We are going to construct holomorphic jet differentials. One crucial ingredient
is the use of the Koszul complex to show that a homogeneous polynomial of
low degree in n + 1 homogeneous coordinates and their differentials up to
order n — 1 cannot locally belong to the ideal generated by a second homo-
geneous polynomial and its differentials up to order n — 1 when the second
homogeneous polynomial is a homogeneous polynomial of high degree in the
n + 1 homogeneous coordinates (see Lemma 4.4 below). The jet differentials
are constructed by using the linear algebra method of solving a system of
linear equations with more unknowns than independent linear equations (see
Proposition 4.8 below).

Lemma 4.1 Let Y be a compact complex manifold and Z be a subvariety of
pure codimension at least 2 in Y. Let F be a locally free sheaf on Y. Then the
restriction map

HY(Y,F)— HI (Y —-Z,F)

is an isomorphism for 0 < g < codimy Z — 2.
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Proof Thisis a standard removability result for cohomology groups. Let {U}
be a finite cover of Y by Stein open subsets U ;. Since

Hr(ﬁ(Uﬂ—Z),}")zO

=0

for 1 < r < codimyZ — 2 and for any jo, ..., jp, by Leray’s theorem the
following natural isomorphism

HY(Y — Z, F) ~ HY ({UJ- -z}, ,}")

gives the computation of the sheaf cohomology by Cech cohomology. Since
the restriction map

F(Q)Uje,f)e F(Q}(Uﬂ —Z),]-")

is bijective for any jo, ..., jp, it follows that the map

we ({v;};. ) ~ 1o ({U; - 2}, F)

defined by restriction is an isomorphism. The lemma follows from the follow-
ing natural isomorphism

HY (Y, F) ~ HY ({U.,-}j : ]—“)

gives the computation of the sheaf cohomology by Cech cohomology. O

Lemma 4.2 Let ¢ and a < N be positive integers. Let Z be a linear subspace
of Py and let

Fi,...,F; e I'(Py, Opy ()

such that the zero-set of F1, . .., F, in Py — Z is a submanifold of codimension
a in Py — Z which is a complete intersection. Assume that

H1 (IP’N - Z, OPN(r)) =0 forl<g<a
for any integer r. Then
a
(P =2, 08—t +p) > T [Py = 2,3 sy (D)F
j=1
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induced by
a
81, 8a) > D _giF;
j=1

is surjective.

Proof Consider the Koszul complex

0 0@ (—at+ p) > - > OFD (ke + p) 2 OFH)

X (~(k = e+ p)
s 089 204 ) - 0FD et p) 2 0P D ).

The homomorphisms in the Koszul complex is defined as follows. Take sym-
bols ey, ..., e,. We use

e N Nej I<iij<---<iy<a)

as a local basis for (9;?]5") (—k{ + p) to represent an element
(gil ,,,,, ik) 1<ij<--<ix<a

ot OFW (ke + p) as

I<ii<---<ip<a

and define
o (§ o2
Ok : OPN(")(—kE + p) > OIF’,\Ek l)(—(k — D+ p)
by
o (eiy Ao Aeiy) Z( DYUF, (e Ao Ay Al o Ae)
in such a representation. Since the zero-set of Fi,..., F, in Py — Z is a

submanifold of codimension a in Py — Z which is a complete intersection, it
follows that the Koszul complex is exact on Py — Z.
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We are going to prove by descending inductionon b for 1 < b < a — 1 that
H?(Py — Z,Kergp) =0

for 1 < g < b.The case b = a — 1 follows from the assumption of the lemma
and

)

Ker¢,—1 = (’)I?Af“ (—at + p).

For 1 < b < a — 1 the exact sequence
)

0 — Ker ¢y — OE?N(b (—bl + p) — Kerdp_; — 0

yields the exactness of
H1 (IP’N -Z, (’)gg”)(—bé + p)) — HY Py — Z,Ker¢p_1)
— HIT' (Py — Z, Ker ¢p)
and for 1 < g < b — 1 we conclude, from
H? (}P’N - Z, O;‘?N(b)(—bﬂ + p)) =0
in the assumption of the lemma and
HYT Py — Z, Ker¢p) =0
in the induction hypothesis that
HY Py — Z,Ker¢p_1) =0,

which completes the induction argument.
For b = 1 we have

H'(Py — Z,Ker¢) =0,
and the short exact sequence

0 — Ker¢; — O (=L + p) = Im ¢y — 0
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yields the surjectivity of
F@W—J@O%G%+p0—>F@N—ZJm@L
Hence
a
F(Py =2 08—t +p) > T Py =2, On(0F,
j=1
induced by ¢ is surjective. |

Lemma 4.3 Let wg, wy be two transcendental variables (representing two
local holomorphic functions). Then

is a polynomial in the variables
dwy (0<€<j, k=0,1)
which is homogeneous of degree j + 1 in all the variables and of total weight

j in the differentials d*wy for 0 < £ < j and k = 0, 1 when the weight of
d'wy is assigned to be {.

Proof The case j = 0 of the claim is clear. The induction process of the claim
going from step j to step j + 1 simply follows from

J+2 41 (W1
wy d (—
wo

oo () - o (2)

and the observations that
(i) the differential of a homogeneous polynomial in the variables

d'wg (0<C<j k=01
is a homogeneous polynomial in the variables
d'wp 0<€<j, k=01

of the same degree, and
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(ii) the differential of a polynomial in the variables
dwpy 0<t<j, k=01

which is of homogeneous weight a is a polynomial in the variables
dwpy 0<t<j, k=01

which is of homogeneous weight a + 1 when the weight of dwy is assigned
to be £. O

Lemma 4.4 (Injectivity of pullback map for jet differentials) Let 1 < k <
n — 1 and let f be a polynomial of degree § in inhomogeneous coordinates

X1, ..., Xy of Py so that the zero-set of f defines a complex manifold X in
P,. Let Q be a non identically zero polynomial in the variables d’x; (0 <
j <k, 1<£ <n). Assume that Q is of degree mg in x, ..., x, is mg and

is of homogeneous wejght m in the variables djx£ 1<j<k, 1<¢t<n)
when the weight of d’ xy is assigned to be j. If mg + 2m < §, then Q is not
identically zero on the space of k-jets of X.

Proof Suppose Q is identically zero on the space of k-jets of X. We are going
to derive a contradiction.

Since Q is of homogeneous weight m in the variables d/x, (1 < j < k,1 <
£ < n) when the weight of d/ x; is assigned to be j, it follows that the degree
of Q in the variables d/x; (1 < Jj <k,1 <t <n)isat most m. We introduce
the homogeneous coordinates

ZO’ZI9"'7Z}’!
of P, so that
Zj .
xj=— (1=<j=<n).
20

Let N = (k+ 1)(n + 1) — 1 and relabel the variables

dlze 0<j<k 0<t<n)
asthe N 4+ 1 homogeneous coordinates wy, ..., wy of Py.Let P = 16" o+2m 0.
Since the degree of Q in the variables dJxy 1 <j<kl<{t<n)isat
most m, by Lemma 4.3 we conclude that P is a polynomial in the variables
wo, - .., wy and is homogeneous of degree mqo + 2m.
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We are going to apply Lemma 4.2. In our application We set m = n. The
homogeneous polynomials F1, ..., F,, of degree § in the N 4+ 1 homogeneous
coordinates wy, ..., wy of Py are

fd(25f),....d" (2 f).

The linear subspace Z in Py is defined by z9o = z; = - - - = z, = 0 which is
of complex codimension n + 1 in Py and is therefore of complex dimension
N—-mn+1)=k(n+1) -1

We know that, if Z is a subvariety of Py, then for any Stein open subset
U of Py the cohomology group H? (U ~Z, (’)pN) vanishes for 0 < g <

codim]pNZ — 2 =n— 1, where codim]pNZ means the complex codimension
of Z in Py. Thus,

H? (Py —Z,0py(0)) =0 for0<g <n—1.

Since Q is identically zero on the space of k-jets of X, it follows that P locally
belongs to the ideal generated by

fd(zf).....d" (& f).
By Lemma 4.2 with a = k + 1, since
codimpyZ —2=n—-1>k=a—-1,
we can write
k
P=2 gd (/)
Jj=0
for some homogeneous polynomials g, . .., gx of the variables
wOa ML ] wN9

where the total degree of g; is mo + 2m — §. We arrive at a contradiction,
because mg + 2m — § is negative and a polynomial cannot have a negative
degree. |

Now we count the number of unknowns and the number of equations.

Lemma 4.5 Let X be a hypersurface of degree § inPy,. Let S be a hypersurface
in X defined by a homogeneous polynomial g of degree s in the homogeneous
coordinates of P,. Then forq > 6 + s + n,
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) s
ik
dimT (S, O5(q)) =Z (+q é )

In particular,

s8 (n+q—2)""2
(n—2)!

dimI" (S, Os(q)) =

forg >38+s+n.

Proof First of all, for any nonnegative integer £ we have

dimT (P, Op, (£)) = (5:”) = (Z +”),

n
because it is equal to the number of possibilities of choosing ¢ elements out
of n + 1 elements with repetition allowed which is the same as choosing ¢

elements out of n + 1 4+ £ — 1 = £ + n elements without repetition. From the
exact sequence

¢
0— Opn(ﬁ)—f>(9pn(£+6) —- Ox(€+46)—0 4.1)
where ¢ ¢ is defined by multiplication by f, it follows that

r (Pn, Op, (5)) — T (Pn, Op, (£ + 5))
— T'(X,0x( +8) — H' (Py, Op, () =

is exact and
I'(X,0x(t+8)) =T (Py, Op,(t +8)) / [T (Pu, Op, (D).

