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1 Introduction

In this paper we are going to present the proofs of the following two theorems
on the hyperbolicity of generic hypersurfaces of sufficiently high degree and of
their complements, together with a number of related results, obtained by the
same methods, such as: (i) a Big-Picard-Theorem type statement concerning
extendibility, across the puncture, of holomorphic maps from a punctured disk
to a generic hypersurface of high degree, (ii) entire holomorphic functions
satisfying polynomial equations with slowly varying coefficients, and (iii)
Second Main Theorems for jet differentials and slowly moving targets.

Theorem 1.1 For any integer n ≥ 3 there exists a positive integer δn (which

is explicitly expressible as a function of n) with the following property. For

any generic hypersurface X in Pn of degree δ ≥ δn there is no nonconstant

holomorphic map from C to X.

Theorem 1.2 For any integer n ≥ 2 there exists a positive integer δ∗n (which

is explicitly expressible as a function of n) with the following property. For

any generic hypersurface X in Pn of degree δ ≥ δ∗n there is no nonconstant

holomorphic map from C to Pn − X.

Theorem 1.1 was presented with a sketch of its proof in [22] and [23]. The
methods used, though rather tedious in some of their details, consist essentially
just of some skillful manipulations in linear algebra and the chain rule of
differentiation. The underlying ideas in these methods can be traced to the
techniques which Bloch developed in his 1926 paper [2]. To explain this link
to Bloch’s paper [2], we first very briefly describe Bloch’s techniques with
explanations about how they foreshadow to a certain extent our techniques in
this paper.
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Hyperbolicity of generic high-degree hypersurfaces 1071

1.1 Bloch’s technique of construction of jet differential

In his 1926 paper [2] Bloch proved the nonexistence of nonconstant holomor-
phic maps from C to a submanifold Y of an abelian variety A, which does
not contain a translate of a positive-dimensional abelian subvariety of A, by
producing sufficiently independent holomorphic jet differentials ω on Y van-
ishing on some ample divisor of Y and using the fact that the pullbacks of such
jet differentials by holomorphic maps from C to Y vanish identically.

He produced such holomorphic jet differentialsω on Y , not by applying to Y

the theorem of Riemann–Roch (which was not yet readily available at the time
of Bloch’s paper for the case needed for its application to Y ), but explicitly
by pulling back to Y constant-coefficient polynomials P (with homogeneous
weight) of differentials of the coordinates (including higher-order differentials)
of the universal cover Ã of the abelian variety A. When the constant-coefficient
polynomials P of differentials of coordinates of Ã are pulled back to Y , the
condition of Y not containing a translate of a positive-dimensional abelian
subvariety of A causes new vanishing of the pullbacks on Y . Moreover, the
new vanishing is on some ample divisor of Y when the constant-coefficient
polynomials P of differentials of coordinates of Ã are appropriately chosen.
The reason why it is possible to choose P so that its pullback ω to Y vanishes
on an ample divisor of Y is that the condition of not containing a translate of
a positive-dimensional abelian subvariety of A guarantees that the dimension
of the C-vector space of the pullbacks to Y of all possible such polynomials P

is so high that at least one C-linear combination ω of such pullbacks vanishes
on some ample divisor of Y .

Bloch’s construction is related to the classical construction of a C-basis
of holomorphic 1-forms for a regular plane curve C defined by an equation
R(x, y) = 0 of degree δ ≥ 3 in the inhomogeneous coordinates x, y of P2,
which are constructed by pulling back to C meromorphic 1-forms

P(x, y)
dx

Ry(x, y)
= P(x, y)

−dy

Rx (x, y)

of “low pole order” on P2, where Rx (x, y) and Ry(x, y) are the first-order
partial derivatives of R(x, y) and P(x, y) is a polynomial of degree ≤ δ − 3.
The adjunction formula for the plane curve C causes new vanishing to cancel
the “low pole order” of the meromorphic 1-forms on P2 to yield holomorphic
1-forms on C when the meromorphic 1-forms on P2 are pulled back to the
plane curve C .

In this paper, the construction of holomorphic jet differentials on a generic
hypersurface X of sufficiently high degree δ in Pn combines Bloch’s method
and the classical construction of holomorphic 1-forms on plane curves of high
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degree. We take meromorphic jet differentials of low pole orders (of magnitude
δ1−ε for some appropriate 0 < ε < 1) on Pn and pull them back to X . The
high degree δ of X will guarantee (according to Lemma 4.4 concerning the
injectivity of the pullback map for certain jet differentials) that the dimension of
the C-vector space of such pullbacks is so high that some C-linear combination
of such pullbacks will be a non identically zero holomorphic jet differential
on X vanishing on some ample divisor of X (see Proposition 4.8 below). One
key point in this argument is that, because the dimension of Pn is higher than
that of X , there are more degrees of freedom in constructing meromorphic
(n − 1)-jet differentials of low pole order on Pn and, if the pullback map to X

of such meromorphic (n − 1)-jet differentials is injective, there are sufficient
independent pullbacks to X to form a non identically zero C-linear combination
which vanishes on an ample divisor of X .

1.2 Key technique of slanted vector fields

After so many decades of impasse, the real key which opens the way to the proof
of the hyperbolicity of generic hypersurface of sufficiently high degree (in the
sense stated in Theorem 1.1) is the introduction in [22,23] of the technique
of slanted vector fields in the subspace J

(vert)
n−1 (X ) of vertical (n − 1)-jets in

the (n − 1)-jet space Jn−1(X ) of the universal hypersurface X of degree δ in
Pn × PN (where N =

(

δ+n
n

)

− 1).
For a complex manifold Y the space Jk(Y ) of k-jets of Y consists of all k-jets

of Y (each of which is represented by a parametrized complex curve germ).
The universal hypersurface X of degree δ in Pn × PN (with N =

(

δ+n
n

)

− 1)
is defined by

∑

ν0+···+νn=δ

αν0,...,νn z
ν0
0 · · · zνn

n = 0, (1.1)

where α =
[

αν0,...,νn

]

ν0+···+νn=δ
is the homogeneous coordinate of PN and

[z0, . . . , zn] is the homogeneous coordinate of Pn . For α ∈ PN let X (α) be
the hypersurface of degree δ defined by (1.1) when α is fixed as constant.
A vertical k-jet of X is a k-jet in X representable by some (parametrized)
complex curve germ lying completely in some fiber X (α) of X . We denote
by J

(vert)
k (X ) the space of all vertical k-jets on X . There is a projection map

πk,vert : J
(vert)
k (X )→ PN such that an element P0 of J

(vert)
k (X ) is represented

by a (parametrized) complex curve germ in X (α) with α = πk,vert (P0).
A slanted vector field ξ on J

(vert)
k (X ) means a vector field of J

(vert)
k (X )

which at a generic point P0 of J
(vert)
k (X ) is not tangential to the space Jk

(

X (α)
)
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Hyperbolicity of generic high-degree hypersurfaces 1073

of k-jets of the fiber X (α) at the point P0 of Jk

(

X (α)
)

with α = πk,vert (P0).
When a local k-jet differential form on X (α) defined for α in some open sub-
set U of PN is regarded as a local function on J

(vert)
k (X ) and is differen-

tiated with respect to ξ , the result is a local function on J
(vert)
k (X ) which

is represented by a local k-jet differential on X (α) for α ∈ U . In the case
of k = n − 1, meromorphic slanted vector fields ξ of low vertical pole-
order (of the magnitude OPn

(

n2
)

on the vertical fiber), whose existence is
given in Proposition 3.11 below, play the following indispensable role in
generating sufficiently independent holomorphic (n − 1)-jet differentials on
X (α) vanishing on an ample divisor for a generic α and for δ sufficiently
large.

On a regular hypersurface X (α) of high degree δ, there cannot be any nonzero
meromorphic vector fields on X (α) of low pole order. However, the universal
hypersurface X of degree δ in Pn × PN has bidegree (δ, 1) with respect to
the two hyperplane section line bundles OPn (1) and OPN

(1). Because of the
second component 1 in the bidegree (δ, 1) of X , when slanted vector fields
are used, it is possible to get meromorphic slanted vector fields of J

(vert)
k (X )

with low vertical pole order.
For a generic α̂ ∈ Pn the holomorphic (n − 1)-jet differential ω(α̂) on

X (α̂) vanishing on an appropriate ample divisor (constructed by pulling back
an appropriate meromorphic (n − 1)-jet differential of low pole order on Pn

according to Proposition 4.8 below) can be extended to a holomorphic fam-
ily ω(α) on X (α) for α in some open neighborhood U of α̂ in PN so that
successive application of different finite sets of meromorphic slanted vec-
tor fields ξ1, . . . , ξℓ of low vertical pole order (as constructed in Proposi-
tion 3.11 below) would yield sufficiently independent holomorphic jet dif-
ferentials vanishing on ample divisor on X (α̂) so that the application of the
Schwarz lemma of the vanishing of pullbacks, to C by a holomorphic map
C → X (α̂), of holomorphic jet differentials vanishing on ample divisor
of X (α̂) would force every holomorphic map from C to X (α̂) to be con-
stant (see Proposition 5.1, and the proof of Theorem 1.1 given in Sect. 5.1
below).

We would like to remark that the Schwarz lemma of the vanishing of pull-
backs, to C by a holomorphic map C → X (α̂), of holomorphic jet differentials
vanishing on ample divisor of X (α̂) also has its origin in Bloch’s 1926 paper
[2], though its formulation and its proof there are in a form very different
from our current way of mathematical presentation. Bloch’s proof of applying
Nevanlinna’s logarithmic derivative lemma (p. 51 of [17]) to local coordinates
which are the logarithms of global meromorphic functions still is the best proof
of the Schwarz lemma. It is recast in the current language of mathematical pre-
sentation on pp. 1162–1164 of [24].
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1074 Y.-T. Siu

1.3 Slanted vector fields and Bloch’s technique of maps by translation

The technique of slanted vector fields in a way also finds some remote ancestry
in the 1926 paper of Bloch [2], though the connection is not so transparent.
We point this out here in order to dispel the wrong perception that the tech-
nique of slanted vector fields is applicable to generic hypersurfaces of high
degree because of the variation of complex structure of hypersurfaces as the
coefficients of their defining functions vary.

In his proof of the hyperbolicity of a submanifold Y in an abelian variety A

which contains no translate of positive-dimensional abelian subvariety of A,
Bloch used the vector fields from translations in A to do the differentiation of
jet differentials. That is the reason why when such differentiations cannot yield
enough independent holomorphic jet differentials to give hyperbolicity of Y , Y

must contain a translate of some positive-dimensional abelian subvariety of A.
This link of the use of slanted vector fields to Bloch’s technique of using vector
fields of maps by translation is obscured by the fact that in Bloch’s technique
the result of differentiation with respect to vector fields of maps by translation
is just the same as the use of a different constant-coefficient polynomial in
differentials of the coordinates of the universal cover Ã of A.

Let us return to our situation at hand of using slanted vector fields ξ on
Jk

(

X (α)
)

of low vertical pole order for k = n − 1. Though the complex
structure of the hypersurface X (α) changes as α varies in PN , the slanted
vector fields ξ in general do not respect the fibers in the sense that for two
distinct points P0 and P ′

0 on Jk

(

X (α)
)

the two projections πk,vert
(

ξP0

)

and

πk,vert

(

ξP ′
0

)

are in general different vectors in the tangent space of PN at α.

For our situation at hand, the geometric picture is not the pulling back
of k-jet differential from a neighboring fiber by the slanted vector field ξ ,
even in the infinitesimal setting. What is relevant is the existence of slanted
vector fields pointing in sufficiently many different directions on J

(vert)
k (X )

at the prescribed point in question. The realization of the irrelevancy of the
variation of the complex structure X (α) as α varies in PN , as well as the
interpretation of Bloch’s technique of differentiation with respect to vec-
tor fields of maps by translation, points to the promise of the applicability
of our method even to the case of some rigid complex manifolds Z inside
some Pm as a submanifold of possibly high codimension. In certain cases,
though Z may be rigid as a compact complex manifold, yet there is a possi-
bility that appropriate meromorphic vector fields on Pn applied to pullbacks
to Z of low pole-order meromorphic jet differentials on Pn may yield suffi-
ciently independent holomorphic jet differentials on Z vanishing on an ample
divisor.
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Hyperbolicity of generic high-degree hypersurfaces 1075

1.4 Necessity of use of vertical jet space

The reason why the more complicated space J
(vert)
n−1 (X ) of vertical (n−1)-jets

of X has to be used instead of the simpler (n − 1)-jet space Jn−1(X ) of X is
that, while it is possible to extend a holomorphic (n − 1)-jet differential ω(α̂)

on a hypersurface X (α̂) for a generic α̂ ∈ PN to a holomorphic family of ω(α)

on X (α) for α in an open neighborhood U of α̂ in PN , it is in general impossible
to find a holomorphic (n − 1)-jet differential on the part of Jn−1(X ) above
some open neighborhood U of α̂ in PN whose pullback to X (α̂) is equal to
ω(α̂).

Difficulty of the latter kind of extension can be illustrated easily in the case
of a holomorphic family of plane curves Ca given by R(x, y, a) = 0 with a in
the open unit disk 
 of C as a holomorphic parameter. A holomorphic 1-form
on a single plane curve Ca can be constructed as

dx

Ry(x, y, a)
= −

dy

Rx (x, y, a)

from the vanishing of the differential d R = Rx dx + Rydy on Ca when a

is considered as a constant, but in the total space
⋃

a∈
 Ca of the family of
plane curves it is not easy to carry out a similar construction, because when a

is regarded as a variable, the differential d R becomes Rx dx + Rydy + Rada

and the same method cannot be applied.
Furthermore, it is for this kind of difficulty of constructing (n − 1)-jet

differentials on the universal hypersurface X that the additional condition
(6.1) j for 1 ≤ j ≤ n − 1 is introduced into Theorem 6.9 on entire function
solutions of polynomial equations with slowing varying coefficients, so that
families of vertical (n − 1)-jet differentials on the fibers can be used instead.

1.5 Algebraic geometric counterpart of slanted vector fields

In his 1986 paper [7] Clemens introduced a technique (later generalized by Ein
[9,10], and Voisin [25]) to prove the nonexistence of rational and elliptic curves
in generic hypersurfaces of high degree by showing that the normal bundle of
one such curve in the family of such curves is globally generated by sections
with vertical pole order 1. His technique can be considered the counterpart of
our method of slanted vector fields and as a matter of fact serves as motivation
for our method.

On its face value Clemens’s technique of using normal bundle to estimate
the genus of a curve is algebraic in nature and cannot possibly have anything
to do with the problem of hyperbolicity of transcendental in nature. Its rel-
evancy was realized for the first time in [22] and [23] partly because of our
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1076 Y.-T. Siu

seemingly completely unrelated earlier work on the deformational invariance
of the plurigenera [20,21].

Like jet differentials, pluricanonical sections can be naturally pulled back
by a map and, as a result, their Lie differentiation can be naturally defined with-
out specifying any special connection. In a hitherto unsuccessful attempt to
study deformational invariance of sections of other bundles associated with the
tangent bundle (besides pluricanonical sections), we investigated the obstruc-
tion of moving jet differentials out of a fiber in a family of compact complex
manifolds and considered their Lie derivatives with respect to slanted vector
fields. Such investigations, though unsuccessful so far as its original goal is
concerned, serendipitously led to the use of slanted vector fields in the study of
hyperbolicity problems and to the realization that Clemens’s technique is rel-
evant to, and can serve as motivation for, the differentiation of jet differentials
by slanted vector fields to produce new ones.

1.6 Linear algebra versus theorem of Riemann–Roch

As already pointed out in the paragraph straddling p. 445 and p. 446 in [22],
a non identically zero holomorphic (n − 1)-jet differential on X (α) vanishing
on an ample divisor can be constructed from the theorem of Riemann–Roch
by using the sufficient positivity of the canonical line bundle of X (α) and the
lower bound of the negativity of jet differential bundles of X (α). Such a jet
differential can also be directly obtained by using the linear algebra method
of solving a system of linear equations with more unknowns than independent
linear equations, which is the method used here in Proposition 4.8 below, as
sketched on p. 446 of [22]. This direct method of construction by linear algebra
has the important advantage of better control over the form of the resulting
jet differential so that the application of slanted vector fields can produce
sufficiently independent jet differentials vanishing on an ample divisor of X (α)

for a generic point α of PN (see Proposition 5.1, and the proof of Theorem 1.1
given in Sect. 5.1 below).

Of course, the use of the theorem of Riemann–Roch also uses the linear alge-
bra technique of counting the dimension of sections modules and the dimension
of obstructional higher cohomology groups, but the process of going through a
labyrinth of exact sequences so obscures the eventual form of the resulting jet
differential that not enough control can be retained to get beyond the weaker
conclusion that holomorphic maps from C to X (α) is contained in some proper
subvariety of X (α).

Recently Diverio, Merker, and Rousseau in [8] used the theorem of
Riemann–Roch to construct a holomorphic jet differential on X (α) vanishing
on an ample divisor and then used Merker’s work [16] involving our method
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Hyperbolicity of generic high-degree hypersurfaces 1077

of slanted vector fields to arrive at the conclusion that holomorphic maps from
C to X (α) is contained in some proper subvariety of X (α).

1.7 Simplified treatment in going from non Zariski density of entire curves
to hyperbolicity

In the original sketch of the proof of Theorem 1.1 in [22], for the last step dis-
cussed on p. 447 of [22] of going from the non Zariski density of entire curves
to hyperbolicity, the method of construction of jet differentials is applied to a
hypersurface X̂ in Pn̂ constructed from the hypersurface X (α) in Pn with a larger
n̂ so that more jet differentials on X (α) can be obtained from jet differentials on
X̂ . The idea is that the zero-set of the jet differentials constructed on X (α) from
linear algebra would be defined by the vanishing of polynomials of low degree
in low-order partial derivatives of the polynomial f (α) defining X (α) and, in
order to take care of such zero-set, the low-order partial derivatives of f are
introduced as additional new variables. The genericity condition of f enters
in a certain form of independence of the low-order partial derivatives of f .

In this paper we use a simplified treatment of this step which just uses
the fact that our construction of holomorphic jet differentials depends on the
choice of an affine coordinate system of the affine part C

n of Pn so that differ-
ent choices of the affine coordinate system in the construction would give us
sufficient independent holomorphic jet differentials to conclude hyperbolicity
of a generic hypersurface of high degree. An earlier version of this paper uses
the alternative argument that a meromorphic (n − 1)-jet differential on Pn

defined by a low-degree polynomials of the inhomogeneous coordinates of Pn

and their differentials have only low vanishing order at every point of X (α).
The current simplified treatment is used here, because the complete rigorous
details of the alternative argument on low vanishing order in the earlier version
of this paper turn out to be quite tedious. Moreover, the current argument is
related to the technique of slanted vector fields so that the two arguments of
generating sufficient holomorphic vector fields are two just different aspects
of the same idea. The relation with the technique of slanted vector fields is that
the technique of slanted vector fields is actually the infinitesimal or differential
version of the current argument which can be regarded as using affine coordi-
nate transformations to pull back holomorphic jet differentials on neighboring
fibers to reduce the common zero-set of holomorphic jet differentials.

1.8 Techniques parallel to those in Gelfond–Schneider–Lang–Bombieri
theory

Paul Vojta presented in [26] a formal parallelism between the results in dio-
phantine approximation and those in value distribution theory. Along this line,
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1078 Y.-T. Siu

the techniques presented here for the proof of the hyperbolicity of generic
hypersurfaces of sufficiently high degree are, in certain ways, quite parallel
to the techniques used for the theory of Gelfond–Schneider–Lang–Bombieri
[3,4,11–15,18].

(i) The construction of holomorphic jet differentials in Proposition 4.8 by
solving a system of linear equations with more unknowns than equations is
parallel to the use of Siegel’s lemma in the theory of Gelfond–Schneider–
Lang–Bombieri to construct a polynomial with estimates on its degree
and the heights of its coefficients.

(ii) The requirement that the constructed jet differential vanishing on an ample
divisor of high degree in Proposition 4.8 is parallel to the requirement of
the vanishing of the constructed polynomial in the theory of Gelfond–
Schneider–Lang–Bombieri to high order at certain points.

(iii) Lemma 4.4 concerning the injectivity of the pullback map for certain
jet differentials is parallel to the constructed polynomial in the theory of
Gelfond–Schneider–Lang–Bombieri being not identically zero due to the
assumption of the degree of transcendence of the given functions.

(iv) The use of Nevanlinna’s logarithmic derivative lemma and the use of
logarithms of global meromorphic functions as local coordinates in the
Schwarz lemma to estimate the contribution from the differentials to be
of lower order is parallel to the use of the differential equations in the
theory of Gelfond–Schneider–Lang–Bombieri.

Such a parallelism between the techniques used in this paper and those
in theory of Gelfond–Schneider–Lang–Bombieri lends support to the prefer-
ability of the approach used in this paper for the hyperbolicity problem of
hypersurfaces.

1.9 Notations and terminology

For r > 0 we use 
r to denote the open unit disk in C of radius r centered
at the origin. When r = 1, we simply use 
 to denote 
1 when there is no
confusion.

For a real number λ denote by ⌊λ⌋ the round-down of λ which means the
largest integer ≤λ and denote by ⌈λ⌉ be the round-up of λ which means the
smallest integer ≥λ.

We use [z0, . . . , zn] to denote the homogeneous coordinates of Pn and we
use (x1, . . . , xn) to denote the inhomogeneous coordinates of Pn with x j =

z j

z0
for 1 ≤ j ≤ n. Sometimes we also go to the inhomogeneous coordinates by
fixing z0 ≡ 1 in the homogeneous coordinates when notationally it is more
advantageous to do so.
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Hyperbolicity of generic high-degree hypersurfaces 1079

Denote by N the set of all positive integers. For an (n + 1)-tuple ν ∈

(N ∪ {0})n+1 of nonnegative integers, we write ν = (ν0, ν1, . . . , νn) and |ν| =
ν0 + ν1 + · · · + νn and let

zν = z
ν0
0 z

ν1
1 · · · zνn

n .

For 0 ≤ p ≤ n, let ep denote the unit vector in C
n+1 such that all components

are zero except that the component in the p-th place is 1. We use δν,μ to denote
the Kronecker delta for the indices ν, μ ∈ (N ∪ {0})n+1, which assumes the
value 1 for ν = μ and assumes the value 0 when ν �= μ.

If from the context there is no risk of confusion, we use N to denote
(

δ+n
n

)

−1
so that PN is the moduli space for all hypersurface of degree δ, without further
explicit mention. The homogeneous coordinates of PN will be denoted by
α =

[

αν0,...,νn

]

ν0+···+νn=δ
. The hypersurface defined by

f (α) =
∑

ν0+ν1+···+νn=δ

αν0,...,νn z
ν0
0 z

ν1
1 · · · zνn

n

is denoted by X (α). For notational simplicity, sometimes the superscript (α) in
f (α) and X (α) is dropped when there is no risk of confusion. Also sometimes
we simply use f (α) (x1, . . . , xn) or f (x1, . . . , xn) to mean 1

zδ0
f (α) (z0, . . . , zn)

when the context makes it clear what is being meant. This notational simpli-
fication by dropping superscript (α) applies also to other symbols such as
replacing Q(α) by Q (respectively ω(α) by ω) when there is no risk of confu-
sion or replacing Q by Q(α) (respectively ω by ω(α)) when there is a need to
keep track of the dependence on the parameter α ∈ PN .

When we present the main ideas of an argument and refer to high vanishing
order without explicitly giving a precise number, we mean a quantity of the
order of δ. In such a situation, when we refer to low pole order without explicitly
giving a precise number, we mean a quantity of the order of δ1−ε for some
appropriate 0 < ε < 1.

The notation at the end of the inequality

A(r) ≤ B(r) ‖

means that there exist r0 > 0 and a subset E of R ∩ {r > r0} with finite
Lebesgue measure such that the inequality holds for r > r0 and not in E . This
is the condition needed for the logarithmic derivative lemma of Nevanlinna as
given at the bottom of p. 51 of [17].

For a meromorphic function F on C and c ∈ C ∪ {∞} with F(0) �= c the
counting function is
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N (r, F, c) =

∫ r

ρ=0
n(ρ, F, c)

dρ

ρ
,

where n(ρ, F, c) is the number of roots of F = c in 
ρ with multiplicities
counted. The characteristic function is

T (r, F) = N (r, F,∞)+
1

4π

∫ 2π

θ=0
log+

∣

∣

∣
F
(

reiθ
)∣

∣

∣
dθ

under the assumption that 0 is not a pole of F , where log+ means the maximum
of log and 0.

For a complex manifold Y with a (1, 1)-form η and for a holomorphic map
ϕ : C → Y , the characteristic function of ϕ with respect to η is

T (r, ϕ, η) =

∫ r

ρ=0

(

∫


ρ

ϕ∗η

)

dρ

ρ
.

1.10 Twice integration of Laplacian in Nevanlinna theory

The technique of twice integrating the Laplacian of a function introduced by
Nevanlinna for his theory of value distribution will be used a number of times
in this paper. We put it down here for reference later. For any smooth function
g(ζ ), from the divergence theorem

∫

|ζ |<r


g =

∫ 2π

θ=0

(

∂

∂r
g
(

reiθ
)

)

rdθ

and 
 = 4∂ζ ∂ζ it follows that

4
∫ r

ρ=r1

(∫

|ζ |<ρ

∂ζ ∂ζ g

)

dρ

ρ
=

∫ r

ρ=r1

(∫

|z|<ρ


g

)

dρ

ρ

=

∫ 2π

θ=0
g(reiθ )dθ −

∫ 2π

θ=0
g(r1eiθ )dθ.

1.11 Function associated to pullback of jet differential to part of complex
line

Let ω be a holomorphic k-jet differential on a complex manifold Y of complex
dimension n and ϕ be a holomorphic map from an open subset U of C (with
coordinate ζ ) to Y . The map ϕ induces a map Jk,ϕ from the space Jk(U ) of
k-jets on U to the space Jk(Y ) of k-jets on Y , which sends a k-jet η on U
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at ζ0 represented by a parametrized complex curve germ γ : 
 → U with
γ (0) = ζ0 to the k-jet represented by the parametrized complex curve germ
ϕ ◦ γ : 
→ Y at ϕ(ζ0). The pullback ϕ∗ω of ω by ϕ means the holomorphic
k-jet differential on U whose value at a k-jet η of U at ζ0 is the value of ω at
the k-jet Jk,ϕ (η) of Jk(Y ) at ϕ(ζ0).

