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The renormalization theory of critical circle maps was developed in the late
1970’s–early 1980’s to explain the occurence of certain universality phenomena.
These phenomena can be observed empirically in smooth families of circle home-
omorphisms with one critical point, the so-called critical circle maps, and are analo-
gous to Feigenbaum universality in the dynamics of unimodal maps. In the works
of Ostlund et al. [ORSS] and Feigenbaum et al. [FKS] they were translated into
hyperbolicity of a renormalization transformation.

The first renormalization transformation in one-dimensional dynamics was
constructed by Feigenbaum and independently by Coullet and Tresser in the set-
ting of unimodal maps. The recent spectacular progress in the unimodal renormal-
ization theory began with the seminal work of Sullivan [Sul1,Sul2,MvS]. He intro-
duced methods of holomorphic dynamics and Teichmüller theory into the subject,
developed a quadratic-like renormalization theory, and demonstrated that renor-
malizations of unimodal maps of bounded combinatorial type converge to a horse-
shoe attractor. Subsequently, McMullen [McM2] used a different method to prove
a stronger version of this result, establishing, in particular, that renormalizations
converge to the attractor at a geometric rate. And finally, Lyubich [Lyu4,Lyu5]
constructed the horseshoe for unbounded combinatorial types, and showed that it
is uniformly hyperbolic, with one-dimensional unstable direction, thereby bringing
the unimodal theory to a completion.

The renormalization theory of circle maps has developed alongside the uni-
modal theory. The work of Sullivan was adapted to the subject by de Faria, who
constructed in [dF1,dF2] the renormalization horseshoe for critical circle maps of
bounded type. Later de Faria and de Melo [dFdM2] used McMullen’s work to
show that the convergence to the horseshoe is geometric. The author in [Ya1,Ya2]
demonstrated the existence of the horseshoe for unbounded types, and studied the
limiting situation arising when the combinatorial type of the renormalization grows
without a bound.

Despite the similarity in the development of the two renormalization theories up
to this point, the question of hyperbolicity of the horseshoe attractor presents a notable
difference. Let us recall without going into details the structure of the argument given
by Lyubich in the unimodal case. The first part of Lyubich’s work was to to endow the
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ambient space of the renormalization transformation with the structure of a complex-
analytic manifold, with respect to which renormalization is an analytic operator. He
then showed that the stable sets of periodic points of this operator are codimension one
submanifolds and used an argument based on McMullen’s Tower Rigidity Theorem
and an infinite dimensional version of the Schwarz Lemma to show that renormaliza-
tion is a strict contraction in the stable direction. The second part of Lyubich’s work
was to show the existence of an unstable direction. This is a fundamentally more dif-
ficult part of the proof, based on Lyubich’s Rigidity Theorem [Lyu3] and an elegant
argument relating non-hyperbolicity of the renormalization operator to certain topo-
logical properties of its orbits.

In contrast, in the case of critical circle maps it has been well-known how
one may construct an unstable direction for the renormalization. The difficulty
arises with the first part of the program. There is no obvious way to turn the
renormalization into an analytic operator. Indeed, the definition of renormalization
for critical circle maps essentially employs real symmetry, and resists complexifi-
cation. To circumvent this obstacle, in this paper we introduce a different renor-
malization construction, a renormalization of critical cylinder maps. This construction
is strongly motivated by a so-called parabolic renormalization, a degenerate case of
renormalization, which we studied in detail in [Ya2]. There is a natural functorial
relation between the renormalization of cylinder maps and the usual one which
allows us to transfer the results back and forth. By virtue of its construction, the
cylinder renormalization is an analytic operator on a Banach manifold. We then
show that the stable sets of the periodic orbits of this operator are codimension
one submanifolds, and prove that every such orbit is hyperbolic. Our result gives
a rigorous mathematical explanation of the universality phenomena, settling this
well-studied problem.

The structure of the paper is as follows. In §1 we introduce critical circle
maps. We discuss the universality phenomena and define renormalization in §2. In
§4 we formulate the Renormalization Hyperbolicity Conjecture (Lanford’s Program)
and state our results. In the following section we discuss some of the constructions
from de Faria’s and our own earlier work. In §6 we introduce parabolic renormal-
ization, mainly as a motivation for futher discussion. We then define the cylinder
renormalization operator in §7 and proceed to prove our main theorems.
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1. Preliminaries

Some notations. — We use dist and diam to denote the Euclidean distance and
diameter in C. We shall say that two real numbers A and B are K-commensurable
for K > 1 if K−1|A| ≤ |B| ≤ K|A|. The notation Dr(z) will stand for the Euclidean
disk with the center at z ∈ C and radius r. The unit disk D1(0) will be denoted D.
The plane (C\R)∪ J with the parts of the real axis not contained in the interval
J ⊂ R removed will be denoted CJ. By the circle T we understand the affine
manifold R/Z, it is naturally identified with the unit circle S1 = ∂D. The real
translation x �→ x + θ projects to the rigid rotation by angle θ, Rθ : T → T. For
two points a and b in the circle T which are not diametrically opposite, [a, b]
will denote the shorter of the two arcs connecting them. As usual, |[a, b]| will
denote the length of the arc. For two points a, b ∈ R, [a, b] will denote the closed
interval with endpoints a, b without specifying their order. The cylinder in this
paper, unless otherwise specified will mean the affine manifold C/Z. Its equator is
the circle {Im z = 0}/Z ⊂ C/Z. A topological annulus A ⊂ C/Z will be called an
equatorial annulus, or an equatorial neighborhood, if it has a smooth boundary
and contains the equator.

By “smooth” in this paper we will mean “of class C∞”, unless another de-
gree of smoothness is specified. The notation “Cω” will stand for “real-analytic”.

Critical circle maps. — A critical circle map is an orientation preserving auto-
morphism of T of class C3 with a single critical point c. A further assumption is
made that the critical point is of cubic type. This means that for a lift f̄ : R → R
of a critical circle map f with critical points at the integer translates of c̄,

f̄ (x) − f̄ (c̄) = (x − c̄)3(const + O(x − c̄)).

We note that all the renormalization results will hold true if in the above definition
“3” as the order of smoothness and the order of the critical point is replaced by
any other odd number. To fix our ideas, we will always place the critical point of
f at 0 ∈ T.
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Being a homeomorphism of the circle, a critical circle map f has a well-
defined rotation number, denoted ρ( f ). It is useful to represent ρ( f ) as a contined
fraction with positive terms

ρ( f ) = 1

r0 + 1

r1 + 1

r2 + · · ·

(1.1)

Further on we will abbreviate this expression as [r0, r1, r2, ...] for typographical
convenience. Note that the numbers ri are determined uniquely if and only if ρ( f )
is irrational. In this case we shall say that ρ( f ) (or f itself ) is of the type bounded
by B if sup ri ≤ B; it is of a periodic type if the sequence {ri} is periodic. Recall
that an iterate f k(0) is called a closest return of the critical point if the arc [0, f k(0)]
contains no iterates f i(0) with i < k. By a classical result of Poincaré every circle
homeomorphism f with an irrational rotation number is semi-conjugate to the
rigid rotation Rρ( f ). Yoccoz [Yoc] has shown that in the case when f is a critical
circle map. This implies, in particular, that if we denote {pm/qm} the sequence of
best rational approximations of ρ( f ) obtained as the truncated continued fractions
pm/qm = [r0, r1, ..., rm−1], then the iterates { f qm(0)} are closest returns of 0. Set
Im ≡ [0, f qm(0)].

An important one-parameter family of examples of critical circle maps, the
so-called standard (or Arnold’s) maps, is obtained as follows. Given any θ ∈ R the
map

Aθ(x) = x + θ − 1
2π

sin 2πx

commutes with the unit translation: A(x + 1) = A(x) + 1. Therefore it has a well-
defined projection to an endomorphism of the circle. We denote this endomor-
phism fθ , although in reality it only depends on the class θ mod Z. An elementary
computation shows that every Aθ is strictly monotone, and has critical points at
integer values of x, all of cubic type. Therefore, each fθ is a critical circle mapping.
The considerations of monotone dependence on the parameter imply that

θ → ρ(θ) ≡ ρ( fθ)

is a continuous monotone map of T onto itself. Whenever t ∈ T is irrational,
ρ−1(t) is a single point. For t = p/q the set ρ−1(t) is a closed interval, for every
parameter value in this interval the homeomorphism fθ has a periodic orbit with
a combinatorial rotation number p/q. This orbit has eigenvalue one at the two
endpoints of the interval.
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2. Universality and renormalization

2.1. The golden-mean universality phenomenon

The raison d’être of the renormalization theory of critical circle maps is a uni-
versality phenomenon numerically observed as early as in mid-1970’s in one-par-
ameter families like the Arnold’s family described above (see [FKS], [ORSS]).

For µ ∈ T let fµ be a one-parameter family of critical circle maps whose
dependence on the parameter is smooth and strictly monotone, with ρ( f0) = 0.
Let us denote by I (x) the set of parameter values µ with ρ( fµ) = x. It is not
difficult to show that I (x) is a single point for irrational values of x; in the case
when x is rational, I (x) is a closed interval. Consider now the intervals In ≡
I ([r0, r1, ..., rn−1]) with r0 = r1 = · · · = rn−1 = 1. The maps with parameter values
in In possess periodic orbits with periods qn, where pn/qn is the n-th convergent of
the infinite continued fraction [1, 1, 1, 1, ...]. The first numerical observation one
makes is that there is a particular number δ∗ ≈ 2. 83361 such that the length of
the interval In behaves asymptotically for large n as const · δ−n

∗ . The rate of the
geometric decay δ is universal, that is independent on the chosen one-parameter
family fµ. The second observation applies to the limit of the intervals In, i.e. the
parameter value µ1 for which the map fµ1 possesses the golden mean rotation
number

ρ( fµ1) =
√

5 − 1
2

= [1, 1, 1, 1, ...].

Denoting by λn the scaling ratio of the length of the closest return arcs

λn = ∣
∣
[

f ◦qn
µ1

(c), c
]∣
∣
/∣
∣
[

c, f ◦qn−1
µ1

(c)
]∣
∣,

we observe that λn converge to a constant λ∗ ≈ 0. 7760513. The number λ∗ is
again independent of the family.