Hence

dimT (X, Ox (¢ + 8)) = (”+j+5) _ (””)

n

From (4.1) we have the exact sequence
P (Pp. Op, (£ +8)) — H? (X, Ox (£ +8)) - H'T' (P,, Op,(0)) .
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Hyperbolicity of generic high-degree hypersurfaces 1129

From the vanishing of H” (IP’n, Op, (€ + 8)) for 1 < p < n it follows that
HP (X,Ox({+68)) =0for1 < p <n — 1. From the exact sequence

0 Ox(0) 2 Ox(t +5) > Os(E+35) > 0
where ¢, is defined by multiplication by g and from
H'(X,0x(£) =0
for n > 3 it follows that
I'(S,0s(t+5) =T (X,0x(+5)) /gl (X, Ox(0).
Hence

dimI (S, Os(£ +5)) =dim ' (X, Ox(€ +s)) — dim T (X, Ox (¥))
. n+é+s n+l+s—94 n+4¢ n+4é—94
[0

for £ > 5. We are going to use the following identity for binomial coefficients

(Z)_(azl):(bil)

fora — 1> b > 1. Then forg > § + s + n, we have

dim T (S, Os(q)) = [(":q) - (H+Z_5)]
_8|:(n+z—s)_(n+q;s—3):|
[ R (]
T
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. n+q—j—k+1\ (n+qg—j—k
n—1 n—1
n+qg—j—k
n—2 )

Lemma 4.6 Let yy, ..., y, be independent transcendental variables. Let 1 =
ny < ny < --- < n, be integers. Let a,, be the number of all monomials

ylfl e yf’ such that Z;:l njkj = m. Let ay, be the number of elements in

Ay. Then
dﬁl+r—1) (m+r—1)
! famf ’
r—1 r—1

where |u] denotes the largest integer not exceeding u.

Il
~.
Il M >
—_
o~
Il
—_

>

I
.MO’

~
Il
—_
~
Il
—_

O

Proof Let A,, be the set of all monomials y12<2 -+ y5 such that Dianik; =

m. Since n1 = 1, A,, is the same as the set of all monomials yi” . yf’ such
that Z;Zl njk;j = m and a,, is the number of elements of A,,. Let B, be the

set of all monomials ylzc2 .-+ y¥ Such that 25'22 kj < L%J Let C,, be the set

of all monomials y§2 -+ y¥ such that Z;.:l kj < m. Since
4 m
>u=|
j=2 r

,
— ankj <m
Jj=2

— Zr:kj <m,
=2

it follows that
By C Ay CCy.

Since the number of elements in B, is

(5
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and the number of elements in C,, is

m—+r—1
r—1 ’
the conclusion of the lemma follows. O

Lemma 4.7 Let f be a polynomial of degree § in the variables x1, . . ., x,. Let
k¢ be the smallest nonnegative integer such that ( S )Kl d’xy can be expressed
as a polynomial Py of

xl»x2,---’xn»

dix, 1<j<¢€2<r<n)

on the space of L-jets of the zero-set of f. Then k1 = 1 and

—1
k¢ < 1+ max Zstj S1+200+---+E—1Dsp_1 < ¢
j=1
Moreover, as a polynomial of the degree of Py in the variables xy, ..., X, is

at most k¢ (8 — 1). The integers k¢ in can be estimated by k¢ < £!

Proof We use induction on ¢ for £ > 1. The case £ = 1 is clear, because

Srdx) = — Z Sx, dxy
r=2

and we can set

n
P =— fo,dxr
r=2

whose degreein x1, . . ., x, is obviously at most § — 1. From d* f = Oitfollows
that on the space of £-jets of the zero-set of f the jet differential f, d’x; can
be written as a polynomial Q; in

dlx, 1<j<t—-11<r<n),
dexz, e, dexn

of weight < £ in

dix, Q<j<t—1,1<r<n),
dzxz, e ey dgxn
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when d/ x, is given the weight j. As a polynomial in dx1, ..., d*"'x| the total
weight of Qy is no more than £. As a polynomial in xy, ..., x, the degree of
Q¢ is at most § — 1. Thus inductively on £ we conclude that we need only to
multiply fx,dexl by a power of fy, not exceeding

t—1

max E Kij

j=1

S1+2504--+W—1)sp—1 < ¢

to yield a polynomial P, of

x17x21"'9x}’l,
dix, 1<j<€2<r<n)

on the space of {-jets of the zero-set of f. Moreover, the degree of P, in
X1,..., X, is atmost kg (§ — 1).
The integers k¢ can be estimated by «x; < ¢!, because, when

ri+2rn+--+ € —Dreo <€,

we have r; < %, and from x; < j!for 1 < j < £ — 1 it follows that

J

-1 -1 , -1 -1
Sy <> k; (_) <L G-DI<eD (-2 =1¢.
j=1 j=1 j=1 J=1

O

Proposition 4.8 (Jet differential from polynomial in differentials of inhomo-
geneous coordinates) Let X be a nonsingular hypersurface of degree § in P,
defined by a polynomial f(x1, ..., x,) of degree § in the affine coordinates
X1, ..., Xp of Py. Suppose €, €', 6y, 0, and 0" are numbers in the open interval
(0, 1) such that nfy+0 > n+€ and 0’ < 1 — €'. Then there exists an explicit
positive number A = A(n, €, €') depending only on n, €, and €' such that for
8 > A and any nonsingular hypersurface X in P, of degree & there exists a
non identically zero Op, (—q)-valued holomorphic (n — 1)-jet differential w
on X of total weight m with q > 8 andm < 8%. Here, with respect to a local

holomorphic coordinate system wi, ..., wy—1 of X, the weight of w is in the
vqriables dlwy (1 <j<n—1,1<{t<n—1)withtheweight j assigned to
d’wy. Moreover, for any affine coordinates x1, . .., X, of Py, when f,, =1

defines in a nonsingular hypersurface in X, the (n — 1)-jet differential  can
be chosen to be of the form 7 Q_l , where Q is a polynomial in
x]
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dixi,....d’x, O<j<n-—1)

which is of degree my = |_890-| in xi,...,x, and is of homogeneous weight
m = (89] in

dixy,...,d'x, (1<j<n-1)

when the weight of d’ x is assigned to be j.

Proof Let x1,...,x, and zo, ..., 2, be respectively the homogeneous and
inhomogeneous coordinates of P, so that x; = ;—é for1 < j <mn.Let fbea
polynomial of degree § in x1, ..., x, so that the zero-set of f in P, is X.

Consider a non identically zero polynomial Q in
dixi,....,d'x, O<j<n-—1)
which is of degree mq in x1, . .., x, and is of homogeneous weight m in
dixi,....d'x, A<j<n-1)
when the weight of d/ x; is assigned to be j. We impose the condition
mo+2m < §
so that according to Lemma 4.4 the pullback of Q to the space of (n — 1)-jets

of {f = 0} is not identically zero. According to Lemma 4.6 the degree of
freedom in the choice of the polynomial Q is at least

(mo + n) (L%J +n(n—1) = 1)
n nn—1)—1 ’
where the first factor
mo-—+n
n

is the number of monomials of degree < mg in n variables x1, ..., x, and the
second factor

dﬁ%J+nm—1y-v

nn—1)—1
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is the number of monomials of homogeneous degree L%J in the n(n — 1)
variables

dxg (1<j<n—1,1<¢<n).

The key point of this proof is that though we have all the variables
dixi,...,d x, for 0 < j < n — 1, we do not have to worry about the
dependence resulting from the relations d/ f =0 (0 < j <n — 1).

Let Hp, be the hyperplane of [P, defined by x, = 0. We now want the
meromorphic (n — 1)-jet differential defined by Q to be holomorphic on X
and, moreover, to vanish at X N Hp, of order g. First of all, on the space of
(n—1)-jets of X, we can use the relation djf =0(1 < j <n—1)toeliminate
the variables d/x; (1 < Jj < n —1) by expressing dix; (1< j<n-—1)in
terms of

dlx; 1<j<n—1,2<t<n).

To do this, according to Lemma 4.7 we can multiply Q by ( ft, )N with N =
2m Z']’;i kj, because, in a monomial of weight m, the degree of dixp (1 <
j <n-—1,1 < £ < n)is at most L%J and (j + 1) L%J < 2m. Since
kj < j!, it follows that N < (n—1D!2m.Let N = (n — 1)! 2m. The degree
of (fxl)N Qinxy,...,x,isnow mg+ N(5 — 1) and the weight of (fxl)N 0
ind/x; (1 < j <n- 1, 2 < £ < n) is homogeneous and equal to m when
the weight of d/ x, is assigned to be j.

We let S be the divisor in X defined by fy, — 1 = 0. The hypersurface in
P, defined by f,, — 1 = O 1is of degree 6 — 1. We observe that for a generic

polynomial f of degree §, the divisor § in X is nonsingular, because it is the
case when f equals the Fermat hypersurface

F = Zn:xf — 1.
j=1

Then
Fy, = 8xf_l

and the 2 x n matrix
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whose rows are nonzero multiplies of the gradients of F and Fy, has rank 2

unless either x; = 0 or xo = - - - = x,, = 0, which is impossible, because on
—1
S one has |x;| = 63T from F\, = 1 and the condition x, = --- = x, =0
—1
implies |x;| = 1 # §5-T when F = 0. To prove this Lemma we need only

prove it for a generic f and then remove the genericity assumption for f by
using the semi-continuity of the dimension of the space of global holomorphic
sections over a fiber in a holomorphic family of compact complex manifolds
and a holomorphic vector bundle.

The polynomial Q defines a meromorphic (n—1)-jet differential on X which
we again denote by Q. We now count the pole order of the jet differential Q
on X at X N Hp,. For the counting of this pole order, we introduce another set

of inhomogeneous coordinates ¢1, ..., {, of P, defined by
é‘l:_v"~’§n—1: ) {l’l:_
Xn Xn Xn
so that
x| = {_1 Xy | = gn—l L
o U e T T
Since by Lemma 4.3
o M xg = ¢! (9) (l1<t=n-1
n
and
i+1 5] i1, (!
é‘n] d’x, = é‘nj d’ | —
Cn

are polynomials in d";, (0<k<j,1 <r<n).Thus ;‘,,2’" Q is a polynomial
in dkgr (0 <k < j,1 <r < n). The pole order of the jet differential Q at
X N Hp, is at most mq + 2m.