The crucial tool in the study of the hyperbolicity problem is the result,
usually referred to as the Schwarz lemma, of the vanishing of the pullback of a
holomorphic jet differential on a compact complex manifold vanishing on an
ample divisor by a holomorphic map from C. Its proof, by Bloch’s technique
of using the logarithmic derivative lemma of Nevanlinna (p. 51 of [17]) with
logarithms of global meromorphic functions as local coordinates, first shows
the vanishing of a function associated to the pullback of the jet differential and
then obtains the vanishing of the pullback of the jet differential by composing
the map from C with appropriate holomorphic maps C → C.

In the later part of this article, when the analogues of the Big Picard Theorem
are introduced for generic hypersurfaces X of high degree to extend holomor-
phic maps from C−
r0 → X to holomorphic maps from C∪{∞}−
r0 → X ,
appropriate holomorphic maps C−
r0 to itself are unavailable for proof the
full Schwarz lemma. Instead only the vanishing of the function associated to
the pullback of the jet differential can be obtained. We now introduce a notation
for this function. The function on U , denoted by evalidC

(ϕ∗ω), at the point ζ0
is the value of the k-jet ϕ∗ω evaluated at the k-jet of U at ζ0 represented by
the parametrized curve defined by the identity map of C. In other words, the
value of evalidC

(ϕ∗ω) at ζ0 ∈ U is the value of ω at the k-jet on Y represented
by the parametrized complex curve germ ϕ : U → Y at ϕ(ζ0).

When for some local coordinates y1, . . . , yn of Y the k-jet differential ω is
written as

∑

ν

Gν (y1, . . . , yn)
∏

1≤ j≤n, 1≤ℓ≤k

(

dℓy j

)νℓ, j

where ν =
(

νℓ, j

)

1≤ j≤n, 1≤ℓ≤k
. The function evalidC

(ϕ∗ω) at ζ ∈ U is given
by

∑

ν

Gν (ϕ1(ζ ), . . . , ϕn(ζ ))
∏

1≤ j≤n, 1≤ℓ≤k

(

dℓ

dζ ℓ
ϕ j (ζ )

)νℓ, j

,

where ϕ is represented by (ϕ1, . . . , ϕn) with respect to the local coordinates
y1, . . . , yn of Y , so that if y j is locally equal to log F j for some global mero-
morphic function F j on Y (for 1 ≤ j ≤ n), the logarithmic derivative lemma

of Nevanlinna (p. 51 of [17]) can be applied to dℓ

dζ ℓ
ϕ j (ζ ) =

dℓ

dζ ℓ
log F j (ϕ(ζ )).

123



1082 Y.-T. Siu

2 Approach of vector fields and lie derivatives

2.1 Moduli space of hypersurfaces

The moduli space of all hypersurfaces of degree δ in Pn is the same as the
complex projective space PN of complex dimension N =

(

δ+n
n

)

− 1. The
defining equation for the universal hypersurface X in Pn × PN is

f =
∑

ν∈(N∪{0})n+1

|ν|=δ

ανzν .

The number of indices ν ∈ (N ∪ {0})n+1 with |ν| = δ is
(

δ+n
n

)

= N + 1. For
α ∈ PN we use X (α) to denote X ∩ (Pn × {α}).

Lemma 2.1 X is a nonsingular hypersurface of Pn × PN of bidegree (δ, 1).

Proof Take an arbitrary point (y, α) of X with y ∈ Pn and α ∈ PN . Choose
a homogeneous coordinate system [z0, z1, . . . , zn] of Pn so that y is given
by [z0, z1, . . . , zn] = [1, 0, . . . , 0]. In other words, y is the origin in the
inhomogeneous coordinate system

(x1, . . . , xn) =

(

z1

z0
,

z2

z0
, . . . ,

zn

z0

)

associated to the homogeneous coordinate system [z0, z1, . . . , zn].
The hypersurface X in Pn × PN is nonsingular if and only if its pullback

X̃ to (CN+1 − 0)× (Cn+1 − 0) is nonsingular, because locally at points of X

the pullback X̃ is simply equal to the product of X with (C− 0)× (C− 0).
To determine whether X̃ is nonsingular, we differentiate the defining func-

tion

f =
∑

ν0+···+νn=δ

αν0,...,νn z
ν0
0 · · · zνn

n

with respect to each αν0,...,νn and each z j and evaluate the results at z0 =

1, z1 = · · · = zn = 0 to see whether we get a nonzero ((N + 1)+ (n + 1))-
vector. We choose ν0 = δ, ν1 = · · · = νn = 0 and get

(

∂ f

∂αδ,0,...,0

)

z0=1,z1=···=zn=0
= 1

and conclude that the ((N + 1)+ (n + 1))-vector is nonzero. Thus X is non-
singular at every point (y, α) ∈ Pn × PN which belongs to X . ⊓⊔
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Remark 2.2 Though X is nonsingular at every point (y, α) ∈ Pn ×PN which
belongs to X , the hypersurface X (α) in Pn which corresponds to α and is equal
to X ∩ (Pn × {α}) may have singularities.

Lemma 2.3 Let ℓ be a positive integer and let L be a homogeneous polynomial

of degree ℓ in the variables {αν}|ν|=δ. Let 0 ≤ p �= q ≤ n and ν, μ ∈

(N ∪ {0})n+1 such that ν + eq = μ + ep. Then the OPn (1) × OPN
(ℓ − 1)-

valued global holomorphic vector field

L

(

zq

(

∂

∂αν

)

− z p

(

∂

∂αμ

))

on Pn × PN is tangential to X .

Proof The expression

L

(

zq

(

∂

∂αν

)

− z p

(

∂

∂αμ

))

is a OPn (1)×OPN
(ℓ−1)-valued global holomorphic vector field on Pn ×PN ,

because the tangent bundle of PN is generated by global holomorphic vector
fields of the form

∑

|μ|=|ν|=δ

Aμ,ναμ
∂

∂αν

with Aμ,ν ∈ C.
The hypersurface X is defined by f =

∑

|ν|=δ ανzν . From

∂ f

∂αν
= zν

and ν + eq = μ+ ep it follows that

(

L

(

zq

(

∂

∂αν

)

− z p

(

∂

∂αμ

)))

f = L
(

zq zν − z pzμ
)

= 0.

Hence the OPn (1)×OPN
(ℓ− 1)-valued global holomorphic vector field

L

(

zq

(

∂

∂αν

)

− z p

(

∂

∂αμ

))

on Pn × PN is tangential to the hypersurface X of Pn × PN . ⊓⊔
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Remark 2.4 The use of L is to make sure that we have a line-bundle-valued
global holomorphic tangent vector field on Pn×PN . We will only use the case
ℓ = 1.

Lemma 2.5 For any global holomorphic vector field ξ on Pn there exists a

global holomorphic vector field ξ̃ on Pn × PN such that

(i) ξ̃ is tangential to X , and

(ii) ξ̃ is projected to ξ under the natural projection from Pn × PN onto the

second factor Pn .

Proof Consider the Euler sequence

0 → OPn

φ
→ OPn (1)

⊕(n+1) ψ
→ TPn → 0,

where

ψ

⎛

⎝

n
∑

j=0

a j,0z j ,

n
∑

j=0

a j,1z j , . . . ,

n
∑

j=0

a j,nz j

⎞

⎠ =

n
∑

j,k=0

a j,kz j

∂

∂zk

,

φ(1) = (z0, . . . , zn).

Since H1(Pn,OPn ) vanishes, it follows from the exact cohomology sequence
of the Euler sequence that ξ is of the form

∑n
j,k=0 a j,kz j

∂
∂zk

for some complex
numbers a j,k .

For 0 ≤ j, k ≤ n with j �= k we define

� j,k : (N ∪ {0})n+1 → (N ∪ {0})n+1

as follows. For ν ∈ (N ∪ {0})n+1 we set

(

� j,k(ν)
)

ℓ
= νℓ ∀ℓ �= j, k,

(

� j,k(ν)
)

j
= ν j − 1,

(

� j,k(ν)
)

k
= νk + 1.

For {αν}ν∈(N∪{0})n+1 we define

βν = −
∑

0≤ j,k≤n, j �=k

α� j,k(ν)a j,k(νk + 1)−
n
∑

j=0

αν0,ν1,...,νn a j, jν j .
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Then for f =
∑

|ν|=δ ανzν , we have

ξ( f ) =

⎛

⎝

n
∑

j,k=0

a j,kz j

∂

∂zk

⎞

⎠ f = −
∑

|ν|=δ

βνzν .

The verification is as follows. Since
(

∂

∂zk

)

f =
∑

|ν|=δ

αν νk z
ν0
0 · · · z

νk−1
k−1 z

νk−1
k z

νk+1
k+1 · · · z

νn
n ,

it follows that
⎛

⎝

n
∑

j,k=0

a j,kz j

∂

∂zk

⎞

⎠ f

=

n
∑

j,k=0

a j,kz j

∑

|ν|=δ

αννkz j z
ν0
0 · · · z

νk−1
k−1 z

νk−1
k z

νk+1
k+1 · · · z

νn
n . (2.1)

So, the term on the right-hand side of (2.1) when j = k is

a j, jαν0,ν1,...,νnνkz
νo

0 z
ν1
1 · · · zνn

n .

This means that the net effect is multiplication by ν j when j = k. The contri-
bution to the term on the right-hand side of (2.1) with j �= k is

a jkνkαν0,ν1,...,νn z
ν0
0 · · · z

ν j−1
j−1 z

ν j+1
j z

ν j+1
j+1 · · · z

νk−1
k−1 z

νk−1
k z

νk+1
k+1 · · · z

νn
n .

We now change the dummy indices ν j and νk to look at the coefficient of the
monomial

z
ν0
0 z

ν1
1 · · · zνn

n .

We change the dummy index ν j to ν j − 1 and change the dummy index νk to
νk + 1 to get

(νk + 1)a j,kαν0,···ν j−1,ν j−1,ν j+1,...,νk−1,νk+1,νk+1,...,νn z
ν0
0 z

ν1
1 · · · zνn

n .

This concludes the verification.
It now suffices to set

ξ̃ =

n
∑

j,k=0

a j,kz j

∂

∂zk

+
∑

|ν|=δ

βν
∂

∂αν
.

⊓⊔
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Lemma 2.6 TX ⊗OPn (1) is globally generated.

Proof Take an arbitrary point (y, α) of X with y ∈ Pn and α ∈ PN . Again
choose a homogeneous coordinate system [z0, z1, . . . , zn] of Pn so that y is
given by [z0, z1, . . . , zn] = [1, 0, . . . , 0]. We choose a homogeneous linear
polynomial L of the variables {αν}|ν|=δ such that L (s) �= 0.

It is equivalent to look at the tangent bundle of the pullback X̃ of
X ⊂

(

C
n+1 − 0

)

×
(

C
N+1 − 0

)

under the natural projection
(

C
n+1 − 0

)

×
(

C
N+1 − 0

)

→ Pn × PN . Take ν with νp > 0 for some 1 ≤ p ≤ n. Then
there exists a unique μ ∈ (N ∪ {0})n+1 such that ν + e0 = μ+ ep. At (y, α)
the value of

L

(

z0

(

∂

∂αν

)

− z p

(

∂

∂αμ

))

is equal to L(s)
(

∂
∂αν

)

. Thus we conclude that the global holomorphic sections

of TX ×OPn (1) generate ∂
∂αν

for ν �= (δ, 0, . . . , 0). By Lemma 2.5 the global

holomorphic sections of TX × OPn (1) also generate ∂
∂z j

for 0 ≤ j ≤ n. We
thus conclude that global holomorphic sections of TX × OPn (1) generate a
codimension 1 vector subspace of the tangent space of Pn × PN at (y, α).
Since X is nonsingular at (α, y), it follows that global holomorphic sections
of TX ⊗OPn (1) generate TX ⊗OPn (1). ⊓⊔

Lemma 2.7 Let q be a nonnegative integer. Global holomorphic sections of

TX ⊗OPn (q + 1)⊗OPN
(q) generate all of its q-jets of X .

Proof Global holomorphic section of OPn (q)⊗OPN
(q) generate all of its q-

jets. Thus we can use the product of a global holomorphic section of OPn (q)⊗

OPN
(q) and a global holomorphic section of TX ⊗ OPn (1) to generate any

prescribed q-jet of X . ⊓⊔

2.2 Lie derivatives

Let X be a complex manifold and ξ be a holomorphic vector field on X . Letϕξ,t
be a 1-parameter local biholomorphism defined by the vector field ξ so that

∂

∂t
ϕ∗ξ,t g

∣

∣

∣

∣

t=0
= ξ(g)

for any local holomorphic function g on X . For any k-jet differential ω on X ,
we define the Lie derivative Lieξ (ω) of ω with respect to ξ by
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Lieξ (ω) =
∂

∂t
ϕ∗X,tω

∣

∣

∣

∣

t=0
.

Since

d

(

∂

∂t
ϕ∗X,tω

∣

∣

∣

∣

t=0

)

= d

(

lim
t→0

1

t

(

ϕ∗X,tω − ω
)

)

= lim
t→0

1

t

(

dϕ∗X,tω − dω
)

= lim
t→0

1

t

(

ϕ∗X,t dω − dω
)

=
∂

∂t

(

ϕ∗X,t (dω)
)

∣

∣

∣

∣

t=0
,

it follows that

d
(

Lieξ (ω)
)

= Lieξ (dω) .

Let η be a holomorphic ℓ-jet differential on X . The Leibniz product formula
holds for the Lie derivatives of the product of ω and η so that

Lieξ (ωη) = Lieξ (ω)η + ωLieξ (η).

Let (w1, . . . , wn) be a local coordinate system of X . Fix some 1 ≤ i ≤ n. If
ω = dkwi and ξ =

∑n
j=1 g j (w)

∂
∂w j

, then

Lieξ (ω) = dk

⎛

⎝

n
∑

j=1

g j (w)

(

∂

∂w j

)

wi

⎞

⎠ = dk gi (w).

Lemma 2.8 Let k be a positive integer. Let X be a complex manifold and D be

a complex hypersurface in X. Let ω be a holomorphic k-jet differential on X

which vanishes at points of D to order p. Let ξ be a meromorphic vector field

on X whose only possible poles are those of order at most q at D. If p ≥ q+k,

then Lieξ (ω) is a holomorphic k-jet differential on X which vanishes at points

of D to order p − (q + k).

Proof Locally we can write

ω =
∑

λ1,1,...,λ1,n,...,λk,1,...,λk,n≥0

hλ1,1,...,λ1,n,...,λk,1,...,λk,n
(w)

∏

1≤ℓ≤k,1≤ j≤n

(

dℓw j

)λℓ, j

with hλ1,1,...,λ1,n,...,λk,1,...,λk,n
(w) vanishing at points of D to order p.

Locally we can write ξ =
∑n

j=1 g j (w)
∂

∂w j
with the pole order of g j at

most q at D. When we apply Lieξ , by the Leibniz product rule we apply it

123



1088 Y.-T. Siu

only to one factor of each term separately and sum up. When it is applied to
hλ1,1,...,λ1,n,...,λk,1,...,λk,n

, we end up with

n
∑

j=1

g j (w)
∂

∂w j

(

hλ1,1,...,λ1,n,...,λk,1,...,λk,n
(w)
)

which vanishes at points of D to order p−(q+1) ≥ p−(q+k). Since the pole
order of dℓg j is at most q + ℓ at D, when it is applied to dℓw j and then multi-
plied by hλ1,1,...,λ1,n,...,λk,1,...,λk,n

, we end up with hλ1,1,...,λ1,n,...,λk,1,...,λk,n
dℓg j

which vanishes at points of D to order p − (q + ℓ) ≥ p − (q + k). ⊓⊔

3 Construction of slanted vector fields for jet space

In the preceding Sect. 2 we constructed global vector fields on X of low
vertical pole order. The construction in Lemma 2.3 involves the use of two
indices ν, μ ∈ (N ∪ {0})n+1 with ν + eq = μ + ep and the construction in
Lemma 2.6 involves also the two indices μ and ν for the case of q = 0. In
this Sect. 3 we are going to carry out a similar construction with X replaced
by the space J

(vert)
k (X ) of all vertical k-jets on X for k ≥ 1 by induction on

k, with the similarity interpreted from identifying X with the space the space
J
(vert)
0 (X ) of all vertical 0-jets on X . For each step of this construction by

induction, just as in the construction in Lemma 2.3 and Lemma 2.6 a pair
of indices will be used, leading to some binary tree of indices whose precise
definition will be given in Sect. 3.1. Because of the number of indices involved
in the construction given in this Sect. 3, the details seem to be complicated, but
the key argument is simply a natural extension of what is used in the preceding
Sect. 2 and all the steps are straightforward.

3.1 Binary trees of indices

In order to conveniently describe vector fields on the total space of k-jets, we
now introduce the binary trees of indices. A binary tree of indices of order k,
which we denote by p(k), is a collection

{

pγ1,γ2,...,γ j

∣

∣

∣

∣

1 ≤ j ≤ k, each of γ1, . . . , γ j = 0, 1

}

of indices, where each pγ1,γ2,...,γ j
is an integer satisfying 0 ≤ pγ1,γ2,...,γ j

≤ n.
We will use the interpretation of this collection of indices as a tree as follows.
The binary tree starts with two nodes p0, p1 at its root and each of these two
notes p0, p1 branches out into a pair of nodes. On top of the node p0 there
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are two nodes p0,0 and p0,1. On top of the node p1 there are two nodes p1,0
and p1,1. Each of the four nodes p0,0, p0,1, p1,0, p1,1 again branches out into
a pair of nodes. On top of the node pγ1,γ2 (γ1 = 0, 1; γ2 = 0, 1) there are two
nodes pγ1,γ2,0 and pγ1,γ2,1. At the j-th branching into a pair of two nodes for
each node, we have two nodes

pγ1,γ2,...,γ j ,0, pγ1,γ2,...,γ j ,1

on top of the node pγ1,γ2,...,γ j
for

γ1 = 0, 1; γ2 = 0, 1; . . . , γ j = 0, 1.

At the top the tree, after the (k − 1)-th branching we have the notes

pγ1,γ2,...,γk (γ1 = 0, 1; γ2 = 0, 1; . . . , γk = 0, 1) .

We will use the convention that the binary tree, as a collection of indices, will
be denoted by a lower case Gothic letter and its indices are denoted by the
corresponding lower case Latin letter. When k = 0, we use the convention
that p(0) is just the empty set.

We now introduce the truncation of a binary tree of order k to form a binary
subtree of order k − j . We denote by p(k;γ̃1,...,γ̃ j ) the binary tree

{

pγ̃1,γ̃2,...,γ̃ j ,γ j+1,...,γi

∣

∣

∣

∣

j + 1 ≤ i ≤ k, each of γ j+1, . . . , γi = 0, 1

}

of order k− j . We call p(k;γ̃1,...,γ̃ j ) the truncation of p(k) at its node pγ̃1,γ̃2,...,γ̃ j
.

In this paper we work only with the following special kind of binary trees.
A binary tree p(k) of order k is said to have level-wise homogeneous branches

if for every 1 ≤ j < l and for any pairs

(

γ̃1, γ̃2, . . . , γ̃ j

)

and
(

γ̂1, γ̂2, . . . , γ̂ j

)

of j-tuples of 0’s and 1’s, the two truncations

p
(k;γ̃1,γ̃2,...,γ̃ j ), p

(k;γ̂1,γ̂2,...,γ̂ j )

of p(k) are identical binary trees of order k − j .

Lemma 3.1 Let

ξ
(i)
j = d i log z j (i ≥ 1, 0 ≤ j ≤ n)
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and

ξ (i) =
(

ξ
(i)
0 , ξ

(i)
1 , . . . , ξ (i)n

)

.

Let f =
∑

ν ανzν be a polynomial of homogeneous degree δ. Let �
(0)
ν ≡ 1

and inductively for k ≥ 0,

�(k+1)
ν

(

ξ (1), . . . , ξ (k+1)
)

=

(

n
∑

ℓ=0

νℓξ
(1)
ℓ

)

�(k)
ν +

n
∑

ℓ=0

k
∑

i=1

ξ
(i+1)
ℓ

∂�
(k)
ν

∂ξ
(i)
ℓ

. (3.1)k+1

Then

dk f =
∑

ν

αν�
(k)
ν

(

ξ (1), . . . , ξ (k)
)

zν, (3.2)

where for the differentiation αν is regarded as a constant and �
(k)
ν is of

homogeneous weight k when ξ
( j)

ℓ is given the weight j and is independent

of (z0, . . . , zn). Moreover, the coefficients of �
(k)
ν in ξ (1), . . . , ξ (k) are poly-

nomials in ν = (ν0, . . . , νn) of degree at most k with universal coefficients. As

a polynomial in ν = (ν0, . . . , νn) , the degree of

�(k)
ν −

(

n
∑

ℓ=0

νℓξ
(1)
ℓ

)k

is at most k − 1.

Proof To prove the lemma, we define �
(k)
ν by (3.2) and verify (3.1)1 and

(3.1)k+1 for k ≥ 1. The verification is as follows. Clearly,

�(1)
ν =

n
∑

ℓ=0

νℓξ
(1)
ℓ

and is homogeneous of weight 1. To verify (3.2) when k is replaced by k + 1,
we apply d to both sides of (3.2). The effect of applying d to zν is to replace
the factor zν by �

(1)
ν which is

∑n
ℓ=0 νℓξ

(1)
ℓ . The effect of applying d to the

other factor �(k)
ν

(

ξ (1), . . . , ξ (k)
)

is

n
∑

ℓ=0

k
∑

i=1

ξ
(i+1)
ℓ

∂�
(k)
ν

∂ξ
(i)
ℓ
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by the chain rule. We now consider the question of weights and homogeneous
degrees. For k ≥ 1 the first term on the right-hand side of (3.1)k+1 is the product
of the factors �(1)

ν �
(k)
ν which are respectively homogeneous of weights 1 and

k by induction hypothesis. The second term on the right-hand side of (3.1)k+1
is the sum of a product of two factors

ξ (i+1) ∂�
(k)
ν

∂ξ
(i)
ℓ

which are respectively homogeneous of weights i + 1 and k − i by induction
hypothesis. This finishes the verification of (3.1)k+1 and the homogeneity of
�
(k+1)
ν of weight k + 1. From (3.1)k+1 it is clear by induction on k that the

coefficients of �(k)
ν in ξ (1), . . . , ξ (k) are polynomials in ν of degree at most k

with universal coefficients.
Finally, in (3.1)k+1 the term

n
∑

ℓ=0

k
∑

i=1

ξ
(i+1)
ℓ

∂�
(k)
ν

∂ξ
(i)
ℓ

on the right-hand side as a polynomial in ν is of degree no higher than that of
�
(k)
ν which is no higher than k. Thus for the induction process of going from

step k to step k + 1, if the degree of

�(k)
ν −

(

n
∑

ℓ=0

νℓξ
(1)
ℓ

)k

is at most k − 1 in ν = (ν0, . . . , νn), then by (3.1)k+1 the degree of

�(k+1)
ν −

(

n
∑

ℓ=0

νℓξ
(1)
ℓ

)k+1

is at most k in ν = (ν0, . . . , νn). ⊓⊔

3.2 Construction by induction

Let p(k) be a binary tree of indices of order k. We denote by λ(k) a multi-index
of n+1 components with total degree δ− k. For 1 ≤ j ≤ k and for the choice
of each γ1, . . . , γ j being 0 or 1, we denote by λ(k;γ1,...,γ j ) the multi-index
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λ(k) +

j
∑

i=1

epγ1,...,γi

with total degree
∣

∣

∣
λ(k;γ1,...,γ j)

∣

∣

∣
= δ−k+ j . Recall that epγ1,...,γi

is the index of

n+1 components whose only nonzero component is the pγ1,...,γi
-th component

which is 1.
For 0 ≤ k ≤ n − 1, for any multi-index λ(k) of n + 1 components with

total degree δ− k, and for any binary tree p(k) of order k which has level-wise
homogeneous branches, we are going to explicitly construct by induction on k,

�
( j)

λ(k),p(k)
, �

( j)

λ(k),p(k)
(k ≤ j ≤ n)

such that

1. �( j)

λ(k),p(k)
is a rational function of the entries of λ(k) and ξ (ℓ)q with q equal

to some pγ1,γ2,...,γℓ for 1 ≤ ℓ ≤ k,

2. �(k)

λ(k),p(k)
is a meromorphic vector field on the parameter space with coordi-

nates αν (for multi-indices ν of n+ 1 components of total degree δ) which
is a linear combination of ∂

∂αν
(for |ν| = δ) whose coefficients are rational

functions of

z0, . . . , zn, ξ
( j)

ℓ (1 ≤ j ≤ k, 0 ≤ ℓ ≤ n)

and which satisfies

�
(k)

λ(k),p(k)

(

d j f
)

= 0 for 0 ≤ j ≤ k − 1,

�
(k)

λ(k),p(k)

(

d j f
)

= zλ
(k)

�
( j)

λ(k),p(k)
for k ≤ j ≤ n − 1.

Here we regard �(k)

λ(k),p(k)
as a vector field on the space with variables αν for

|ν| = δ while the variables z0, . . . , zn and ξ ( j)

ℓ (1 ≤ j ≤ k, 0 ≤ ℓ ≤ n) are

regarded as constants. It is the same as regarding �(k)

λ(k),p(k)
as a vector field on

the space with variables αν for |ν| = δ and the variables z0, . . . , zn and ξ ( j)

ℓ

(1 ≤ j ≤ k, 0 ≤ ℓ ≤ n) when the coefficients for ∂
∂zℓ

and for ∂

∂ξ
( j)
ℓ

are all 0

for 1 ≤ j ≤ k, 0 ≤ ℓ ≤ n. The construction is as follows.
For k = 0 with the convention that p(0) is the empty set, we simply set

�
(0)
λ(0),p(0)

=
∂

∂αλ(0)
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and

�
( j)

λ(0),p(0)
= �

( j)

λ(0)
(3.3)

for 0 ≤ j ≤ n − 1. It is clear that �( j)

λ(0),p(0)
is of homogeneous weight j

in ξ
(ℓ)
t (1 ≤ ℓ ≤ j , 0 ≤ t ≤ n) and is independent of (z0, . . . , zn) and is

a polynomial in the n + 1 components of λ(0) of degree ≤ j . Moreover, it
follows from f =

∑

ν ανzν and the definition of �( j)
ν that

�
(0)
λ(0),p(0)

(d j f ) = zλ
(0)
�
( j)

λ(0),p(0)
(3.4)

for 0 ≤ j ≤ n − 1. Suppose the construction has been done for the step k and
we are going to construct for the step k + 1. Define

�
(k+1)
λ(k+1),p(k+1) =

�
(k)

λ(k+1;p0),p(k+1;p0)

z p0�
(k)

λ(k+1;p0),p(k+1;p0)

−
�
(k)

λ(k+1;p1),p(k+1;p1)

z p1�
(k)

λ(k+1;p1),p(k+1;p1)

and

�
( j)

λ(k+1),p(k+1) =
�
( j)

λ(k+1;p0),p(k+1;p0)

�
(k)

λ(k+1;p0),p(k+1;p0)

−
�
( j)

λ(k+1;p1),p(k+1;p1)

�
(k)

λ(k+1;p1),p(k+1;p1)

(3.5)

for j ≥ k + 1.