Let us remark, that if we consider homeomorphisms of the circle with a non-
flat critical point of the order other than three, the universal constants will change.
Using the terminology of statistical physics, the order of the critical point specifies
the universality class.

2.2. Definition of renormalization of critical circle maps

The strong analogy with universality phenomena in statistical physics and
with the already discovered Feigenbaum-Collett-Tresser universality in unimodal
maps, led the authors of [FKS] and [ORSS] to explain the existence of the uni-
versal constants by introducing a renormalization operator acting on critical circle
maps. The definition is by no means straightforward. We shall arrive at it after
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a brief discussion, which will be helpful in understanding the motivation of the
results in this paper.

The general strategy of defining a renormalization of a given dynamical sys-
tem F : X → X is as follows (c.f. [Lyu2]). Select a proper subset Y of X. For
a point x ∈ Y whose forward orbit under F returns to Y denote RF(x) ∈ Y the
first such return. Provided that it is true for every point in Y, this defines the
first return map RF : Y → Y. Let A : Y → A(Y) be an affine map, such that
the size of A(Y), appropriately understood, is the same as the size of the original
space X. The rescaled first return map A ◦ RF ◦ A−1 is the renormalization of F.

For the role of the set Y in the case of a critical circle map f : T → T
one takes the union of arcs Am = Im ∪ Im+1 for some m > 1, where as before Im

stands for [0, f qm(0)]. This choice was made in [ORSS] and [FKS], and has been
followed since, although a different choice would have led to the same results. The
first return map Rm : Am → Am is defined piecewise by f qm on Im+1 and by f qm+1

on Im. To view Rm as a critical circle map we may identify the neighborhoods
of points f qm(0) and f qm+1(0) by the iterate f qm+1−qm . This identification transforms
the arc Am into a C3-smooth closed one-dimensional manifold Ãm, Rm projects to
a smooth homeomorphism R̃m : Ãm → Ãm with a critical point at 0. However, the
manifold Ãm does not possess a canonical affine structure; the choice of a smooth
identification φ : Ãm → R/Z gives rise to a plethora of different critical circle
maps, all smoothly conjugate.

As we can see from the above discussion, the space of critical circle maps
is ill-suited to define renormalization. The authors of [ORSS] and [FKS] circum-
vented this difficulty by replacing critical circle maps with different objects:

Definition 2.1. — A commuting pair ζ = (η, ξ) consists of two C3-smooth orien-

tation preserving interval homeomorphisms η : Iη → η(Iη), ξ : Iξ → ξ(Iξ ), where

(I) Iη = [0, ξ(0)], Iξ = [η(0), 0];
(II) Both η and ξ have homeomorphic extensions to interval neighborhoods of their re-

spective domains with the same degree of smoothness, which commute, η◦ ξ = ξ ◦η;

(III) ξ ◦ η(0) ∈ Iη;

(IV) η′(x) �= 0 �= ξ ′(y), for all x ∈ Iη \ {0}, and all y ∈ Iξ \ {0}.

The commutation condition allows one to iterate the extensions of the maps
of a commuting pair. We can also use it to repeat the glueing construction. That
is, given a critical commuting pair ζ = (η, ξ) we can regard the interval I =
[η(0), ξ ◦ η(0)] as a circle, identifying η(0) and ξ ◦ η(0) and define fζ : I → I by

fζ =
{

η ◦ ξ(x) for x ∈ [η(0), 0]
η(x) for x ∈ [0, ξ ◦ η(0)] .
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FIG. 1. — A commuting pair

The mapping ξ extends to a C3-diffeomorphism of open neighborhoods of η(0)

and ξ ◦ η(0). Using it as a local chart we turn the interval I into a closed one-
dimensional manifold M. Condition (II) above implies that the mapping fζ projects
to a well-defined C3-smooth homeomorphism Fζ : M → M. Identifying M with
the circle by a diffeomorphism φ : M → T we recover a critical circle mapping
f φ = φ◦Fζ ◦φ−1. The critical circle mappings corresponding to two different choices
of φ are conjugated by a diffeomorphism, and thus we recovered a C3-smooth
conjugacy class of circle mappings from a critical commuting pair.

We can metrize the space of Cr-smooth commuting pairs considered modulo
an affine conjugacy as follows (see [dFdM1]). Let ζ1 = (η1, ξ1), ζ2 = (η2, ξ2) be
two such pairs, and denote wi : C → C a Möbius transformation which maps the
ordered triple of points ηi(0), 0, ξi(0) to 0, 1/2, 1. The Cr-distance between ζ1

and ζ2 is set to be

distCr(ζ1, ζ2) = max
{|ξ1(0)/η1(0) − ξ2(0)/η2(0)|,

distCr

(

w1 ◦ ζ1 ◦ w−1
1 , w2 ◦ ζ2 ◦ w−1

2

)}

.

Let f be a critical circle mapping, whose rotation number ρ has a continued
fraction expansion (1.1) with at least m+1 terms, and let pm/qm = [r0, ..., rm−1]. The
pair of iterates f qm+1 and f qm restricted to the circle arcs Im and Im+1 correspond-
ingly can be viewed as a critical commuting pair in the following way. Let f̄ be
the lift of f to the real line satisfying f̄ ′(0) = 0, and 0 < f̄ (0) < 1. For each m > 0
let Īm ⊂ R denote the closed interval adjacent to zero which projects down to the
interval Im. Let τ : R → R denote the translation x �→ x + 1. Let η : Īm → R,
ξ : Īm+1 → R be given by η ≡ τ−pm+1 ◦ f̄ qm+1 , ξ ≡ τ−pm ◦ f̄ qm . Then the pair of maps
(η|Īm, ξ|Īm+1) forms a critical commuting pair corresponding to ( f qm+1|Im, f qm |Im+1).
Henceforth we shall simply denote this commuting pair by

( f qm+1 |Im, f qm |Im+1).(2.1)

This allows us to readily identify the dynamics of the above commuting pair with
that of the underlying circle map, at the cost of a minor abuse of notation.
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Following [dFdM1], we say that the height χ(ζ) of a critical commuting pair
ζ = (η, ξ) is equal to r, if

0 ∈ [ηr(ξ(0)), ηr+1(ξ(0))].
If no such r exists, we set χ(ζ) = ∞, in this case the map η|Iη has a fixed
point. For a pair ζ with χ(ζ) = r < ∞ one verifies directly that the mappings
η|[0, ηr(ξ(0))] and ηr ◦ ξ|Iξ again form a commuting pair. For a commuting pair
ζ = (η, ξ) we will denote by ζ̃ the pair (̃η|Ĩη, ξ̃ |Ĩξ) where tilde means rescaling by
the linear factor λ = − 1

|Iη| .

Definition 2.2. — The renormalization of a real commuting pair ζ = (η, ξ) is the

commuting pair

Rζ = (η̃r ◦ ξ |Ĩξ , η̃| ˜[0, ηr(ξ(0))]).
The non-rescaled pair (ηr ◦ ξ|Iξ , η|[0, ηr(ξ(0))]) will be referred to as the pre-

renormalization pRζ of the commuting pair ζ = (η, ξ).
For a pair ζ we define its rotation number ρ(ζ) ∈ [0, 1] to be equal to the

continued fraction [r0, r1, ...] where ri = χ(Riζ). In this definition 1/∞ is under-
stood as 0, hence a rotation number is rational if and only if only finitely many
renormalizations of ζ are defined; if χ(ζ) = ∞, ρ(ζ) = 0. Thus defined, the ro-
tation number of a commuting pair can be viewed as a rotation number in the
usual sense:

Proposition 2.1. — The rotation number of the mapping Fζ is equal to ρ(ζ).

There is an advantage in defining ρ(ζ) using a sequence of heights in removing
the ambiguity in prescribing a continued fraction expansion to rational rotation
numbers in a renormalization-natural way.

For ρ = [r0, r1, ...] ∈ [0, 1] let us set

G(ρ) = [r1, r2, ...] =
{

1
ρ

}

,

where {x} denotes the fractional part of a real number x (G is usually referred to
as the Gauss map). As follows from the definition,

ρ(Rζ) = G(ρ(ζ))

for a real commuting pair ζ with ρ(ζ) �= 0.
The renormalization of the real commuting pair (2.1), associated to some

critical circle map f , is the rescaled pair ( f̃ qm+2 |Ĩm+1, f̃ qm+1 |Ĩm+2). Thus for a given
critical circle map f the renormalization operator recovers the (rescaled) sequence
of the first return maps:

{

( f̃ qi+1 |̃Ii, f̃ qi |Ĩi+1)
}∞

i=1
.
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2.3. Explanation of universality: Lanford’s Program

The golden-mean universality phenomenon described above was explained in
[ORSS] and [FKS] by a conjectural hyperbolicity property of the operator R.
The conjecture was later generalized by various authors, particularly by Lanford
[Lan2], to account for more complex universalities. We present it below in its
most general form, known as Lanford’s Program.

First, a definition. A critical commuting pair is a commuting pair (η, ξ) whose
maps are real-analytic. We shall also impose a technical assumption that ξ analyt-
ically extends to an interval (a, b) � 0 with ξ(a, b) ⊃ [η(0), ξ(0)], and has a single
critical point 0 in this interval. The space of critical commuting pairs modulo affine
conjugacy will be denoted by C; its subset consisting of pairs ζ with χ(ζ) = ∞
will be denoted by S∞. Renormalization is a transformation R : C \ C∞ → C. It
is not difficult to show (see [Ya2]) that this transformation is injective:

Proposition 2.2. — The map R : C \S∞ → C is one-to-one.

To outline Lanford’s Program, let us give an informal description of the
action of renormalization on the space of critical commuting pairs.

Let ρ = φ(θ) : T → T be a monotone continuous function such that φ−1(ρ)

is a point for ρ irrational and an interval otherwise. An example of such a function
is the dependence θ �→ ρ( fθ) of the rotation number of a standard map on the
parameter. Imagine the space of critical commuting pairs as an infinite-dimensional
cylinder C = T × C′, where the rotation number of a commuting pair ζ(θ, ·) with
the equatorial coordinate θ ∈ T is ρ(θ). The cylinder C is partitioned into strips
(cf. Figure 2)

Sr = {ζ ∈ C|ρ(ζ) = [r, r1, ...]} for r = 1, ...,∞ .