We are going to show that we can choose the coefficients of the polynomial
Q so that the (n — 1)-jet differential Q is zero at points of S. This would imply
that the (n — 1)-jet differential

1
fx1_1

Q

is holomorphic on X and vanishes to order 6 — mo — 2m at X N Hp,. The
reason is the following. For some proper subvariety Z of X N Hp, the function
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¢~ " (fx, — 1) is holomorphic and nowhere at points of X N Hp, — Z. Thus

1 _ 1 s—1=2m\ (,2m
fo —1 Q= g.63—1 (fx1 _ 1) (40 ) (§0 Q)

is holomorphic on X — Z and vanishes to order at least 6 — 1 — 2m along
XN Hp, — Z. What we want follows from Hartogs’ extension theorem because
Z is of complex codimension at least 2 in X.

Now on J,_1 (X) ‘ S (which is the part of the space of (n — 1)-jets of X
lying over S) the jet differential Q equals to the jet differential

(fa)" 0

because f,, = 1 holds on S. Since the degree of (fJCl)N Qin xy,...,X, 18
mo+ N(8 — 1) and the weight of (fy,)" Qind*z, (1 <k < j,2 <r <n)is
homogeneous and equal to 2m, it follows from Lemma 4.5 that the number of

. . . . N
linear equations, with the coefficients of Q as unknowns, needed for (fy,)" Q
to vanish at all points S is no more than the product

(5—1)3(m0+N(3—1))"—2(m+(n—1)2—1)
(n —2)! n—1)2-1

For the existence of a nontrivial Q with the required vanishing at all points of
S, it suffices to have

mo+n\ (|72 |+ 0t =1~ 1

"))
S=1D8my+NG—-=1D))"?(m+mn—-1%r—1
” (n—2)! ( m—W—l)

In particular, it suffices that

nn—1)—1
o + 1" (72)
n!'(n(n —1) —1)!

is greater than

[(6 — 1)8 (mo+ (n— D!12m (§ — 1))" 2] [(m +(n—1)2— 1)<n—1)2—1]
(n—2)!((n— 1) —1)! -
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We choose my = |_890—| ,m = |_89-|, andg = LBQ’J. Since the three positive

numbers 6y, 0, and 0 are all strictly less than 1, measured in terms of powers
of § as § becomes dominantly large, the order of

omo+ 1 ()"
0 n—1

nl(n(n —1) — 1)!

is at least

8n9()+(n (n—1)—1)0

and the order of

[(6—1)8 (mo+ (n— 1)!2m (8 — 1)" 2] [(m +(n—1)2— 1)<n71>271]
(n—2)!((n— 12 —1)!

is at most
§2Hn=2)(1+6)+((n—1)*~1)6
Since by assumption n6y + 0 > n + ¢, it follows that
1m0 + (n(n — 1) = DO =2+ —2)(1 +6) + (n — D> = 1) 8] > €.
So there exists a positive number A depending only on n and € such that

omo+ 1 ()"
0 n—1

n!'(n(n —1) — 1)!

is greater than

[(6— 18 (mo+ (n— D!2m (5 —1))"?] [(m Fn—1)2— 1)(n—1>2—1]
(n—2)!((n— 12 —1)!

when 8§ > A. We can also assume that A is chosen so that § — 8% — 287 > 0
for 6 > A to make sure that the (n — 1)-jet differential

1
fxl_l

is holomorphic on X and vanishes to order at least ¢ at X N Hp, . m|

0
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Remark 4.9 Proposition 4.8 is the same as Proposition 4.6 on p. 446 of [22]
and also the same as Proposition 2 on p. 558 of [23].

5 Hyperbolicity from slanted vector fields and no common zeroes for jet
differentials on generic hypersurface

In Proposition 4.8 a holomorphic (n — 1)-jet differential @ on a hypersurface

X vanishing on an ample divisor of X is constructed as a quotient %,
JXx1

where Q is a polynomial in dixy,...,d x, for0 < Jj < n —1) and actually
is a meromorphic (n — 1)-jet differential on the projective space IP,, where
the hypersurface X lies. The construction depends on the choice of the affine
coordinate system xi, ..., x, of the affine part C" of P,,. Now we apply the
construction to the hypersurface X @ parametrized by « € Py (instead of
to X) and we denote the polynomial Q of the differentials of affine coordi-
natesby O(«, x,dx, ..., d”_lx), where x means (x1, .. ., x,) and d/ x means
(d'x1,...,d x,) for 1 < j < n — 1. As a function of «, the meromorphic
(n — 1)-jet differential Q(a, x, dx, ..., d""'x) on the projective space P, is
meromorphic in the variable « € Py. We now regard Q(«, x, dx, .. ., d"1x)
as defined over P, x Py, which for fixed ¢ € Py is a meromorphic (n — 1)-jet
differential on P, x {a}. When we replace X by X®, we denote the func-
tion fx, — 1 by F(o, x). We regard F(a, x) as a meromorphic function on

t O(ax,dx,...d" " 'x)
F(o,x)

morphic (n — 1)-jet differential which vanishes on an ample divisor of X (),
when « is outside some proper subvariety of Py .

The construction of Q(«, x, dx, ..., d"1x) depends on the choice of the
affine coordinate system xi, ..., x, of the affine part C" of PP,,. We can get
different meromorphic k-jet differentials Q(«, x,dx, ..., d"1x) by using
different affine coordinate systems xi, ..., x, of C" in the construction of
O(a, x,dx, ..., d*x). Equivalently, instead of doing a new construction of
Oa, x,dx, ..., d"1x) by using a new affine coordinate system, we can use
a biholomorphism of P,, to pull the original Q(a, x, dx, ..., d" 'x) back in
the following way.

A choice of a different affine coordinate system xi, ..., x, of C" is the
same as choosing a corresponding biholomorphism o : P, — P, (which
preserves the infinity hyperplane P,,_). This biholomorphism o : P, —
P, induces a map 17, : Py — Py such that (0,7,) : P, x Py — P, %
Py maps the universal hypersurface X to itself with X @ being mapped to
X @) for ¢ € Py. The new Q(w, x, dx, ...,d"'x) constructed by using
the new affine coordinate system is the same as the (n — 1)-jet differential
0 (‘L’a (@), 0(x),do(x),..., dka(x)), which is obtained by pulling back the

P, x Py. The quotien on X defines on every X a holo-
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original Q(«a, x,dx, ..., d"1x) by using o and t,. We use o *Q to denote
0 (to (@), 0(x). do(x),....d" o (x))

and use o*F to denote F (t,(x), o(x)). Of course, to get a holomorphic
(n — 1)-jet differential on the fiber X (@) of X (for 7, () outside some
proper subvariety of Py ) we have to use

o*Q 1

— n—1
o F ~ Fla@).o0) w (rg(oa), o(x),do(x),...,d o(x)) .

In the above discussion we can also use biholomorphisms o : P,, — P, which
may not preserve the infinity hyperplane P,_.

Proposition 5.1 (No common zeroes on generic hypersurface for jet differen-
tials constructed from different affine coordinates) Let Z be the set of points
v of X such that

0*Q = 0 (to(@), 0(x),do (x), ..., d" 'o(x))

vanishes at y or has a pole at y for every biholomorphism o : P, — P,.
Let Z' be the set of points y of X such that F (t,(«), o (x)) vanishes at y
or has a pole at y for every biholomorphism o : P, — P,. Then the image
pr, (Z U Z’) of Z U Z' under the natural projection pr, : P, x Py — Py
onto the second factor is a proper subvariety of Py.

Proof Suppose the contrary and we going to derive a contradiction. For tech-
nical reasons it is easier to present the proof by fixing some point in P, as
the origin 0 of some inhomogeneous coordinates xi, . .., x, of the affine part
C" of P, and consider all hypersurfaces in P, of degree § which contains the
origin 0 of x1, ..., x,. This means that we focus only on those hypersurfaces
X @ whose defining functions f® have zero constant terms when expressed
in terms of the inhomogeneous coordinates xp, ..., x,. In other words, we

focus only on a hyperplane ]P’g\(,))_ | of the full moduli space Py. The union
of all X with o € Pg\(,))_l is a hypersurface Ay of the universal hypersur-
face X.

Since every hypersurface in P, can be transformed by a linear transformation
of P,, to some hypersurface which contains the origin O of x, . . ., x,,, from the
assumption of the failure of the conclusion of the Proposition it follows that for
some o? € IP’E\(,))_ , and some open neighborhood U in ]P’g,))_1 there exists some

local holomorphic section p : U — P, x U of the trivial bundle P,, x IP’E\(,)ZI —

]P’ﬁ\(,))_l over U such that the image p (U) is contained in (Z Uz ) NXpand p(U)
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is contained in the subset C" x U of P, x U.Fora € U let p(a) = (p(a), )
with p(a) € P,.

Let us first do one reduction to make (o) equal to the origin O of the affine
part C" of P, for all @ € U. We first present this reduction from the viewpoint
of analysis involving the Jacobian determinant of a change of variables. Then
we give a more geometric explanation for it in (5.2).

By straightforwardly and explicitly computing the Jacobian determinant of

the variable change in the affine part of C¥~! of the moduli space IP’E\(,))_ | at
a generic point of }P’Eg)_] in U (as explained below after (5.1), we can find

some nonempty open subset U of U and an a-dependent affine coordinate
change x = p(a) + A(a)y in C" for « € U which satisfies the following
property (5.1), where (i) x denotes the column n-vector whose entries are the
affine variables x1, ..., x;, (ii) y denotes the column n-vector whose entries
are the affine variables yy, ..., y,, and (iii) A(«) is a nonsingular n x n matrix
depending holomorphically on o € U.