Lemma 3.2 For any integer k with 0 ≤ k ≤ δ the following two identities

hold.

�
(k)

λ(k),p(k)

(

d j f
)

= 0 for 0 ≤ j ≤ k − 1,

�
(k)

λ(k),p(k)

(

d j f
)

= zλ
(k)

�
( j)

λ(k),p(k)
for k ≤ j ≤ n.

Proof We prove by induction on k ≥ 0. Since the positive integer δ is fixed
once for all, the induction on k ≥ 0 is the same as descending induction on
the total degree δ − k of λ(k). In the case k = 0 the statement is simply (3.4).
To go from step k to step k + 1, we have

�
(k+1)
λ(k+1),p(k+1)

(

d j f
)

= 0 for 0 ≤ j ≤ k − 1,

because

�
(k)

λ(k),p(k)

(

d j f
)

= 0 for 0 ≤ j ≤ k − 1
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and

�
(k+1)
λ(k+1),p(k+1) =

�
(k)

λ(k+1;p0),p(k+1;p0)

z p0�
(k)

λ(k+1;p0),p(k+1;p0)

−
�
(k)

λ(k+1;p1),p(k+1;p1)

z p1�
(k)

λ(k+1;p1),p(k+1;p1)

.

We have

�
(k+1)
λ(k+1),p(k+1)

(

dk f
)

= 0,

because

�
(k+1)
λ(k+1),p(k+1)

(

dk f
)

=
�
(k)

λ(k+1;p0),p(k+1;p0)

(

dk f
)

z p0�
(k)

λ(k+1;p0),p(k+1;p0)

−
�
(k)

λ(k+1;p1),p(k+1;p1)

(

dk f
)

z p1�
(k)

λ(k+1;p1),p(k+1;p1)

=
zλ

(k+1;p0)
�
(k+1)
λ(k+1;p0),p(k+1,p0)

z p0�
(k)

λ(k+1;p0),p(k+1;p0)

−
zλ

(k+1;p1)
�
( j)

λ(k+1;p1),p(k+1;p1)

z p1�
(k)

λ(k+1;p1),p(k+1;p1)

= λ(k+1) − λ(k+1) = 0.

Moreover, for k + 1 ≤ j ≤ n − 1,

�
(k+1)
λ(k+1),p(k+1)

(

d j f
)

=
�
(k)

λ(k+1;p0),p(k+1;p0)

(

d j f
)

z p0�
(k)

λ(k+1;p0),p(k+1;p0)

−
�
(k)

λ(k+1;p1),p(k+1;p1)

(

d j f
)

z p1�
(k)

λ(k+1;p1),p(k+1;p1)

=
zλ

(k+1;p0)
�
( j)

λ(k+1;p0),p(k+1,p0)

z p0�
(k)

λ(k+1;p0),p(k+1;p0)

−
zλ

(k+1;p1)
�
( j)

λ(k+1;p1),p(k+1;p1)

z p1�
(k)

λ(k+1;p1),p(k+1;p1)

= zλ
(k+1)

⎛

⎝

�
( j)

λ(k+1;p0),p(k+1,p0)

�
(k)

λ(k+1;p0),p(k+1;p0)

−
�
( j)

λ(k+1;p1),p(k+1;p1)

�
(k)

λ(k+1;p1),p(k+1;p1)

⎞

⎠

= zλ
(k+1)

�
( j)

λ(k+1),p(k+1) .

⊓⊔

Lemma 3.3 For k ≤ j ≤ n−1 the function�
( j)

λ(k),p(k)
is homogeneous of weight

j − k + 1 in the variables ξ
(ℓ)
q (0 ≤ q ≤ n, 1 ≤ ℓ ≤ n) when ξ

(ℓ)
q is assigned
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the weight ℓ. Moreover, for k ≤ j ≤ n, as a function of the n+ 1 components

of the multi-index λ(k), the function�
( j)

λ(k),p(k)
is a polynomial of degree at most

j − k. In particular, �
(k)

λ(k),p(k)
is independent of the multi-index λ(k) and

�
( j)

λ(k),p(k)
=

1

�
(k−1)
λ(k;p0),p(k;p0)

[

�
( j)

λ(k;p0),p(k;p0)
−�

( j)

λ(k;p1),p(k;p1)

]

.

Proof We prove the lemma by induction on 0 ≤ k ≤ n − 1.
First we look at the weight of �( j)

λ(k),p(k)
and show that �( j)

λ(k),p(k)
is homoge-

neous of weight j−k+1 in the variables ξ (ℓ)q (0 ≤ q ≤ n, 1 ≤ ℓ ≤ n). Again,
since the positive integer δ is fixed once for all, the induction on 0 ≤ k ≤ n−1
is the same as the descending induction on the total degree δ − k of λ(k). For
k = 0 the conclusion clearly follows from (3.3). The derivation of step k + 1
from step k simply follows from (3.5), because, for γ1 = 0, 1, with the weight
of �( j)

λ
(k+1;pγ1 ),p

(k+1;pγ1 )
being j − k and the weight of �(k)

λ
(k+1;pγ1 ),p

(k+1;pγ1 )
being

1, the weight

�
( j)

λ
(k+1;pγ1 ),p

(k+1;pγ1 )

�
(k)

λ
(k+1;pγ1 ),p

(k+1;pγ1 )

is equal to j − (k + 1).
Now we show that �(k)

λ(k),p(k)
is a polynomial of degree no more than j − k

in the n + 1 components of λ(k). Again for k = 0 the conclusion clearly
follows from (3.3). For the derivation of Step k + 1 from Step k, since the
total degree of λ(k+1;pγ1 ) is δ − (k + 1) − 1 = δ − k, it follows from Step
k that �( j)

λ
(k+1;pγ1 ),p

(k+1;pγ1 )
is a polynomial of degree no more than zero in the

n + 1 components of λ(k+1;pγ1 ) and is therefore independent of λ(k+1;pγ1 )

for γ1 = 0, 1. Since the binary tree p(k+1) is assumed to have level-wise
homogeneous branches (see the paragraph preceding Lemma 3.1), it follows
that the two truncations p(k+1;0) and p(k+1;1) are identical binary trees and

�
(k)

λ(k+1;p0),p(k+1;p0)
= �

(k)

λ(k+1;p1),p(k+1;p1)
.

Hence by (3.5),

�
( j)

λ(k+1),p(k+1) =
�
( j)

λ(k+1;p0),p(k+1;p0)

�
(k)

λ(k+1;p0),p(k+1;p0)

−
�
( j)

λ(k+1;p1),p(k+1;p1)

�
(k)

λ(k+1;p1),p(k+1;p1)
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=
1

�
(k)

λ(k+1;p0),p(k+1;p0)

[

�
( j)

λ(k+1;p0),p(k+1;p0)
−�

( j)

λ(k+1;p1),p(k+1;p1)

]

.

By induction assumption �(k)

λ(k+1;p0),p(k+1;p0)
is a polynomial in the n + 1 com-

ponents of the multi-index λ(k+1;p0) of degree j − k and �(k)

λ(k+1;p1),p(k+1;p1)
is

a polynomial of the n + 1 components of the multi-index λ(k+1;p1) of degree
at most j − k. Now

λ(k+1;p0) − λ(k+1;p1) = ep0 − ep1

which means that the multi-index λ(k+1;p0) is a translate of the multi-index
λ(k+1;p1) by the multi-index ep0 − ep1 and is independent of the n + 1 com-
ponents of the multi-index λ(k+1). Thus the difference

�
( j)

λ(k+1;p0),p(k+1;p0)
−�

( j)

λ(k+1;p1),p(k+1;p1)

is a polynomial of the n + 1 components of the multi-index λ(k+1) of degree
at most j − k − 1. The last statement follows from Lemma 3.2. ⊓⊔

Lemma 3.4 If λ(k) is a multi-index of n + 1 components with total degree

δ− k and p(k) is any binary tree of order k which has level-wise homogeneous

branching, then

�
(k)

λ(k),p(k)
= k

(

ξ (1)p0
− ξ (1)p1

)

,

where the nodes of p(k) are denoted by pγ1,...,γ j
with 1 ≤ j ≤ k and each γℓ

taking on the value 0 or 1 for 1 ≤ ℓ ≤ j . As a consequence,

�
( j)

λ(k),p(k)
=

1

k
(

ξ
(1)
p0 − ξ

(1)
p1

)

[

�
( j)

λ(k;p0),p(k;p0)
−�

( j)

λ(k;p1),p(k;p1)

]

.

Proof First we make the following simple observation. Let G (ν0, . . . , νn) be
a polynomial in ν0, . . . , νn of degree no more than M . For any p �= q define

(


p,q G
)

(ν0, . . . , νn) = G
(

ν0, . . . , νp−1, νp + 1, νp+1, . . . , νn

)

−G
(

ν0, . . . , νq−1, νq + 1, νq+1, . . . , νn

)

.

Then
(


p,q G
)

(ν0, . . . , νn) is a polynomial in ν0, . . . , νn of degree no more
than M − 1, because we can write
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(


p,q G
)

(ν0, . . . , νn)

=
[

G
(

ν0, . . . , νp−1, νp + 1, νp+1, . . . , νn

)

− G (ν0, . . . , νn)
]

−
[

G
(

ν0, . . . , νq−1, νq + 1, νq+1, . . . , νn

)

− G (ν0, . . . , νn)
]

and clearly each of the two terms

G
(

ν0, . . . , νp−1, νp + 1, νp+1, . . . , νn

)

− G (ν0, . . . , νn)

and

G
(

ν0, . . . , νq−1, νq + 1, νq+1, . . . , νn

)

− G (ν0, . . . , νn)

is a polynomial in ν0, . . . , νn of degree no more than M−1. As a consequence,
if

r1 �= s1, . . . , rM+1 �= sM+1, (3.6)

then


r1,s1 · · ·
rM ,sM
G

is of degree zero in ν0, . . . , νn and 
r1,s1 · · ·
rN+1,sN+1 G is identically zero
for any polynomial G (ν0, . . . , νn) in ν0, . . . , νn of degree no more than N .

Let r j = pγ1,...,γ j−1,0 and s j = pγ1,...,γ j−1,1. Since the binary tree p(k) of
order k has level-wise homogeneous branches, the values of r j = pγ1,...,γ j−1,0
and s j = pγ1,...,γ j−1,1 are independent of the choices of the values 0 or 1
for γ1, . . . , γ j−1. Let p(k− j) = p(k;γ1,...,γ j−1). Again we know that p(k− j) is
independent of the choices of the values 0 or 1 for γ1, . . . , γ j−1 because the
binary tree p(k) of order k has level-wise homogeneous branches. By the last
statement of Lemma 3.3, we have

�
( j)

λ(k),p(k)
=

1

�
(k−1)
λ(k;p0),p(k−1)

[

�
( j)

λ(k;p0),p(k;p0)
−�

( j)

λ(k;p1),p(k;p1)

]

=
1

�
(k−1)
p(k−1)

[

�
( j)

λ(k;p0),p(k−1) −�
( j)

λ(k;p1),p(k−1)

]

(3.7)

for any multi-index λ(k) of n + 1 components and total degree δ − k. Here,
because of the independence of �(k−1)

λ(k;p0),p(k;p0)
of the n + 1 components of

the multi-index λ(k;p0) by Lemma 3.3, we drop λ(k;p0) from the subscript of
�
(k−1)
λ(k;p0),p(k;p0)

and simply write �(k−1)
λ(k;p0),p(k;p0)

as �(k−1)
p(k;p0)

. From
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�
( j)

λ(0),p(0)
= �

( j)

λ(0)

in the formula (3.3) and from (3.7) it follows that

�
( j)

λ(k;γ1,...,γk−1),p(1)
=

⎡

⎣

1

�
(0)
p(0)


rk ,sk
�( j)
ν

⎤

⎦

ν=λ(k;γ1,...,γk−1)

for any λ(k) of n+1 components and total degree δ−k, because the total degree
of the multi-index λ(k;γ1,...,γk−1) is δ− 1, which corresponds to the situation of
k = 1 in (3.7). Inductively for 1 ≤ ℓ ≤ k we are going to verify that

�
( j)

λ(k;γ1,...,γk−ℓ),p(ℓ)

=

⎡

⎣

1

�
(0)
p(0)

· · ·�
(ℓ−1)
p(ℓ−1)


rk−ℓ+1,sk−ℓ+1 · · ·
rk ,sk
�( j)
ν

⎤

⎦

ν=λ(k;γ1,...,γk−ℓ)

(3.8)

for any λ(k) of n + 1 components and total degree δ− k. To go from Step ℓ to
Step ℓ+ 1, by (3.7) we have

�
( j)

λ(k;γ1,...,γk−ℓ−1),p(ℓ+1)

=
1

�
(ℓ)

p(ℓ)

{

�
( j)

λ(k;γ1,...,γk−ℓ−1,0),p(ℓ)
−�

( j)

λ(k;γ1,...,γk−ℓ−1,1),p(ℓ)

}

=
1

�
(ℓ)

p(ℓ)

{

�
( j)

λ(k;γ1,...,γk−ℓ−1,0),p(ℓ)
−�

( j)

λ(k;γ1,...,γk−ℓ−1,1),p(ℓ)

}

=
1

�
(ℓ)

p(ℓ)

{

⎡

⎣

1

�
(0)
p(0)

· · ·�
(ℓ−1)
p(ℓ−1)


rk−ℓ+1,sk−ℓ+1 · · ·
rk ,sk
�( j)
ν

⎤

⎦

ν=λ(k;γ1,...,γk−ℓ−1,0)

−

⎡

⎣

1

�
(0)
p(0)

· · ·�
(ℓ−1)
p(ℓ−1)


rk−ℓ+1,sk−ℓ+1 · · ·
rk ,sk
�( j)
ν

⎤

⎦

ν=λ(k;γ1,...,γk−ℓ−1,0)

}

=

⎡

⎣

1

�
(0)
p(0)

· · ·�
(ℓ)

p(ℓ)


rk−ℓ,sk−ℓ · · ·
rk ,sk
�( j)
ν

⎤

⎦

ν=λ(k;γ1,...,γk−ℓ)

.

This finishes the verification of (3.8) by induction. Setting ℓ = j = k in (3.8)
yields
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�
(k)

p(k)
=

⎡

⎣

1

�
(0)
p(0)

· · ·�
(k−1)
p(k−1)


r1,s1 · · ·
rk ,sk
�(k)
ν

⎤

⎦

ν=λ(k)

for any λ(k) of n + 1 components and total degree δ − k. We rewrite it as


r1,s1 · · ·
rk ,sk
�(k)
ν = �

(1)
λ(1),p(1)

�
(2)
λ(2),p(2)

· · ·�
(k)

λ(k),p(k)
(3.9)

when�(k)
ν is regarded as a polynomial in the n+1 components of ν. Note that

by (3.6) the left-hand side


r1,s1 · · ·
rk ,sk
�(k)
ν

is independent of the value of ν because the degree of �(k)
ν as a polynomial in

ν is no more than k.
Since by Lemma 3.1 as a polynomial in ν1, . . . , νn the degree of

�(k)
ν −

(

n
∑

ℓ=0

νℓξ
(1)
ℓ

)k

is at most k − 1, it follows from (3.6) that


r1,s1 · · ·
rk ,sk

⎛

⎝�(k)
ν −

(

n
∑

ℓ=0

νℓξ
(1)
ℓ

)k
⎞

⎠ = 0

and


r1,s1 · · ·
rk ,sk

(

n
∑

ℓ=0

νℓξ
(1)
ℓ

)k

= �
(1)
λ(1),p(1)

�
(2)
λ(2),p(2)

· · ·�
(k)

λ(k),p(k)
.

We have


rk ,sk

(

n
∑

ℓ=0

νℓξ
(1)
ℓ

)k

=

(

n
∑

ℓ=0

νℓξ
(1)
ℓ + ξ (1)rk

)k

−

(

n
∑

ℓ=0

νℓξ
(1)
ℓ + ξ (1)sk

)k

=
(

ξ (1)rk
− ξ (1)sk

)

⎧

⎨

⎩

k−1
∑

j=0

(

n
∑

ℓ=0

νℓξ
(1)
ℓ + ξ (1)rk

) j ( n
∑

ℓ=0

νℓξ
(1)
ℓ + ξ (1)sk

)k−1− j
⎫

⎬

⎭

.
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Now for j ≥ 1,

(

n
∑

ℓ=0

νℓξ
(1)
ℓ + ξ (1)rk

) j ( n
∑

ℓ=0

νℓξ
(1)
ℓ + ξ (1)sk

)k−1− j

−

(

n
∑

ℓ=0

νℓξ
(1)
ℓ + ξ (1)sk

)k−1

=

(

n
∑

ℓ=0

νℓξ
(1)
ℓ + ξ (1)sk

)k−1− j
⎧

⎨

⎩

(

n
∑

ℓ=0

νℓξ
(1)
ℓ + ξ (1)rk

) j

−

(

n
∑

ℓ=0

νℓξ
(1)
ℓ + ξ (1)rk

) j
⎫

⎬

⎭

=

(

n
∑

ℓ=0

νℓξ
(1)
ℓ + ξ (1)sk

)k−1− j
(

ξ (1)rk
− ξ (1)sk

)

×

⎧

⎨

⎩

j−1
∑

ℓ=0

(

n
∑

ℓ=0

νℓξ
(1)
ℓ + ξ (1)rk

)ℓ ( n
∑

ℓ=0

νℓξ
(1)
ℓ + ξ (1)sk

) j−1−ℓ
⎫

⎬

⎭

is a polynomial of degree no more than k − 2 in the n + 1 components of ν.
Since

(

n
∑

ℓ=0

νℓξ
(1)
ℓ + ξ (1)sk

)k−1

−

(

n
∑

ℓ=0

νℓξ
(1)
ℓ

)k−1

= ξ (1)sk

⎧

⎨

⎩

k−2
∑

ℓ=0

(

n
∑

ℓ=0

νℓξ
(1)
ℓ + ξ (1)sk

)ℓ ( n
∑

ℓ=0

νℓξ
(1)
ℓ

)k−2−ℓ
⎫

⎬

⎭

is a polynomial of degree no more than k − 2 in the n + 1 components of ν, it
follows that


rk ,sk

(

n
∑

ℓ=0

νℓξ
(1)
ℓ

)k

− k

(

n
∑

ℓ=0

νℓξ
(1)
ℓ

)k−1

a polynomial of degree no more than k − 2 in the n + 1 components of ν and


r1,s1 · · ·
rk−1,sk−1

⎧

⎨

⎩


rk ,sk

(

n
∑

ℓ=0

νℓξ
(1)
ℓ

)k

− k

(

n
∑

ℓ=0

νℓξ
(1)
ℓ

)k−1
⎫

⎬

⎭
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is zero. By induction on k, we conclude that


r1,s1 · · ·
rk ,sk

(

n
∑

ℓ=0

νℓξ
(1)
ℓ

)k

= k!

k
∏

ℓ=1

(

ξ (1)rℓ
− ξ (1)sℓ

)

.

and


r1,s1 · · ·
rk ,sk
�(k)
ν = k!

k
∏

ℓ=1

(

ξ (1)rℓ
− ξ (1)sℓ

)

.

It follows from (3.9) that

�
(1)
λ(1),p(1)

�
(2)
λ(2),p(2)

· · ·�
(k)

λ(k),p(k)
= k!

k
∏

ℓ=1

(

ξ (1)rℓ
− ξ (1)sℓ

)

. (3.10)

Finally (3.10) yields

�
(k)

λ(k),p(k)
= k

(

ξ (1)p0
− ξ (1)p1

)

by induction on k for any multi-index λ(k) of n + 1 components with total
degree δ − k and for any binary tree p(k) of order k which has level-wise
homogeneous branching. ⊓⊔

Remark 3.5 The reason for explicitly computing the function �
(k)

λ(k),p(k)
is to

determine the pole set of the vector field �(k)

λ(k),p(k)
.

Lemma 3.6 (a) The function

�
( j)

λ(k),p(k)

k−1
∏

ℓ=1

(

ξ (1)rℓ
− ξ (1)sℓ

)

is of homogeneous weight j in ξ
(ℓ)
t (1 ≤ ℓ ≤ j, 0 ≤ t ≤ n) and is independent

of (z0, . . . , zn) and is a polynomial in the n + 1 components of λ(k) of degree

≤ j .

(b) The vector field

�
( j)

λ(k),p(k)

(

k
∏

ℓ=1

(

zrℓzsℓ

)

)

k−1
∏

ℓ=1

(

ξ (1)rℓ
− ξ (1)sℓ

)
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is a polynomial in z0, . . . , zn of degree ≤ k and is independent of ξ
(ℓ)
t (1 ≤

ℓ ≤ n − 1, 0 ≤ t ≤ n). Moreover, the dependence of �
( j)

λ(k),p(k)
on λ(k) is

only through the partial differentiation with respect to αμ with μ depending

on λ(k).

(c) The vector field �
(k)

λ(k),p(k)
is equal to

zλ
(k)

∏k−1
ℓ=1

(

ξ
(1)
rℓ − ξ

(1)
sℓ

)

[


r1,s1 · · ·
rk ,sk

(

z−ν
∂

∂αν

)]

ν=λ(k)
,

where 
r1,s1 · · ·
rk ,sk
is applied to

z−ν
∂

∂αν

as a function of ν.

3.3 Generation of vector fields in the parameter direction

We now look at the special case of Lemma 3.6(c) with k = n, then

�̃
(n)

λ(n),p(n)
= zλ

(n)+
∑n

ℓ=1
(

erℓ
+esℓ

)

[


r1,s1 · · ·
rn,sn

(

z−ν
∂

∂αν

)]

ν=λ(n)

satisfies

�̃
(n)

λ(n),p(n)

(

d j f
)

= 0

for 0 ≤ j ≤ n − 1. We fix a point y in Xα , where α = {αν}|ν|=δ. We can
choose homogeneous coordinates in Pn so that

(z0, z1, . . . , zn) (y) = (1, 0, . . . , 0).

We choose also s1 = · · · = sn = 0 and r j �= 0 for 1 ≤ j ≤ n. Then at y we
end up with

�̃
(n)

λ(n),p(n)
=

∂

∂αλ(n)+
∑n

ℓ=1 erℓ

.

For the choice of λ(n) we can choose any multi-index of total degree δ − n.
When we worry about the generation of the vector fields by global sections, for
differentiations in the direction of the parameters α = {αν}|ν|=δ at the origin,
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we can capture in inhomogeneous coordinates the differentiation with respect
to all coefficients for monomials of degree at least n, because we must include
∑n

ℓ=1 erℓ with r j �= 0 for 1 ≤ j ≤ n in ν which is equal to λ(n) +
∑n

ℓ=1 erℓ .

3.4 Example of vector fields on jet spaces of low order

Let f =
∑

ν ανzν . We introduce

ξ j = dz j ,

ξ
(1)
j =

dz j

z j

=
ξ j

z j

.

Then

d f =
∑

ν

αν

⎛

⎝

∑

j

ν jξ
(1)
j

⎞

⎠ zν .

Proposition 3.7 Let 0 ≤ p �= q ≤ n and 0 ≤ r �= s ≤ n. Let μ be a

multi-index of total weight δ − 2. Then

{

1

zr

((

1

z p

∂

∂αμ+er+ep

−
1

zq

∂

∂αμ+er+eq

))

−
1

zr

((

1

z p

∂

∂αμ+er+ep

−
1

zq

∂

∂αμ+er+eq

))}

(d j f ) = 0

for j = 0, 1.

Proof We have

(

1

z p

∂

∂αλ+ep

−
1

zq

∂

∂αλ+eq

)

(d f ) =
(

ξ (1)q − ξ (1)p

)

zλ

for any λ with |λ| = δ − 1. Choose μ with |μ| = δ − 2. Apply the above
equation to λ = μ+ er and get

(

1

z p

∂

∂αμ+er+ep

−
1

zq

∂

∂αμ+er+eq

)

(d f ) =
(

ξ (1)q − ξ (1)p

)

zμ+er
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and

1

zr

((

1

z p

∂

∂αμ+er+ep

−
1

zq

∂

∂αμ+er+eq

))

(d f ) =
(

ξ (1)q − ξ (1)p

)

zμ.

Since the right-hand side is independent of r , we can replace r by s and take
the difference to get

{

1

zr

((

1

z p

∂

∂αμ+er+ep

−
1

zq

∂

∂αμ+er+eq

))

−
1

zr

((

1

z p

∂

∂αμ+er+ep

−
1

zq

∂

∂αμ+er+eq

))}

(d f ) = 0.

Remark 3.8 We can rewrite the vector field

{

1

zr

((

1

z p

∂

∂αμ+er+ep

−
1

zq

∂

∂αμ+er+eq

))

−
1

zr

((

1

z p

∂

∂αμ+er+ep

−
1

zq

∂

∂αμ+er+eq

))}

as

zμ
[


r,s
p,q

(

1

zν

∂

∂αν

)]

ν=μ

,

where


r,s F(ν) = F (ν + er )− F (ν + es) .

To illustrate the situation of vector fields on jet spaces of low order, we do
the case of the next order.

d2 f =
∑

ν

αν

⎡

⎢

⎣

⎛

⎝

∑

j

ν jξ
(1)
j

⎞

⎠

2

+
∑

ν

α
(2)
j

⎤

⎥

⎦
zν,

1

zν

∂

∂αν
d2 f =

⎛

⎝

∑

j

ν jξ
(1)
j

⎞

⎠

2

+
∑

ν

ξ
(2)
j ,
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p,q

(

1

zν

∂

∂αν
d2 f

)

=

⎛

⎝

∑

j

ν jξ
(1)
j + ξ (1)p

⎞

⎠

2

−

⎛

⎝

∑

j

ν jξ
(1)
j + ξ (1)q

⎞

⎠

2

+
(

ξ (2)p − ξ (2)q

)

=
(

ξ (1)p − ξ (1)q

)

⎛

⎝2
∑

j

ν jξ
(1)
j + ξ (1)p + ξ (2)q

⎞

⎠+
(

ξ (2)p − ξ (2)q

)

,


r,s
p,q

(

1

zν

∂

∂αν
d2 f

)

= 2
(

ξ (1)r − ξ (1)s

) (

ξ (1)p − ξ (1)q

)

,


u,v
r,s
p,q

(

1

zν

∂

∂αν
d2 f

)

= 0.