FIG. 2.
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A boundary component of the strip S∞ is the hypersurface P∞ ⊂ S∞ with the
property that a pair ζ ∈ P∞ if and only if it has a single fixed point with unit
eigenvalue (ζ is a “parabolic pair”). The sets Sr accumulate on P∞ in a clockwise
direction.

It is natural to think of the transformation R : C\S∞ → C as being defined
piecewise, given on each Sr, r �= ∞ by the formula:

Rr : (η, ξ) �→ (η, ηr ◦ ξ).

The operator Rr expands the strip Sr in the equatorial direction, mapping it onto
a thin equatorial cylinder, which intersects all the vertical strips. We may close the
domain of R by adjoining the hypersurface P∞ to it and setting R on P∞ to
an appropriately defined (multivalued) parabolic renormalization transformation P,
with this convention the image of P∞ is also an equatorial cylinder. Lanford con-
jectured that this picture can be appropriately endowed by a smooth metric, so
that the operator R is uniformly expanding in the θ direction and uniformly con-
tracting in the complementary directions. Thus R posesses an infinite-dimensional
“horseshoe” structure. The “boxes”

Rr−1(Sr−1 ∩ Rr−2(Sr−2 ∩ · · · (Rr−nSr−n) · · · )
∩Sr0 ∩ R−1

r0

(

R−1
r1

( · · · R−1
rn−1

(

Srn

) · · · )

are exponentially small in n, and their intersection is the R-invariant hyperbolic
Cantor set A parametrized by the bi-infinite sequences of ri ∈ N ∪ {∞}. The set
A is a “horseshoe” attractor for the renormalization operator,

dist(Rnζ,A ) → 0

at a geometric rate. The action of R on A is conjugate to the two-sided shift.
Let us conclude this exposition by formalizing the Hyperbolicity Conjecture

as follows:

Renormalization Hyperbolicity Conjecture (Lanford’s Program). — The renormalization

operator R in the space of critical commuting pairs possesses a “horseshoe” attractor A on

which its action is conjugated to the two-sided shift. Moreover, there exists a renormalization-

invariant space of critical commuting pairs with the structure of an infinite dimensional smooth

manifold, with respect to which A is a hyperbolic set with one-dimensional expanding direction.

If t denotes the expanded coordinate in a local chart, then the dependence t �→ ρ(t, ·) is

continuous and (not strictly) monotone.

It is not difficult to see that this Conjecture explains, in particular, the golden
mean universality phenomenon we described. Indeed, it implies the existence of
a unique fixed point ζ∗ = (η∗, ξ∗) ∈ A with ρ(ζ∗) = (

√
5 − 1)/2. The fixed point

ζ∗ is hyperbolic, let us denote its unique expanding eigenvalue δ∗ and set the
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scaling factor |Iξ∗ |/|Iη∗| = λ∗. Then for any ζ with ρ(ζ) = (
√

5 − 1)/2 we have
R◦n

1 ζ → ζ∗ which explains the universality of λ∗. Moreover, let ζµ be a mono-
tone one-parameter family of critical commuting pairs. Since the slices (R1)

−n(S1)

accumulate at the local stable manifold of ζ∗ at the geometric rate 1/δ∗, they
have “width” ∼ δ−n

∗ . Provided the family ζµ crosses the local stable manifold of ζ∗
transversely, this implies that the sizes of parameter intervals In = {µ : ζµ ∈ Sn}
decay at the rate 1/δ∗ as well.

3. The passage from smooth to holomorphic

The golden-mean universality is observed in any one-parameter family of
smooth critical circle maps. We chose to formulate the Hyperbolicity Conjecture
for analytic commuting pairs, in part to ensure that the action of renormalization
is injective. A deeper reason is the following. In 1986 Eckmann and Epstein [EE]
introduced a space of critical commuting pairs now known as the Epstein class.
They showed that this class is invariant under the action of R, and constructed
the golden-mean fixed point of R in this class using the methods of geometric
complex analysis. It was further shown by various people, such as Sullivan (in
the unimodal case), Świa̧tek, Herman, and Yoccoz, that the renormalizations of
any C3-smooth commuting pair with an irrational rotation number converge to the
Epstein class, at a geometric rate in the C2-metric. Below, after some preliminaries,
we define the Epstein class, and formulate these results more precisely.

3.1. Carathéodory topology on a space of branched coverings

Consider the collection X of all triplets (U, u, f ), where U ⊂ C is a topo-
logical disk different from the whole plane, u ∈ U, and f : U → C is a three-fold
analytic branched covering map, with the only branch point at u. We will topol-
ogize X as follows (cf. [McM1]).

Let {(Un, un)} be a sequence of open connected regions Un ⊂ C with marked

points un ∈ Un. Recall that this sequence Carathéodory converges to a marked region
(U, u) if:

• un → u ∈ U, and
• for any Hausdorff limit point K of the sequence Ĉ\Un, U is a component

of Ĉ \ K.

For a simply connected U ⊂ C and u ∈ U let R(U,u) : D → U denote the inverse
Riemann mapping with normalization R(U,u)(0) = u, R′

(U,u)(0) > 0. By a classical
result of Carathéodory, the Carathédory convergence of simply-connected regions
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(Un, un) → (U, u) is equivalent to the locally uniform convergence of the inverse
Riemann mappings R(Un,un) to R(U,u).

For positive numbers ε1, ε2, ε3 and compact subsets K1 and K2 of the open
unit disk D, let the neighborhood Uε1,ε2,ε3,K1,K2(U, u, f ) of an element (U, u, f ) ∈ X
be the set of all (V, v, g) ∈ X, for which:

• |u − v| < ε1,
• sup

z∈K1

|R(V,v)(z) − R(U,u)(z)| < ε2,

• and R(U,u)(K2) ⊂ V, and sup
z∈R(U,u)(K2)

|f (z) − g(z)| < ε3.

One verifies that the sets Uε1,ε2,ε3,K1,K2(U, u, f ) form a base of a topology on X,
which we will call Carathéodory topology. This topology is clearly Hausdorff, and the
convergence of a sequence (Un, un, fn) to (U, u, f ) is equivalent to the Carathéodory
convergence of the marked regions (Un, un) → (U, u) as well as a locally uniform
convergence fn → f .

3.2. The Epstein class

An orientation preserving interval homeomorphism g : I = [0, a] → g(I) = J
belongs to the Epstein class E if it extends to an analytic three-fold branched cov-
ering map of a topological disk G ⊃ I onto the double-slit plane CJ̃, where J̃ ⊃ cl J.
Any map g in the Epstein class can be decomposed as

g = Qc ◦ h,(3.1)

where Qc(z) = z3 + c, and h : I → [0, b] is a univalent map h : G → ∆(h) onto the
complex plane with six slits, which triple covers CJ̃ under the cubic map Qc(z).

For any s ∈ (0, 1), let us introduce a smaller class Es ⊂ E of Epstein map-
pings g : I = [0, a] → J ⊂ J̃ for which both |I| and dist(I, J) are s−1-commensurable
with | J|, the length of each component of J̃ \ J is at least s| J|, and g′(a) > s. We
will often refer to the space E as the Epstein class, and to each Es as an Epstein
class.

We say that a commuting pair (η, ξ) ∈ C belongs to the (an) Epstein class if
both of its maps do. Similarly, a critical circle map f is Epstein if Rf is in the
Epstein class. It immediately follows from the definitions that:

Lemma 3.1. — If a renormalizable commuting pair ζ is in the Epstein class, then the

same is true for Rζ .

Let us make a note of an important compactness property of Es
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Lemma 3.2 (Lemma 2.10 [Ya2]). — Let s ∈ (0, 1). The collection of normalized

maps g ∈ Es with I = [0, 1], with marked domains (U, 0) is sequentially compact with

respect to Carathéodory topology.

3.3. Real a priori bounds

An excellent exposition of the results of Herman, Świa̧tek, and Yoccoz on
the real geometry of critical circle maps is found in [dFdM1]. We formulate some
of the main results.

Real a priori bounds of Herman and Świa̧tek. — There exists a universal constant K
such that the following holds. Let f be a critical circle map. Denote Πm the partition of the

circle by the iterates

{ f qmi(0)}qm−1−1
i=0 ∪ { f qm−1i(0)}qm−1

i=0 ∪ { f qm−1+qmi(0)}qm−1−1
i=0 ∪ { f qm+qm−1i(0)}qm−1

i=0

(note that Im and Im−1 are two adjacent intervals of the partition). Then there exists M =
M( f ) such that for every m > M any two adjacent intervals of the partition are K-

commensurable. Moreover, the C1-norm of the renormalizations {Rm( f )}∞
m=M is bounded

by K.

Utilizing the above bounds Herman has shown in [He] (see [dFdM1] for
a published account):

Theorem 3.3. — Any two critical circle maps with the same irrational rotation numbers

are quasisymmetrically conjugate.

The importance of the Epstein class lies in the fact that all C1-limit points
of the sequence {Rm( f )}∞

m=M are in Es for a universal value of s > 0. A more
precise formulation of this was proved in the recent work of de Faria and de Melo
[dFdM1]:

Lemma 3.4. — There exists a universal constant s > 0 such that the following holds.

Let f ∈ Cr , (r ≥ 3) be a critical circle map with an irrational rotation number. Then the

sequence of real commuting pairs Rm( f ) = ( f̃ qm+1 |Ĩm, f̃ qm |Ĩm+1) is bounded in Cr−1-metric,

and Cr−1-converges to Es at a geometric rate.

In particular, for a critical circle map f ∈ E there exists σ > 0 such that all
its renormalizations are contained in Eσ . Moreover, the constant σ can be chosen
independent on f , after skipping the first few renormalizations.

Finally, let us formulate a technical statement about Epstein pairs to be used
further in the paper:
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Lemma 3.5 (Lemma 2.13, [Ya2]). — Let ζ = (η, ξ) ∈ E be a critical commuting

pair with ρ(ζ) = 0, which appears as a limit of a sequence {ζn} ⊂ E with ρ(ζn) ∈ R \ Q .

Then the map η has a unique fixed point in the interval Iη, which is necessarily parabolic,

with multiplier one.