5.1) Ifa +— B = ®4(x) denotes the holomorphic map from U to }P’g\?)_l (for

the choice o +— A(w)) such that f("‘) (XI5 yXp) = f(ﬁ)(yl, el yn),~then
d 4 gives a biholomorphic map between U and the open subset ®4(U) of
cN-1,

We now remark on how to choose the n x n nonsingular matrix A(«) =
(A.,-k(oz))';. 4 With holomorphic functions A i («) as entries. Without loss of
generality we can assume that U is an open subset in the affine part C¥~! of
]P’%?)_l given by the coefficient of xf in £ (x1, ..., x,) being nonzero. Write
down the coordinates «y,, .., of ¢ € CN=lfor1 <v; +---+v, <8 with
V| # & from

.....

) 2 : Vi v
f(Ol) (xla"'$xl’l) :xl + aUl,-anxl ...xnn
I1<vi+-+v, <6,
V1 #£S

and similarly the coordinates 8. ., of B € CNTforl <vi+---4v, <38
with v; # 8. From f@(x1,...,x,) = f® (1, ..., y,) we can explicitly
express B = P4 (w) in terms of the single given n-vector-valued holomor-
phic function p(«) and the n? unknown holomorphic functions A j(a) for
1 < j, k < n.Take apoint o® of U such that all its N — 1 coordinates oz"‘jl
are nonzero for 1 < vy + --- 4+ v, < § with v; # §. When we express the
(N — 1)-form

N o

I<vi+-+v, <6,
V] #£S
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at o™ as a constant C times the (N — 1)-form

I<vi+-+v, <6,
V1 #S

at o, it is easy to see that we can generically choose the coefficients of the 1>
power series A ji(a) in the variables ey, (for I < vy +---+ v, < § with
vi # 8) to achieve C # 0. Then U can be chosen to be a sufficiently small
open neighborhood of o™ in U.

(5.2) We now more geometrically explain the reason why a generic choice of
o — A(w) is possible to yield the statement (5.1). We introduce the equiv-
alence relation on the parameter space IP’E\(,))_I such that « is equivalent to o

if some C-linear transformation of the affine part C" of P, sends X @ o
X@)_ Let W be the space of all equivalence classes with the quotient map
o - Pg\?)_l — W whose generic fiber is the general linear group GL(n, C).
We have the following commutative diagram

v =Py, w
Dal |

CN-l }P’ES)_] 0w,

Since the fiber of the quotient map o : Pg\?)_l — W over a generic point
of W is the general linear group GL(n, C), it follows that if & +— A(w) is
replaced by o — A(w) B(«) for some generic G L (n, C)-valued holomorphic
function o — B(a), the map ® 4 p from U to CV~! is locally biholomorphic
at a generic point of U.

Now that we have (5.1) with a good generic choice of @ — A(w), by replac-
ing U by U anda — p(a) = (p(e), a) fora € U by o > (0, ) fora € U,
we can assume without loss of generality that p(«) = 0 fora € U.

Without loss of generality we can assume that

(i) Uisthe openball By_ (!9, ry) of some positive radius ro > 0 centered

at «© in some affine part CVY~! of the moduli space PE\(/))—p

(i) some open neighborhood W of p(U) in Xy N (C" x U) is biholomorphic
to G x U for some open subset G of C"~! under a biholomorphism ¢y
between the fiber bundle pr, : W — U (where pr, induced by the natural

projection PP, x Pg\(,))_l — IP’E\?)_] onto the second factor) and the trivial
fiber bundle pr; : G x U — U with pr being the natural projection
onto the second factor, and

(iii) (Z Uz ) NxX@ jsa proper subvariety of X ),
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We now take a sequence of points
y e (Wnx@®)—(zuz) forjeN

which approaches p («®) in X @) Let0 < r < rg. Since the point p (@)
of X@®) is represented by p (@) = (0,2®) € C"~! x U in terms of the
affine coordinates of C*~! and U ¢ CN~!, by using the biholomorphism ¢/
between the two fiber bundles pr, : W — U and pr; : G x U — U, for each
J € N we can construct a holomorphic section p; : U — Ap with the image
of pj(a) = (,éj(oz), a) € W for o € U such that p; (01(0)) =y and

ej=  sup  [pj(

cn—1
oteBN_l(a(O),r)

approaches 0 as j — oo, where By _1 (a O r) is the open ball of radius r in
CN-1 centered at «@ and the norm | pj(a) |(c'l—1 is the distance between the
two points 0 («) and 0 in C"~! with respect to the Euclidean metric of C"~ .

Fora € U and j € Nletoy, ; : P, — P, be the biholomorphism of P,
whose restriction to C" is the translation in C" which sends the origin 0 of
C" to the point p;(cr) of C". The biholomorphism oy, ; of P, pulls back the

-1
hypersurface X ) of P, to the hypersurface X (r”aﬂf (a)) of P, fora € U so that
the point p; () of the hypersurface X @ js pulled back to the origin point of

—1
the hypersurface X (T"W (a)) .From 0 < r < rp and from explicitly expressing

0q,j interms of o € CN-1and p i) € C"~! we conclude that there exists
some positive number M independent of j € N such that

‘L'U_l_(Ol)—O{ < Mg;

sup o ‘CN_I =

a€BN_1 (a(o),r)

for j € N, where the norm

Ty, }j (a) — a)cN*l is the distance between
the two points 7, }j (o) and « in CN~! with respect to the Euclidean met-
ric of CV~!. Choose f € N such that Me; < ro —r for j > j. Let
v @ By—1 (@9, r) > By_i (9, rg) be defined by v¥j(e) = r(;a}j(a)
fora € By_1 («®,7) and j € Nwith j > .

Since the holomorphic map v; : By (oz(o),r) — By_i (a(o),ro)
approaches the inclusion map By—1 (¥, 7) < By_; («?, r¢) uniformly
on By_ (a(o), r) as j — oo, it follows that the first-order partial derivatives
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of ¥; converges uniformly on compact subsets of By | (a(o), r) to the corre-
sponding first-order partial derivatives of the inclusion map By _1 (a O r) —
By—1 (9, rg) uniformly on any compact subset of By_; («@,r) as j —
o0. Hence for some j > j there exists some nonempty open subset U’ of
By_1(r) such that ¢; maps U’ biholomorphically onto the open subset ¢ (U")
of By_1(r). Since p;(U) contains the point y(j) which is not in Z U Z’, it
follows that p;(U) N (Z U Z’) is a proper subvariety of the connected com-
plex manifold p;(U). Let S be the proper subvariety of U such that p; maps
S bijectively onto p; (U) N (Z U Z').

Since the hypersurface X @ of P, is pulled back by the biholomorphism

-1
0q,j of P, to the hypersurface X (%o, () of IP,, it follows from oy, ;(a) not

belonging to Z U Z’ for « € U — S that both oy ;Q and oy ; F are nonzero
and finite at ,o(ra_a.lj (@) = (0, rg_alj (a)). Since ¥ (a) = To_(,lj (o) belongs
to U for « € U’, it follows from both Oy j Q and o iF being nonzero and
finite at p(z,,! @) = (0.7, (@) for @ € U’ = § that 7! (@) is in U

71 (@)

and yet the point p (ra_a lj (a)) of X ( %a.j ) does not belong to Z U Z’ for

a € U’ — S, which contradicts the assumption that the point p (‘c_l (oz)) of

O, j
-1

the hypersurface X (r"a’i (a)) belongs to Z U Z'. |

Remark 5.2 The technique of slanted vector fields to reduce the vanishing
orders of holomorphic jet differentials (vanishing on ample divisors) and to
generate independent jet differentials (vanishing on ample divisors), given in
Proposition 3.14, is actually the infinitesimal or differential version of the
above argument, given in Proposition 5.1, of pulling back holomorphic jet
differentials (vanishing on ample divisors) on neighboring fibers to reduce
the common zero-set of holomorphic jet differentials (vanishing on ample
divisors) on the original fiber.

5.1 Proof of Theorem 1.1

For a generic hypersurface X (‘5? of sufficiently high degree §, by Proposi-
tion 5.1 at every point § of X@ and for every Py in the (n — 1)-jet space

Jn—1 (X (&)) representable by a nonsingular complex curve germ at y there
exists a holomorphic (n — 1)-jet differential
. gr Q@)

@

T o F@@)
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of weight m on X @ which vanishes to order > (m+1)(n—1n2n+1) onthe
intersection of X @ and some hyperplane of P, where o is a suitably chosen
biholomorphism of P, as described in the paragraph preceding Proposition 5.1.
The condition of the jet differential @ vanishing to order > (m + 1)(n —
1)n(2n + 1) on the intersection of X @ and some hyperplane of P, is from
the construction of the polynomial Q in Proposition 4.8 when the degree & of
X@ jg effectively sufficiently large.

The holomorphic extension of 0@ toa holomorphic (n — 1)-jet differential
on X @ for o in some open neighborhood U of & in Py satisfying the conditions
of Proposition 3.14 is automatic, because of the way the (n — 1)-jet differential
0@ is constructed (or because of Proposition 3.15 when & is assumed outside
some subvariety of P). Now by Proposition 3.16 the hypersurface X @ g
hyperbolic in the sense that there is no nonconstant holomorphic map from C
to X @ This finishes the proof of Theorem 1.1.

5.2 Proof of Theorem 1.2

The proof is analogous to the proof of Theorem 1.1. The difference is that

(1) the holomorphic jet differential w used in the proof of Theorem 1.1
is replaced by the log-pole jet differential on P, constructed in Theo-
rem 6.11,

(ii) the use of Proposition 3.11 is replaced by the use of Proposition 3.13,

(iii) the use of the Schwarz lemma of the vanishing of the pullback to C of
a holomorphic jet differential vanishing on an ample divisor is replaced
by Proposition 6.8 below concerning the general Schwarz lemma for log-
pole jet differentials.