Thus for any multi-index μ of total degree δ − 3, the vector field

[


u,v
r,s
p,q

(

1

zν

∂

∂αν

)]

ν=μ

annihilates d j f for j = 0, 1, 2, because

[

∂

∂αν
(d j f )

]

ν=λ

=

[

∂

∂αν

]

ν=λ

(d j f ).

We can now formulate the case of higher-order jets.

Proposition 3.9 Let 0 ≤ rℓ �= sℓ ≤ n for 1 ≤ ℓ ≤ k. Let μ be a multi-index

of total weight δ − k. Let �μ;r1,...,rk;s1,...,sk
denote the vector field

zμ
[


r1,s1 · · ·
rk ,sk

(

1

zν

∂

∂αν

)]

ν=μ

.

Then �μ;r1,...,rk ;s1,...,sk

(

d j f
)

= 0 for 0 ≤ j ≤ k − 1.

In the above proposition the vector field �μ;r1,...,rk ;s1,...,sk
is a linear com-

bination of the partial differentiation operators

∂

∂αμ+eri1
+···+eri p

+es j1
+···+es jk−p

for 0 ≤ j ≤ k. The process of generating such vector fields is not independent
of coordinate transformations from the general linear group GL (n + 1,C).
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Suppose we have the coordinate transformation

z j =

n
∑

ℓ=0

a jℓwℓ (0 ≤ j ≤ ℓ)

from the element a =
(

a jℓ

)

0≤ j,ℓ≤n
of the general linear group GL (n + 1,C).

Then

zν = z
ν0
0 · · · zνn

n =

(

n
∑

ℓ=0

a0ℓwℓ

)ν0

· · ·

(

n
∑

ℓ=0

anℓwℓ

)νn

=
∑

|μ|=δ

Aν,μw
μ.

Let
(

Bμ,ν
)

|μ|=|ν|=δ
be the inverse matrix of the matrix

(

Aν,μ

)

|μ|=|ν|=δ
. Write

f =
∑

|ν|=δ

ανzν =
∑

|μ|=δ

βμw
μ.

Then

βμ =
∑

|ν|=δ

αν Aν,μ,

αμ =
∑

|μ|=δ

βμBμ,ν .

When the generation of the vector field� in the coordinate system (z0, . . . , zn)

gives

�z =
∑

ν

gν(z)
∂

∂αν
,

the procedure applied to the coordinate system (w0, . . . , wn) gives

�w =
∑

μ

gμ(w)
∂

∂βμ
.

When we transform back to the coordinate system (z0, . . . , zn), we get

�a;μ;r1,...,rn;s1,...,sn
=
∑

μ,ν

gμ(w(z))
∂αν

∂βμ

∂

∂αν
.

Now we would like to show that when k = n, the dimension of the quotient
space
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⎛

⎝

⊕

|ν|=δ

C
∂

∂αν

⎞

⎠

/

⎛

⎜

⎜

⎜

⎜

⎜

⎝

∑

a ∈ GL(n + 1,C); |μ| = δ − n;

r1, . . . , rn; s1, . . . , sn

C�a;μ;r1,...,rn;s1,...,sn

⎞

⎟

⎟

⎟

⎟

⎟

⎠

is no more than n over C. For this we need only show that modulo the linear
space generated by all such �a;μ;r1,...,rn;s1,...,sn

, every generator ∂
∂αν

can be
expressed as a linear combination of n fixed

∂

∂αν[ℓ]
(1 ≤ ℓ ≤ n),

where ν[ℓ] is a multi-index of total weight δ. We use the linear transformations
defined by a ∈ GL (n + 1,C) simply to make sure that, for any given point,
we are free to do the checking in an appropriate coordinate system which
depends on the point.

For the convenience of bookkeeping we let M be an integer > δ and intro-
duce a new weight ‖ν‖M for any multi-index ν of total degree δ which is
defined as follows.

‖ν‖M =

n
∑

ℓ=0

νℓMℓ.

We single out the n multi-index ν of total degree δ which has the n lowest
weight ‖ν‖M possible, namely,

δ − ℓ+ (n − 1 − ℓ)M (0 ≤ ℓ ≤ n − 1).

These n − 1 multi-indices are

ν[ℓ] = (δ − ℓ, n − 1 − ℓ, 0, . . . , 0) (0 ≤ ℓ ≤ n − 1).

Fix a point P0 in the space J vert
n−1 (X )of vertical (n−1)-jets. Choose a coordinate

system (z0, . . . , zn) so that all the coefficients of

∂

∂αμ+eri1
+···+eri p

+es j1
+···+es jk−p

occurring in

�μ;r1,...,rn;s1,...,sn
= zμ

[


r1,s1 · · ·
rk ,sk

(

1

zν

∂

∂αν

)]

ν=μ
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are all nonzero. Then modulo �μ;r1,...,rn;s1,...,sn
we can express

∂

∂αμ+er1+···+ern

as a linear combination of

∂

∂αμ+eri1
+···+eri p

+es j1
+···+es jk−p

for p < n. Now take any multi-index ν with total degree δ which is different
from any one of ν[0], . . . , ν[n−1]. In other words,

‖ν‖M > δ − n + 1 + (n − 1)M.

Then for some 1 ≤ r1, . . . , rn ≤ n, all the n + 1 components of

ν −

n
∑

ℓ=1

erℓ

are nonnegative. Let

μ = ν −

n
∑

ℓ=1

erℓ,

s1 = · · · = sn = 0.

Then modulo �μ; r1, . . . , rn; s1, . . . , sn we can express

∂

∂αν

in terms of

∂

∂αμ+eri1
+···+eri p

+es j1
+···+es jk−p

for p < n with

∥

∥

∥
μ+ eri1

+ · · · + eri p
+ es j1

+ · · · + es jk−p

∥

∥

∥

M
< ‖ν‖M .
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We thus conclude that modulo

∑

a∈GL(n+1,C);|μ|=δ−n;
r1,...,rn;s1,...,sn

C�a;μ;r1,...,rn;s1,...,sn
,

the space

⊕

|ν|=δ

C
∂

∂αν

is generated by

∂

∂αν[0]
, . . . ,

∂

∂αν[n−1]

and we conclude that the dimension of the quotient space

⎛

⎝

⊕

|ν|=δ

C
∂

∂αν

⎞

⎠

/

⎛

⎜

⎜

⎝

∑

a∈GL(n+1,C);|μ|=δ−n;
r1,...,rn;s1,...,sn

C�a;μ;r1,...,rn;s1,...,sn

⎞

⎟

⎟

⎠

is no more than n over C. Note that the pole order of each of the meromorphic
vector field

�a;μ;r1,...,rn;s1,...,sn

is no more than 2n along the infinity hyperplane of Pn .

Remark 3.10 The reason why in the above argument we fail to get generation
of all vectors in parameter space is that we can only expect to get generation
all vectors in parameter space up to codimension n for (n−1)-jets. The vector
fields have to be tangential to the space J

(vert)
n−1 (X ) of vertical (n − 1)-jets of

X which is of codimension n in the product

Jn−1 (Pn)× PN

of the space Jn−1 (Pn) of (n − 1)-jets of Pn and the parameter space PN .

123



1110 Y.-T. Siu

3.5 Generation of vectors in vertical directions

Now we construct holomorphic vector fields which generate the vertical direc-
tions modulo the horizontal directions.

z j

∂

∂z j

(

dk f
)

=
∑

ν

ανν j�
(k)
ν

(

ξ (1), . . . , ξ (k)
)

zν,

∂

∂ξ ℓj

(

dk f
)

=
∑

ν

αν

[

∂

∂ξ
(ℓ)
j

�(k)
ν

(

ξ (1), . . . , ξ (k)
)

]

zν .

To unify the notations, we use T to denote any one of

z j

∂

∂z j

,
∂

∂ξ ℓj

(0 ≤ j ≤ n, 1 ≤ ℓ ≤ n)

and write

T
(

dk f
)

= −
∑

ν

�(k)
ν zν .

This means that

�(k)
ν = −ανν j�

(k)
ν

(

ξ (1), . . . , ξ (k)
)

when T = z j

∂

∂z j

and

�(k)
ν = −αν

[

∂

∂ξ
(ℓ)
j

�(k)
ν

(

ξ (1), . . . , ξ (k)
)

]

when T =
∂

∂ξ ℓj

.

The function �
(k)
ν is homogeneous of weight k − ℓ and is independent of

z0, . . . , zn .
We also unify the notations for the vector fields �(k)

λ(k),p(k)
and write �(k)

ν as
the vector field with effective low pole order such that

�(k)
ν

(

d j f
)

= 0 for 0 ≤ j < k,

�(k)
ν

(

dk f
)

= zν,

�(k)
ν

(

d j f
)

= −�(k, j)
ν zν for j > k.
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This means the following. Choose a binary tree p(n−1) of order n−1 which has
level-wise homogeneous branches. Let r j = pγ1,...,γ j−1,0 and s j = pγ1,...,γ j−1,1

for 1 ≤ j ≤ n − 1. Since the binary tree p(n−1) of order n − 1 has level-wise
homogeneous branches, the values of r j = pγ1,...,γ j−1,0 and s j = pγ1,...,γ j−1,1
are independent of the choices of the values 0 or 1 for γ1, . . . , γ j−1 and 1 ≤
j ≤ n − 1. Let p(n−1− j) = p(n−1;γ1,...,γ j ) for 1 ≤ j ≤ n − 1. We know
that p(n−1− j) is independent of the choices of the values 0 or 1 for γ1, . . . , γ j

and 0 ≤ j ≤ n because the binary tree p(n−1) of order n − 1 has level-wise
homogeneous branches.

Given any multi-index ν of n+1 components and total degree δ, we choose
a multi-index λ(n−1)

ν of n+ 1 components and total degree δ− n+ 1 such that
λ
(n−1)
ν ≤ ν in the sense that the j-th component of λ(n−1)

ν ≤ ν is no more than
ν j for 0 ≤ j ≤ n. Though the binary tree p(n−1) of order n − 1 has level-wise

homogeneous branches, yet λ
(n−1;γ1,...,γ j )
ν does depend on the choices of the

values 0 or 1 for γ1, . . . , γ j and 1 ≤ j ≤ n. The dependence is as follows. If
we denote r j by r j,0 and s j = r j,1, then

λ
(n−1;γ1,...,γ j )
ν = λ(n−1− j)

ν = λ(n−1)
ν +

j
∑

ℓ=1

erℓ,γℓ

By Lemma 3.2,

�
(k)

λ(k),p(k)

(

d j f
)

= zλ
(k)

�
( j)

λ(k),p(k)
for k ≤ j ≤ n

for any multi-index λ(k) of n + 1 components and total degree δ − k. So we
can set

�(k)
ν =

−zν−λ
(n−1−k)
ν

�
(k)

p(k)

�
(k)

λ
(n−1−k;γ1,...,γk )
ν ,p(k)

,

�(k, j)
ν =

−zν−λ
(n−1−k)
ν

�
(k)

p(k)

�
( j)

λ
(n−1−k;γ1,...,γk )
ν ,p(k)

.

By Lemma 3.6, the function

�(k, j)
ν

k
∏

ℓ=1

(

ξ (1)rℓ
− ξ (1)sℓ

)

123



1112 Y.-T. Siu

is of homogeneous weight j in ξ (ℓ)t (1 ≤ ℓ ≤ j , 0 ≤ t ≤ n) and is a polynomial
in the variables z0, . . . , zn of degree ≤ n− 1− k and in the n+ 1 components
of ν of degree ≤ j . The vector field

�(k)
ν

k
∏

ℓ=1

(

zrℓzsℓ

(

ξ (1)rℓ
− ξ (1)sℓ

))

is a polynomial in z0, . . . , zn of degree ≤ n − 1 and is independent of ξ (ℓ)t

(1 ≤ ℓ ≤ n − 1, 0 ≤ t ≤ n). Moreover, the dependence of �( j)

λ(k),p(k)
on ν is

only through the partial differentiation with respect to αμ with μ depending
on ν.

To make sure that a modification of T annihilates f , we modify T to T +
∑

ν �
(0)
ν �

(0)
ν . To make sure that our constructed vector field annihilates d f ,

we use

(

T +
∑

ν

�(0)
ν �(0)

ν

)

(d f ) = −
∑

ν

�(0)
ν �(0,1)

ν zν −
∑

ν

�(1)
ν zν .

This means that we have to modify T +
∑

ν �
(0)
ν �

(0)
ν to

T +
∑

ν

�(0)
ν �(0)

ν +
∑

ν

�(0)
ν �(0,1)

ν �(1)
ν +

∑

ν

�(1)
ν �(1)

ν .

To go one step further to make sure that our constructed vector field annihilates
d2 f , we use

(

T +
∑

ν

�(0)
ν �(0)

ν +
∑

ν

�(0)
ν �(0,1)

ν �(1)
ν +

∑

ν

�(1)
ν �(1)

ν

)

(

d2 f
)

= −
∑

ν

�(0)
ν �(0,2)

ν zν −
∑

ν

�(0)
ν �(0,1)

ν �(1,2)
ν zν

−
∑

ν

�(1)
ν �(1,2)

ν zν −
∑

ν

�(2)
ν zν .

Thus we have to modify

T +
∑

ν

�(0)
ν �(0)

ν +
∑

ν

�(0)
ν �(0,1)

ν �(1)
ν +

∑

ν

�(1)
ν �(1)

ν
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to

T +
∑

ν

�(0)
ν �(0)

ν +
∑

ν

�(0)
ν �(0,1)

ν �(1)
ν

+
∑

ν

�(0)
ν �(0,2)

ν �(2)
ν +

∑

ν

�(0)
ν �(0,1)

ν �(1,2)
ν �(2)

ν

+
∑

ν

�(1)
ν �(1)

ν +
∑

ν

�(1)
ν �(1,2)

ν �(2)
ν +

∑

ν

�(2)
ν �(2)

ν .

In general, to make sure that we have the annihilation of all d j f for 0 ≤ j ≤

n − 1, we need to write

T +
∑

ν

∑

0≤ j0≤k≤n−1

�( j0)
ν

⎛

⎝

k− j0−1
∑

ℓ=0

∑

j0<···< jℓ<k

�( jℓ,k)
ν

ℓ−1
∏

q=0

�
( jq , jq+1)
ν

⎞

⎠�(k)
ν .

The main point is to control the pole order of the vector fields and make the
pole order bounded and independent of δ. That is the reason why we want to
remove zν by using the vector fields �(k)

λ(k),p(k)
. We now count the degree in

z0, . . . , zn and the weight in ξ (ℓ)j after we clear the denominators. We need to
multiply

�( jℓ,k)
ν

⎛

⎝

ℓ−1
∏

q=0

�
( jq , jq+1)
ν

⎞

⎠�(k)
ν

by

⎡

⎣

ℓ
∏

q=0

⎛

⎝

jq
∏

i=1

(

ξ (1)ri
− ξ (1)si

)

⎞

⎠

⎤

⎦

k
∏

i=1

(

ξ (1)ri
− ξ (1)si

)

to get rid of the denominator involving ξ (ℓ)j . The worst that can occur is

k
∏

ℓ=1

(

ξ (1)rℓ
− ξ (1)sℓ

)n−ℓ
,

whose weight is n(n−1)
2 . Since

�(k, j)
ν

k
∏

ℓ=1

(

ξ (1)rℓ
− ξ (1)sℓ

)
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is of homogeneous weight j in ξ (ℓ)t (1 ≤ ℓ ≤ j , 0 ≤ t ≤ n), it follows that
the worst situation is that after multiplication by the above factor to clear the
denominator we end up with a weight of j0 + j1 + · · · + jℓ plus the weight of
the factor which is no greater than the weight

j0 + j1 + · · · + jℓ +
n(n − 1)

2
≤ n(n − 1).

When it comes to the degree in z0, . . . , zn , we have degree 1 from T , multi-
plication by the factor

k
∏

ℓ=1

(

zrℓzsℓ

)

to clear the denominator of �(k)
ν to yield degree ≤ n − 1, and the degree of

�(k, j)
ν

k
∏

ℓ=1

(

ξ (1)rℓ
− ξ (1)sℓ

)

no more than n − 1 − k. So after clearing the denominators, we have no than
2(n − 1)+ 1 in degree for T and no more than

(n − 1 − j0)+ · · · + (n − 1 − jk)+ (n − 1)+ 2n

≤ n(n − 1)+ (n − 1)+ 2n ≤ n2 − 1 + 2n

for

�( jℓ,k)
ν

⎛

⎝

ℓ−1
∏

q=0

�
( jq , jq+1)
ν

⎞

⎠�(k)
ν .

Finally we conclude that, after clearing the denominators, we end up with
weight no more than n(n − 1) in ξ (ℓ)t (1 ≤ ℓ ≤ j , 0 ≤ t ≤ n) and degree no
more than n2 − 1 + 2n in z0, . . . , zn .

3.6 Vector fields in terms of differentiation with respect to inhomogeneous
coordinates

The introduction of homogeneous coordinates is simply for the notational
convenience of our discussion. We now return to inhomogeneous coordinates
by specializing to z0 ≡ 1. First of all we would like to go back to the coordinates
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d j zℓ (0 ≤ j ≤ n − 1, 0 ≤ ℓ ≤ n)

from the coordinates

z0, z1, . . . , zn,

d j log zℓ (1 ≤ j ≤ n − 1, 0 ≤ ℓ ≤ n)

which is the same as

z0, z1, . . . , zn,

ξ
( j)

ℓ (1 ≤ j ≤ n − 1, 0 ≤ ℓ ≤ n)

(because ξ (k)j = dk log z j ). We are going to use the chain rule for the transfor-
mation of vector fields.

∂

∂
(

dℓz p

) =
∑

p,k

∂ξ (k)

∂
(

dℓz p

)

∂

∂ξ
(k)
j

.

Since ξ (k)j = dk−1
(

dz j

z j

)

, it follows that

ξ
(k)
j = ξ

(k)
j

(

z0, . . . , zn, dz0, . . . , dzn, . . . , dnz0, . . . , dnzn

)

is a rational function which is homogeneous of weight 0 when dℓz p is assigned
weight 1 and is homogeneous of weight k when dℓz p is assigned weight ℓ.
Thus

∂ξ
(ℓ)
j

∂
(

dℓz p

)

is of weight−1 when dℓz p is assigned weight 1 and is homogeneous of weight
k − ℓ when dℓz p is assigned weight ℓ. It follows from weight considerations
that

∂ξ
(ℓ)
j

∂
(

dℓz p

) = δp, j

(

1

z j

)

,

where δp, j is the Kronecker delta. We conclude that, so far as the independence
of the constructed vector fields are concerned, it makes no difference whether
we are using the coordinate system
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1116 Y.-T. Siu

z0, z1, . . . , zn,

d j log zℓ (1 ≤ j ≤ n − 1, 0 ≤ ℓ ≤ n)

or the coordinate system

z0, z1, . . . , zn,

ξ
( j)

ℓ (1 ≤ j ≤ n − 1, 0 ≤ ℓ ≤ n).

Now we pass from the homogeneous coordinates to the inhomogeneous coor-
dinates. It is equivalent to restricting all the objects to the linear subspace

z0 = 1, dz0 = d2z0 = · · · = dnz0 = 0.

So far as

∂

∂ξ
(ℓ)
j

,
∂

∂
(

dℓz p

)

are concerned, the linear subspace is part of the line defined by setting some
coordinates equal to constant and the argument is not affected. Since the pole
order of dℓz j is no more than ℓ+1, we have the following proposition. A point
of the space J vert

n−1 (X ) of vertical (n − 1)-jets is represented by a nonsingular

complex curve germ in Pn precisely when the value of z1dz0−z0dz1 is nonzero
at it for some homogeneous coordinate system z0, . . . , zn of Pn .

Proposition 3.11 (Global generation on jet space by slanted vector fields at
points representable by regular curve germs) Let P0 be a point of the space

J vert
n−1 (X ) of vertical (n − 1)-jets such that P0 can be represented by a non-

singular complex curve germ in Pn . Then the meromorphic vector fields on

Pn × PN tangential to

{

f = d f = · · · = dn f = 0
}

of pole order≤ n2+2n+n(n−1) = n(2n+1) (along the infinity hyperplane

of Pn) generate at P0 the tangent space of the total space of fiber-direction

(n−1)-jets, where dk f is taken withαν regarded as constants. In terms of inho-

mogeneous coordinates, the statement is equivalent to that of the formulation

in terms of homogeneous coordinates on the restriction to

{

z j = 1, dz j = d2z j = · · · = dnz j = 0
}

for each 0 ≤ j ≤ n.
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Proof Since P0 can be represented by a nonsingular complex curve germ in
Pn , there exists some homogeneous coordinate system z0, . . . , zn such that
z0 �= 0 and z1dz0− z0dz1 �= 0 at it. Since one of z0 and z1 must be nonzero at
P0, we assume without loss of generality that z0 is nonzero at P0. Let x j =

z j

z0

for 1 ≤ j ≤ n. Then dx1 =
z0dz1−z1dz0

z2
0

�= 0 at P0. We then apply a translation

to the affine coordinates (x1, . . . , xn) to make sure that xℓ �= 0 at P0 for
1 ≤ ℓ ≤ n. Then we apply a linear transformation to the affine coordinates
(x1, . . . , xn) that xℓ �= 0 at P0 for 1 ≤ ℓ ≤ n and dx1 �= dx2 at P0. We are
going to set r j = 1 and s j = 2 for 1 ≤ j ≤ n. Also we will restrict the vector
fields to z0 = 1 and zℓ = xℓ for 1 ≤ ℓ ≤ n so that

ξ (1)r j
− ξ (1)s j

= ξ
(1)
1 − ξ

(1)
2 �= 0

at P0 and zℓ �= 0 at P0 for 0 ≤ ℓ ≤ n. The above construction now gives the
generation of the tangent bundle of J vert

n−1 (X ) at P0. ⊓⊔

Remark 3.12 In the global generation of the tangent bundle of X in Lemma 2.6
there is no reference to the tangent vector being representable by nonsingular
complex curve germ, because a tangent vector which is not representable by a
nonsingular complex curve germ must be zero and the identically zero global
vector field already generates the zero tangent vector. However, a higher-order
jet which cannot be represented by a nonsingular complex curve germ need
not be zero. The condition of representability by a nonsingular complex curve
germ can be technically suppressed by formulating global generation over
some suitably defined projectivization of the jet space which includes only
those jets which have well-defined images in the projectivization of the tangent
bundle.

For the hyperbolicity of generic hypersurface X of sufficiently high degree,
the generation by slanted vector fields of low vertical pole order only at jets
representable by nonsingular complex curve germs offers no difficulty, because
any nonconstant holomorphic map ϕ from the affine complex line C to X must
have a nonzero tangent vector at some point ζ0 of C and we need only use
slanted vector fields of low vertical pole order at the jet represented by ϕ at
ϕ (ζ0).

The slanted vector fields on J vert
n−1 (X ) of low vertical pole order constructed

in Sect. 3.5 for the proof of Proposition 3.11 start out with the vector field T

which is any one of

z j

∂

∂z j

,
∂

∂ξ ℓj

(0 ≤ j ≤ n, 1 ≤ ℓ ≤ n).
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1118 Y.-T. Siu

The constructed slanted vector fields on J vert
n−1 (X ) of low vertical pole order

are actually restrictions to J vert
n−1 (X ) of vector fields on Jn−1 (Pn) × PN of

low vertical pole order which are tangential to J vert
n−1 (X ). We formulate below

a proposition about the slanted vector fields on Jn−1 (Pn) × PN of low ver-
tical pole order which are tangential to J vert

n−1 (X ) before their restrictions to
J vert

n−1 (X ). This formulation is needed in Sect. 5.2 where the proof of Theo-
rem 1.1 is modified to give a proof of Theorem 1.2.

Proposition 3.13 Let α ∈ PN and P0 be a point of the space Jn−1 (Pn)× PN

such that P0 can be represented by a nonsingular complex curve germ in

Pn×{α}which lies in X . Then the meromorphic vector fields on Jn−1 (Pn)×PN

of pole order≤ n2+2n+n(n−1) = n(2n+1) (along the infinity hyperplane

of Pn) which are tangential to J vert
n−1 (X ) generate at P0 the tangent space of

Jn−1 (Pn)× PN .

3.7 Use of slanted vector fields to lower vanishing order of jet differentials
and to generate linearly independent jet differentials

First we would like to make a remark about the weight of a jet differential after
the application of the vector fields which we have constructed. The weight of
d j xℓ is j . The coordinates xℓ has weight zero and does not contribute at all
to the computation of weights. When we consider the vector field which starts
with

∂

∂
(

dk xℓ
) ,

to clear the denominator we have to multiply the result by the factor

(

dx1

x1
−

dx2

x2

)k

so that one ends up with

(

dx1

x1
−

dx2

x2

)k
∂

∂
(

dk xℓ
)

which means that the action of the vector field after clearing out the denom-
inator preserves the weight of the jet differential. Moreover, by the explicit
construction of the slanted vector fields of low vertical pole order, we can-
not apply them to (n − 1)-jet differentials to lower their orders to get k-jet
differentials for some k < n − 1.
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For the hyperbolicity problem there are two ways to apply the constructed
slanted vector fields of low vertical pole order. One is to lower the vanishing
order of an (n − 1)-jet differential on a generic hypersurface at a prescribed
point by applying slanted vector fields to the extensions of the (n − 1)-jet
differential on neighboring hypersurfaces.

The other is, from a given (n−1)-jet differential on a generic hypersurface of
a given weight which is nonzero at a prescribed point, to generate more (n−1)-
jet differentials so that the resulting (n − 1)-jet differentials at the prescribed
point span the finite-dimensional vector space of all (n−1)-jet differentials of
that particular weight defined only at the prescribed point. Again the slanted
vector fields have to be applied to the extensions of the given (n − 1)-jet
differential to neighboring hypersurfaces. For the hyperbolicity problem, in
both applications the given (n − 1)-jet differential to which slanted vector
fields are applied, as well as its extension on neighboring hypersurfaces, is
assumed to be holomorphic and vanish to sufficiently high order on some
ample divisor in order that the resulting (n−1)-jet differential is holomorphic
and still vanishes on some ample divisor, after part of the vanishing order on
the ample divisor of the given (n− 1)-jet differential (as well as its extensions
to neighboring hypersurfaces) is used to cancel the low vertical pole orders of
the constructed slanted vector fields.

Note that for a generic hypersurface a holomorphic (n − 1)-jet differential
vanishing to a sufficiently high order on an ample divisor is automatically
extendible to a holomorphic (n − 1)-jet differential on a neighboring hyper-
surface vanishing also to a sufficiently high order on an ample divisor (see
Proposition 3.15 below).