A commuting pair ζ = (η, ξ) ∈ E will be called parabolic if the map η has
a unique fixed point in Iη, which has a unit multiplier; this point will usually be
denoted pη. Note, that by virtue of its uniqueness, pη has to be globally attracting
on one side for the interval homeomorphism η|Iη , it is globally attracting on the
other side under η−1.

4. Outline of the results

4.1. Known results

The early efforts to prove the Renormalization Hyperbolicity Conjecture cul-
minated in an argument of Mestel [Mes], who established the existence and local
hyperbolicity properties of a fixed point of R1 in C∞. The argument was based
on rigorous computer estimates. This approach was developed by Lanford in the
context of the renormalization of unimodal maps. One of its major drawbacks is
its local nature; neither the uniqueness of the fixed point, nor global hyperbolicity
of R1 are established.

In his address to ICM-86 in Berkeley Sullivan [Sul1] outlined a program of
constructing the invariant set of renormalization of unimodal maps and its stable
set by means of the Teichmüller theory, which he subsequently carried out (see
[Sul2],[MvS]). Sullivan’s program has been adapted to the setting of critical circle
mappings by de Faria [dF1],[dF2]. De Faria has defined, in particular, extensions
of Epstein commuting pairs to holomorphic dynamical systems in the plane, which
are analogous to quadratic-like mappings in the unimodal renormalization theory.
We discuss these extensions, called holomorphic commuting pairs, in §5. Using Sullivan’s
Riemann surface laminations machinery, de Faria constructed a horseshoe attractor
AB for the renormalization operator acting on the space of Epstein commuting
pairs of type bounded by some constant B (this corresponds to restricting the
operator R to the finite collection of vertical strips ∪Sr , r ≤ B in Figure 2). In
a recent paper [Ya2] we generalized the results of de Faria to Epstein commuting
pairs of unbounded combinatorial type. Denote Σ̄ the space of bi-infinite sequences
(..., r−k, ..., r−1, r0, r1, ..., rk, ...) with ri ∈ N ∪ {∞} equipped with the weak topology.
Our theorem completely settles the first part of Lanford’s Program:

Theorem 4.1 (Renormalization horseshoe). — There exists an R-invariant closed set

A ⊂ E consisting of pairs with irrational rotation numbers and parabolic pairs with the
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following properties. The action of R on A is topologically conjugate to the two-sided shift

σ : Σ̄ → Σ̄:

i ◦ R ◦ i−1 = σ

and if ζ = i−1(..., r−k, ..., r−1, r0, r1, ..., rk, ...) then ρ(ζ) = [r0, r1, ..., rk, ...]. For any

ζ ∈ E with irrational rotation number we have

Rnζ → A

in the Carathéodory topology. Moreover, for any two pairs ζ , ζ ′ ∈ E with ρ(ζ) = ρ(ζ ′) we

have

dist(Rnζ,Rnζ ′) → 0

for the uniform distance between analytic extensions of the renormalized pairs on compact sets.

The proof of Theorem 4.1 combines the ideas of McMullen from [McM2]
with a priori bounds obtained in [Ya1]. We consider the geometric limits of the
rescaled sequences of renormalizations

ζ,Rζ, ...,Rnζ.

These limits which we call bi-infinite limiting renormalization towers (see §5 for the
definition) should be thought of as bi-infinite sequences of nested holomorphic
commuting pairs in the plane. Each tower corresponds to a single point in the
attractor A , and the result follows from a Rigidity Theorem [Ya2]:

Theorem 4.2 (Tower rigidity). — Any two towers with the same rotation numbers are

affinely conjugated.

As far as the hyperbolicity aspects of Lanford’s Program, the following is
known. In the case of a bounded type rotation number, de Faria and de Melo
[dFdM2] strengthened the original result of de Faria, utilizing a technique of Mc-
Mullen [McM2] to show that the rate of converegence to AB is geometric:

Theorem 4.3 ([dFdM2]). — For every B ∈ N and every r ∈ N ∪ 0 there exists

αr,B < 1 such that for every ζ ∈ E with ρ(ζ) ∈ R \ Q of type bounded by B and for every

ζ̂ ∈ AB with ρ(ζ̂) = ρ(ζ) we have

distCr(Rnζ,Rnζ̂ ) < const ·(αr,B)n.

Despite the difficulty in imposing a manifold structure on the space of com-
muting pairs compatible with the analyticity of R, it has long been known how
one may construct an unstable direction in such a manifold. A version of this
construction was first shown to us by Folkert Tangerman, who participated in its
discussion in Sullivan’s seminar at the Graduate Center of CUNY. We give a rather
simple argument in §9.
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4.2. Statement of the main result

First, some definitions. Suppose, B is a complex Banach space whose elem-
ents are functions of the complex variable. Let us say that the real slice of B is
the real Banach space BR consisting of the real-symmetric elements of B. If X
is a Banach manifold modelled on B with the atlas {Ψγ } we shall say that X is
real-symmetric if Ψγ1 ◦Ψ−1

γ2
(BR) ⊂ BR for any pair of indices γ1, γ2. The real slice of X

is then defined as the real Banach manifold XR ⊂ X given by Ψ−1
γ (BR) in a local

chart Ψγ . An operator A defined on a subset of X is real-symmetric if A(XR) ⊂ XR.
A particular example we shall introduce in §7 is a real-analytic manifold CU of
critical cylinder maps. Its real slice M ≡ CR

U consists of critical circle maps defined
in an annulus U ⊃ T in the cylinder C/Z.

We will construct a closed equivalence relation denoted ∼conf between com-
muting pairs in the Epstein class Es (with s being as in Lemma 3.4) with the
property that if ζ1 ∼conf ζ2, then the analytic extensions of the commuting pairs are
conjugate in a specific neighborhood of the interval of definition by a conformal
change of coordinates. In particular, ρ(ζ1) = ρ(ζ2). Moreover, there exists a value
N ∈ N such that if ζ1 and ζ2 are N-times renormalizable, then RNζ1 ∼conf R

Nζ2.
This last property implies that periodic orbits of RN constructed in Theorem 4.1
project to the quotient space.

The main result of this paper is the Renormalization Hyperbolicity Theorem
in the following form:

Theorem 4.4 (Renormalization Hyperbolicity). — There exists a real-symmetric analytic

operator Rcyl from an open subset of CU to CU (thus Rcyl maps an open subset of M

into M), such that the following holds. For every r �= ∞ there is a canonical homeomorphism

onto the image

Sr ∩ Es/∼conf

ιr−→M
such that ρ(ιr(ζ)) = ρ(R(ζ)), and ιr ◦ RN ◦ ι−1

r ≡ Rcyl. For every periodic point p ∈ Sr

of the operator RN there exists � ∈ N such that the point ιr( p) is a hyperbolic fixed point of

R�
cyl|M, with a one-dimensional unstable direction.

Note, in particular, that we have found a way to define a renormalization for
critical circle maps themselves, without recourse to critical commuting pairs. Our
theorem implies the existence of universal constants associated to every rotation
number of a periodic type, and in particular we get a version of the golden-mean
universality:

Corollary 4.5 (Golden-Mean Universality). — There exists a pair of universal constants

δ > 1 and λ > 0, such that the following holds. Let { fµ} be a one-parameter family of analytic
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critical circle maps with a C1-smooth dependence on the parameter µ. Denote f̃µ : R → R
a continuously chosen lift of fµ : T → T, and assume additionally that ∂ f̃µ(x)/∂µ > 0 for

any x ∈ R (the Arnold’s family is one example of such family). Suppose ρ( fµ∗) = (
√

5−1)/2
and denote In the closed interval of values of the parameter for which ρ( fµ) = pn/qn where

pn/qn is the n-th convergent of the golden mean. Then:

• |Ik+lM|/δlM → a > 0 for some M ∈ N;

• | f qn
µ∗(0)|/| f qn+1

µ∗ (0)| → λ geometrically fast.

We remark that the second statement already follows from [dFdM2].

5. Holomorphic commuting pairs

5.1. Definitions

De Faria [dF1,dF2] introduced holomorphic commuting pairs to apply Sul-
livan’s Riemann surface laminations technique to the renormalization of critical
circle maps. They are suitably defined holomorphic extensions of critical commut-
ing pairs which replace Douady-Hubbard polynomial-like maps [DH2]. A critical
commuting pair ζ = (η|Iη , ξ|Iξ ) extends to a holomorphic commuting pair H if there
exist four simply-connected R-symmetric domains ∆, D, U, V such that

• D̄, Ū, V̄ ⊂ ∆, Ū ∩ V̄ = {0}; the sets U \ D, V \ D, D \ U, and D \ V are
nonempty, connected, and simply-connected, U ∩ R = Iη, V ∩ R = Iξ ;

• mappings η : U → (∆ \ R) ∪ η(Iη) and ξ : V → (∆ \ R) ∪ ξ(Iξ ) are onto
and univalent;

• ν ≡ η ◦ ξ : D → (∆ \ R) ∪ ν(ID) is a three-fold branched covering with
a unique critical point at zero, where ID = D ∩ R.

We shall call ζ the commuting pair underlying H , and write ζ ≡ ζH . The domain
D ∪ U ∪ V of a holomorphic commuting pair H will be denoted Ω or ΩH , the

FIG. 3. — A holomorphic commuting pair
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range will be denoted ∆ or ∆H . The closure of the set of points whose orbit
under H is contained in Ω will be referred to as the filled Julia set of H , denoted
K(H ). The Julia set of H is defined as J(H ) = ∂K(H ).

It is easy to see directly from the definition (cf. [dF2]) that:

Proposition 5.1. — Let ζ be a commuting pair with χ(ζ) < ∞. Suppose ζ is a re-

striction of a holomorphic commuting pair H , that is ζ = ζH . Then there exists a holomorphic

commuting pair G with range ∆H , such that ζG = Rζ .

The shadow of the holomorphic commuting pair H is the following piecewise-
defined holomorphic dynamical system:

SH (z) =






η(z), z ∈ U
ξ(z), z ∈ V
ξ ◦ η(z), z ∈ D \ (U ∪ V) .

As the next proposition shows one may think of the shadow of a holomorphic
commuting pair as an analogue of a cubic-like map:

Proposition 5.2 (Prop. II.4. [dF2]). — Given a holomorphic commuting pair H as

above, consider its shadow SH . Let I = Ω ∩ R, and X = I ∪ S−1
H (I). Then:

• The restriction of SH to Ω \ X is a regular three fold covering onto ∆ \ R.