6 Essential singularities, varying coefficients, and second main theorem

Besides the Little Picard Theorem of nonexistence of nonconstant holomorphic
maps from C to P; — {0, 1, oo} there is a stronger statement which is the
Big Picard Theorem of no essential singularity at co for any holomorphic
function from C — A_,O to C — {0, 1} for ryp > 0. The Little Picard Theorem
corresponds to our theorem on the hyperbolicity of a generic hypersurface
X @ of sufficiently high degree in P, (for « in Py outside a proper subvariety
Z of Py). Corresponding to the Big Picard Theorem, there is a statement
concerning the extendibility across a holomorphic map C — A,, — X @ toa
holomorphic map C U {c0} — A, — X@.

In this section we are going to prove such a theorem on removing the essen-
tial singularity at co of a holomorphic map from C — A_ro to a generic hyper-
surface of sufficiently high degree.
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The more quantitative version of the Big Picard Theorem was introduced by
Nevanlinna [17] in his Second Main Theorem in his theory of value distribution
theory. In this section we discuss the Second Main Theorem from log-pole
jet differentials which is more in the context of Cartan’s generalization of
Nevanlinna’s Second Main Theorem to holomorphic maps from the affine
complex line to P,, and a collection of hyperplanes in general position [6].

The hyperbolicity of a generic hypersurface of high degree é in P, can be
reformulated as the nonexistence of n 4+ 1 entire holomorphic functions on
P with some ratio nonconstant which satisfy a generic homogeneous polyno-
mial of degree § with constant coefficients. Our solution of the hyperbolicity
problem for a generic hypersurface of high degree makes use of the univer-
sal hypersurface X’ in P, x Py and the variation of the hypersurface X
in P, with & € Py. The variation of X® corresponds to the varying of the
constant coefficients of the homogeneous polynomial equation for the n + 1
entire functions. In this section we will discuss the problem of nonexistence
of entire functions satisfying polynomial equations with slowly varying coef-
ficients and also the more general result for removing essential singularities
for holomorphic functions on C minus a disk for this setting.

6.1 Removal of essential singularities

To extend our methods from maps C — X to maps C — A,, — X for
some rg > 0, we need a corresponding extension of Nevanlinna’s logarithmic
derivative lemma (p. 51 of [17]). For such an extension of Nevanlinna’s loga-
rithmic derivative lemma, we need the following trivial multiplicative version
of the Heftungslemma [1].

Lemma 6.1 (Trivial multiplicative version of Heftungslemma) Let rg > 0 and
F be a meromorphic function on C — A,. Let ry < ry. Then there exists some

function G holomorphic and nowhere zero on CU {oo} — A,, such that FG
is meromorphic on C. Moreover, when F is holomorphic, G can be chosen
so that F G is also holomorphic on C — {0}.

Proof Choose ro < p1 < r1 < pz such that BApj contains no pole and no
zero of F for j = 1,2. Let ZJJOZI aj be the zero-divisor of F on Ap — Ay,
and zj:Joo b; be the pole-divisor of F on A,, — A, Let

-1

h=| 1] ¢ —-a) IT c—5))

Jj=Jo J=Joo
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Then Fh is holomorphic and nowhere zero on A 5, — A ,, . Let £ be the integer

dlog(Fh).
27 Jigl=r

Then

/“:rl dlog (Fh;—%) —0

and we can define a branch of log (Fh¢ %) on'A,, — A,,, which we denote
by ®. From Cauchy’s integral formula ® (¢) = ®¢(¢{) — ® o, Where

1 b
Bo(¢) = /{ 2© 4.

27 S\ = £ — ¢
1 <I>(§)
CDOO(O 27T/C| p2§_§

for ¢ € A,, — A,,. Exponentiating both sides of ® (¢) = ®¢({) — Poo, We
get Fhe=% = ¢®0e=%x and Fe®> = h~17%¢®0, Since the right-hand side
h=1ctoe®0 of FePx = 17400 js meromorphic on A p, and the left-hand
side of Fe®> = h_lg“ef’e‘bo is meromorphic on C — A_pl, it follows Fe®> is

meromorphic on all of C. We apply the transformation w = % to get

b q’(() df = 1/ wCD(;)dA
27 Jigl=p & — ¢ 27 Jjgj=py w¢ — 1

which is holomorphic for |w| < p—ll, that is, holomorphic for ¢y € C U {oo} —

@OO:

A_m- Now the function G(¢) = e® satisfies our requirement. When F is
holomorphic on C — A,,, the function FG which is equal to h=1¢%e®0 on
A, and is equal to e®onC—A p; 1s clearly holomorphic on C — {0}. O

6.1.1 Comparison of characteristic functions of maps defined outside a disk

Letr; > ro > 0. For a meromorphic function H on C — A, we introduce for
¢ € C U {00} the counting function

r d,O
N(@,ri,H,c)= n(p,r;, H,c)—,
p=r1 Y
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where n (p, r1, H, ¢) is the number of roots of H(¢) = ¢ with multiplicities
counted in r; < || < p and also the characteristic function

1 27 .
T(r’rl’H)=N(r’r1»H,00)+_/ log+|H(re’9))d0'
21 Jo=o

For a holomorphic map ¢ from C — A,, to a complex manifold ¥ and a
(1, 1)-form n on Y, we introduce the characteristic function

r dp
T(r,ri,¢,1) =/ (/ w*n)—-
P=r1 Ar_Arl P

For Y = P, and n being the Fubini-Study form, we drop 7 in the notation
T(r,r1, @, n) and simply use T (r, r1, ¢) when there is no confusion. When a
holomorphic map ¢ from C — A, to P, is given by holomorphic functions

[Fo, ..., Fy]on C — A,, without common zeroes, its characteristic function
is
N
r 1 dp
T(r,r1,<a>=/ / — 99z log D |Fel* ) —.
_ T
pP=r] [¢l<p k=0 P

We would like to compare it with the characteristic function T (r, r, T(J)) for

the meromorphic function % for1 < j <n.Forl < j < n we have the
inequality

Fj “ Fy
T (r, FO) <T(re)+00) =< ;T (r, FO) + O(1).

The verification of
Fj
T\r,—=)<T(r e+ 0()
Fo

for 1 < j < nis as follows.
From twice integration of Laplacian with g = log ZIILO | Fr|? in (1.10), we
have
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/r / Ly o1 Z|F| dp
—0;or 108 k
=r lcl<p T 2

1 2 2

- logZ‘Fk(Vee)‘ d@—i logZ‘Fk(ne )‘ do

from which we conclude that

1 [ Fj [
— ogt|=L (re‘e) do
2 H= Fy
1 2 5
< — log > |Fl
47 /9_0 ];

r 2w
:/ / —ag«(‘%logZIFkl +—/ logZ’Fk rle )‘
p=r1 |<p 7T

=T(r,¢)+ O (logr).

Finally from

r 1 2 d
N(rarlaFO’O): —8;8210g|F0| e
p=r1 \TC Y

1 _R> dp
:/ —0;9; log ZI —
pP=ri T Z] ()l 0 j=0 p

A

r 1 al >\ dp
/ —dcdzlog D |Fol* | — =T(r, )
p=r \ Y

j=0
it follows that

F; 1 [ F; / .
T r,r,-L)= —/ log™ L (relg)
Fo 27 Jo—o Fo

<= O(T(r,ri,¢)+logr) |

do + N (r,r1, Fp, 0)

The verification of

T(r,ri, ) < Z (r 1, ) + O(1)
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for 1 < j < nis as follows. From

r dp
—0; 97 log | F|?
/— (/|§<p T Z P

k=0

1 2 N i 2
e N oI 0 Ty S > Y R
2 N 3 1 2
o [ 2R ) )— [ )
N
L[ o

we have
n 1 27 N .
T(r,r1,9) < —/ log* [=X (re’ ) do
,ZZJT 6=0 0

1 2 )
+ — log ‘Fo (re’e) ‘ do + 0().
21 Jo=0

The verification of the inequality comparing characteristic functions of maps
and meromorphic functions is a straightforward modification of the proof of
Lemma (2.1.2) on p. 426 of [19], where the map is from C instead of from
C-A,.

The logarithmic derivative lemma holds for meromorphic functions on C —
Ay, for rg > 0 in the following form.

Proposition 6.2 (Logarithmic derivative lemma for functions meromorphic in
punctured disk centered at infinity) Let r; > ro > 0 and F be a meromorphic
function on C — A,. Then

/271 10g+ F’ (reie)
0=0

- d0 = O (logT(r,r1, F) +logr
F(rgl@) (log T'(r,r1, F) gr) |l
forr > ry.

Proof By Lemma 6. 1 there exists some function G holomorphic and nowhere
zero on C U {oo} — A,, such that FG is meromorphic on C. Let H = FG.
Then (log F) = (log H)' — (log G)' and
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/ j / j / j
(re’e) (re’e) (re’e)
log™ reie) <log™ (rem) +log™ (reie) + log 2.
Thus,
F (reig) / (rei9

2 H
do < / log™
0=0

2
logt |[——=
/9:0 ¢ F (re”g)
1 +
+- log™ |dG| + log2
" Jigl=r
H' (reig)

21 N
1
= /9:0 o8 H (reig)

because G holomorphic and nowhere zero on C U {00} — A,,. The required
statement follows from

4+ O0() <O logT(r, H)+logr) |

N (r,H,00) < N (r,r1, F,00) + O (logr)

and log* |H| < log™ |F| 4+ O(1). By Lemma 6.1 on the trivial multiplicative
version of Heftungslemma, for some holomorphic nowhere-zero function G
on CU {oco} — A_rz with ro < r» < ry such that H(¢) := ¢ Fy(2)Go(¢) is
holomorphic on C (with coordinate ¢) and is nonzero at ¢ = 0.

o OZIOg‘Fo (reig)‘de
(reie)e (FOGO (reig)) ’ o
() " (60 (re)) as
=log|HO)|+ N(r, H,0) — %/2” log (rei@)_Z (GO (reig))‘de
= N(r, H,0) + O(1) < N (r, 11, Fo, 0) + O(1)

0=0
n Fk
< N({r,r,—,00)+ 0
_; (rn 7 ) (1)

2w

= — lo
27 =0 &

2
log

27 Jo—o

because Fy, Fi, ..., F, are assumed to have no common zeroes on C — A,.
Thus,
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A F " F
Tro) <> — 1+—("9)d9 N(rr, 2X, o
ro=3a [ et |7 ()] a0+ 3N (e e <o)

= ZT (r, rl, %) + 0(1).

k=1 0

O

Proposition 6.3 (Vanishing of pullback of jet differential vanishing on an
ample divisor by holomorphic map to punctured disk centered at infinity) Let
X be a compact complex manifold with a Kdhler form n and w be a holomorphic
Jjet differential on X vanishing on some ample divisor D of X. Letr; > rg > 0
and ¢ : C — A,y — X be a holomorphic map. Let evaliq. (p*w) denote the
Sfunction on C —A_,O whose value at ¢ is the evaluation of the jet differential ¢*w
at the jet defined by the identity map of C — A, at ¢. Then either evalig. (9*w)
is identically zero on C — A,y or T (r,r1, ¢, n) = O (logr) ||.