The following proposition is a precise formulation of the applications of
the constructed slanted vector fields. The jet differentials to which the slanted
vector fields are applied will be constructed in Sect. 4 below. The polynomials
g(α) are introduced in the proposition in order to use the coefficients of g(α)

to control the linear independence of the resulting jet differentials, because of
other Lie differentiations coming after the Lie differentiation by g(α) times a
slanted vector field.

Proposition 3.14 (Slanted vector fields to reduce vanishing order and to gen-
erate independent jet differentials) Let α̂ ∈ PN and U be an open neighborhood

of α̂ such that X (α) is nonsingular for α ∈ U. Let ŷ ∈ X (α̂) and C be a nonsin-

gular curve germ in X (α̂) at ŷ. Let q0 and m be positive integers. For α ∈ U

let ω(α) be a holomorphic (n − 1)-jet differential on X (α) of weight m which

vanishes to order ≥ q0 at the intersection of X (α̂) and some hyperplane sec-

tion of Pn and which varies holomorphically as α varies in U. Assume that the

pullback of ω(α̂) to C as an (n − 1)-jet differential on C has a coefficient with

vanishing order ≤ r0 at ŷ for some nonnegative integer r0 and assume also

that q0 > (r0 + 1)(m + 1)(n − 1)n(2n + 1). Then for some J ∈ N there exist
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holomorphic (n−1)-jet differentialsω
(α̂)
j on X (α̂) for 1 ≤ j ≤ J which vanish

on an ample divisor of X (α̂) and which have no common zeroes, as functions

of homogeneous weight, on Jn−1

(

X (α̂)
)

ŷ
other than the zero (n − 1)-jet of

X (α̂) at ŷ, where Jn−1

(

X (α̂)
)

ŷ
is the finite-dimensional C-vector space of

all (n − 1)-jets of X (α̂) at ŷ. Moreover, each of the (n − 1)-jet differentials

ω
(α̂)
j for 1 ≤ j ≤ J can be given as the restriction to X (α̂) of the r0-times

iterated Lie derivative of ω
(α)
j with respect to r0 slanted vector fields, each

of which is a slanted vector field of the kind constructed in Proposition 3.11
and Proposition 3.13 multiplied by some polynomial g

(α)
j of degree ≤ r0 in

the inhomogeneous coordinates of Pn whose coefficients are holomorphic in

α ∈ U.

As long as α̂ is a generic point of the parameter space PN , in Proposition 3.14
it suffices to assume the existence of one singleω(α̂) on X (α̂) instead of a family
of ω(α) on X (α) for α ∈ U which is holomorphic in α ∈ U , because of the
following general abstract statement.

Proposition 3.15 (Extendibility of jet differentials on generic fiber to neigh-
boring fibers) Let π̃ : Y → S be a flat holomorphic family of compact complex

spaces and L → Y be a holomorphic vector bundle. Then there exists a proper

subvariety Z of S such that for s ∈ S − Z the restriction map

Ŵ (Us,L)→ Ŵ
(

π̃−1(s),L|π̃−1(s)

)

is surjective for some open neighborhood Us of s in S.

In Proposition 3.14, if for some point α̂ of PN and for every point ŷ of X (α̂)

the assumption of Proposition 3.14 is satisfied, then the hypersurface X (α̂) is
hyperbolic in the sense that there is no nonconstant holomorphic map from C

to X (α̂). The following proposition formulates precisely this result and will be
applied to prove Theorem 1.1 after the construction of the required holomor-
phic jet differentials in Sect. 4 below and after the analysis in Proposition 5.1
of the effect on them from the change of inhomogeneous coordinates of Pn

used in the construction.

Proposition 3.16 (Hyperbolicity from existence of appropriate jet differen-
tials) Let α̂ ∈ PN such that the hypersurface X (α̂) is nonsingular. Suppose,

for every ŷ ∈ X (α̂) and for every C whose (n − 1)-jet at ŷ is generic, the

assumption of Proposition 3.14 is satisfied for some C, U, ω
(α)
1 , . . . , ω

(α)
J , q0,

r0 which may depend on the point ŷ of X (α̂). Then the hypersurface X (α̂) is

hyperbolic in the sense that there is no nonconstant holomorphic map from C

to X (α̂).
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Proof Suppose the contrary and there is some nonconstant holomorphic map
ϕ from C to X (α̂). For some ζ0 ∈ C where the differential dϕ of ϕ at ζ0 is
nonzero. We let ŷ = ϕ(ζ0). By the argument of Proposition 3.14 there exist
holomorphic (n−1)-jet differentialsω(α̂)j on X (α̂) for 1 ≤ j ≤ J which vanish

on an ample divisor of X (α̂) and which, as J functions of homogeneous weight

on the finite-dimensional Euclidean space Jn−1

(

X (α̂)
)

ŷ
of all (n − 1)-jets of

X (α̂) at the point ŷ, have no common zeroes other than the zero (n − 1)-jet of
X (α̂) at ŷ. By applying the Schwarz lemma of the vanishing of pullbacks, by a
holomorphic map from C to a compact algebraic manifold, of jet differentials
vanishing on an ample divisor of X (α̂), we conclude that the pullbacks of each
of ω(α̂)1 , . . . , ω

(α̂)
J by ϕ is identically zero on C. This means that the nonzero

(n − 1)-jet of X (α̂) at ŷ defined by the map ϕ is a common zero of the J

functions of homogeneous weight on Jn−1

(

X (α̂)
)

ŷ
defined by ω(α̂)1 , . . . , ω

(α̂)
J

at ŷ. This is a contradiction. ⊓⊔

Remark 3.17 In the application of Proposition 3.16 for the proof of Theo-
rem 1.1 given in Sect. 5.1, only the special case of r0 = 0 is used.

4 Construction of holomorphic jet differentials

We are going to construct holomorphic jet differentials. One crucial ingredient
is the use of the Koszul complex to show that a homogeneous polynomial of
low degree in n + 1 homogeneous coordinates and their differentials up to
order n − 1 cannot locally belong to the ideal generated by a second homo-
geneous polynomial and its differentials up to order n − 1 when the second
homogeneous polynomial is a homogeneous polynomial of high degree in the
n + 1 homogeneous coordinates (see Lemma 4.4 below). The jet differentials
are constructed by using the linear algebra method of solving a system of
linear equations with more unknowns than independent linear equations (see
Proposition 4.8 below).

Lemma 4.1 Let Y be a compact complex manifold and Z be a subvariety of

pure codimension at least 2 in Y . Let F be a locally free sheaf on Y . Then the

restriction map

Hq (Y,F)→ Hq (Y − Z ,F)

is an isomorphism for 0 ≤ q ≤ codimY Z − 2.

123



1122 Y.-T. Siu

Proof This is a standard removability result for cohomology groups. Let {U j } j

be a finite cover of Y by Stein open subsets U j . Since

H r

(

p
⋂

ℓ=0

(

U jℓ − Z
)

,F

)

= 0

for 1 ≤ r ≤ codimY Z − 2 and for any j0, . . . , jp, by Leray’s theorem the
following natural isomorphism

Hq (Y − Z ,F) ≈ Hq
(

{

U j − Z
}

j
,F
)

gives the computation of the sheaf cohomology by Cech cohomology. Since
the restriction map

Ŵ

(

p
⋂

ℓ=0

U jℓ,F

)

→ Ŵ

(

p
⋂

ℓ=0

(

U jℓ − Z
)

,F

)

is bijective for any j0, . . . , jp, it follows that the map

Hq
(

{

U j

}

j
,F
)

≈ Hq
(

{

U j − Z
}

j
,F
)

defined by restriction is an isomorphism. The lemma follows from the follow-
ing natural isomorphism

Hq (Y,F) ≈ Hq
(

{

U j

}

j
,F
)

gives the computation of the sheaf cohomology by Cech cohomology. ⊓⊔

Lemma 4.2 Let ℓ and a ≤ N be positive integers. Let Z be a linear subspace

of PN and let

F1, . . . , Fa ∈ Ŵ(PN ,OPN
(ℓ))

such that the zero-set of F1, . . . , Fa in PN −Z is a submanifold of codimension

a in PN − Z which is a complete intersection. Assume that

Hq
(

PN − Z ,OPN
(r)
)

= 0 for 1 ≤ q < a

for any integer r . Then

Ŵ
(

PN − Z ,O⊕a
PN
(−ℓ+ p)

)

→ Ŵ

⎛

⎝PN − Z ,

a
∑

j=1

OPN
(p)F j

⎞

⎠
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induced by

(g1, . . . , ga) �→

a
∑

j=1

g j F j

is surjective.

Proof Consider the Koszul complex

0 → O
⊕(a

a)
PN

(−aℓ+ p)→ · · · → O
⊕(a

k)
PN

(−kℓ+ p)
φk
−→ O

⊕( a
k−1)

PN

×(−(k − 1)ℓ+ p)

→ · · · → O
⊕(a

2)
PN

(−2ℓ+ p)→ O
⊕(a

1)
PN

(−ℓ+ p)
φ1
−→ O

⊕(a
0)

PN
(p).

The homomorphisms in the Koszul complex is defined as follows. Take sym-
bols e1, . . . , ea . We use

ei1 ∧ · · · ∧ eik
(1 ≤ i1 < · · · < ik ≤ a)

as a local basis for O
⊕(a

k)
PN

(−kℓ+ p) to represent an element

(

gi1,...,ik

)

1≤i1<···<ik≤a

of O
⊕(a

k)
PN

(−kℓ+ p) as

∑

1≤i1<···<ik≤a

gi1,...,ik

(

ei1 ∧ · · · ∧ eik

)

and define

ϕk : O
⊕(a

k)
PN

(−kℓ+ p)→ O
⊕( a

k−1)
PN

(−(k − 1)ℓ+ p)

by

ϕk

(

ei1 ∧ · · · ∧ eik

)

=

k
∑

ν=1

(−1)ν−1 Fiν

(

ei1 ∧ · · · ∧ eiν−1 ∧ eiν+1 · · · ∧ eik

)

in such a representation. Since the zero-set of F1, . . . , Fa in PN − Z is a
submanifold of codimension a in PN − Z which is a complete intersection, it
follows that the Koszul complex is exact on PN − Z .
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We are going to prove by descending induction on b for 1 ≤ b ≤ a−1 that

Hq (PN − Z ,Ker φb) = 0

for 1 ≤ q ≤ b. The case b = a− 1 follows from the assumption of the lemma
and

Ker φa−1 = O
⊕(a

a)
PN

(−aℓ+ p).

For 1 ≤ b < a − 1 the exact sequence

0 → Ker φb → O
⊕(a

b)
PN

(−bℓ+ p)→ Ker φb−1 → 0

yields the exactness of

Hq

(

PN − Z ,O
⊕(a

b)
PN

(−bℓ+ p)

)

→ Hq (PN − Z ,Ker φb−1)

→ Hq+1 (PN − Z ,Ker φb)

and for 1 ≤ q ≤ b − 1 we conclude, from

Hq

(

PN − Z ,O
⊕(a

b)
PN

(−bℓ+ p)

)

= 0

in the assumption of the lemma and

Hq+1 (PN − Z ,Ker φb) = 0

in the induction hypothesis that

Hq (PN − Z ,Ker φb−1) = 0,

which completes the induction argument.
For b = 1 we have

H1 (PN − Z ,Ker φ1) = 0,

and the short exact sequence

0 → Ker φ1 → O
⊕a
PN
(−ℓ+ p)→ Im φ1 → 0
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yields the surjectivity of

Ŵ
(

PN − Z ,O⊕a
PN
(−ℓ+ p)

)

→ Ŵ (PN − Z , Im φ1) .

Hence

Ŵ
(

PN − Z ,O⊕a
PN
(−ℓ+ p)

)

→ Ŵ

⎛

⎝PN − Z ,

a
∑

j=1

OPN
(p)F j

⎞

⎠

induced by ϕ1 is surjective. ⊓⊔

Lemma 4.3 Let w0, w1 be two transcendental variables (representing two

local holomorphic functions). Then

w
j+1
0 d j

(

w1

w0

)

is a polynomial in the variables

dℓwk (0 ≤ ℓ ≤ j, k = 0, 1)

which is homogeneous of degree j + 1 in all the variables and of total weight

j in the differentials dℓwk for 0 ≤ ℓ ≤ j and k = 0, 1 when the weight of

dℓwk is assigned to be ℓ.

Proof The case j = 0 of the claim is clear. The induction process of the claim
going from step j to step j + 1 simply follows from

w
j+2
0 d j+1

(

w1

w0

)

= w0

(

d

(

w
j+1
0 d j

(

w1

w0

)))

− ( j + 1) (dw0)

(

w
j+1
0 d j

(

w1

w0

))

and the observations that
(i) the differential of a homogeneous polynomial in the variables

dℓwk (0 ≤ ℓ ≤ j, k = 0, 1)

is a homogeneous polynomial in the variables

dℓwk (0 ≤ ℓ ≤ j, k = 0, 1)

of the same degree, and
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(ii) the differential of a polynomial in the variables

dℓwk (0 ≤ ℓ ≤ j, k = 0, 1)

which is of homogeneous weight a is a polynomial in the variables

dℓwk (0 ≤ ℓ ≤ j, k = 0, 1)

which is of homogeneous weight a + 1 when the weight of dℓwk is assigned
to be ℓ. ⊓⊔

Lemma 4.4 (Injectivity of pullback map for jet differentials) Let 1 ≤ k ≤

n − 1 and let f be a polynomial of degree δ in inhomogeneous coordinates

x1, . . . , xn of Pn so that the zero-set of f defines a complex manifold X in

Pn . Let Q be a non identically zero polynomial in the variables d j xℓ (0 ≤

j ≤ k, 1 ≤ ℓ ≤ n). Assume that Q is of degree m0 in x1, . . . , xn is m0 and

is of homogeneous weight m in the variables d j xℓ (1 ≤ j ≤ k, 1 ≤ ℓ ≤ n)

when the weight of d j xℓ is assigned to be j . If m0 + 2m < δ, then Q is not

identically zero on the space of k-jets of X.

Proof Suppose Q is identically zero on the space of k-jets of X . We are going
to derive a contradiction.

Since Q is of homogeneous weight m in the variables d j xℓ (1 ≤ j ≤ k, 1 ≤
ℓ ≤ n) when the weight of d j xℓ is assigned to be j , it follows that the degree
of Q in the variables d j xℓ (1 ≤ j ≤ k, 1 ≤ ℓ ≤ n) is at most m. We introduce
the homogeneous coordinates

z0, z1, . . . , zn

of Pn so that

x j =
z j

z0
(1 ≤ j ≤ n).

Let N = (k + 1)(n + 1)− 1 and relabel the variables

d j zℓ (0 ≤ j ≤ k, 0 ≤ ℓ ≤ n)

as the N+1 homogeneous coordinatesw0, . . . , wN of PN . Let P = z
m0+2m
0 Q.

Since the degree of Q in the variables d j xℓ (1 ≤ j ≤ k, 1 ≤ ℓ ≤ n) is at
most m, by Lemma 4.3 we conclude that P is a polynomial in the variables
w0, . . . , wN and is homogeneous of degree m0 + 2m.
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We are going to apply Lemma 4.2. In our application We set m = n. The
homogeneous polynomials F1, . . . , Fm of degree δ in the N +1 homogeneous
coordinates w0, . . . , wN of PN are

zδ0 f, d
(

zδ0 f
)

, . . . , dk
(

zδ0 f
)

.

The linear subspace Z in PN is defined by z0 = z1 = · · · = zn = 0 which is
of complex codimension n + 1 in PN and is therefore of complex dimension
N − (n + 1) = k(n + 1)− 1.

We know that, if Ẑ is a subvariety of PN , then for any Stein open subset

U of PN the cohomology group Hq
(

U − Ẑ ,OPN

)

vanishes for 0 ≤ q ≤

codimPN
Ẑ − 2 = n − 1, where codimPN

Ẑ means the complex codimension
of Z in PN . Thus,

Hq
(

PN − Z ,OPN
(ℓ)
)

= 0 for 0 ≤ q ≤ n − 1.

Since Q is identically zero on the space of k-jets of X , it follows that P locally
belongs to the ideal generated by

zδ0 f, d
(

zδ0 f
)

, . . . , dk
(

zδ0 f
)

.

By Lemma 4.2 with a = k + 1, since

codimPN
Z − 2 = n − 1 ≥ k = a − 1,

we can write

P =

k
∑

j=0

g j d j
(

zδ0 f
)

for some homogeneous polynomials g0, . . . , gk of the variables

w0, . . . , wN ,

where the total degree of g j is m0 + 2m − δ. We arrive at a contradiction,
because m0 + 2m − δ is negative and a polynomial cannot have a negative
degree. ⊓⊔

Now we count the number of unknowns and the number of equations.

Lemma 4.5 Let X be a hypersurface of degree δ in Pn . Let S be a hypersurface

in X defined by a homogeneous polynomial g of degree s in the homogeneous

coordinates of Pn . Then for q ≥ δ + s + n,
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dim Ŵ (S,OS(q)) =

δ
∑

j=1

s
∑

k=1

(

n + q − j − k

n − 2

)

.

In particular,

dimŴ (S,OS(q)) ≤
s δ (n + q − 2)n−2

(n − 2)!

for q ≥ δ + s + n.

Proof First of all, for any nonnegative integer ℓ we have

dimŴ
(

Pn,OPn (ℓ)
)

=

(

ℓ+ n

ℓ

)

=

(

ℓ+ n

n

)

,

because it is equal to the number of possibilities of choosing ℓ elements out
of n + 1 elements with repetition allowed which is the same as choosing ℓ

elements out of n + 1+ ℓ− 1 = ℓ+ n elements without repetition. From the
exact sequence

0 → OPn (ℓ)
φ f
−→OPn (ℓ+ δ)→ OX (ℓ+ δ)→ 0 (4.1)

where φ f is defined by multiplication by f , it follows that

Ŵ
(

Pn,OPn (ℓ)
)

→ Ŵ
(

Pn,OPn (ℓ+ δ)
)

→ Ŵ (X,OX (ℓ+ δ))→ H1 (
Pn,OPn (ℓ)

)

= 0

is exact and

Ŵ (X,OX (ℓ+ δ)) = Ŵ
(

Pn,OPn (ℓ+ δ)
) /

f Ŵ
(

Pn,OPn (ℓ)
)

.

Hence

dimŴ (X,OX (ℓ+ δ)) =

(

n + ℓ+ δ

n

)

−

(

n + ℓ

n

)

From (4.1) we have the exact sequence

H p
(

Pn,OPn (ℓ+ δ)
)

→ H p (X,OX (ℓ+ δ))→ H p+1 (
Pn,OPn (ℓ)

)

.
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From the vanishing of H p
(

Pn,OPn (ℓ+ δ)
)

for 1 ≤ p < n it follows that
H p (X,OX (ℓ+ δ)) = 0 for 1 ≤ p < n − 1. From the exact sequence

0 → OX (ℓ)
φg
−→ OX (ℓ+ s)→ OS(ℓ+ s)→ 0

where φg is defined by multiplication by g and from

H1(X,OX (ℓ)) = 0

for n ≥ 3 it follows that

Ŵ (S,OS(ℓ+ s)) = Ŵ (X,OX (ℓ+ s))
/

gŴ (X,OX (ℓ)).

Hence

dimŴ (S,OS(ℓ+ s)) = dim Ŵ (X,OX (ℓ+ s))− dimŴ (X,OX (ℓ))

=

[(

n + ℓ+ s

n

)

−

(

n + ℓ+ s − δ

n

)]

−

[(

n + ℓ

n

)

−

(

n + ℓ− δ

n

)]

for ℓ ≥ δ. We are going to use the following identity for binomial coefficients

(

a

b

)

−

(

a − 1

b

)

=

(

a

b − 1

)

for a − 1 ≥ b ≥ 1. Then for q ≥ δ + s + n, we have

dimŴ (S,OS(q)) =

[(

n + q

n

)

−

(

n + q − δ

n

)]

−

[(

n + q − s

n

)

−

(

n + q − s − δ

n

)]

=

δ
∑

j=1

[(

n + q − j + 1

n

)

−

(

n + q − j

n

)]

−

q
∑

j=1

[(

n + q − s − j + 1

n

)

−

(

n + q − s − j

n

)]

=

δ
∑

j=1

(

n + q − j

n − 1

)

−

q
∑

j=1

(

n + q − s − j

n − 1

)

=

δ
∑

j=1

[(

n + q − j

n − 1

)

−

(

n + q − s − j

n − 1

)]
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=

δ
∑

j=1

s
∑

k=1

[(

n + q − j − k + 1

n − 1

)

−

(

n + q − j − k

n − 1

)]

=

δ
∑

j=1

s
∑

k=1

(

n + q − j − k

n − 2

)

.

⊓⊔

Lemma 4.6 Let y1, . . . , yr be independent transcendental variables. Let 1 =
n1 ≤ n2 ≤ · · · ≤ nr be integers. Let am be the number of all monomials

y
k1
1 · · · y

kr
r such that

∑r
j=1 n j k j = m. Let am be the number of elements in

Am . Then

(

⌊

m
nr

⌋

+ r − 1

r − 1

)

≤ am ≤

(

m + r − 1

r − 1

)

,

where ⌊u⌋ denotes the largest integer not exceeding u.

Proof Let Am be the set of all monomials y
k2
2 · · · y

kr
r such that

∑r
j=2 n j k j =

m. Since n1 = 1, Am is the same as the set of all monomials y
k1
1 · · · y

kr
r such

that
∑r

j=1 n j k j = m and am is the number of elements of Am . Let Bm be the

set of all monomials y
k2
2 · · · y

kr
r such that

∑r
j=2 k j ≤

⌊

m
n1

⌋

. Let Cm be the set

of all monomials y
k2
2 · · · y

kr
r such that

∑r
j=1 k j ≤ m. Since

r
∑

j=2

k j ≤

⌊

m

nr

⌋

�⇒

r
∑

j=2

n j k j ≤ m

�⇒

r
∑

j=2

k j ≤ m,

it follows that

Bm ⊂ Am ⊂ Cm .

Since the number of elements in Bm is

(

⌊

m
nr

⌋

+ r − 1

r − 1

)
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and the number of elements in Cm is
(

m + r − 1

r − 1

)

,

the conclusion of the lemma follows. ⊓⊔

Lemma 4.7 Let f be a polynomial of degree δ in the variables x1, . . . , xn . Let

κℓ be the smallest nonnegative integer such that
(

fx1

)κℓ dℓx1 can be expressed

as a polynomial Pℓ of

x1, x2, . . . , xn,

d j xr (1 ≤ j ≤ ℓ, 2 ≤ r ≤ n)

on the space of ℓ-jets of the zero-set of f . Then κ1 = 1 and

κℓ ≤ 1 + max

⎧

⎨

⎩

ℓ−1
∑

j=1

κ j s j

∣

∣

∣

∣

s1 + 2s2 + · · · + (ℓ− 1)sℓ−1 ≤ ℓ

⎫

⎬

⎭

.

Moreover, as a polynomial of the degree of Pℓ in the variables x1, . . . , xn is

at most κℓ (δ − 1). The integers κℓ in can be estimated by κℓ ≤ ℓ!

Proof We use induction on ℓ for ℓ ≥ 1. The case ℓ = 1 is clear, because

fx1dx1 = −

n
∑

r=2

fxr dxr

and we can set

P1 = −

n
∑

r=2

fxr dxr

whose degree in x1, . . . , xr is obviously at most δ−1. From dℓ f = 0 it follows
that on the space of ℓ-jets of the zero-set of f the jet differential fx1dℓx1 can
be written as a polynomial Qℓ in

d j xr (1 ≤ j ≤ ℓ− 1, 1 ≤ r ≤ n),

dℓx2, . . . , dℓxn

of weight ≤ ℓ in

d j xr (2 ≤ j ≤ ℓ− 1, 1 ≤ r ≤ n),

dℓx2, . . . , dℓxn
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when d j xr is given the weight j . As a polynomial in dx1, . . . , dℓ−1x1 the total
weight of Qℓ is no more than ℓ. As a polynomial in x1, . . . , xn the degree of
Qℓ is at most δ − 1. Thus inductively on ℓ we conclude that we need only to
multiply fx1dℓx1 by a power of fx1 not exceeding

max

⎧

⎨

⎩

ℓ−1
∑

j=1

κ j s j

∣

∣

∣

∣

s1 + 2s2 + · · · + (ℓ− 1)sℓ−1 ≤ ℓ

⎫

⎬

⎭

to yield a polynomial Pℓ of

x1, x2, . . . , xn,

d j xr (1 ≤ j ≤ ℓ, 2 ≤ r ≤ n)

on the space of ℓ-jets of the zero-set of f . Moreover, the degree of Pℓ in
x1, . . . , xn is at most κℓ (δ − 1).

The integers κℓ can be estimated by κℓ ≤ ℓ!, because, when

r1 + 2r2 + · · · + (ℓ− 1)rℓ−1 ≤ ℓ,

we have r j ≤
ℓ
j
, and from κ j ≤ j ! for 1 ≤ j ≤ ℓ− 1 it follows that

ℓ−1
∑

j=1

κ jr j ≤

ℓ−1
∑

j=1

κ j

(

ℓ

j

)

≤ ℓ

ℓ−1
∑

j=1

( j − 1)! < ℓ

ℓ−1
∑

j=1

(ℓ− 2)! = ℓ!.

⊓⊔

Proposition 4.8 (Jet differential from polynomial in differentials of inhomo-
geneous coordinates) Let X be a nonsingular hypersurface of degree δ in Pn

defined by a polynomial f (x1, . . . , xn) of degree δ in the affine coordinates

x1, . . . , xn of Pn . Suppose ǫ, ǫ′, θ0, θ, and θ ′ are numbers in the open interval

(0, 1) such that nθ0 + θ ≥ n+ ǫ and θ ′ < 1− ǫ′. Then there exists an explicit

positive number A = A(n, ǫ, ǫ′) depending only on n, ǫ, and ǫ′ such that for

δ ≥ A and any nonsingular hypersurface X in Pn of degree δ there exists a

non identically zero OPn (−q)-valued holomorphic (n − 1)-jet differential ω

on X of total weight m with q ≥ δθ
′
and m ≤ δθ . Here, with respect to a local

holomorphic coordinate system w1, . . . , wn−1 of X, the weight of ω is in the

variables d jwℓ (1 ≤ j ≤ n−1, 1 ≤ ℓ ≤ n−1) with the weight j assigned to

d jwℓ. Moreover, for any affine coordinates x1, . . . , xn of Pn, when fx1 = 1
defines in a nonsingular hypersurface in X, the (n − 1)-jet differential ω can

be chosen to be of the form
Q

fx1−1 , where Q is a polynomial in
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d j x1, . . . , d j xn (0 ≤ j ≤ n − 1)

which is of degree m0 =
⌈

δθ0
⌉

in x1, . . . , xn and is of homogeneous weight

m =
⌈

δθ
⌉

in

d j x1, . . . , d j xn (1 ≤ j ≤ n − 1)

when the weight of d j xℓ is assigned to be j .