• SH and H share the same orbits as sets.

We will say that two holomorphic commuting pairs H : ΩH → ∆H and
G : ΩG → ∆G are conjugate if there is a homeomorphism h : ∆G → ∆H such
that

SG = h−1 ◦ SH ◦ h.

In this case we will simply write G = h−1 ◦ H ◦ h.

5.2. Complex a priori bounds

We shall denote by H the space of holomorphic commuting pairs H :Ω →∆

whose underlying real commuting pair (η, ξ) is in the Epstein class. In this case
both maps η and ξ extend to triple branched coverings η̂ : Û → ∆ ∩ Cη( Jη)

and ξ̂ : V̂ → ∆ ∩ Cξ( Jξ ) respectively. We will turn H into a topological space by
identifying it with a subset of X×X by H �→ (Û, 0, η̂) × (V̂, 0, ξ̂) (cf. §3.1).

We say that a real commuting pair (η, ξ) with an irrational rotation num-
ber has complex a priori bounds, if all its renormalizations extend to holomorphic
commuting pairs with bounded moduli:

mod(∆ \ Ω) > µ > 0.
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For µ ∈ (0, 1) let H(µ) denote the space of holomorphic commuting pairs H :
ΩH → ∆H , with mod(∆H \ ΩH ) > µ, min(|Iη|, |Iξ |) > µ and diam(∆H ) < 1/µ.

Lemma 5.3 (Lemma 2.15 [Ya2]). — For each µ ∈ (0, 1) the space H(µ) is sequen-

tially pre-compact, with every limit point contained in H(µ/2).

The existense of complex a priori bounds is a key analytic issue of renor-
malization theory. In the case of critical circle maps it is settled by the following
theorem:

Theorem 5.4. — There exist universal constants µ > 0 and K > 1 such that the

following holds. Let ζ ∈ C be a critical commuting pair with an irrational rotation number.

Then there exists N = N(ζ) such that for all n ≥ N the commuting pair Rnζ extends to

a holomorphic commuting pair Hn : Ωn → ∆n in H(µ). The range ∆n is a Euclidean disk,

and the regions Ωn ∩ (±H) are K-quasidisks.

Remark 5.1. — We first proved this theorem in [Ya1] for commuting pairs ζ

in an Epstein class Es, in which case N = N(s). Our proof was later adapted by
de Faria and de Melo [dFdM2] to the case of a non-Epstein critical commuting
pair. In the general case, in a Carathéodory compact family of critical commuting
pairs, the number N can be chosen uniformly.

Let ζ be at least n times renormalizable critical commuting pair. For the
lack of a better term, let us say that the pair of numbers τn(ζ) = (rn−1, rn−2) forms
the history of the pair Rnζ . Based on the above theorem and a detailed analysis
of the shapes of the domains Ωn we proved the following in [Ya1]:

Theorem 5.5 ([Ya1]). — There exists a universal constant K1 > 1 such that the follow-

ing holds. Let ζ1 = (η1, ξ1) and ζ2 = (η2, ξ2) be two critical commuting pairs with irrational

rotation numbers. Let n > max(N(ζ1), N(ζ2)) + 1 as above. Assume that the n-th renormal-

izations of ζ1, ζ2 have the same rotation number and the same history. Then their holomorphic

commuting pair extensions H 1
n , H 2

n are K1−quasiconformally conjugate. The conjugating map

is conformal on the filled Julia set.

For commuting pairs of the type bounded by B this theorem was first proved
by de Faria [dF1,dF2], with “K1” depending on the value of B.

5.3. Limiting renormalization towers

Sullivan’s original proof of the existence and uniqueness of the Feigenbaum
fixed point used the Teichmüller theory for Riemann surface laminations asso-
ciated to quadratic-like maps, which he himself developed. McMullen [McM2]
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has replaced this approach with an elegant argument based on a rigidity result
for dynamical objects he called renormalization towers. The renormalization tow-
ers of critical commuting pairs were studied in [dFdM2] for pairs of bounded
type, and later in [Ya2] without the restriction on the type. Their definition is as
follows. Let {Hk}∞

1 be a sequence of generalized holomorphic commuting pairs.
Set ζk = ζHk . Suppose m(k) > n(k) are two sequences of natural numbers such
that n(k) → ∞, m(k) − n(k) → ∞ and ζk is m(k)-times renormalizable. Moreover,
the pre-renormalizations pRn(k)+iζk have holomorphic pair extensions H i

k such that
H i

k → Hi ∈ H, for i ∈ Z. Then the bi-infinite sequence T = (Hi)
∞
−∞ is referred

to as a bi-infinite limiting renormalization tower. The rotation number ρ(T ) is naturally
defined as the bi-infinite sequence of heights (χ(ζHi ))

∞
−∞. The precise formulation

of Theorem 4.2 is:

Tower Rigidity Theorem ([Ya2]). — For any bi-infinite sequence ρ̄ = (χn)
∞
−∞, χn ∈

N∪{∞} there exists a bi-infinite limiting renormalization tower T with ρ(T ) = ρ̄. Moreover,

for any two limiting renormalization towers T1 = (H 1
i )∞

−∞, T2 = (H 2
i )∞

−∞ with ρ(T1) =
ρ(T2) we have

ζH 1
i

≡ ζH 2
i

for all i.

6. Parabolic maps and their perturbations

General facts. — We begin with a brief review of the theory of parabolic
bifurcations, as applied in particular to an interval map in the Epstein class. For
a more comprehensive exposition the reader is referred to [Do], supporting tech-
nical details may be found in [Sh]. Fix a map η0 ∈ E having a parabolic fixed
point p with unit multiplier.

Theorem 6.1 (Fatou Coordinates). — There exist topological discs UA and UR, called

attracting and repelling petals, whose union is a punctured neighborhood of the parabolic periodic

point p such that

η0(ŪA) ⊂ UA
⋃

{p}, and

∞
⋂

k=0

ηk
0(Ū

A) = {p},

η0(ŪR) ⊂ UR
⋃

{p}, and

∞
⋂

k=0

η−k
0 (ŪR) = {p},

where η−1
0 is the univalent branch fixing ζ .

Moreover, there exist injective analytic maps

ΦA : UA → C and ΦR : UR → C,
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unique up to post-composition by translations, such that

ΦA(η0(z)) = ΦA(z) + 1 and ΦR(η0(z)) = ΦR(z) − 1.

The Riemann surfaces CA = UA/η0 and CR = UR/η0 are conformally equivalent to the

cylinder C/Z.

Proof. — To fix our ideas, let us assume that p > 0. We will show that p is
a simple parabolic point of η0, that is,

η0(z − p) = (z − p) + a(z − p)2 + o((z − p)2),

with a �= 0. Indeed, for a small c < 0 consider the map ηc = η0+c. As ηc ∈ E , there
exists a well-defined inverse branch φc of this map in C \ R which preserves both
the upper and the lower half-planes. Since ηc has no real fixed points, the Denjoy-
Wolff Theorem implies that there exists a pair of complex conjugate fixed points
p±

c ∈ ±H such that every orbit originating in H converges to p+
c and similarly

for the other fixed point. Thus, p splits into a pair of repelling fixed points, and
hence its algebraic multiplicity is two. The rest of the construction is classical. ��

We denote πA : UA → CA and πR : UR → CR the natural projections. The
quotients CA and CR are customarily referred to as Écalle-Voronin cylinders; we will
find it useful to regard these as Riemann spheres with distinguished points +,−
filling in the punctures. The real axis projects to the natural equators EA ⊂ CA and
ER ⊂ CR. Any conformal transit homeomorphism τ : CA → CR fixing the ends +,−
is a translation in suitable coordinates. Lifiting it produces a map τ̄ : UA → C
satisfying

τ ◦ πA = πR ◦ τ̄ .

We will sometimes write τ ≡ τθ , and τ̄ = τ̄θ , where

ΦR ◦ τ̄ ◦ (ΦA)−1(z) ≡ z + θ mod Z.

Suppose for an Epstein map η in a sufficiently small neighborhood of η0 the
parabolic point splits into a complex conjugate pair of repelling fixed points pη ∈ H
and p̄η with multipliers λ±

η = e2πi±α(η). In this situation one may still speak of
attracting and repelling petals:

Lemma 6.2 (Douady Coordinates). — There exists a neighborhood U(η0) ⊂ E of the

map η0 such that for any η ∈ U(η0) with | arg α(η)| < π/4, there exist topological discs

UA
η and UR

η whose union is a neighborhood of p, and injective analytic maps

ΦA
η : UA → C and ΦR

η : UR
f → C
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unique up to post-composition by translations, such that

ΦA
η (η(z)) = ΦA

η (z) + 1 and ΦR
η (η(z)) = ΦR

η (z) + 1.

The quotients CA
η = UA

η /η and CR
η = UR

η /η are Riemann surfaces conformally equivalent to

C/Z.

Let us note:

Proposition 6.3. — There exists an open neighborhood W (η0) ⊂ Es of η0 in the

Carathéodory topology, such that for every η ∈ W (η0) as above, the condition on the eigenvalues

of the repelling fixed points is automatically satisfied.

Proof. — Recall that if z0 is an isolated fixed point of an analytic map f ,
then the holomorphic index of z0 is the residue

i( f , z0) = 1
2πi

∮
dz

z − f (z)

where the integrating is done over a small contour enclosing z0 (see [Mil]). In
the case when λ = f ′(z) �= 1, an elementary computation shows that i( f , z0) =
1/(1 − λ). In our case, by continuity,

1
1 − λ+

η

+ 1
1 − λ−

η

−→
η→η0

i(η0, p).

Since the right-hand side is finite, and λ+
η = λ−

η , and 1 −λ±
η −→

η→η0
0, it follows that

∣
∣ arg

(

1 − λ±
η

)∣
∣ −→

η→η0

π

2
.

An arbitrary choice of real basepoints a ∈ UA and r ∈ UR enables us to
specify the Fatou and Douady coordinates uniquely, by requiring that ΦA(a) =
ΦA

η (a) = 0, and ΦR(r) = ΦR
η (r) = 0. The following fundamental theorem first

appeared in [DH1]:

Theorem 6.4. — With these normalizations the maps ΦA
η , ΦR

η depend continuously on

η with respect to the compact-open topology, and

ΦA
η → ΦA and ΦR

η → ΦR

uniformly on compact subsets of UA and UR respectively.