Proof Let k be the order of jet differential @ and m be its weight. Let Lp be
the line bundle associated to the ample divisor D. Let e~ XP be a smooth metric
of L p whose curvature form 7 p is strictly positive definite on X. Let sp be
a holomorphic section of L p whose divisor is D. Let ® = evalijq. (¢*w). We
assume that @ is not identically zero. We apply twice integration of Laplacian

in (1.10) to
(&) =1lo —I(D|2
$EI =8 sple o |

Since w is holomorphic on X and vanishing on D, it follows that

1 2 |q)|2
47 0=0 |SD| e~ XD

Here we have the inequality instead of an identity, because of possible con-
tribution from the zero-set of %. At this point enters Bloch’s technique of
applying the logarithmic derivative lemma by using the logarithm of global
meromorphic functions as local coordinates. As functions on the k-jet space
Jk(X) of X (with the right-hand side being global functions and the left-hand
side being only local functions due to the transition functions of the line bun-
dles Lp),

w

SD

A .
e3> ] Jaoe 2]

A=l vje, R4
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for some C > 0 and a finite collection { F;’k[) } of global meromorphic functions

on X, where the product is taken over the indices v; ¢, j, £ with the ranges

=)=, 1=t=

logarithmic derivative lemma (extended to C outside a disk centered at the
origin) given in Proposition 6.2,

2
/9 log™ ‘dl log F;,Ae)‘ (re’e) do = O (logT (r,r1,¢,np) +logr) |.

=0
Hence
2 |CI)|2 )
/ log| —5—— (re’e) dd = 0 (logT (r,r1,¢,np) +logr) |
=0 Isp|~e=xp
and we get

T (r,r1,9,np) < O (logT (r,r1,¢,np) +logr) |

from which it follows that

T (r,r1,9,np) = O (logr) ||

and

T (r,r1,9,m) = O (logr) |
O

Remark 6.4 The argument in Proposition 6.3 is simply a modification of the
case of the usual Schwarz lemma on pullbacks of jet differentials (see e.g.,
Theorem 2 on p. 1140 of [24]) when the holomorphic map ¢ is from the entire
affine complex line C to X . For this case, the pullback ¢*w is always identically
zero on C for the following reason. We can replace ¢ by the composite i of
¢ with the exponential map from C to C to rule out the case of T (r, ¥, n) =
O (logr) || so that evaljq. (¥ *) vanishes identically on C. Since any k-jet
of C at any point ¢y of C can realized by some holomorphic map o from C to
itself, from the vanishing of evaljq. (0 ") vanishes identically on C it follows
that ¥ *w is identically zero on C, which implies that ¢*w is identically zero
on C.

Lemma 6.5 (Extension of holomorphic maps with log order growth character-
istic function across infinity point) Let ¢ be a holomorphic map from C— A to
IP,, given by holomorphic functions [Fy, ..., F,] on C— A, without common
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zeroes. If T (r, r1, ¢) = O(logr) ||, then ¢ can be extended to a holomorphic

map from C U {o0} — A, to P,.

Proof By the comparison of characteristic functions of maps defined outside
a disk given in Sect. 6.1.1, we have

T\r,— ) =T (r,¢)=0(ogr) |
Fo

for 1 < j < n. By the trivial multiplicative version of the Heftungslemma
J y p g
given in (6.1), there exists some holomorphic nowhere zero function G; on
A £

C U {oo} — A, such that GJ-F—0 is meromorphic on C. From

F; F;
T\rGj—=)=T\r,=)+00) =T (r,¢) = O(logr) |
Fy Fo

for 1 < j < n we conclude that G j% is a rational function on C. Hence %

can be extended to a meromorphic function on C U {oco} — A_ro Thus ¢ can be
can be extended to a holomorphic map from C U {oo} — A, to P,,. O

Proposition 6.6 Let X be a compact complex manifold. Let wy, ..., wy be
holomorphic k-jet differentials of total weight m on X with each vanishing
on some ample divisor of X. Assume that at any point Py of Ji(X) which is
representable by a nonsingular complex curve germ, at least one of wy, . . ., wN
is nonzero at Py for some 1 < j < N. Then any holomorphic map ¢ from
C — Ay, to X can be extended to a holomorphic map from C U {o0} — A,
to X.

Proof We can assume without loss of generality that ¢ is not a constant map
so that at some point ¢y of C — A_ro the differential of ¢ is nonzero at ¢y. Let
Py be the element of Ji(X) at the point ¢ (£p) of X defined by the nonsingular
complex curve germ represented by ¢ at o. By assumption, there exists some
1 < jo < N such that wj, is nonzero at Py. It follows that the function
evalig. (p*wj,) associated to 9*wj, as described in Sect. 1.11 is nonzero at &p.
Let n be a Kihler form of X and let r; > ro. By Proposition 6.3 we have

T(r,ri,¢,n) = O(logr) |,

which implies that the holomorphic map ¢ from C — A_ro to X can be extended

to a holomorphic map from C U {oo} — A, to X. O

Theorem 6.7 For any integer n > 3 there exists a positive integer 6, with
the following property. For any positive integer 5 > § there exists a proper

@ Springer



1154 Y.-T. Siu

subvariety Z in the moduli space Py of all hypersurfaces of degree § in P,
(where N = (”:5)) such that for « € P, — Z and any holomorphic map
p:C— A_ro — X (where ro > 0) can be extended to a holomorphic map
CU {00} — A, — X where X@ is the hypersurface of degree § in P,
corresponding to the point « in the moduli space Py.

Proof By Proposition 3.11 on global generation on jet space by slanted vector
fields at points representable by regular curve germs. |

6.2 Entire function solutions of polynomial equations of slowly varying
coefficients

6.2.1 Historical background, osculation condition, and log-pole jet
differential

Before the introduction of the language of geometry of manifolds, hyperbol-
icity problems were formulated in terms of entire functions satisfying func-
tional equations. For example, a theorem of Borel states that if entire func-
tion @1, ..., @, satisfy e#! + .- 4 ¥ = 0, then ¢; — ¢ is constant with
1 < j < k < n. In the formulation in terms of functional equations satisfied
by entire functions, the hyperbolicity of a generic hypersurface of high degree
d states that no n + 1 entire holomorphic functions ¢g(¢), ..., ¢,(¢), with the
ratios % not all constant, can satisfy a homogeneous polynomial equation

V1 1%
2 g, @ o =0

of degree § whose constant coefficients «,,, ., are generic.

There have also been considerable investigations on the situation when
the constant coefficients are allowed to vary slowly. For example, on p. 387
of his 1897 paper [5], Emile Borel studied the problem of entire functions
Y1), -, vu(§) and @1(8), ..., 9a(¢) satistying yie?t + -+ + ype¥n = 0
and proved that y1(¢), . .., ¥, (¢) must be all identically zero if the growth rate
on|¢| =rof y1(¢), ..., yn(¢) and ¢1(¢), ..., ¢,(¢) is no more than e 1D
while the growth rate on [¢| = r of ¢;({) — @¢(¢) for j # £ is at least ,u(r)2
for some function w(r) as r — oo.

For the hyperbolicity problem of generic hypersurface of degree 5, we now
study the question of entire functions satisfying a homogeneous polynomial
equation of degree § with varying coefficients. More precisely, we ask whether

there are entire functions ¢o(¢), . . ., ¢, (¢) without common zeroes and entire
functions ay,,...y,(¢) for vog + --- + v, = § without any common zeroes
satisfying
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D @9 eu (@) =0 (6.1)

such that

@) ¥ : ¢ alg) = (..., () € Py is nonconstant,
(ii) & (o) = (ctwy,...,u, (£0)) is not in the exceptional set Z in Py for some
Zo € C, and
(i) T (r,¥) = o(T (r, ) +1logr) |, where ¢ : C — P, is defined by
(@0, - -+ @nl.

Here we handle the simpler question which assumes in addition that

d’
Z Qug,...,vy (g)ﬁ (900(§)v0 e '%(C)V") =0 (6.1)j

Vo+ -+ =0

forl < j < n—1.Theadditional setof n—1 equations (6.1) ; for1 < j <n—1
is equivalent to the set of n — 1 equations

d’/ ) )
2 (E“wa ..... un(§)) (oD -+ @a(D)") =0 (6.2);

Vo+ -4V =0

for 1 < j <n — 1, because of the Eq. (6.1)g itself and the result obtained by
differentiating it j-times with respect to ¢.

A geometric interpretation of the conditions (6.1)¢ and (6.2); for 1 < j <
n — 1 is the following. When

{00 0n(O)"}, 1t

is considered as the set of coefficients of a linear equation which defines
a hyperplane H(¢) in Py, as ¢ varies in C we have a moving hyperplane
depending on ¢. Having entire functions ¢¢(¢) for 0 < £ < n and entire
functions oy, ...y, (¢) for vo+- - - +v, = § satisfying (6.1); for0 < j <n—1
is equivalent to the existence of a holomorphic map

L= o) = (Oluo ,,,,, Vn (g))vo+~~-+vn=5

from C to Py which osculates the hyperplane H (¢) to order n — 1 in the sense
that the curve ¢ +— «(¢) in Py is tangential to order n — 1 to the hyperplane
H (&) of Py at the point « ({9) € Py. Condition (iii) of T (r, i) being of
order o (T (r, ¢) 4+ logr) is the condition of slowly varying coefficients.