Proof Let x1, . . . , xn and z0, . . . , zn be respectively the homogeneous and
inhomogeneous coordinates of Pn so that x j =

z j

z0
for 1 ≤ j ≤ n. Let f be a

polynomial of degree δ in x1, . . . , xn so that the zero-set of f in Pn is X .
Consider a non identically zero polynomial Q in

d j x1, . . . , d j xn (0 ≤ j ≤ n − 1)

which is of degree m0 in x1, . . . , xn and is of homogeneous weight m in

d j x1, . . . , d j xn (1 ≤ j ≤ n − 1)

when the weight of d j xℓ is assigned to be j . We impose the condition

m0 + 2m < δ

so that according to Lemma 4.4 the pullback of Q to the space of (n − 1)-jets
of { f = 0} is not identically zero. According to Lemma 4.6 the degree of
freedom in the choice of the polynomial Q is at least

(

m0 + n

n

)(

⌊

m
n−1

⌋

+ n(n − 1)− 1

n(n − 1)− 1

)

,

where the first factor

(

m0 + n

n

)

is the number of monomials of degree ≤ m0 in n variables x1, . . . , xn and the
second factor

(

⌊

m
n−1

⌋

+ n(n − 1)− 1

n(n − 1)− 1

)

,
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is the number of monomials of homogeneous degree
⌊

m
n−1

⌋

in the n(n − 1)

variables

d j xℓ (1 ≤ j ≤ n − 1, 1 ≤ ℓ ≤ n).

The key point of this proof is that though we have all the variables
d j x1, . . . , d j xn for 0 ≤ j ≤ n − 1, we do not have to worry about the
dependence resulting from the relations d j f = 0 (0 ≤ j ≤ n − 1).

Let HPn be the hyperplane of Pn defined by xn = 0. We now want the
meromorphic (n − 1)-jet differential defined by Q to be holomorphic on X

and, moreover, to vanish at X ∩ HPn of order q. First of all, on the space of
(n−1)-jets of X , we can use the relation d j f = 0 (1 ≤ j ≤ n−1) to eliminate
the variables d j x1 (1 ≤ j ≤ n − 1) by expressing d j x1 (1 ≤ j ≤ n − 1) in
terms of

d j xℓ (1 ≤ j ≤ n − 1, 2 ≤ ℓ ≤ n).

To do this, according to Lemma 4.7 we can multiply Q by
(

fx1

)Ñ
with Ñ =

2m
∑n−1

j=1 κ j , because, in a monomial of weight m, the degree of d j xℓ (1 ≤

j ≤ n − 1, 1 ≤ ℓ ≤ n) is at most
⌊

m
j

⌋

and ( j + 1)
⌊

m
j

⌋

≤ 2m. Since

κ j ≤ j !, it follows that Ñ ≤ (n − 1)! 2m. Let N = (n − 1)! 2m. The degree

of
(

fx1

)N
Q in x1, . . . , xn is now m0 + N (δ − 1) and the weight of

(

fx1

)N
Q

in d j xℓ (1 ≤ j ≤ n − 1, 2 ≤ ℓ ≤ n) is homogeneous and equal to m when
the weight of d j xℓ is assigned to be j .

We let S be the divisor in X defined by fx1 − 1 = 0. The hypersurface in
Pn defined by fx1 − 1 = 0 is of degree δ − 1. We observe that for a generic
polynomial f of degree δ, the divisor S in X is nonsingular, because it is the
case when f equals the Fermat hypersurface

F =

n
∑

j=1

xδj − 1.

Then

Fx1 = δxδ−1
1

and the 2 × n matrix

[

xδ−1
1 xδ−1

2 · · · xδ−1
n

xδ−2
1 0 · · · 0

]
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Hyperbolicity of generic high-degree hypersurfaces 1135

whose rows are nonzero multiplies of the gradients of F and Fx1 has rank 2
unless either x1 = 0 or x2 = · · · = xn = 0, which is impossible, because on

S one has |x1| = δ
−1
δ−1 from Fx1 = 1 and the condition x2 = · · · = xn = 0

implies |x1| = 1 �= δ
−1
δ−1 when F = 0. To prove this Lemma we need only

prove it for a generic f and then remove the genericity assumption for f by
using the semi-continuity of the dimension of the space of global holomorphic
sections over a fiber in a holomorphic family of compact complex manifolds
and a holomorphic vector bundle.

The polynomial Q defines a meromorphic (n−1)-jet differential on X which
we again denote by Q. We now count the pole order of the jet differential Q

on X at X ∩ HPn . For the counting of this pole order, we introduce another set
of inhomogeneous coordinates ζ1, . . . , ζn of Pn defined by

ζ1 =
x1

xn

, . . . , ζn−1 =
xn−1

xn

, ζn =
1

xn

so that

x1 =
ζ1

ζn

, . . . , xn−1 =
ζn−1

ζn

, xn =
1

ζn

.

Since by Lemma 4.3

ζn
j+1d j xℓ = ζn

j+1d j

(

ζℓ

ζn

)

(1 ≤ ℓ ≤ n − 1)

and

ζn
j+1d j xn = ζn

j+1d j

(

1

ζn

)

are polynomials in dkζr (0 ≤ k ≤ j , 1 ≤ r ≤ n). Thus ζn
2m Q is a polynomial

in dkζr (0 ≤ k ≤ j , 1 ≤ r ≤ n). The pole order of the jet differential Q at
X ∩ HPn is at most m0 + 2m.

We are going to show that we can choose the coefficients of the polynomial
Q so that the (n−1)-jet differential Q is zero at points of S. This would imply
that the (n − 1)-jet differential

1

fx1 − 1
Q

is holomorphic on X and vanishes to order δ − m0 − 2m at X ∩ HPn . The
reason is the following. For some proper subvariety Z of X ∩HPn the function
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ζ δ−1
0

(

fx1 − 1
)

is holomorphic and nowhere at points of X ∩ HPn − Z . Thus

1

fx1 − 1
Q =

1

ζ δ−1
0

(

fx1 − 1
)

(

ζ δ−1−2m
0

)

(

ζ 2m
0 Q

)

is holomorphic on X − Z and vanishes to order at least δ − 1 − 2m along
X∩HPn −Z . What we want follows from Hartogs’ extension theorem because
Z is of complex codimension at least 2 in X .

Now on Jn−1 (X)
∣

∣ S (which is the part of the space of (n − 1)-jets of X

lying over S) the jet differential Q equals to the jet differential

(

fx1

)N
Q

because fx1 = 1 holds on S. Since the degree of
(

fx1

)N
Q in x1, . . . , xn is

m0 + N (δ− 1) and the weight of
(

fx1

)N
Q in dkzr (1 ≤ k ≤ j , 2 ≤ r ≤ n) is

homogeneous and equal to 2m, it follows from Lemma 4.5 that the number of
linear equations, with the coefficients of Q as unknowns, needed for

(

fx1

)N
Q

to vanish at all points S is no more than the product

(δ − 1) δ (m0 + N (δ − 1))n−2

(n − 2)!

(

m + (n − 1)2 − 1

(n − 1)2 − 1

)

.

For the existence of a nontrivial Q with the required vanishing at all points of
S, it suffices to have

(

m0 + n

n

)(

⌊

m
n−1

⌋

+ n(n − 1)− 1

n(n − 1)− 1

)

>
(δ − 1) δ (m0 + N (δ − 1))n−2

(n − 2)!

(

m + (n − 1)2 − 1

(n − 1)2 − 1

)

.

In particular, it suffices that

(m0 + 1)n
(

m
n−1

)n(n−1)−1

n! (n(n − 1)− 1)!

is greater than

[

(δ − 1) δ (m0 + (n − 1)! 2m (δ − 1))n−2]
[

(

m + (n − 1)2 − 1
)(n−1)2−1

]

(n − 2)!
(

(n − 1)2 − 1
)

!
.
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Hyperbolicity of generic high-degree hypersurfaces 1137

We choose m0 =
⌈

δθ0
⌉

, m =
⌈

δθ
⌉

, and q =
⌊

δθ
′
⌋

. Since the three positive

numbers θ0, θ , and θ ′ are all strictly less than 1, measured in terms of powers
of δ as δ becomes dominantly large, the order of

(m0 + 1)n
(

m
n−1

)n(n−1)−1

n! (n(n − 1)− 1)!

is at least

δnθ0+(n(n−1)−1)θ

and the order of

[

(δ − 1) δ (m0 + (n − 1)! 2m (δ − 1))n−2]
[

(

m + (n − 1)2 − 1
)(n−1)2−1

]

(n − 2)!
(

(n − 1)2 − 1
)

!

is at most

δ2+(n−2)(1+θ)+
(

(n−1)2−1
)

θ .

Since by assumption nθ0 + θ ≥ n + ǫ, it follows that

[nθ0 + (n(n − 1)− 1) θ ] −
[

2 + (n − 2)(1 + θ)+
(

(n − 1)2 − 1
)

θ
]

≥ ǫ.

So there exists a positive number A depending only on n and ǫ such that

(m0 + 1)n
(

m
n−1

)n(n−1)−1

n! (n(n − 1)− 1)!

is greater than

[

(δ − 1) δ (m0 + (n − 1)! 2m (δ − 1))n−2]
[

(

m + (n − 1)2 − 1
)(n−1)2−1

]

(n − 2)!
(

(n − 1)2 − 1
)

!

when δ ≥ A. We can also assume that A is chosen so that δ− δθ0 − 2δθ ≥ δθ
′

for δ ≥ A to make sure that the (n − 1)-jet differential

1

fx1 − 1
Q

is holomorphic on X and vanishes to order at least q at X ∩ HPn . ⊓⊔
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Remark 4.9 Proposition 4.8 is the same as Proposition 4.6 on p. 446 of [22]
and also the same as Proposition 2 on p. 558 of [23].

5 Hyperbolicity from slanted vector fields and no common zeroes for jet

differentials on generic hypersurface

In Proposition 4.8 a holomorphic (n − 1)-jet differential ω on a hypersurface
X vanishing on an ample divisor of X is constructed as a quotient Q

fx1−1 ,

where Q is a polynomial in d j x1, . . . , d j xn for 0 ≤ j ≤ n − 1) and actually
is a meromorphic (n − 1)-jet differential on the projective space Pn where
the hypersurface X lies. The construction depends on the choice of the affine
coordinate system x1, . . . , xn of the affine part C

n of Pn . Now we apply the
construction to the hypersurface X (α) parametrized by α ∈ PN (instead of
to X ) and we denote the polynomial Q of the differentials of affine coordi-
nates by Q(α, x, dx, . . . , dn−1x), where x means (x1, . . . , xn) and d j x means
(d j x1, . . . , d j xn) for 1 ≤ j ≤ n − 1. As a function of α, the meromorphic
(n − 1)-jet differential Q(α, x, dx, . . . , dn−1x) on the projective space Pn is
meromorphic in the variable α ∈ PN . We now regard Q(α, x, dx, . . . , dn−1x)

as defined over Pn ×PN , which for fixed α ∈ PN is a meromorphic (n−1)-jet
differential on Pn × {α}. When we replace X by X (α), we denote the func-
tion fx1 − 1 by F(α, x). We regard F(α, x) as a meromorphic function on

Pn × PN . The quotient Q(α,x,dx,...,dn−1x)
F(α,x)

on X defines on every X (α) a holo-

morphic (n − 1)-jet differential which vanishes on an ample divisor of X (α),
when α is outside some proper subvariety of PN .

The construction of Q(α, x, dx, . . . , dn−1x) depends on the choice of the
affine coordinate system x1, . . . , xn of the affine part C

n of Pn . We can get
different meromorphic k-jet differentials Q(α, x, dx, . . . , dn−1x) by using
different affine coordinate systems x1, . . . , xn of C

n in the construction of
Q(α, x, dx, . . . , dk x). Equivalently, instead of doing a new construction of
Q(α, x, dx, . . . , dn−1x) by using a new affine coordinate system, we can use
a biholomorphism of Pn to pull the original Q(α, x, dx, . . . , dn−1x) back in
the following way.

A choice of a different affine coordinate system x1, . . . , xn of C
n is the

same as choosing a corresponding biholomorphism σ : Pn → Pn (which
preserves the infinity hyperplane Pn−1). This biholomorphism σ : Pn →

Pn induces a map τσ : PN → PN such that (σ, τσ ) : Pn × PN → Pn ×

PN maps the universal hypersurface X to itself with X (α) being mapped to
X (τσ (α)) for α ∈ PN . The new Q(α, x, dx, . . . , dn−1x) constructed by using
the new affine coordinate system is the same as the (n − 1)-jet differential
Q
(

τσ (α), σ (x), dσ(x), . . . , dkσ(x)
)

, which is obtained by pulling back the
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Hyperbolicity of generic high-degree hypersurfaces 1139

original Q(α, x, dx, . . . , dn−1x) by using σ and τσ . We use σ ∗Q to denote

Q
(

τσ (α), σ (x), dσ(x), . . . , dn−1σ(x)
)

and use σ ∗F to denote F (τσ (α), σ (x)). Of course, to get a holomorphic
(n − 1)-jet differential on the fiber X (τσ (α)) of X (for τσ (α) outside some
proper subvariety of PN ) we have to use

σ ∗Q

σ ∗F
=

1

F (τσ (α), σ (x))
ω
(

τσ (α), σ (x), dσ(x), . . . , dn−1σ(x)
)

.

In the above discussion we can also use biholomorphisms σ : Pn → Pn which
may not preserve the infinity hyperplane Pn−1.

Proposition 5.1 (No common zeroes on generic hypersurface for jet differen-
tials constructed from different affine coordinates) Let Z be the set of points

y of X such that

σ ∗Q = Q
(

τσ (α), σ (x), dσ(x), . . . , dn−1σ(x)
)

vanishes at y or has a pole at y for every biholomorphism σ : Pn → Pn .

Let Z ′ be the set of points y of X such that F (τσ (α), σ (x)) vanishes at y

or has a pole at y for every biholomorphism σ : Pn → Pn . Then the image

pr2

(

Z ∪ Z ′
)

of Z ∪ Z ′ under the natural projection pr2 : Pn × PN → PN

onto the second factor is a proper subvariety of PN .

Proof Suppose the contrary and we going to derive a contradiction. For tech-
nical reasons it is easier to present the proof by fixing some point in Pn as
the origin 0 of some inhomogeneous coordinates x1, . . . , xn of the affine part
C

n of Pn and consider all hypersurfaces in Pn of degree δ which contains the
origin 0 of x1, . . . , xn . This means that we focus only on those hypersurfaces
X (α) whose defining functions f (α) have zero constant terms when expressed
in terms of the inhomogeneous coordinates x1, . . . , xn . In other words, we
focus only on a hyperplane P

(0)
N−1 of the full moduli space PN . The union

of all X (α) with α ∈ P
(0)
N−1 is a hypersurface X0 of the universal hypersur-

face X .
Since every hypersurface in Pn can be transformed by a linear transformation

of Pn to some hypersurface which contains the origin 0 of x1, . . . , xn , from the
assumption of the failure of the conclusion of the Proposition it follows that for
some α(0) ∈ P

(0)
N−1 and some open neighborhood U in P

(0)
N−1 there exists some

local holomorphic section ρ : U → Pn×U of the trivial bundle Pn×P
(0)
N−1 →

P
(0)
N−1 over U such that the imageρ(U ) is contained in

(

Z ∪ Z ′
)

∩X0 andρ(U )
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is contained in the subset C
n ×U of Pn ×U . For α ∈ U let ρ(α) = (ρ̂(α), α)

with ρ̂(α) ∈ Pn .
Let us first do one reduction to make ρ̂(α) equal to the origin 0 of the affine

part C
n of Pn for all α ∈ U . We first present this reduction from the viewpoint

of analysis involving the Jacobian determinant of a change of variables. Then
we give a more geometric explanation for it in (5.2).

By straightforwardly and explicitly computing the Jacobian determinant of
the variable change in the affine part of C

N−1 of the moduli space P
(0)
N−1 at

a generic point of P
(0)
N−1 in U (as explained below after (5.1), we can find

some nonempty open subset Ũ of U and an α-dependent affine coordinate
change x = ρ̂(α) + A(α)y in C

n for α ∈ Ũ which satisfies the following
property (5.1), where (i) x denotes the column n-vector whose entries are the
affine variables x1, . . . , xn , (ii) y denotes the column n-vector whose entries
are the affine variables y1, . . . , yn , and (iii) A(α) is a nonsingular n×n matrix
depending holomorphically on α ∈ Ũ .

(5.1) If α �→ β = �A(α) denotes the holomorphic map from Ũ to P
(0)
N−1 (for

the choice α �→ A(α)) such that f (α)(x1, . . . , xn) = f (β)(y1, . . . , yn), then
�A gives a biholomorphic map between Ũ and the open subset �A(Ũ ) of
C

N−1.
We now remark on how to choose the n × n nonsingular matrix A(α) =

(

A jk(α)
)n

j,k=1 with holomorphic functions A jk(α) as entries. Without loss of

generality we can assume that U is an open subset in the affine part C
N−1 of

P
(0)
N−1 given by the coefficient of xδ1 in f (α) (x1, . . . , xn) being nonzero. Write

down the coordinates αν1,...,νn of α ∈ C
N−1 for 1 ≤ ν1 + · · · + νn ≤ δ with

ν1 �= δ from

f (α) (x1, . . . , xn) = xδ1 +
∑

1≤ν1+···+νn≤δ,
ν1 �=δ

αν1,...,νn x
ν1
1 · · · xνn

n

and similarly the coordinates βν1,...,νn of β ∈ C
N−1 for 1 ≤ ν1 + · · ·+ νn ≤ δ

with ν1 �= δ. From f (α)(x1, . . . , xn) = f (β)(y1, . . . , yn) we can explicitly
express β = �A(α) in terms of the single given n-vector-valued holomor-
phic function ρ̂(α) and the n2 unknown holomorphic functions A jk(α) for
1 ≤ j, k ≤ n. Take a point α∗ of U such that all its N −1 coordinates α∗ν1,...,νn

are nonzero for 1 ≤ ν1 + · · · + νn ≤ δ with ν1 �= δ. When we express the
(N − 1)-form

∧

1≤ν1+···+νn≤δ,
ν1 �=δ

dβν1,...,νn
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Hyperbolicity of generic high-degree hypersurfaces 1141

at α∗ as a constant C times the (N − 1)-form

∧

1≤ν1+···+νn≤δ,
ν1 �=δ

dαν1,...,νn

at α∗, it is easy to see that we can generically choose the coefficients of the n2

power series A jk(α) in the variables αν1,...,νn (for 1 ≤ ν1 + · · · + νn ≤ δ with
ν1 �= δ) to achieve C �= 0. Then Ũ can be chosen to be a sufficiently small
open neighborhood of α∗ in U .
(5.2) We now more geometrically explain the reason why a generic choice of
α �→ A(α) is possible to yield the statement (5.1). We introduce the equiv-
alence relation on the parameter space P

(0)
N−1 such that α is equivalent to α′

if some C-linear transformation of the affine part C
n of Pn sends X (α) to

X (α′). Let W be the space of all equivalence classes with the quotient map
π0 : P

(0)
N−1 → W whose generic fiber is the general linear group GL(n,C).

We have the following commutative diagram

U →֒ P
(0)
N−1

π0
−→ W

�A ↓ ‖

C
N−1 →֒ P

(0)
N−1

π0
−→ W.

Since the fiber of the quotient map π0 : P
(0)
N−1 → W over a generic point

of W is the general linear group GL(n,C), it follows that if α �→ A(α) is
replaced by α �→ A(α)B(α) for some generic GL(n,C)-valued holomorphic
function α �→ B(α), the map �AB from U to C

N−1 is locally biholomorphic
at a generic point of U .

Now that we have (5.1) with a good generic choice of α �→ A(α), by replac-
ing U by Ũ and α �→ ρ(α) =

(

ρ̂(α), α
)

for α ∈ U by α �→ (0, α) for α ∈ Ũ ,
we can assume without loss of generality that ρ̂(α) = 0 for α ∈ U .

Without loss of generality we can assume that

(i) U is the open ball BN−1
(

α(0), r0
)

of some positive radius r0 > 0 centered

at α(0) in some affine part C
N−1 of the moduli space P

(0)
N−1,

(ii) some open neighborhood W of ρ(U ) in X0∩ (C
n ×U ) is biholomorphic

to G ×U for some open subset G of C
n−1 under a biholomorphism φW

between the fiber bundle pr2 : W → U (where pr2 induced by the natural
projection Pn × P

(0)
N−1 → P

(0)
N−1 onto the second factor) and the trivial

fiber bundle prG : G × U → U with prG being the natural projection
onto the second factor, and

(iii)
(

Z ∪ Z ′
)

∩ X (α(0)) is a proper subvariety of X (α(0)).
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We now take a sequence of points

y( j) ∈
(

W ∩ X (α(0))
)

−
(

Z ∪ Z ′
)

for j ∈ N

which approaches ρ
(

α(0)
)

in X (α(0)). Let 0 < r < r0. Since the point ρ
(

α(0)
)

of X (α(0)) is represented by ρ
(

α(0)
)

=
(

0, α(0)
)

∈ C
n−1 × U in terms of the

affine coordinates of C
n−1 and U ⊂ C

N−1, by using the biholomorphism φU

between the two fiber bundles pr2 : W → U and prG : G ×U → U , for each
j ∈ N we can construct a holomorphic section ρ j : U → X0 with the image
of ρ j (α) =

(

ρ̂ j (α), α
)

∈ W for α ∈ U such that ρ j

(

α(0)
)

= y( j) and

ε j = sup
α∈BN−1(α(0),r)

∣

∣ρ̂ j (α)
∣

∣

Cn−1

approaches 0 as j →∞, where BN−1
(

α(0), r
)

is the open ball of radius r in
C

N−1 centered at α(0) and the norm
∣

∣ρ̂ j (α)
∣

∣

Cn−1 is the distance between the
two points ρ̂ j (α) and 0 in C

n−1 with respect to the Euclidean metric of C
n−1.

For α ∈ U and j ∈ N let σα, j : Pn → Pn be the biholomorphism of Pn

whose restriction to C
n is the translation in C

n which sends the origin 0 of
C

n to the point ρ̂ j (α) of C
n . The biholomorphism σα, j of Pn pulls back the

hypersurface X (α) of Pn to the hypersurface X

(

τ−1
σα, j

(α)
)

of Pn for α ∈ U so that
the point ρ̂ j (α) of the hypersurface X (α) is pulled back to the origin point of

the hypersurface X

(

τ−1
σα, j

(α)
)

. From 0 < r < r0 and from explicitly expressing
σα, j in terms of α ∈ C

N−1 and ρ̂ j (α) ∈ C
n−1 we conclude that there exists

some positive number M independent of j ∈ N such that

sup
α∈BN−1(α(0),r)

∣

∣

∣
τ−1
σα, j

(α)− α

∣

∣

∣

CN−1
≤ Mε j

for j ∈ N, where the norm
∣

∣

∣
τ−1
σα, j

(α)− α

∣

∣

∣

CN−1
is the distance between

the two points τ−1
σα, j

(α) and α in C
N−1 with respect to the Euclidean met-

ric of C
N−1. Choose ĵ ∈ N such that Mε j < r0 − r for j ≥ j̃ . Let

ψ j : BN−1
(

α(0), r
)

→ BN−1
(

α(0), r0
)

be defined by ψ j (α) = τ−1
σα, j

(α)

for α ∈ BN−1
(

α(0), r
)

and j ∈ N with j ≥ j̃ .
Since the holomorphic map ψ j : BN−1

(

α(0), r
)

→ BN−1
(

α(0), r0
)

approaches the inclusion map BN−1
(

α(0), r
)

→֒ BN−1
(

α(0), r0
)

uniformly
on BN−1

(

α(0), r
)

as j →∞, it follows that the first-order partial derivatives
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of ψ j converges uniformly on compact subsets of BN−1
(

α(0), r
)

to the corre-
sponding first-order partial derivatives of the inclusion map BN−1

(

α(0), r
)

→֒

BN−1
(

α(0), r0
)

uniformly on any compact subset of BN−1
(

α(0), r
)

as j →

∞. Hence for some j ≥ j̃ there exists some nonempty open subset U ′ of
BN−1(r) such thatψ j maps U ′ biholomorphically onto the open subsetψ j (U

′)

of BN−1(r). Since ρ j (U ) contains the point y( j) which is not in Z ∪ Z ′, it
follows that ρ j (U ) ∩

(

Z ∪ Z ′
)

is a proper subvariety of the connected com-
plex manifold ρ j (U ). Let S be the proper subvariety of U such that ρ j maps
S bijectively onto ρ j (U ) ∩

(

Z ∪ Z ′
)

.
Since the hypersurface X (α) of Pn is pulled back by the biholomorphism

σα, j of Pn to the hypersurface X
(τ−1
σα, j

(α))
of Pn , it follows from σα, j (α) not

belonging to Z ∪ Z ′ for α ∈ U − S that both σ ∗α, j Q and σ ∗α, j F are nonzero

and finite at ρ(τ−1
σα, j

(α)) =
(

0, τ−1
σα, j

(α)
)

. Since ψ j (α) = τ−1
σα, j

(α) belongs

to U for α ∈ U ′, it follows from both σ ∗α, j Q and σ ∗α, j F being nonzero and

finite at ρ(τ−1
σα, j

(α)) =
(

0, τ−1
σα, j

(α)
)

for α ∈ U ′ − S that τ−1
σα, j

(α) is in U

and yet the point ρ
(

τ−1
σα, j

(α)
)

of X

(

τ−1
σα, j

(α)
)

does not belong to Z ∪ Z ′ for

α ∈ U ′ − S, which contradicts the assumption that the point ρ
(

τ−1
σα, j

(α)
)

of

the hypersurface X

(

τ−1
σα, j

(α)
)

belongs to Z ∪ Z ′. ⊓⊔

Remark 5.2 The technique of slanted vector fields to reduce the vanishing
orders of holomorphic jet differentials (vanishing on ample divisors) and to
generate independent jet differentials (vanishing on ample divisors), given in
Proposition 3.14, is actually the infinitesimal or differential version of the
above argument, given in Proposition 5.1, of pulling back holomorphic jet
differentials (vanishing on ample divisors) on neighboring fibers to reduce
the common zero-set of holomorphic jet differentials (vanishing on ample
divisors) on the original fiber.