Moreover, select the smallest n(η) ∈ N for which ηn(η)(a) ≥ r. Then

ηn(η)(z) = (

ΦR
η

)−1 ◦ Tθ(η)+K ◦ ΦA
η
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wherever both sides are defined. In this formula Ta(z) denotes the translation z �→ z + a,

θ(η) ∈ [0, 1) is given by

θ(η) = 1/α(η) + o(1)
α(η)→∞

mod 1,

and the real constant K is determined by the choice of the basepoints a, r. Thus for a sequence

{ηk} ⊂ U(η) converging to η, the iterates η
n(ηk)

k converge locally uniformly if and only if

there is a convergence θ(η) → θ , and the limit in this case is a certain lift of the transit

homeomorphism τθ for the parabolic map η0.

As a final remark in this section, let us note that, for example, Shishikura
states Lemma 6.2 and Theorem 6.4 [Sh] for an open set of maps in a Banach
manifold, and the proofs he gives actually imply that Douady’s coordinates vary
locally analytically with the map η. We will prove a similar statement further in
this paper.

7. Renormalization of maps of the cylinder

7.1. A space of maps of the cylinder and a renormalization transformation

In this section we will introduce a new renormalization procedure defined
on a space of analytic maps of the cylinder. As it will turn out this renormal-
ization is naturally related to the renormalization of critical circle maps, and has
some important advantages over the latter. Firstly, let us denote π the natural
projection C → C/Z. For an equatorial annulus U ⊂ C/Z let AU be the space
of bounded analytic maps φ : U → C/Z, such that φ(T) is homotopic to T,
equipped with the uniform metric. We shall turn AU into a real-symmetric com-
plex Banach manifold as follows. Denote Ũ the lift π−1(U) ⊂ C. The space of
functions φ̃ : Ũ → C which are analytic, continuous up to the boundary, and
1-periodic, φ̃(z + 1) = φ̃(z), becomes a Banach space when endowed with the sup
norm. Denote that space ÃU. For a function φ : U → C/Z denote φ̌ an arbitrarily
chosen lift π(φ̌(π−1(z))) = φ. Observe that φ ∈ AU if and only if φ̃ = φ̌− Id ∈ ÃU.
We use the local homeomorphism between ÃU and AU given by

φ̃ �→ π ◦ (φ̃ + Id) ◦ π−1

to define the atlas on AU. The coordinate change transformations are given by
φ̃(z) �→ φ̃(z + n) + m for n, m ∈ Z, therefore with this atlas AU is a real-symmetric
complex Banach manifold.

Now let f : U → C/Z be an analytic critical circle map. By definition, there
is a neighborhood of the equator in which 0 is the only critical point of f . Let
f̃ : Ũ → C be a lift of f . The Argument Principle implies that for ε > 0 small
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enough, if g̃ ∈ ÃU is real-analytic, with g̃′(0) = −1, g̃′′(0) = 0, and || f̃ − g̃|| < ε,
then g = π◦(g̃+Id)◦π−1 is a critical circle map as well. Let ε( f ) be the supremum
of such ε, and set

CU = ∪f

{

π ◦ (g̃ + Id) ◦ π−1| g̃ ∈ ÃU, g̃′(0) = −1, g̃′′(0) = 0,

and ||g̃ − f̃ || < ε( f )
}

.

Proposition 7.1. — The space CU is a codimension 2 submanifold of AU.

Proof. — Set

BU = {φ̃ ∈ ÃU with φ̃′(0) = 0, φ̃′′(0) = 0}.
This is a Banach subspace of ÃU, which has codimension 2 by the Implicit Func-
tion Theorem. Select an element ψ ∈ ÃU with ψ ′(0) = −1, ψ ′′(0) = 0. In the
local chart on AU defined by

φ̃ �→ π ◦ (φ̃ + Id) ◦ π−1

the image of CU is the affine subspace ψ +BU. ��
We shall say that f is a critical cylinder map if f ∈ CU for some U ⊂ C/Z.

Let us denote by CR
U the real slice of CU:

CR
U = { f ∈ CU with f̄ (z) = f (z̄)}

= { f ∈ AU, such that f |T is a critical circle map}.

Definition 7.1. — Given a critical cylinder map f ∈ CU let us say that it is cylinder

renormalizable, or simply renormalizable, if there exists k > 1 and an equatorial annulus

V ⊂ C/Z such that following holds:

• there exist repelling periodic points p1, p2 of f in U with periods k and a simple arc

l connecting them such that f k(l) is a simple arc, and f k(l) ∩ l = {p1, p2};
• the iterate f k is defined and univalent in the domain Cf bounded by l and f k(l), the

corresponding inverse branch f −k|f k(Cf ) univalently extends to Cf ; and the quotient of

Cf ∪ f k(Cf )\{p1, p2} by the action of f k is a Riemann surface conformally isomorphic

to the cylinder C/Z (we will call a domain Cf with these properties a fundamental

crescent of f k);

• for a point z ∈ C̄f with { f j(z)}j∈N ∩ C̄f �= ∅, set RCf (z) = f n(z)(z) where

n(z) ∈ N is the smallest value for which f n(z)(z) ∈ C̄f . We further require that there

exists a point c in the domain of RCf such that f m(c) = 0 for some m < n(c); and

if we denote f̂ the projection of RCf to C/Z with c �→ 0, then f̂ ∈ CV.

We will say that the new critical circle map f̂ is a cylinder renormalization of f with period k.
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The relation of the cylinder renormalization procedure to critical circle maps
is easy to see:

Proposition 7.2. — Suppose f ∈ CU is a critical circle map with rotation number

ρ( f ) ∈ R\Q . Assume that it is cylinder renormalizable with period qn. Then the corresponding

renormalization f̂ is also a critical circle map with rotation number Gn(ρ( f )). Also, R f̂ is

analytically conjugate to Rn+1f .

Proof. — As follows from the definition of a fundamental crescent, the in-
tersection of the domain Cf with T is an arc of the form [a, f qn(a)]. The claim
follows in an obvious fashion from this observation. ��

The first useful property of cylinder renormalization is the following:

Proposition 7.3. — Let f ∈ CU be renormalizable, with a cylinder renormalization

f̂ ∈ CV corresponding to the fundamental crescent Cf , and let W be any equatorial annulus

compactly contained in V. Then there is an open neighborhood G ⊂ CU of f such that every

g ∈ G is renormalizable, with a fundamental crescent Cg ⊂ U which depends continuously on g
in the Hausdorff sense. Moreover, there exists a holomorphic motion χg : ∂Cf �→ ∂Cg over G,

such that χg( f (z)) = g(χg(z)). And finally, the renormalization ĝ is contained in CW.

Proof. — Firstly, there is a neighborhood of f in which there exist continuous
branches of gk-periodic points pg

1, pg
2 with p f

i = pi, such that both points are re-
pelling. Shrinking the neighborhood, if necessary, we may select an analytic family
of linearizing coordinates wg

i : Dg
i → D which conjugate the iterate gk to the linear

map z �→ λ
g
i z, with λ

g
i = (gk)′(pg

i ) (here Dg
i is a topological disk around pg

i , and
wg

i (pg
i ) = 0). We may further assume that wg

i (D
g
i ) = D. Suppose Cf is bounded by

the curves lf , f k(lf ) terminating at the points p f
i , and let us denote zi the points

in ∂D f
i ∩ f k(lf ) which are obtained last, when moving along f k(lf ) starting from

the equator, and ζi their preimages by the branches of f −k defined in D f
i and

fixing p f
i . Note that removing a smooth simple curve γ

f
i ⊂ D f

i connecting p f
i to

the boundary of D f
i from D f

i we may select a branch of

W f
i = 1

log λ
g
i

log wg
i

conjugating f k to z �→ z + 1 in the complementary domain. Let us embed γ
f

i

into an analytic family of curves γ
g
i with the same properties, and define Wg

i in
a similar fashion, selecting the same branch of log for all maps in a neighborhood
of f .

Now we are prepared to define Cg . Let l be the segment of lf terminating
at the points ζ1, ζ2, and li the complementary segment containing p f

i . Now let
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Li be the curve li in W f
i -coordinates, and Lg

i the parallel translate of this curve
terminating at Wg

i (ζi). We set lg to be the union of three curves: l, and lg
i =

(Wg
i )

−1(Lg
i ), and define l ′g = gk(lg). By construction, shrinking the neighborhood

around f again, if necessary, we may ensure that the curves lg , l ′g are disjoint
away from the ends. Denote Cg the domain bounded by lg , l ′g , chosen so that
g �→ Cg is Hausdorff continuous. By the Grötzsch inequality, Cg is a fundamental
crescent for g. The existense of the desired holomorphic motion is obvious from
the construction.

It remains to show that G may be chosen so that ĝ ∈ CW. It clearly follows
from Definition 7.1 that there is a domain D ⊂ Cf ∪ f −k(Cf ) and an iterate n > k
such that W � πf (D) (where πf : Cf → C/Z denotes the appropriate projection)
and f̂ ∈ CW is the projection of the iterate f n|D. Now the iterate gn|D projects to
an analytic map ĝ which is in CW for all g sufficiently close to f . ��

The next proposition shows that g �→ ĝ is well-defined:

Proposition 7.4. — In the notations of of Proposition 7.3, let C′
g be a different family

of fundamental crescents, which also depends continuously on g ∈ G in the Hausdorff sense.

Then there exists an open neighborhood G′ ⊂ G of f , such that the cylinder renormalization

of g ∈ G′ corresponding to C′
g is also ĝ.