For this question of polynomial equations with slowly varying coefficients
under additional assumption of osculation, we present here two results. The
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first one, corresponding to hyperbolicity, is that when the map ¢ +— «(¢) is
slowly moving compared to the map ¢ +— ¢(¢) € P, no such pair of curves
L= o) ePyand ¢ — ¢(¢) € P, exist.

The second result, corresponding to the Big Picard Theorem, concerns
extension across co when the pair of maps ¢ — ¢(¢) € P, and ¢ — «(¢) €
Py are only defined for ¢ € C — A, instead of on C.

Since the Schwarz lemma is the crucial tool for the hyperbolicity problem,
for the more general case of slowly varying coefficients we need a variation of
the Schwarz lemma for it. We are going to present it in the form which is more
than we need by allowing log-pole jet differentials rather than just holomorphic
jet differentials so that it can be used later in this article in the proof of Second
Main Theorems for log-pole jet differentials (see Theorems 6.12 and 6.13
below). A log-pole jet differential means that locally it is of the form

Vi, Vi
Z G, (d“"xl) b - (dgl'*xl) L (dUI,A log Fl)fl.x . (d"#M log FM)IM’A ,
A

where x1, ..., x, are local holomorphic coordinates, G and Fi, ..., Fy, are
local holomorphic functions. Each (d tlog F ) " contributes v¢ times the divisor
of F to the log-pole divisor (with multiplicities counted) of the log-pole jet
differential.

Proposition 6.8 (General Schwarz lemma for log-pole differential on sub-
variety of jets and map with slow growth for pole set) Let X be a compact
complex algebraic manifold of complex dimension n and Y be a complex
subvariety of the space Ji(X) of k-jets of X. Let i : Jy(X) — X be the
natural projection map. Let D and E be nonnegative divisors of X whose
associated line bundles Lp and L respectively have smooth metrics e™*P
and e~ X2 with smooth (1, 1)-forms np and ng as curvature forms such that
D + E is an ample divisor of X and its curvature form np + ng for the metric
e XDTXE jg strictly positive on X. Let sp (respectively sg) be the holomorphic
section of L p (respectively Lg) whose divisoris D (respectively E). Let F be
a nonnegative divisor of X and Supp F be its support. Let @ be a function on
Y such that sg (sD)_1 w is holomorphic on Y — 7rk_1 (Supp F). Assume that
for some finite open cover {Uj}]]':1 of X, there exists a log-pole k-form w;
onU;j (for1 < j < J), whose log pole is contained in F with multiplicities
counted, such that on Y N, ! (U j) the function w agrees with the function
on nk_l (UJ-) defined by sp (sE)_1 wjforl < j < J. Letry >ry> 0. Let
¢ : C— A, — X be a holomorphic map such that the image of the map
Ji(p) @ Jx ((C — A_,O) — Jk(X) induced by ¢ is containedin Y. Let G j({) be
the function evaliq ((pfa)) associated to ¢*w; as explained in (1.11). If G ; ()

is not identically zero on C — A, then
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T (r,ri,o,np) <T (r,r1,9,ng) + N (r,r1,9, F)
+O (logT (r,r1, 9, np +ng) +logr) |.

In particular, if for some ¢ > 0 one assumes that

N ri, o, F)+T e nel) = —&) (T (r,r1,9,0p) s

then either G j(¢) is identically zero forall 1 < j < J or

T (r,o,np+ng) =0 (logr) |.

Proof We assume that G j,(¢) is not identically zero for some 1 < jo < J.
We apply twice integration of Laplacian with in (1.10) to

2 ,—XE
g(t) = log(|Gjo(§)|2<ﬂ*(|SE|z—e_))'
Isp|=e—xp

Since w; is holomorphic on ¥ — 7, ! (Supp F), it follows that

T @ ri,¢,mp)—T (r,r1,9,ng) — N (r, 11,9, F)
L 2 |sp|? e XE ;
< — lo G; [t — (re’e)de—l—Ol.
< - /920 g(| I (|SD|26_XD (1)

Here we have the inequality instead of an identity, because of possible contribu-
tion from the zero-set of Cso—g) At this point enters Bloch’s technique of applying
the logarithmic derivative lemma by using the logarithm of global meromor-
phic functions as local coordinates. As functions on the space J)*} (X) of
vertical (n — 1)-jets on X' (with the right-hand side being global functions and
the left-hand side being only local functions due to the transition functions of
the line bundles Lp and Lg),

A
) Z ¢ () |t
|a)]0sEsD| <C H ‘d log Fj,z
A=lvjg, j.t

for some C > 0 and a finite collection {FJQ()} of global meromorphic functions
on X, where the product is taken over the indices v; ¢, j, £ with the ranges

=)=, 1=t=

logarithmic derivative lemma (extended to C outside a disk centered at the
origin) given in Proposition 6.2,
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2w
/9_0 log* ‘dﬂ log F;’kg) (re‘g) d9=0 (logT (r,r1,¢,np +ng) +logr) |.

Hence

2 2 -
2 |sgl|= e XE 0
lo G. bl =L (re’ )d@
/0:0 g(l W@ (lmlzem ))
=0 (ogT (r,r1,¢.np +ng) +logr) |

and we get

T(r,ri,¢,np) <T (r,r1,0,ng) + N @, r1, 9, F)
+O (logT (r,r1,9,np +nEg) +logr) |.

If now for some ¢ > 0 one assumes that

N, o, F)+ T (r,r, 0, nel) < (1 =) (T (r,ri,9,10) |,

then one obtains right away T (r, ¢, np + ng) = O (logr) |. O

Theorem 6.9 (Entire function solution of polynomial equations with slowing
varying coefficients) There exists a positive integer 8, and for § > &, there
exists a property subvariety Z of Py (where N = (sjl'n)) with the following
property. There cannot exist entire functions ¢o(¢), ..., ¢n(¢) without com-
mon zeroes and entire functions o, ... v, () for vo + - - -+ v, = 6 without any
common zeroes satisfying

.....

d’
2 %O (0@ (@) =0 for0<j<n—1
Vot 4V, =8 ¢

such that

(1) themap ¥ : ¢ — «a(¢) = (avo ,,,,, ,,n(f)) e Py is nonconstant,

(i) o (&) = (avo ,,,,, n ({0)) is not in the exceptional set Z in Py for some
o € C, and

@Gii) T (r,¥) = o(T (r,¢) +1ogr) |, where ¢ : C — P, is defined by
[¢o0, .- -, @nl

Proof We apply Proposition 6.8 with k = n — 1 to the space J,_1(X) of

(n — 1)-jets of the universal hypersurface X with subvariety Y equal to the

space J'*] (X) of vertical (n — 1)-jets of X'. The assumption

d’
Z avo,...,vn(f)ﬁ (900({)”0 . "fpn(f)v") =0 for0<j<n-—-1
vo+--+v, =8 ¢
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implies that for every ¢ € C the element of J,_(X) represented by the
parametrized complex curve germ ¢ at ¢ belongs to ¥ = J¥°'1 (X).

By Proposition 5.1 we have a proper subvariety Z of Py and foro € Py — 2
and 1 < j < J aholomorphic family of (n — 1)-jet differentials o' on X©@
vanishing on the infinity hyperplane of PP, (extendible to a meromorphic family

over all of Py) such that, at any point Py of J,,_1 (X(“)) witha € Py — 2

which is representable by a nonsingular complex curve germ, at least one '™

. . J
is nonzero at Py forsome 1 < j < J.

Since for each 1 < j < J the holomorphic family a)E.a) fora e Py — 2
can be extended to a meromorphic family for @ varying in all of Py, we can
find a divisor E; in Py such that for all 1 < j < J the pole-set of wg.a)
as a meromorphic vertical (n — 1)-jet differential on X is contained in the

intersection of X and IP, x E; with multiplicities counted. For 1 < j < J,
because »'® vanishes on an ample divisor of X fora € Py — Z, we can find
adivisor D; in X’ such that D; + E is an ample divisor of X’ and the zero-set
of ' as a meromorphic vertical (n — 1)-jet differential on A" contains D;
with multiplicities counted.

Since i : C — Py is nonconstant and 7 (r, ) = o (T (r, ¢) +logr) ||,
it follows that the differential d¢ is nonzero for some ¢y € C. Denote by Py

the point in J,_1 (X (“)) represented by the nonsingular complex curve germ

@ at ¢o. Some wi‘g) has nonzero value at Py. From Proposition 6.8 applied to

w%‘), it follows that
T(r,p) = 0O(ogr) |,

which would contradict

. T(r, )
im sup

r—00 10g r

>0

from the nonconstancy of the map v and the assumption

T (r,y) =o(T (r,¢)+logr) |.
o

The analogue of the Big Picard Theorem about removable essential singu-
larities is the following result.

Theorem 6.10 (Removing essential singularity for holomorphic solution of
polynomial equations with slowing varying coefficients) There exists a pos-
itive integer 8, and for 5§ > §, there exists a proper subvariety Z of Py
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(where N = (8:")) with the following property. For some r > rog > 0 let
©0(2), ..., ©u(C) be holomorphic functions on C —A_ro without common zeroes
andleta,,, .. v, () forvo+---+v, = § be holomorphic functions on C — A_ro
without common zeroes. Assume that

d’
Z Oy, .., vn(f)w (¢0(§)v0"'§0n(§)v”)50 forO0<j<n-—1

on C — A, such that

(1) themap ¥ : ¢ — «a(¢) = (avo ,,,,, ,,n(f)) e Py is nonconstant,
(i) o (&) = (avo ,,,,, i ({0)) is not in the exceptional set Z in Py for some
¢ €C— Ay, and
@) T (r,r1, ) =o(T (r,r1,¢) +1logr) |.