5.1 Proof of Theorem 1.1

For a generic hypersurface X (α̂) of sufficiently high degree δ, by Proposi-
tion 5.1 at every point ŷ of X (α̂) and for every P0 in the (n − 1)-jet space

Jn−1

(

X (α̂)
)

representable by a nonsingular complex curve germ at ŷ there

exists a holomorphic (n − 1)-jet differential

ω(α̂) =
σ ∗Q(τσ (α̂))

σ ∗F (τσ (α̂))
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1144 Y.-T. Siu

of weight m on X (α̂) which vanishes to order> (m+1)(n−1)n(2n+1) on the
intersection of X (α̂) and some hyperplane of Pn , where σ is a suitably chosen
biholomorphism of Pn as described in the paragraph preceding Proposition 5.1.
The condition of the jet differential ω(α̂) vanishing to order > (m + 1)(n −
1)n(2n + 1) on the intersection of X (α̂) and some hyperplane of Pn is from
the construction of the polynomial Q in Proposition 4.8 when the degree δ of
X (α̂) is effectively sufficiently large.

The holomorphic extension of ω(α̂) to a holomorphic (n−1)-jet differential
on X (α) forα in some open neighborhood U of α̂ in PN satisfying the conditions
of Proposition 3.14 is automatic, because of the way the (n−1)-jet differential
ω(α̂) is constructed (or because of Proposition 3.15 when α̂ is assumed outside
some subvariety of PN ). Now by Proposition 3.16 the hypersurface X (α̂) is
hyperbolic in the sense that there is no nonconstant holomorphic map from C

to X (α̂). This finishes the proof of Theorem 1.1.

5.2 Proof of Theorem 1.2

The proof is analogous to the proof of Theorem 1.1. The difference is that

(i) the holomorphic jet differential ω used in the proof of Theorem 1.1
is replaced by the log-pole jet differential on Pn constructed in Theo-
rem 6.11,

(ii) the use of Proposition 3.11 is replaced by the use of Proposition 3.13,
(iii) the use of the Schwarz lemma of the vanishing of the pullback to C of

a holomorphic jet differential vanishing on an ample divisor is replaced
by Proposition 6.8 below concerning the general Schwarz lemma for log-
pole jet differentials.

6 Essential singularities, varying coefficients, and second main theorem

Besides the Little Picard Theorem of nonexistence of nonconstant holomorphic
maps from C to P1 − {0, 1,∞} there is a stronger statement which is the
Big Picard Theorem of no essential singularity at ∞ for any holomorphic
function from C − 
r0 to C − {0, 1} for r0 > 0. The Little Picard Theorem
corresponds to our theorem on the hyperbolicity of a generic hypersurface
X (α) of sufficiently high degree in Pn (for α in PN outside a proper subvariety
Z of PN ). Corresponding to the Big Picard Theorem, there is a statement
concerning the extendibility across a holomorphic map C−
r0 → X (α) to a
holomorphic map C ∪ {∞} −
r0 → X (α).

In this section we are going to prove such a theorem on removing the essen-
tial singularity at ∞ of a holomorphic map from C−
r0 to a generic hyper-
surface of sufficiently high degree.

123



Hyperbolicity of generic high-degree hypersurfaces 1145

The more quantitative version of the Big Picard Theorem was introduced by
Nevanlinna [17] in his Second Main Theorem in his theory of value distribution
theory. In this section we discuss the Second Main Theorem from log-pole
jet differentials which is more in the context of Cartan’s generalization of
Nevanlinna’s Second Main Theorem to holomorphic maps from the affine
complex line to Pn and a collection of hyperplanes in general position [6].

The hyperbolicity of a generic hypersurface of high degree δ in Pn can be
reformulated as the nonexistence of n + 1 entire holomorphic functions on
P with some ratio nonconstant which satisfy a generic homogeneous polyno-
mial of degree δ with constant coefficients. Our solution of the hyperbolicity
problem for a generic hypersurface of high degree makes use of the univer-
sal hypersurface X in Pn × PN and the variation of the hypersurface X (α)

in Pn with α ∈ PN . The variation of X (α) corresponds to the varying of the
constant coefficients of the homogeneous polynomial equation for the n + 1
entire functions. In this section we will discuss the problem of nonexistence
of entire functions satisfying polynomial equations with slowly varying coef-
ficients and also the more general result for removing essential singularities
for holomorphic functions on C minus a disk for this setting.

6.1 Removal of essential singularities

To extend our methods from maps C → X (α) to maps C − 
r0 → X (α) for
some r0 > 0, we need a corresponding extension of Nevanlinna’s logarithmic
derivative lemma (p. 51 of [17]). For such an extension of Nevanlinna’s loga-
rithmic derivative lemma, we need the following trivial multiplicative version
of the Heftungslemma [1].

Lemma 6.1 (Trivial multiplicative version of Heftungslemma) Let r0 > 0 and

F be a meromorphic function on C−
r0 . Let r0 < r1. Then there exists some

function G holomorphic and nowhere zero on C ∪ {∞} −
r1 such that FG

is meromorphic on C. Moreover, when F is holomorphic, G can be chosen

so that FG is also holomorphic on C− {0}.

Proof Choose r0 < ρ1 < r1 < ρ2 such that ∂
ρ j
contains no pole and no

zero of F for j = 1, 2. Let
∑J0

j=1 a j be the zero-divisor of F on 
ρ2 −
ρ1

and
∑

j=J∞
b j be the pole-divisor of F on 
ρ2 −
ρ1 . Let

h =

⎛

⎝

∏

j=J0

(

ζ − a j

)

⎞

⎠

−1⎛

⎝

∏

j=J∞

(

ζ − b j

)

⎞

⎠ .
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1146 Y.-T. Siu

Then Fh is holomorphic and nowhere zero on
ρ2−
ρ1 . Let ℓ0 be the integer

1

2π

∫

|ζ |=r1

d log(Fh).

Then

∫

|ζ |=r1

d log
(

Fhζ−ℓ0
)

= 0

and we can define a branch of log
(

Fhζ−ℓ0
)

on 
ρ2 −
ρ1 , which we denote
by �. From Cauchy’s integral formula �(ζ) = �0(ζ )−�∞, where

�0(ζ ) =
1

2π

∫

|ζ̂ |=ρ2

�(ζ̂ )

ζ̂ − ζ
d ζ̂ ,

�∞(ζ ) =
1

2π

∫

|ζ̂ |=ρ2

�(ζ̂ )

ζ̂ − ζ
d ζ̂

for ζ ∈ 
ρ2 −
ρ1 . Exponentiating both sides of �(ζ) = �0(ζ ) −�∞, we
get Fhζ−ℓ0 = e�0e−�∞ and Fe�∞ = h−1ζ ℓ0e�0 . Since the right-hand side
h−1ζ ℓ0e�0 of Fe�∞ = h−1ζ ℓ0e�0 is meromorphic on 
ρ2 and the left-hand
side of Fe�∞ = h−1ζ ℓ0e�0 is meromorphic on C−
ρ1 , it follows Fe�∞ is
meromorphic on all of C. We apply the transformation w = 1

ζ
to get

�∞ =
1

2π

∫

|ζ̂ |=ρ1

�(ζ̂ )

ζ̂ − ζ
d ζ̂ =

1

2π

∫

|ζ̂ |=ρ1

w�(ζ)

wζ − 1
d ζ̂

which is holomorphic for |w| < 1
ρ1

, that is, holomorphic for ζ0 ∈ C ∪ {∞} −


ρ1 . Now the function G(ζ ) = e�∞ satisfies our requirement. When F is
holomorphic on C − 
r0 , the function FG which is equal to h−1ζ ℓ0e�0 on

ρ2 and is equal to e�0 on C−
ρ1 is clearly holomorphic on C− {0}. ⊓⊔

6.1.1 Comparison of characteristic functions of maps defined outside a disk

Let r1 > r0 > 0. For a meromorphic function H on C−
r0 we introduce for
c ∈ C ∪ {∞} the counting function

N (r, r1, H, c) =

∫ r

ρ=r1

n (ρ, r1, H, c)
dρ

ρ
,
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Hyperbolicity of generic high-degree hypersurfaces 1147

where n (ρ, r1, H, c) is the number of roots of H(ζ ) = c with multiplicities
counted in r1 ≤ |ζ | ≤ ρ and also the characteristic function

T (r, r1, H) = N (r, r1, H,∞)+
1

2π

∫ 2π

θ=0
log+

∣

∣

∣
H
(

reiθ
)∣

∣

∣
dθ.

For a holomorphic map ϕ from C − 
r0 to a complex manifold Y and a
(1, 1)-form η on Y , we introduce the characteristic function

T (r, r1, ϕ, η) =

∫ r

ρ=r1

(

∫


r−
r1

ϕ∗η

)

dρ

ρ
.

For Y = Pn and η being the Fubini–Study form, we drop η in the notation
T (r, r1, ϕ, η) and simply use T (r, r1, ϕ) when there is no confusion. When a
holomorphic map ϕ from C − 
r0 to Pn is given by holomorphic functions
[F0, . . . , Fn] on C −
r0 without common zeroes, its characteristic function
is

T (r, r1, ϕ) =

∫ r

ρ=r1

(

∫

|ζ |<ρ

1

π
∂ζ ∂ζ log

N
∑

k=0

|Fk |
2

)

dρ

ρ
.

We would like to compare it with the characteristic function T
(

r, r1,
F j

F0

)

for

the meromorphic function
F j

F0
for 1 ≤ j ≤ n. For 1 ≤ j ≤ n we have the

inequality

T

(

r,
F j

F0

)

≤ T (r, ϕ)+ O(1) ≤
n
∑

k=1

T

(

r,
Fk

F0

)

+ O(1).

The verification of

T

(

r,
F j

F0

)

≤ T (r, ϕ)+ O(1)

for 1 ≤ j ≤ n is as follows.
From twice integration of Laplacian with g = log

∑N
k=0 |Fk |

2 in (1.10), we
have
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1148 Y.-T. Siu

∫ r

ρ=r1

(

∫

|ζ |<ρ

1

π
∂ζ ∂ζ log

N
∑

k=0

|Fk |
2

)

dρ

ρ

=
1

4π

∫ 2π

θ=0
log

N
∑

k=0

∣

∣

∣
Fk

(

reiθ
)∣

∣

∣

2
dθ −

1

4π

∫ 2π

θ=0
log

N
∑

k=0

∣

∣

∣
Fk

(

r1eiθ
)∣

∣

∣

2
dθ

from which we conclude that

1

2π

∫ 2π

θ=0
log+

∣

∣

∣

∣

F j

F0

(

reiθ
)

∣

∣

∣

∣

dθ

≤
1

4π

(

∫ 2π

θ=0
log

N
∑

k=0

|Fk |
2

)

dρ

ρ

=

∫ r

ρ=r1

(

∫

|ζ |<ρ

1

π
∂ζ ∂ζ log

N
∑

k=0

|Fk |
2

)

dρ

ρ
+

1

4π

∫ 2π

θ=0
log

N
∑

k=0

∣

∣

∣
Fk

(

r1eiθ
)∣

∣

∣

2
dθ

= T (r, ϕ)+ O (log r) .

Finally from

N (r, r1, F0, 0) =
∫ r

ρ=r1

(

1

π
∂ζ ∂ζ̄ log |F0|

2
)

dρ

ρ

=

∫ r

ρ=r1

⎛

⎝

1

π
∂ζ ∂ζ̄ log

⎛

⎝

|F0|
2

∑N
j=0 |F0|

2
·

N
∑

j=0

|F0|
2

⎞

⎠

⎞

⎠

dρ

ρ

≤

∫ r

ρ=r1

⎛

⎝

1

π
∂ζ ∂ζ̄ log

N
∑

j=0

|F0|
2

⎞

⎠

dρ

ρ
= T (r, ϕ)

it follows that

T

(

r, r1,
F j

F0

)

=
1

2π

∫ 2π

θ=0
log+

∣

∣

∣

∣

F j

F0

(

reiθ
)

∣

∣

∣

∣

dθ + N (r, r1, F0, 0)

≤ O (T (r, r1, ϕ)+ log r) ‖

The verification of

T (r, r1, ϕ) ≤

n
∑

j=k

T

(

r, r1,
Fk

F0

)

+ O(1)
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Hyperbolicity of generic high-degree hypersurfaces 1149

for 1 ≤ j ≤ n is as follows. From

∫ r

ρ=r1

(

∫

|ζ |<ρ

1

π
∂ζ ∂ζ log

N
∑

k=0

|Fk |
2

)

dρ

ρ

=
1

4π

∫ 2π

θ=0
log

N
∑

k=0

∣

∣

∣
Fk

(

reiθ
)∣

∣

∣

2
dθ −

1

4π

∫ 2π

θ=0
log

N
∑

k=0

∣

∣

∣
Fk

(

r1eiθ
)∣

∣

∣

2
dθ

=
1

4π

∫ 2π

θ=0
log

(

1 +
N
∑

k=1

∣

∣

∣

∣

Fk

F0

(

reiθ
)

∣

∣

∣

∣

2
)

dθ +
1

2π

∫ 2π

θ=0
log
∣

∣

∣
F0

(

reiθ
)∣

∣

∣
dθ

−
1

4π

∫ 2π

θ=0
log

N
∑

k=0

∣

∣

∣
Fk

(

r1eiθ
)∣

∣

∣

2
dθ

we have

T (r, r1, ϕ) ≤

n
∑

k=1

1

2π

∫ 2π

θ=0
log+

∣

∣

∣

∣

Fk

F0

(

reiθ
)

∣

∣

∣

∣

dθ

+
1

2π

∫ 2π

θ=0
log
∣

∣

∣
F0

(

reiθ
)∣

∣

∣
dθ + O(1).

The verification of the inequality comparing characteristic functions of maps
and meromorphic functions is a straightforward modification of the proof of
Lemma (2.1.2) on p. 426 of [19], where the map is from C instead of from
C−
r0 .

The logarithmic derivative lemma holds for meromorphic functions on C−


r0 for r0 > 0 in the following form.

Proposition 6.2 (Logarithmic derivative lemma for functions meromorphic in
punctured disk centered at infinity) Let r1 > r0 > 0 and F be a meromorphic

function on C−
r0 . Then

∫ 2π

θ=0
log+

∣

∣

∣

∣

∣

F ′
(

reiθ
)

F
(

reiθ
)

∣

∣

∣

∣

∣

dθ = O (log T (r, r1, F)+ log r) ‖

for r > r1.

Proof By Lemma 6.1 there exists some function G holomorphic and nowhere
zero on C ∪ {∞} − 
r1 such that FG is meromorphic on C. Let H = FG.
Then (log F)′ = (log H)′ − (log G)′ and
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log+
∣

∣

∣

∣

∣

F ′
(

reiθ
)

F
(

reiθ
)

∣

∣

∣

∣

∣

≤ log+
∣

∣

∣

∣

∣

H ′
(

reiθ
)

H
(

reiθ
)

∣

∣

∣

∣

∣

+ log+
∣

∣

∣

∣

∣

G ′
(

reiθ
)

G
(

reiθ
)

∣

∣

∣

∣

∣

+ log 2.

Thus,

∫ 2π

θ=0
log+

∣

∣

∣

∣

∣

F ′
(

reiθ
)

F
(

reiθ
)

∣

∣

∣

∣

∣

dθ ≤

∫ 2π

θ=0
log+

∣

∣

∣

∣

∣

H ′
(

reiθ
)

H
(

reiθ
)

∣

∣

∣

∣

∣

+
1

r

∫

|ζ |=r

log+ |dG| + log 2

≤

∫ 2π

θ=0
log+

∣

∣

∣

∣

∣

H ′
(

reiθ
)

H
(

reiθ
)

∣

∣

∣

∣

∣

+ O(1) ≤ O (log T (r, H)+ log r) ‖

because G holomorphic and nowhere zero on C ∪ {∞} − 
r1 . The required
statement follows from

N (r, H,∞) ≤ N (r, r1, F,∞)+ O (log r)

and log+ |H | ≤ log+ |F | + O(1). By Lemma 6.1 on the trivial multiplicative
version of Heftungslemma, for some holomorphic nowhere-zero function G0
on C ∪ {∞} − 
r2 with r0 < r2 < r1 such that H(ζ ) := ζ ℓF0(ζ )G0(ζ ) is
holomorphic on C (with coordinate ζ ) and is nonzero at ζ = 0.

1

2π

∫ 2π

θ=0
log
∣

∣

∣
F0

(

reiθ
)∣

∣

∣
dθ

=
1

2π

∫ 2π

θ=0
log

∣

∣

∣

∣

(

reiθ
)ℓ (

F0G0

(

reiθ
))

∣

∣

∣

∣

dθ

−
1

2π

∫ 2π

θ=0
log

∣

∣

∣

∣

(

reiθ
)−ℓ (

G0

(

reiθ
))

∣

∣

∣

∣

dθ

= log |H(0)| + N (r, H, 0)−
1

2π

∫ 2π

θ=0
log

∣

∣

∣

∣

(

reiθ
)−ℓ (

G0

(

reiθ
))

∣

∣

∣

∣

dθ

= N (r, H, 0)+ O(1) ≤ N (r, r1, F0, 0)+ O(1)

≤

n
∑

k=1

N

(

r, r1,
Fk

F0
,∞

)

+ O(1)

because F0, F1, . . . , Fn are assumed to have no common zeroes on C−
r0 .
Thus,
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T (r, ϕ)≤

n
∑

k=1

1

2π

∫ 2π

θ=0
log+

∣

∣

∣

∣

Fk

F0

(

reiθ
)

∣

∣

∣

∣

dθ+

n
∑

k=1

N

(

r, r1,
Fk

F0
,∞

)

+O(1)

=

n
∑

k=1

T

(

r, r1,
Fk

F0

)

+ O(1).

⊓⊔

Proposition 6.3 (Vanishing of pullback of jet differential vanishing on an
ample divisor by holomorphic map to punctured disk centered at infinity) Let

X be a compact complex manifold with a Kähler formη andω be a holomorphic

jet differential on X vanishing on some ample divisor D of X. Let r1 > r0 > 0
and ϕ : C − 
r0 → X be a holomorphic map. Let evalidC

(ϕ∗ω) denote the

function on C−
r0 whose value at ζ is the evaluation of the jet differentialϕ∗ω

at the jet defined by the identity map of C−
r0 at ζ . Then either evalidC
(ϕ∗ω)

is identically zero on C−
r0 or T (r, r1, ϕ, η) = O (log r) ‖.

Proof Let k be the order of jet differential ω and m be its weight. Let L D be
the line bundle associated to the ample divisor D. Let e−χD be a smooth metric
of L D whose curvature form ηD is strictly positive definite on X . Let sD be
a holomorphic section of L D whose divisor is D. Let � = evalidC

(ϕ∗ω). We
assume that � is not identically zero. We apply twice integration of Laplacian
in (1.10) to

g(ζ ) = log

(

|�|2

|sD|
2 e−χD

)

.

Since ω is holomorphic on X and vanishing on D, it follows that

T (r, r1, ϕ, ηD) ≤
1

4π

∫ 2π

θ=0
log

(

|�|2

|sD|
2 e−χD

)

dθ + O(1).

Here we have the inequality instead of an identity, because of possible con-
tribution from the zero-set of ω

sD
. At this point enters Bloch’s technique of

applying the logarithmic derivative lemma by using the logarithm of global
meromorphic functions as local coordinates. As functions on the k-jet space
Jk(X) of X (with the right-hand side being global functions and the left-hand
side being only local functions due to the transition functions of the line bun-
dles L D),

∣

∣

∣

∣

ω

sD

∣

∣

∣

∣

≤ C

!
∑

λ=1

∏

ν j,ℓ, j,ℓ

∣

∣

∣
dℓ log F

(λ)
j,ℓ

∣

∣

∣

ν j,ℓ
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for some C > 0 and a finite collection
{

F
(λ)
j,ℓ

}

of global meromorphic functions

on X , where the product is taken over the indices ν j,ℓ, j, ℓ with the ranges
1 ≤ j ≤ n, 1 ≤ ℓ ≤ k and

∑

1≤ j≤n, 1≤ℓ≤k ℓ ν j,ℓ = m. By Nevanlinna’s
logarithmic derivative lemma (extended to C outside a disk centered at the
origin) given in Proposition 6.2,

∫ 2π

θ=0
log+

∣

∣

∣
dℓ log F

(λ)
j,ℓ

∣

∣

∣

(

reiθ
)

dθ = O (log T (r, r1, ϕ, ηD)+ log r) ‖.

Hence

∫ 2π

θ=0
log

(

|�|2

|sD|
2 e−χD

)

(

reiθ
)

dθ = O (log T (r, r1, ϕ, ηD)+ log r) ‖

and we get

T (r, r1, ϕ, ηD) ≤ O (log T (r, r1, ϕ, ηD)+ log r) ‖

from which it follows that

T (r, r1, ϕ, ηD) = O (log r) ‖

and

T (r, r1, ϕ, η) = O (log r) ‖.

⊓⊔

Remark 6.4 The argument in Proposition 6.3 is simply a modification of the
case of the usual Schwarz lemma on pullbacks of jet differentials (see e.g.,
Theorem 2 on p. 1140 of [24]) when the holomorphic map ϕ is from the entire
affine complex line C to X . For this case, the pullbackϕ∗ω is always identically
zero on C for the following reason. We can replace ϕ by the composite ψ of
ϕ with the exponential map from C to C to rule out the case of T (r, ψ, η) =

O (log r) ‖ so that evalidC
(ψ∗ω) vanishes identically on C. Since any k-jet

of C at any point ζ0 of C can realized by some holomorphic map σ from C to
itself, from the vanishing of evalidC

(σ ∗ω) vanishes identically on C it follows
that ψ∗ω is identically zero on C, which implies that ϕ∗ω is identically zero
on C.

Lemma 6.5 (Extension of holomorphic maps with log order growth character-
istic function across infinity point) Letϕ be a holomorphic map from C−
r0 to

Pn given by holomorphic functions [F0, . . . , Fn] on C−
r0 without common
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zeroes. If T (r, r1, ϕ) = O(log r) ‖, then ϕ can be extended to a holomorphic

map from C ∪ {∞} −
r0 to Pn .

Proof By the comparison of characteristic functions of maps defined outside
a disk given in Sect. 6.1.1, we have

T

(

r,
F j

F0

)

≤ T (r, ϕ) = O(log r) ‖

for 1 ≤ j ≤ n. By the trivial multiplicative version of the Heftungslemma
given in (6.1), there exists some holomorphic nowhere zero function G j on

C ∪ {∞} −
r1 such that G j
F j

F0
is meromorphic on C. From

T

(

r,G j

F j

F0

)

= T

(

r,
F j

F0

)

+ O(1) ≤ T (r, ϕ) = O(log r) ‖

for 1 ≤ j ≤ n we conclude that G j
F j

F0
is a rational function on C. Hence

F j

F0

can be extended to a meromorphic function on C∪ {∞}−
r0 . Thus ϕ can be
can be extended to a holomorphic map from C ∪ {∞} −
r0 to Pn . ⊓⊔

Proposition 6.6 Let X be a compact complex manifold. Let ω1, . . . , ωN be

holomorphic k-jet differentials of total weight m on X with each vanishing

on some ample divisor of X. Assume that at any point P0 of Jk(X) which is

representable by a nonsingular complex curve germ, at least one ofω1, . . . , ωN

is nonzero at P0 for some 1 ≤ j ≤ N. Then any holomorphic map ϕ from

C − 
r0 to X can be extended to a holomorphic map from C ∪ {∞} − 
r0

to X.

Proof We can assume without loss of generality that ϕ is not a constant map
so that at some point ζ0 of C −
r0 the differential of ϕ is nonzero at ζ0. Let
P0 be the element of Jk(X) at the point ϕ(ζ0) of X defined by the nonsingular
complex curve germ represented by ϕ at ζ0. By assumption, there exists some
1 ≤ j0 ≤ N such that ω j0 is nonzero at P0. It follows that the function
evalidC

(ϕ∗ω j0) associated to ϕ∗ω j0 as described in Sect. 1.11 is nonzero at ζ0.
Let η be a Kähler form of X and let r1 > r0. By Proposition 6.3 we have

T (r, r1, ϕ, η) = O(log r) ‖,

which implies that the holomorphic map ϕ from C−
r0 to X can be extended
to a holomorphic map from C ∪ {∞} −
r0 to X . ⊓⊔

Theorem 6.7 For any integer n ≥ 3 there exists a positive integer δn with

the following property. For any positive integer δ ≥ δ there exists a proper
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subvariety Z in the moduli space PN of all hypersurfaces of degree δ in Pn

(where N =
(

n+δ
n

)

) such that for α ∈ Pn − Z and any holomorphic map

ϕ : C −
r0 → X (α) (where r0 > 0) can be extended to a holomorphic map

C ∪ {∞} − 
r0 → X (α), where X (α) is the hypersurface of degree δ in Pn

corresponding to the point α in the moduli space PN .

Proof By Proposition 3.11 on global generation on jet space by slanted vector
fields at points representable by regular curve germs. ⊓⊔

6.2 Entire function solutions of polynomial equations of slowly varying
coefficients

6.2.1 Historical background, osculation condition, and log-pole jet

differential

Before the introduction of the language of geometry of manifolds, hyperbol-
icity problems were formulated in terms of entire functions satisfying func-
tional equations. For example, a theorem of Borel states that if entire func-
tion ϕ1, . . . , ϕn satisfy eϕ1 + · · · + eϕn = 0, then ϕ j − ϕk is constant with
1 ≤ j < k ≤ n. In the formulation in terms of functional equations satisfied
by entire functions, the hyperbolicity of a generic hypersurface of high degree
δ states that no n+ 1 entire holomorphic functions ϕ0(ζ ), . . . , ϕn(ζ ), with the
ratios

ϕ j

ϕℓ
not all constant, can satisfy a homogeneous polynomial equation

∑

ν0+···+νn=δ

αν0,...,νnϕ
ν1
1 · · ·ϕ

ν1
1 ≡ 0

of degree δ whose constant coefficients αν0,...,νn are generic.
There have also been considerable investigations on the situation when

the constant coefficients are allowed to vary slowly. For example, on p. 387
of his 1897 paper [5], Emile Borel studied the problem of entire functions
γ1(ζ ), . . . , γn(ζ ) and ϕ1(ζ ), . . . , ϕn(ζ ) satisfying γ1eϕ1 + · · · + γneϕn = 0
and proved that γ1(ζ ), . . . , γn(ζ )must be all identically zero if the growth rate
on |ζ | = r of γ1(ζ ), . . . , γn(ζ ) and ϕ1(ζ ), . . . , ϕn(ζ ) is no more than eμ(|ζ |)

while the growth rate on |ζ | = r of ϕ j (ζ )− ϕℓ(ζ ) for j �= ℓ is at least μ(r)2

for some function μ(r) as r →∞.
For the hyperbolicity problem of generic hypersurface of degree δ, we now

study the question of entire functions satisfying a homogeneous polynomial
equation of degree δ with varying coefficients. More precisely, we ask whether
there are entire functions ϕ0(ζ ), . . . , ϕn(ζ )without common zeroes and entire
functions αν0,...,νn (ζ ) for ν0 + · · · + νn = δ without any common zeroes
satisfying
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∑

ν0+···+νn=δ

αν0,...,νn (ζ )ϕ0(ζ )
ν0 · · ·ϕn(ζ )

νn ≡ 0 (6.1)0

such that

(i) ψ : ζ �→ α(ζ ) =
(

αν0,...,νn (ζ )
)

∈ PN is nonconstant,
(ii) α (ζ0) =

(

αν0,...,νn (ζ0)
)

is not in the exceptional set Z in PN for some
ζ0 ∈ C, and

(iii) T (r, ψ) = o (T (r, ϕ)+ log r) ‖, where ϕ : C → Pn is defined by
[ϕ0, . . . , ϕn].