Proof. — The argument is standard in the study of Douady coordinates; we
outline it, and leave the details to the reader. As we have seen above, in a slit
neighborhood of pg

i , the iterate gk is conjugate to z �→ z + 1, and both Cg and C′
g

become fundamental half-infinite strips for the orbits of the unit translation. Let
us define a projection π : Cg → C′

g as follows: in a small neighborhood of the re-
pelling point pg

i the point z ∈ Cg will project to a point z′ ∈ C′
g, which is its integer

translate in the log-linearizing coordinate. Outside the linearizing neighborhoods of
the repelling points, every z ∈ Cg belongs to a union Cg ∪ f k(Cg) ∪ ( f k|Cg)

−1(Cg)

(provided G′ is chosen small enough). We then set π(z) to be one of the points
z, f k(z), ( f k|Cg)

−1(z) which belongs to C′
g . In the quotient cylinders, π becomes

a conformal map C/Z → C/Z which conjugates the corresponding cylinder renor-
malizations of g. However, it also fixes 0 ∈ C/Z and hence is the identity. ��

We invite the reader to verify, along the same lines, that if t �→ Ct
f is a ho-

motopy of fundamental crescents for f , then the corresponding cylinder renormal-
izations all coincide. However, a critical cylinder map may be renormalizable in
several different ways. Further in this section we will make a canonical choice of
cylinder renormalization for a particular class of critical cylinder maps.

A key property of the cylinder renormalization is the following:
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Proposition 7.5. — In the notations of Proposition 7.3, the dependence g �→ ĝ is an

analytic map G → CW.

Proof. — By the Theorem of Bers and Royden [BR], the holomorphic motion
χg extends to a holomorphic motion χg : Cf ∪ f k(Cf ) → Cg ∪ gk(Cg) over a smaller
open neighborhood G′ with the same equivariance property. As shown in [MSS],
the holomorphic motion induces an analytic family of quasiconformal maps

Ψg : C/Z = (Cf ∪ f k(Cf ))/f k → C/Z = (Cg ∪ gk(Cg))/gk.

Applying the theorem of Ahlfors and Bers, we see that the projection πg : Cg ∪
gk(Cg) → C/Z depends analytically on g. Let D ⊂ Cf ∪ f −k(Cf ) and n ∈ N be such
that W � πf (D), and f̂ ∈ CW is the projection of the iterate f n|D. The iterate gn|D

projects to πg ◦ gn = ĝ ∈ CW for all g sufficiently close to f , and the claim follows.
��

Let us summarize. The cylinder renormalization acts on critical circle maps
themselves, rather than on commuting pairs. The reason for introducing commut-
ing pairs in the first place, was the absense of a canonical affine structure on the
smooth circle obtained by glueing the ends of a fundamental domain of the iterate
f qn+1 . However, if f is cylinder renormalizable with period qn, the affine structure
on the quotient circle comes from the quotient Cf /f qn � C/Z. The key here is
a fundamental fact of complex analysis, known under a slightly different guise as
Liouville’s Theorem: an analytic manifold structure on C/Z is necessarily affine.
The second advantage of Rcyl over R is closely related to the first one: as we
have seen, it extends to analytic maps which are not symmetric with respect to
the circle, thereby becoming an analytic operator on a complex Banach manifold.
In the following section we will show that Epstein critical circle maps are always
cylinder renormalizable.

7.2. Cylinders of commuting pairs in the Epstein class

In this section we will relate the cylinder renormalization defined above with
the renormalization of critical commuting pairs in the Epstein class. The crucial
observation is the following:

Lemma 7.6. — Let ζ = (η, ξ) be a commuting pair in the Epstein class with

χ(ζ) �= ∞. Denote Dη the domain of the branched triple covering map η : Dη → Cη(Iη).

Then the following holds:

• there exist two compex conjugate fixed points p+
η , p−

η of the map η with p±
η ∈ ±H,

and an R-symmetric simple arc l connecting these points such that l ⊂ Dη and

η(l) ∩ l = {p+
η , p−

η };
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• denoting Cζ the R-symmetric domain bounded by l and η(l) we have Cζ ⊂ Dη,

and the quotient of Cζ ∪ η(Cζ ) \ {p+
η , p−

η } by the action of ζ is a Riemann surface

homeomorphic to the cylinder C/Z (that is, Cζ is a fundamental crescent of η);

• the dependence ζ �→ Cζ is continuous with respect to the Carathéodory topology on the

Epstein class and the Hausdorff topology on the image.

Proof. — Let us fix s > 0 such that ζ ∈ Es. In view of Lemma 3.2, there
exists N = N(s) such that every pair ζ ∈ Es with χ(ζ) > N satisfies the con-
ditions of the existence of Douady coordinates (Lemma 6.2). We may choose as
Cζ a fundamental domain for η|UA , by Theorem 6.4 the choice can be made
continuously.

Let us address the case χ(ζ) ≤ N(s). Let η−1 : H → H denote the inverse
branch which preserves the real axis, η−1(H) � H. By the Denjoy-Wolf Theorem
this branch has a unique fixed point p+

η ∈ H ∪ η(Iη) which is globally attracting
in H. In this case necessarily Im p+

η > 0. Extend η−1 to −H by symmetry. This
branch has a complex-conjugate fixed point p−

η = p+
η . In view of their unique-

ness, these points depend continuously on the map η. Note that for a converg-
ing sequence of commuting pairs with χ(η) → ∞ these fixed points converge to
a parabolic fixed point on the real axis.

Suppose that the commuting pair ζ does not possess a fundamental cres-
cent Cζ . As noted in the proof of Proposition 7.3, in a neighborhood of p±

η the
map η becomes a translation in log-linearizing coordinate. Therefore if l is a curve
connecting the fixed points p±

η and the image η(l) \ {p±
η } is disjoint from l, then

l can be modified near the ends in such a way that the quotient of the cres-
cent bounded by l, η(l) has the conformal type of a bi-infinite cylinder. Thus, for
every choice of an R-symmetric curve l connecting the fixed points p±

η the image
η(l) \ {p±

η } intersects with l. To fix the ideas, let ξ(0) > 0. Consider the maps
ηα ∈ E given by ηα = η + α for α > 0. Let α0 be the smallest value for which
the map ηα0 has a fixed point, which is then necessarily parabolic. For all α < α0

sufficiently close to α0 the map ηα has a fundamental crescent by Lemma 6.2.
Therefore there exists a value α∗ between 0 and α0 such that η∗ = ηα∗ has the
following property. For any simple R-symmetric arc l connecting the fixed points
of η∗ the intersection (η−1

∗ (l)\{p±
ζ∗ })∩ l is non-empty, and there is a curve l̂ which

touches η−1
∗ (l̂) without crossing it.

Consider such a curve l̂ and denote γ = l̂ ∩ η−1
∗ (l̂) \ {p±

η∗}. Again appealing
to the local picture of the dynamics near the fixed points and near the real axis
we see that we may choose l̂ for which the set γ is positive distance away from
p±
η∗ and R. Let us now fix l̂ for which γ has the smallest Euclidean diameter.

Enclose γ into a Euclidean disk E with a diameter equal to diam γ , and take
a point x ∈ γ ∩ ∂E. Let x−1, x−2, ... denote the consecutive η∗-preimages of x lying
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in γ . Note that this sequence has to be finite, since otherwise the set ∪x−i ⊂ γ is
compact and invariant under η−1

∗ and thus contains a fixed point, which contradicts
the fact that p±

η∗ are the only fixed points of η−1
∗ . Let x−n be the last term in this

sequence. Since η−1
∗ (x−n) /∈ γ , we may slightly modify the curve l̂ near x−n, so

that the new curve and its preimage become disjoint in a neighborhood of x−n.
Proceeding in this fashion, we obtain a curve l̃ which is a small perturbation of l̂
such that l̃ ∩ η−1

∗ (l̃) ⊂ E \ Dε(x) for some ε > 0. Repeating the procedure a finite
number of times we arrive at a curve ľ with

diam
(

ľ ∩ η−1
∗ (ľ) \ {

p±
η∗

})

< diam γ,

contradictory to the way in which ľ was selected. Tracing back the assumptions,
we see that for any ζ ∈ E with χ(ζ) �= ∞ the arc l may be chosen with η(l) ∩
l = {p±

η }. The continuity of the construction is ensured in the same way as in
Proposition 7.3. ��

Given ζ = (η, ξ) ∈ E and Cζ as above, denote RCζ
(z) the first return map

of the crescent Cζ . Let cζ ∈ T be the only critical point of RCζ
and denote

πCζ
: Cζ ∪ η(Cζ ) → C/Z the projection specified by cζ �→ 0. In an obvious fashion

we have:

Proposition 7.7. — The projection of the first return map

fCζ
= πCζ

◦ RCζ
◦ π−1

Cζ

is defined and analytic on an open neighborhood of the circle T, and fCζ
|T is an analytic

critical circle map.

Let us show that this critical circle map does not, in fact, depend on the
particular choice of the fundamental crescent Cζ :

Proposition 7.8. — Let C′
ζ ⊂ Dζ be a different domain satisfying the conditions of

Lemma 7.6. Then

fCζ
|T ≡ fC′

ζ
|T.

Proof. — To fix our ideas, assume that ξ(0) > 0. Denote O ⊂ C the smallest
full set in the plane containing Cζ ∪ C′

ζ . The set O is bounded by two curves l1,
l2 meeting at p±

ζ , let l1 ∩ R < l2 ∩ R. By construction, the curves l1 and η−1(l1)
bound a fundamental crescent C′′

ζ . The Denjoy-Wolff Theorem together with the
dynamics of η|R implies that for every point z ∈ C′′

ζ there is the smallest n(z) ≥ 0
such that η−n(z)(z) ∈ Cζ . Define h(z) ≡ η−n(z)(z). The value of n(z) is constant on
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an open neighborhood of z except for z ∈ ηn(z)(∂Cζ ) for which the values on the
two sides of ∂Cζ differ by 1. Therefore the projection ψ = πCζ

◦ h ◦ π−1
C′′

ζ
is an

analytic endomorphism of C/Z. Since η−1 is univalent, ψ has no critical points,
and since ηR is monotone, the degree of ψ|T is one. Hence, ψ is a conformal
map. Also, ψ(0) = 0 by construction of the projections πCζ

and πC′′
ζ
. Therefore,

ψ ≡ Id. By definition of the first return map, ψ◦fC′′
ζ
◦ψ−1 = fCζ

on a neighborhood
of T, so fC′′

ζ
= fCζ

in that neighborhood. The equality fC′′
ζ

= fC′
ζ

is shown in the
same way, and the claim follows. ��

In view of the last lemma, on a neighborhood of T we obtain a well-defined
analytic critical circle map

fζ ≡ fCζ
,

which we will refer to as the cylinder map of ζ . In Figure 4 we illustrate the action
of the map fζ near T. Schematically shown is the preimage of the circle T ⊂ C/Z
which consist of the circle itself, together with analytic arcs emanating from 0 at
angles kπ/3 to T. Analytic continuations of these preimages may eventually branch
further, as shown.