Then oo(L), ..., 0u(C) and ay,, .., ,,nﬁ)for Vo + - -+ v, =68 can be extended
to meromorphic functions on C — A,,.

Proof We use the same notations as in the proof of Theorem 6.9 except the
domains for the maps ¢ : C — A,, — X and psi : C — A,, — Py are
now different. Without loss of generality we can assume that the map ¢ is
nonconstant, otherwise the extendibility of ¢ and v is clear. Denote by Py the

pointin J,_| (X (“)) represented by the nonsingular complex curve germ ¢ at
(o)

Zo. Some a)(.g‘) has nonzero value at Py. From Proposition 6.8 applied to w o

it follows that
T(r,p)=0(ogr) |.

Now the extendibility of ¢ and ¥ to respectively holomorphic maps C— A, —
X and C — A, — Py follows from Lemma 6.5. O

6.3 Second main theorem from log-pole jet differential

Nevanlinna’s Second Main Theorem is a quantitative version of the Little
Picard Theorem. The hyperbolicity of generic hypersurface of high degree
corresponds to the Little Picard Theorem. We now discuss the analogue of
Nevanlinna’s Second Main Theorem for any regular hypersurface of high
degree from our approach of jet differentials.

In contrast to the use of holomorphic jet differentials vanishing on an ample
divisor in the hyperbolicity problem, the jet differentials used for the Second
Main Theorem are log-pole jet differentials vanishing on ample divisor. Our
method fits in with Cartan’s proof of the Second Main Theorem for entire
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holomorphic curves in P, and a collection of hyperplanes in P, in general
position given in [6].

We will first show how to construct log-pole jet differentials on P, which
vanishes on an appropriate ample divisor of P, and whose log pole-set is
contained in the hypersurface. We then present two Second Main Theorems
for log-pole jet differentials, with the second one dealing with the situation of
slowly moving targets. Then we show how Cartan’s proof can be recast in our
setting of Second Main Theorem for log-pole jet differentials vanishing on an
appropriate ample divisor.

Second main theorems are useful only when the estimates are reasonably
sharp. In the case at hand, because of our construction of jet differentials is so
far away from the conjectured optimal situation, the discussion about Second
Main Theorems can only serve as pointing out a connection between Second
Main Theorems and jet differentials and their construction.

Theorem 6.11 (Existence of log pole jet differential) Let 0 < &9, &, < 1.

There exists a positive integer 8n such that for any regular hypersurface X of
degree§ > 8, inP, there exists a non identically zero log-pole n-jet differential
w on P, of weight < §%0 which vanishes with multiplicity at least 81750 on the
infinity hyperplane of P,, and which is holomorphic on P, — X. In particular,
the log-pole divisor of w is no more than A times X with . < n§®.

Proof We choose €, €, 0y, 0,0’ in the open interval (0, 1) such that (n+ 1)6p +
0=>mn+1)+e,1—g, <6 <1—¢,andey < 6. We apply Proposition 4.8
toget A= A(n + 1, ¢, €) from it and then set §n+1 = A.

Let f (x1,...,x,) be a polynomial in terms of the inhomogeneous coor-
dinates x1, ..., x, of P, which defines X. Let X be the regular hypersurface
in P4 defined by the polynomial F = f (x1,...,x,) — xfl 41 1n the inho-
mogeneous coordinates xi, ..., X,+1 of P, 1. We apply Proposition 4.8 to F

(instead of to f) to get an n-jet differential @ of the form % which vanishes
*1

to order > 8% at the infinity hyperplane of P, 41, where Q is a polynomial in

dlxi, .. dlxap (0 <j <n)
which is of degree mg = |_890-| inxy, ..., x,4+1 and is of homogeneous weight
m = (89] in

dlxi, . di e (1<) <n)

when the weight of d/ x; is assigned to be ;.
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1162
We choose a nonzero integer £ such that one nonzero term of x% is of the
n+1

form
dxp11 . dnxn—i-l o
Qo =)
Xn+1 Xn+1
where Qy is a polynomial in the variables

dlxi,dlx 0= j<n)
., by are nonnegative integers.

with constant coefficients and vy,
The complex manifold X is a branched cover over P, with cyclic branch-
ing of order § at X under the projection map 7 : X — P, induced by
s Xp, Xpt1) > (X1, ..., X,). Let @ be the direct image of

(xlv .
2

0

B x;§+1 (fX1 - 1)

14
xn—i—l

under 7. The n-jet differential w on P, can be computed as follows. First we
express d‘x,,1 (by induction on £) as a polynomial of the variables
o dt log x;+1

2
Xn+1, d10g xp41, d”log xp 41,
with constant coefficients so that x% is expressed as a polynomial of
n+1

X1, ..., Xp+1 and

dix,, d) logx,.1 (0<j<n)

with constant coefficients. Then we obtain @ from ﬁ by replacing
n+1\Jx1

d’ log x,+1 by d’ log f and setting x,, 1| equal to 0. The log-pole jet differential
w on PP, is not identically zero, because of the nonzero term

(dxn4>1 )vl (dnxn+l)vn
Xn+1 Xn+1

d’xy, ..

in Q. The log-pole divisor of @ is no more than A times X with A < n§®,
O

because w is an n-jet differential of weight < 6.
By applying Proposition 6.8, we have the following two Second Main The-
orems for log-pole jet differentials, with second one dealing with the case of

slowly moving targets.
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Theorem 6.12 (Second main theorem from log-pole jet differentials) Let X be
an n-dimensional compact complex manifold with an ample line bundle L. Let
Dy, ..., Dy, Ey, ..., E4 bedivisors of L. Let w be a log-pole jet differential
on X vanishing on D = Dy + --- + D, such that the log-pole set of w is
contained in E = Ey + --- + Eg with multiplicities counted. Then for any
holomorphic map ¢ from the affine complex line C to X such that the image
of ¢ is not contained in E and the pullback ¢*w is not identically zero,

pT(r,o,L) < N(@r,¢, E)+ O (logT(r, ¢, L)) |

holds. In other words,
q
> m(r.e.Ej) < (g —ppT(r.9. L)+ O (ogT(r, 0. L) |.
j=1

The meaning of the log-pole set of w being contained in E = E1 + --- + E,
with multiplicities counted is the following. Locally w is of the form

Z h‘[],)»] ,,,,, T, Ak (dT1 log Fl))\l T (dfg IOg Fg))\e

TL ALy eees Ti s Mk
with
A div Fp + - - + tpAp div Fy

contained in E with multiplicities counted, where div F; is the divisor of F;.

Theorem 6.13 (Second main theorem for jet differential with slowly moving
targets) Let S C Py be a complex algebraic manifold and X C P, x S be a
complex algebraic manifold. Let w : X — § be the projection induced by the
natural projection P; x Py — Py to the second factor. Let Ls be an ample
line bundle on S. Let L be a line bundle on X such that L+~ (Ly) is ample
onX.LetDy,...,D,, Ey, ..., E;bedivisorsof L. Let D = Dy +---+ D,
and E = Ey +---+ Ey. Fora € S let X@ = 7= Ya) and D@ = Dy
and E@ = E|xw. Let Z be a proper subvariety of S. Fora € S — Z
let @ be a log-pole jet differential on X*) such that »'*) vanishes on the
divisor D) and the log-pole set of ®'® is contained in the divisor E® with
multiplicities counted. Assume that o@ s holomorphic in o fora € S — Z
and is meromorphic in o for a € S. Let ¢ be a holomorphic map from the
affine complex line C to X such that the image of 7 o ¢ is not contained in Z
andT (r,mo@,Ls) =0 (T (r, o, L+ 71 (LS))) , then

qT (r,o.L+7 ' (Lg)) < N(r,@. D)+ 0 (T (o, L+~ " (Ly))) |
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In other words,

p
Dom(re.Dj)<@=pT(re, L+a"(Ls))
j=l1
+o(T (g L+77"(Lg)) I

In the product case of X = X© x S with D; = D§O), the proximity function
m (F ¢, D j) in the formulation can be replaced by the proximity function
m (r, pryo ¢, DE_O)), because N(r, ¢, D) is equal to N (r, pry o @, DEO)) and

we can apply Nevanlinna’s First Main Theorem to pry o ¢ and the divisor D§O)

and use the assumption that T (r,w o, Ls) = 0 (T (r, o, L+n! (LS))).
Here pr| means the natural projection pr : Py x Py — P; to the first factor.

In the following remark we discuss how Cartan’s proof of his Second Main
Theorem for hyperplanes in general position can be interpreted in the setting
of the Second Main Theorem for log-pole jet differentials.

Remark 6.14 Cartan’s Second Main Theorem for hyperplanes in P, for hyper-
planes in general position given in [6] is simply the special case of Theo-
rem 6.12 with

Wron(dxy, ...,dx,)
w =
Fi---F,
in inhomogeneous coordinates xi, ..., x, of PP,, where Fy, ..., F, are the
degree-one polynomial in x1, ..., x, which define the ¢ hyperplanes in P, in

general position.
Here the notation for the Wronskian

Wron (1, ..., ne¢)

for jet differentials ny, ..., n, on a complex manifold Y is used to mean the
jet differential

det (a*7'nj) 1oy = > (sgno) noy (dno) - (dg_lﬂa(@)

UES{

on Y, where Sy is the group of all permutations of {1, 2, ..., £} and sgno is
the signature of the permutation o.

The denominator Fj -- - Fy in w gives the vanishing order ¢ at the infinity
hyperplane of P,. The key argument here is that from the general position
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assumption of the zero-sets of F1i, ..., F,, we can locally write w as a constant
times
Wron (dF,,,...,dF,) Wron(dlogF,,,...,dlogF,,)
Fi---F, B Foppy o Fy,

in a neighborhood U of a point when F; is nowhere zero on U for j not equal
to any of the indices vy, ..., v,.

Open Access This article is distributed under the terms of the Creative Commons Attribution
License which permits any use, distribution, and reproduction in any medium, provided the
original author(s) and the source are credited.
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