Here we handle the simpler question which assumes in addition that

∑

ν0+···+νn=δ

αν0,...,νn (ζ )
d j

dζ j

(

ϕ0(ζ )
ν0 · · ·ϕn(ζ )

νn
)

≡ 0 (6.1) j

for 1 ≤ j ≤ n−1. The additional set of n−1 equations (6.1) j for 1 ≤ j ≤ n−1
is equivalent to the set of n − 1 equations

∑

ν0+···+νn=δ

(

d j

dζ j
αν0,...,νn (ζ )

)

(

ϕ0(ζ )
ν0 · · ·ϕn(ζ )

νn
)

≡ 0 (6.2) j

for 1 ≤ j ≤ n − 1, because of the Eq. (6.1)0 itself and the result obtained by
differentiating it j-times with respect to ζ .

A geometric interpretation of the conditions (6.1)0 and (6.2) j for 1 ≤ j ≤

n − 1 is the following. When

{

ϕ0(ζ )
ν0 · · ·ϕn(ζ )

νn
}

ν0+···+νν=δ

is considered as the set of coefficients of a linear equation which defines
a hyperplane H(ζ ) in PN , as ζ varies in C we have a moving hyperplane
depending on ζ . Having entire functions ϕℓ(ζ ) for 0 ≤ ℓ ≤ n and entire
functions αν0,...,νn (ζ ) for ν0+· · ·+νn = δ satisfying (6.1) j for 0 ≤ j ≤ n−1
is equivalent to the existence of a holomorphic map

ζ �→ α(ζ ) =
(

αν0,...,νn (ζ )
)

ν0+···+νn=δ

from C to PN which osculates the hyperplane H(ζ ) to order n−1 in the sense
that the curve ζ �→ α(ζ ) in PN is tangential to order n − 1 to the hyperplane
H (ζ0) of PN at the point α (ζ0) ∈ PN . Condition (iii) of T (r, ψ) being of
order o (T (r, ϕ)+ log r) is the condition of slowly varying coefficients.

For this question of polynomial equations with slowly varying coefficients
under additional assumption of osculation, we present here two results. The
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first one, corresponding to hyperbolicity, is that when the map ζ �→ α(ζ ) is
slowly moving compared to the map ζ �→ ϕ(ζ ) ∈ Pn , no such pair of curves
ζ �→ α(ζ ) ∈ PN and ζ �→ ϕ(ζ ) ∈ Pn exist.

The second result, corresponding to the Big Picard Theorem, concerns
extension across ∞ when the pair of maps ζ �→ ϕ(ζ ) ∈ Pn and ζ �→ α(ζ ) ∈

PN are only defined for ζ ∈ C−
r0 instead of on C.
Since the Schwarz lemma is the crucial tool for the hyperbolicity problem,

for the more general case of slowly varying coefficients we need a variation of
the Schwarz lemma for it. We are going to present it in the form which is more
than we need by allowing log-pole jet differentials rather than just holomorphic
jet differentials so that it can be used later in this article in the proof of Second
Main Theorems for log-pole jet differentials (see Theorems 6.12 and 6.13
below). A log-pole jet differential means that locally it is of the form

∑

λ

Gλ

(

dℓ1,λx1

)ν1,λ
· · ·
(

dℓ1,λx1

)ν1,λ (
dσ1,λ log F1

)τ1,λ · · ·
(

dσμλ,λ log Fμλ
)τμλ,λ ,

where x1, . . . , xn are local holomorphic coordinates, Gλ and F1, . . . , Fμλ are
local holomorphic functions. Each

(

dℓ log F
)ν

contributes νℓ times the divisor
of F to the log-pole divisor (with multiplicities counted) of the log-pole jet
differential.

Proposition 6.8 (General Schwarz lemma for log-pole differential on sub-
variety of jets and map with slow growth for pole set) Let X be a compact

complex algebraic manifold of complex dimension n and Y be a complex

subvariety of the space Jk(X) of k-jets of X. Let πk : Jk(X) → X be the

natural projection map. Let D and E be nonnegative divisors of X whose

associated line bundles L D and L E respectively have smooth metrics e−χD

and e−χD with smooth (1, 1)-forms ηD and ηE as curvature forms such that

D+ E is an ample divisor of X and its curvature form ηD + ηE for the metric

e−χD−χE is strictly positive on X. Let sD (respectively sE ) be the holomorphic

section of L D (respectively L E ) whose divisor is D (respectively E). Let F be

a nonnegative divisor of X and Supp F be its support. Let ω be a function on

Y such that sE (sD)
−1 ω is holomorphic on Y − π−1

k (Supp F). Assume that

for some finite open cover {U j }
J
j=1 of X, there exists a log-pole k-form ω j

on U j (for 1 ≤ j ≤ J ), whose log pole is contained in F with multiplicities

counted, such that on Y ∩ π−1
k

(

U j

)

the function ω agrees with the function

on π−1
k

(

U j

)

defined by sD (sE )
−1 ω j for 1 ≤ j ≤ J . Let r1 > r0 > 0. Let

ϕ : C − 
r0 → X be a holomorphic map such that the image of the map

Jk(ϕ) : Jk

(

C−
r0

)

→ Jk(X) induced by ϕ is contained in Y . Let G j (ζ ) be

the function evalidC
(ϕ∗jω) associated to ϕ∗ω j as explained in (1.11). If G j (ζ )

is not identically zero on C−
r0, then
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T (r, r1, ϕ, ηD) ≤ T (r, r1, ϕ, ηE )+ N (r, r1, ϕ, F)

+O (log T (r, r1, ϕ, ηD + ηE )+ log r) ‖.

In particular, if for some ε > 0 one assumes that

N (r, r1, ϕ, F)+ T (r, r1, ϕ, |ηE |) ≤ (1 − ε) (T (r, r1, ϕ, ηD)) ‖,

then either G j (ζ ) is identically zero for all 1 ≤ j ≤ J or

T (r, ϕ, ηD + ηE ) = O (log r) ‖.

Proof We assume that G j0(ζ ) is not identically zero for some 1 ≤ j0 ≤ J .
We apply twice integration of Laplacian with in (1.10) to

g(ζ ) = log

(

∣

∣G j0(ζ )
∣

∣

2
ϕ∗

(

|sE |
2 e−χE

|sD|
2 e−χD

))

.

Since ω j is holomorphic on Y − π−1
k (Supp F), it follows that

T (r, r1, ϕ, ηD)− T (r, r1, ϕ, ηE )− N (r, r1, ϕ, F)

≤
1

4π

∫ 2π

θ=0
log

(

∣

∣G j0(ζ )
∣

∣

2
ϕ∗

(

|sE |
2 e−χE

|sD|
2 e−χD

))

(

reiθ
)

dθ + O(1).

Here we have the inequality instead of an identity, because of possible contribu-
tion from the zero-set of

ω j0
sD

. At this point enters Bloch’s technique of applying
the logarithmic derivative lemma by using the logarithm of global meromor-
phic functions as local coordinates. As functions on the space J vert

n−1 (X ) of
vertical (n−1)-jets on X (with the right-hand side being global functions and
the left-hand side being only local functions due to the transition functions of
the line bundles L D and L E ),

∣

∣ω j0sE sD

∣

∣ ≤ C

!
∑

λ=1

∏

ν j,ℓ, j,ℓ

∣

∣

∣
dℓ log F

(λ)
j,ℓ

∣

∣

∣

ν j,ℓ

for some C > 0 and a finite collection
{

F
(λ)
j,ℓ

}

of global meromorphic functions

on X , where the product is taken over the indices ν j,ℓ, j, ℓ with the ranges
1 ≤ j ≤ n, 1 ≤ ℓ ≤ k and

∑

1≤ j≤n, 1≤ℓ≤k ℓ ν j,ℓ = m. By Nevanlinna’s
logarithmic derivative lemma (extended to C outside a disk centered at the
origin) given in Proposition 6.2,
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∫ 2π

θ=0
log+

∣

∣

∣
dℓ log F

(λ)
j,ℓ

∣

∣

∣

(

reiθ
)

dθ=O (log T (r, r1, ϕ, ηD + ηE )+ log r) ‖.

Hence

∫ 2π

θ=0
log

(

∣

∣G j0(ζ )
∣

∣

2
ϕ∗

(

|sE |
2 e−χE

|sD|
2 e−χD

))

(

reiθ
)

dθ

= O (log T (r, r1, ϕ, ηD + ηE )+ log r) ‖

and we get

T (r, r1, ϕ, ηD) ≤ T (r, r1, ϕ, ηE )+ N (r, r1, ϕ, F)

+O (log T (r, r1, ϕ, ηD + ηE )+ log r) ‖.

If now for some ε > 0 one assumes that

N (r, r1, ϕ, F)+ T (r, r1, ϕ, |ηE |) ≤ (1 − ε) (T (r, r1, ϕ, ηD)) ‖,

then one obtains right away T (r, ϕ, ηD + ηE ) = O (log r) ‖. ⊓⊔

Theorem 6.9 (Entire function solution of polynomial equations with slowing
varying coefficients) There exists a positive integer δn and for δ ≥ δn there

exists a property subvariety Z of PN (where N =
(

δ+n
n

)

) with the following

property. There cannot exist entire functions ϕ0(ζ ), . . . , ϕn(ζ ) without com-

mon zeroes and entire functions αν0,...,νn (ζ ) for ν0 + · · ·+ νn = δ without any

common zeroes satisfying

∑

ν0+···+νn=δ

αν0,...,νn (ζ )
d j

dζ j

(

ϕ0(ζ )
ν0 · · ·ϕn(ζ )

νn
)

≡ 0 for 0 ≤ j ≤ n − 1

such that

(i) the map ψ : ζ �→ α(ζ ) =
(

αν0,...,νn (ζ )
)

∈ PN is nonconstant,

(ii) α (ζ0) =
(

αν0,...,νn (ζ0)
)

is not in the exceptional set Z in PN for some

ζ0 ∈ C, and

(iii) T (r, ψ) = o (T (r, ϕ)+ log r) ‖, where ϕ : C → Pn is defined by

[ϕ0, . . . , ϕn].

Proof We apply Proposition 6.8 with k = n − 1 to the space Jn−1(X ) of
(n − 1)-jets of the universal hypersurface X with subvariety Y equal to the
space J vert

n−1 (X ) of vertical (n − 1)-jets of X . The assumption

∑

ν0+···+νn=δ

αν0,...,νn (ζ )
d j

dζ j

(

ϕ0(ζ )
ν0 · · ·ϕn(ζ )

νn
)

≡ 0 for 0 ≤ j ≤ n − 1
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Hyperbolicity of generic high-degree hypersurfaces 1159

implies that for every ζ ∈ C the element of Jn−1(X ) represented by the
parametrized complex curve germ ϕ at ζ belongs to Y = J vert

n−1 (X ).
By Proposition 5.1 we have a proper subvariety Z of PN and forα ∈ PN−Z

and 1 ≤ j ≤ J a holomorphic family of (n − 1)-jet differentials ω(α)j on X (α)

vanishing on the infinity hyperplane of Pn (extendible to a meromorphic family
over all of PN ) such that, at any point P0 of Jn−1

(

X (α)
)

with α ∈ PN − Z

which is representable by a nonsingular complex curve germ, at least one ω(α)j

is nonzero at P0 for some 1 ≤ j ≤ J .
Since for each 1 ≤ j ≤ J the holomorphic family ω

(α)
j for α ∈ PN − Z

can be extended to a meromorphic family for α varying in all of PN , we can
find a divisor E j in PN such that for all 1 ≤ j ≤ J the pole-set of ω(α)j

as a meromorphic vertical (n − 1)-jet differential on X is contained in the
intersection of X and Pn × E j with multiplicities counted. For 1 ≤ j ≤ J ,

becauseω(α)j vanishes on an ample divisor of X (α) for α ∈ PN −Z , we can find
a divisor D j in X such that D j + E j is an ample divisor of X and the zero-set

of ω(α)j as a meromorphic vertical (n − 1)-jet differential on X contains D j

with multiplicities counted.
Since ψ : C → PN is nonconstant and T (r, ψ) = o (T (r, ϕ)+ log r) ‖,

it follows that the differential dϕ is nonzero for some ζ0 ∈ C. Denote by P0
the point in Jn−1

(

X (α)
)

represented by the nonsingular complex curve germ

ϕ at ζ0. Some ω(α)j0
has nonzero value at P0. From Proposition 6.8 applied to

ω
(α)
j0

, it follows that

T (r, ϕ) = O(log r) ‖,

which would contradict

lim sup
r→∞

T (r, ψ)

log r
> 0

from the nonconstancy of the map ψ and the assumption

T (r, ψ) = o (T (r, ϕ)+ log r) ‖.

⊓⊔

The analogue of the Big Picard Theorem about removable essential singu-
larities is the following result.

Theorem 6.10 (Removing essential singularity for holomorphic solution of
polynomial equations with slowing varying coefficients) There exists a pos-

itive integer δn and for δ ≥ δn there exists a proper subvariety Z of PN
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(where N =
(

δ+n
n

)

) with the following property. For some r > r0 > 0 let

ϕ0(ζ ), . . . , ϕn(ζ )be holomorphic functions on C−
r0 without common zeroes

and let αν0,...,νn (ζ ) for ν0+· · ·+νn = δ be holomorphic functions on C−
r0

without common zeroes. Assume that

∑

ν0+···+νn=δ

αν0,...,νn (ζ )
d j

dζ j

(

ϕ0(ζ )
ν0 · · ·ϕn(ζ )

νn
)

≡ 0 for 0 ≤ j ≤ n − 1

on C−
r0 such that

(i) the map ψ : ζ �→ α(ζ ) =
(

αν0,...,νn (ζ )
)

∈ PN is nonconstant,

(ii) α (ζ0) =
(

αν0,...,νn (ζ0)
)

is not in the exceptional set Z in PN for some

ζ0 ∈ C−
r0, and

(iii) T (r, r1, ψ) = o (T (r, r1, ϕ)+ log r) ‖.

Then ϕ0(ζ ), . . . , ϕn(ζ ) and αν0,...,νn (ζ ) for ν0 + · · ·+ νn = δ can be extended

to meromorphic functions on C−
r0 .

Proof We use the same notations as in the proof of Theorem 6.9 except the
domains for the maps ϕ : C − 
r0 → X and psi : C − 
r0 → PN are
now different. Without loss of generality we can assume that the map ϕ is
nonconstant, otherwise the extendibility of ϕ and ψ is clear. Denote by P0 the
point in Jn−1

(

X (α)
)

represented by the nonsingular complex curve germ ϕ at

ζ0. Some ω(α)j0
has nonzero value at P0. From Proposition 6.8 applied to ω(α)j0

,
it follows that

T (r, ϕ) = O(log r) ‖.

Now the extendibility ofϕ andψ to respectively holomorphic maps C−
r0 →

X and C−
r0 → PN follows from Lemma 6.5. ⊓⊔

6.3 Second main theorem from log-pole jet differential

Nevanlinna’s Second Main Theorem is a quantitative version of the Little
Picard Theorem. The hyperbolicity of generic hypersurface of high degree
corresponds to the Little Picard Theorem. We now discuss the analogue of
Nevanlinna’s Second Main Theorem for any regular hypersurface of high
degree from our approach of jet differentials.

In contrast to the use of holomorphic jet differentials vanishing on an ample
divisor in the hyperbolicity problem, the jet differentials used for the Second
Main Theorem are log-pole jet differentials vanishing on ample divisor. Our
method fits in with Cartan’s proof of the Second Main Theorem for entire
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Hyperbolicity of generic high-degree hypersurfaces 1161

holomorphic curves in Pn and a collection of hyperplanes in Pn in general
position given in [6].

We will first show how to construct log-pole jet differentials on Pn which
vanishes on an appropriate ample divisor of Pn and whose log pole-set is
contained in the hypersurface. We then present two Second Main Theorems
for log-pole jet differentials, with the second one dealing with the situation of
slowly moving targets. Then we show how Cartan’s proof can be recast in our
setting of Second Main Theorem for log-pole jet differentials vanishing on an
appropriate ample divisor.

Second main theorems are useful only when the estimates are reasonably
sharp. In the case at hand, because of our construction of jet differentials is so
far away from the conjectured optimal situation, the discussion about Second
Main Theorems can only serve as pointing out a connection between Second
Main Theorems and jet differentials and their construction.

Theorem 6.11 (Existence of log pole jet differential) Let 0 < ε0, ε
′
0 < 1.

There exists a positive integer δ̂n such that for any regular hypersurface X of

degree δ ≥ δ̂n in Pn there exists a non identically zero log-pole n-jet differential

ω on Pn of weight ≤ δε0 which vanishes with multiplicity at least δ1−ε′0 on the

infinity hyperplane of Pn and which is holomorphic on Pn − X. In particular,

the log-pole divisor of ω is no more than λ times X with λ ≤ nδε0 .

Proof We choose ǫ, ǫ′, θ0, θ , θ ′ in the open interval (0, 1) such that (n+1)θ0+

θ ≥ (n + 1)+ ǫ, 1− ε′0 ≤ θ ′ < 1− ǫ′, and ε0 ≤ θ . We apply Proposition 4.8
to get A = A(n + 1, ǫ, ǫ′) from it and then set δ̂n+1 = A.

Let f (x1, . . . , xn) be a polynomial in terms of the inhomogeneous coor-
dinates x1, . . . , xn of Pn which defines X . Let X̂ be the regular hypersurface
in Pn+1 defined by the polynomial F = f (x1, . . . , xn) − xδn+1 in the inho-
mogeneous coordinates x1, . . . , xn+1 of Pn+1. We apply Proposition 4.8 to F

(instead of to f ) to get an n-jet differential ω̂ of the form Q
Fx1−1 which vanishes

to order ≥ δθ
′
at the infinity hyperplane of Pn+1, where Q is a polynomial in

d j x1, . . . , d j xn+1 (0 ≤ j ≤ n)

which is of degree m0 =
⌈

δθ0
⌉

in x1, . . . , xn+1 and is of homogeneous weight
m =

⌈

δθ
⌉

in

d j x1, . . . , d j xn+1 (1 ≤ j ≤ n)

when the weight of d j xℓ is assigned to be j .
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We choose a nonzero integer ℓ such that one nonzero term of Q

xℓn+1
is of the

form

Q0

(

dxn+1

xn+1

)ν1

· · ·

(

dnxn+1

xn+1

)νn

,

where Q0 is a polynomial in the variables

d j x1, . . . , d j xn (0 ≤ j ≤ n)

with constant coefficients and ν1, . . . , νn are nonnegative integers.
The complex manifold X̂ is a branched cover over Pn with cyclic branch-

ing of order δ at X under the projection map π̂ : X̂ → Pn induced by
(x1, . . . , xn, xn+1) �→ (x1, . . . , xn). Let ω be the direct image of

ω̂

xℓn+1

=
Q

xℓn+1

(

fx1 − 1
)

under π̂ . The n-jet differential ω on Pn can be computed as follows. First we
express dℓxn+1 (by induction on ℓ) as a polynomial of the variables

xn+1, d log xn+1, d2 log xn+1, . . . , dℓ log xn+1

with constant coefficients so that Q

xℓn+1
is expressed as a polynomial of

x1, . . . , xn+1 and

d j x1, . . . , d j xn, d j log xn+1 (0 ≤ j ≤ n)

with constant coefficients. Then we obtain ω from Q

xℓn+1

(

fx1−1
) by replacing

d j log xn+1 by d j log f and setting xn+1 equal to 0. The log-pole jet differential
ω on Pn is not identically zero, because of the nonzero term

Q0

(

dxn+1

xn+1

)ν1

· · ·

(

dnxn+1

xn+1

)νn

,

in Q. The log-pole divisor of ω is no more than λ times X with λ ≤ nδε0 ,
because ω is an n-jet differential of weight ≤ δε0 . ⊓⊔

By applying Proposition 6.8, we have the following two Second Main The-
orems for log-pole jet differentials, with second one dealing with the case of
slowly moving targets.
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Theorem 6.12 (Second main theorem from log-pole jet differentials) Let X be

an n-dimensional compact complex manifold with an ample line bundle L. Let

D1, . . . , Dp, E1, . . . , Eq be divisors of L. Let ω be a log-pole jet differential

on X vanishing on D = D1 + · · · + Dp such that the log-pole set of ω is

contained in E = E1 + · · · + Eq with multiplicities counted. Then for any

holomorphic map ϕ from the affine complex line C to X such that the image

of ϕ is not contained in E and the pullback ϕ∗ω is not identically zero,

pT (r, ϕ, L) ≤ N (r, ϕ, E)+ O (log T (r, ϕ, L)) ‖

holds. In other words,

q
∑

j=1

m
(

r, ϕ, E j

)

≤ (q − p)pT (r, ϕ, L)+ O (log T (r, ϕ, L)) ‖.

The meaning of the log-pole set of ω being contained in E = E1 + · · · + Eq

with multiplicities counted is the following. Locally ω is of the form

∑

τ1,λ1,...,τk ,λk

hτ1,λ1,...,τk ,λk

(

dτ1 log F1
)λ1 · · ·

(

dτℓ log Fℓ
)λℓ

with

τ1λ1 div F1 + · · · + τℓλℓ div Fℓ

contained in E with multiplicities counted, where div F j is the divisor of F j .

Theorem 6.13 (Second main theorem for jet differential with slowly moving
targets) Let S ⊂ PN be a complex algebraic manifold and X ⊂ Pn̂ × S be a

complex algebraic manifold. Let π : X → S be the projection induced by the

natural projection Pn̂ × PN → PN to the second factor. Let L S be an ample

line bundle on S. Let L be a line bundle on X such that L+π−1 (L S) is ample

on X. Let D1, . . . , Dp, E1, . . . , Eq be divisors of L. Let D = D1 + · · · + Dp

and E = E1 + · · · + Eq . For α ∈ S let X (α) = π−1(α) and D(α) = D|X (α)

and E (α) = E |X (α) . Let Z be a proper subvariety of S. For α ∈ S − Z

let ω(α) be a log-pole jet differential on X (α) such that ω(α) vanishes on the

divisor D(α) and the log-pole set of ω(α) is contained in the divisor E (α) with

multiplicities counted. Assume that ω(α) is holomorphic in α for α ∈ S − Z

and is meromorphic in α for α ∈ S. Let ϕ be a holomorphic map from the

affine complex line C to X such that the image of π ◦ ϕ is not contained in Z

and T (r, π ◦ ϕ, L S) = o
(

T
(

r, ϕ, L + π−1 (L S)
))

, then

qT
(

r, ϕ, L + π−1 (L S)
)

≤ N (r, ϕ, D)+ o
(

T
(

r, ϕ, L + π−1 (L S)
))

‖.
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In other words,

p
∑

j=1

m
(

r, ϕ, D j

)

≤ (q − p) T
(

r, ϕ, L + π−1 (L S)
)

+o
(

T
(

r, ϕ, L + π−1 (L S)
))

‖.

In the product case of X = X (0) × S with D j = D
(0)
j , the proximity function

m
(

r, ϕ, D j

)

in the formulation can be replaced by the proximity function

m
(

r, pr1 ◦ ϕ, D
(0)
j

)

, because N (r, ϕ, D) is equal to N
(

r, pr1 ◦ ϕ, D
(0)
j

)

and

we can apply Nevanlinna’s First Main Theorem to pr1 ◦ϕ and the divisor D
(0)
j

and use the assumption that T (r, π ◦ ϕ, L S) = o
(

T
(

r, ϕ, L + π−1 (L S)
))

.

Here pr1 means the natural projection pr1 : Pn̂ × PN → Pn̂ to the first factor.

In the following remark we discuss how Cartan’s proof of his Second Main
Theorem for hyperplanes in general position can be interpreted in the setting
of the Second Main Theorem for log-pole jet differentials.

Remark 6.14 Cartan’s Second Main Theorem for hyperplanes in Pn for hyper-
planes in general position given in [6] is simply the special case of Theo-
rem 6.12 with

ω =
Wron(dx1, . . . , dxn)

F1 · · · Fq

in inhomogeneous coordinates x1, . . . , xn of Pn , where F1, . . . , Fq are the
degree-one polynomial in x1, . . . , xn which define the q hyperplanes in Pn in
general position.

Here the notation for the Wronskian

Wron (η1, . . . , ηℓ)

for jet differentials η1, . . . , ηℓ on a complex manifold Y is used to mean the
jet differential

det
(

dλ−1η j

)

1≤λ, j≤ℓ
=
∑

σ∈Sℓ

(sgn σ) ησ(1)
(

dησ(2)
)

· · ·
(

dℓ−1ησ(ℓ)

)

on Y , where Sℓ is the group of all permutations of {1, 2, . . . , ℓ} and sgn σ is
the signature of the permutation σ .

The denominator F1 · · · Fq in ω gives the vanishing order q at the infinity
hyperplane of Pn . The key argument here is that from the general position
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assumption of the zero-sets of F1, . . . , Fq we can locally write ω as a constant
times

Wron
(

d Fν1, . . . , d Fνn

)

F1 · · · Fq

=
Wron

(

d log Fν1, . . . , d log Fνn

)

Fνn+1 · · · Fνq

in a neighborhood U of a point when F j is nowhere zero on U for j not equal
to any of the indices ν1, . . . , νn .

Open Access This article is distributed under the terms of the Creative Commons Attribution
License which permits any use, distribution, and reproduction in any medium, provided the
original author(s) and the source are credited.
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