FIG. 4.

7.3. The cylinder renormalization operator

Proposition 7.9. — For every s ∈ (0, 1) there exists an equatorial neighborhood U =
U(s) such that for every commuting pair ζ ∈ Es with χ(ζ) �= ∞ the cylinder map fζ is

in CU.



HYPERBOLICITY OF RENORMALIZATION 31

Proof. — First, denote mod ζ = sup mod U over all equatorial annuli U such
that fζ ∈ CU. To prove the claim, let us assume the contrary. Then there is
a sequence ζn ∈ Es with χ(ζn) �= ∞ such that mod(ζn) → 0. Using compactness
of Es as stated in Lemma 3.2 we may pass to a subsequence ζn → ζ ∈ Es. The
height of the commuting pair ζ is necessarily infinite. The dynamics of ζ produces
an analytic return map hζ from an equatorial neighborhood in the repelling Fatou
cylinder of η to the attracting Fatou cylinder. Again by Lemma 3.2, there exists
δ = δ(s) > 0 such that hζ ∈ CU with mod U > δ. By Theorem 6.4 for any ζn

sufficiently close to ζ , mod ζn > δ, and we have arrived to a contradiction. ��
For the remainder of this paper let us fix the value of s to be the universal

constant from Lemma 3.4. Let us say that two pairs ζ1, ζ2 in Es are conformally

equivalent, ζ1 ∼conf ζ2, if χ(ζ1) = χ(ζ2) �= ∞ and fζ1 |T ≡ fζ2 |T. The name of the equiv-
alence relation is explained by the following:

Proposition 7.10. — Suppose ζ1 ∼conf ζ2. Then there exists a conformal map ψ from

a neighborhood of Iζ1 to a neighborhood of Iζ2 which conjugates the two Epstein commuting

pairs. Conversely, assume that there is a conjugacy ψ, whose domain includes a fundamental

crescent Cζ1 . Then ζ1 ∼conf ζ2.

Proof. — The first claim is quite obvious, since the identity map of C/Z lifts
via the projections πCζ1

, πCζ2
to a conformal conjugacy between the two commut-

ing pairs. On the other hand, any such conjugacy ψ pojects to a conformal map
h between equatorial annuli, which conjugates fζ1 , fζ2 . If the domain of ψ contains
Cζ1 , then h extends to a conformal endomorphism of C/Z. Since h(0) = 0, in
this case h ≡ Id. ��

Recall that Sr = {ζ ∈ C| χ(ζ) = r}. The equivalence relation ∼conf is clearly
closed. By Lemma 7.6 we have:

Proposition 7.11. — For every r ∈ N the correspondence ι : (Sr ∩ Es)/∼conf → CR
U

given by [ζ ]∼conf
�→ fζ is continuous.

Moreover,

Proposition 7.12. — For every s ∈ (0, 1) and r ∈ N there exists c = c(s, r) > 0 such

that the following holds. If we equip the Epstein class Es with C0-distance, and CR
U with the

sup-distance, then for every ζ1, ζ2 ∈ Es ∩Sr we have distC0(ζ1, ζ2) ≥ c(s, r) distC0( fζ1, fζ2).

Proof. — For ζ = (η, ξ) ∈ Es let φ denote the uniformizing coordinate
Cζ → C/Z, and Φ : Cζ → C be its lift. By Lemma 7.6 the crescent Cζ moves
continuously in E . On the other hand, by Lemma 3.2, Es is Carathéodory com-
pact, and hence the domain C̄ζ ∪ η(Cζ ) ∪ η−1(Cζ ) has a bounded shape near
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Cζ ∩ R. Since Φ conformally extends to C̄ζ ∪ η(Cζ ) ∪ η−1(Cζ ), we may apply the
Koebe Distortion Theorem to it to conclude that the distortion of Φ on Cζ ∩ R
is bounded by a constant which depends only on s and r. Moreover, by real
a priori bounds the derivative Φ′ is bounded by const(s, r). Noting that fζ |T is the
projection of the composition ηr ◦ ξ , we have the desired estimate. ��

Proposition 7.13. — Let U be as in Proposition 7.9. There exists N = N(U) ∈ N
such that the following holds:

(I) suppose ζ ∈ Es is at least N-times renormalizable. Then the renormalization

RNζ ∈ Es;

(II) also RNζ has a holomorphic pair extension H with universal bounds as in Theo-

rem 5.4;

(III) denote H ′ the holomorphic pair extension of pRNζ which is the linear rescaling

of H . Then there exists an iterate η−l which conformally conjugates the pair H ′

to a holomorphic pair G with ∆G � Cζ for some fundamental crescent Cζ ;

(IV) moreover, πCζ
: ∆G → C/Z ∩ U;

(V) finally, there is a fundamental crescent CpRN−1fζ compactly contained in U (cf.

Figure 4).

Proof. — By real a priori bounds, eventually all renormalizations of a com-
muting pair ζ ∈ E lie in Es. The existense of N as in (I) follows from Lemma 3.2.
Statement (II) is a consequence of Theorem 5.4 and Lemma 3.2. Claims (III) and
(IV) follow since the range of the holomorphic pair H ′ is commensurable with
IN by Theorem 5.4. Finally, (V) follows from Lemma 7.6 and Lemma 3.2. ��

Definition 7.2. — For the remainder of the paper fix U as in Proposition 7.9 and set

M = CR
U, N = N(U). Condition (V) of Proposition 7.13 implies that fζ is a renormalizable

critical cylinder map. Let f̂ be its renormalization corresponding to the crescent CpRN−1fζ . We

will call it the cylinder renormalization of fζ , and write

f̂ ≡ Rcyl fζ .

It follows from the first condition of Proposition 7.13 that Rcyl fζ ∈ CU. Therefore, by

Lemma 7.3, for every pair ζ as above, the tranformation fζ �→ Rcyl fζ extends to an open

neighborhood Y ⊂ CU as an analytic operator Y → CU. We shall call this operator the

cylinder renormalization operator.

The definition of Rcyl implies the following connection with the usual renor-
malization operator:

Proposition 7.14. — In the above notation, we have

Rcyl fζ ≡ fRNζ .
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Proof. — By condition (V) of Proposition 7.13, there is an iterate f tqN , for
some t ∈ Z, which conformally maps π−1

Cζ
(CRN−1fζ ) to CRNζ . This conformal map

projects to a conjugacy ψ : C/Z → C/Z between Rcyl fζ and fRNζ . Since ψ is
conformal, and ψ(0) = 0, necessarily ψ ≡ Id. ��

Moreover,

Proposition 7.15. — If ζ1, ζ2 are at least N-times renormalizable elements of Es, and

ζ1 ∼conf ζ2, then RNζ1 ∼conf R
Nζ2. Hence the action of RN is well-defined on the quotient space

Es/∼conf , and

ι ◦ RN = Rcyl ◦ ι.

Proof. — The claim follows from condition (V) of Proposition 7.13, similarly
to the preceding Proposition. ��

8. Local stable manifold of a periodic point of Rcyl

Let a commuting pair ζ be a periodic point of the renormalization opera-
tor R. As follows from Lemma 3.4, ζ ∈ Es. Naturally, ζ is also a periodic point
of RN, and we may fix the smallest m ∈ N such that RNm(ζ) = ζ . As seen from
Proposition 7.15, the critical circle map f̂ = fζ ∈ M is a periodic point of the
cylinder renormalization operator:

Rm
cyl f̂ = f̂ .

Let us fix a periodic point f̂ . Set ρ = ρ( f̂ ), and define Dρ = { f ∈M, such that
ρ( f ) = ρ}. Again from Proposition 7.15 we have

Proposition 8.1. — There exists a neighborhood Y of f̂ in M such that for every

f ∈ Y ∩ Dρ, Rim
cyl f is defined for all i, and Rim

cyl f → f̂ uniformly in Y.

Proof. — Assume that the statement of the proposition does not hold. Since
Rm

cyl is defined in an open neighborhood of f̂ , the assumption implies that there
exists δ > 0 such that for every i ∈ N and every ε > 0 there exists fi,ε such that
dist( f̂ , fi,ε) < ε, and dist( f̂ ,Rim

cyl fi,ε) > δ. Select a sequence εi → 0 and denote
fi = fi,εi . Let λi be the length of the domain of (imN − 1)-st pre-renormalization
of fi : λi = |IpRimN−1fi |, and consider the infinite sequence

Ti = (

λ−1
i pRimN−1+j fi(λiz)

)∞
j=−imN−1

.

By complex a priori bounds (Theorem 5.4) for each i there exists such N that for
all n ≥ N the renormalization Rnfi extends to a holomorphic commuting pair in
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H(µ) with a universal bound µ. By Remark 5.1, the value of N can be chosen
uniformly for all i. By Lemma 5.3 we may select a subsequence {ik} such that
the sequences Tik converge to a limiting renormalization tower T with complex
a priori bounds. Denote T̂ the limiting renormalization tower corresponding to the
periodic point ζ . By Proposition 7.12, the distance between the base pairs of T̂
and T is at least const ·δ. This contradicts the Tower Rigidity Theorem. ��

Below we shall demonstrate that the local stable set of f̂ is a submanifold
of M:

Theorem 8.2. — There is an open neighborhood W ⊂M of f̂ such that Dρ ∩ W is

a smooth submanifold of M of codimension 1.

Fix an equatorial neighborhood Uf̂ � U such that f̂ analytically extends
to Uf̂ . As before denote pk/qk the reduced form of the k-th continued fraction
convergent of ρ. Furthermore, define Dk as the set of g ∈M for which ρ(g) = pk/qk

and 0 is a periodic point with period qk. As follows from the Implicit Function
Theorem, this is a codimension 1 submanifold of M. As seen in the previous
section, the tangent space of a point in CU may be identified with BU, and that
of a point in M with the real slice BR

U. Let us define a cone C ∈ BR
U as

C = {

v ∈ BR
U, such that inf

x∈R
v(x) > 0

}

.

Lemma 8.3. — Let f ∈ Dk, and denote Tf Dk ⊂ BR
U the tangent space at this point.

Then Tf Dk ∩ C = ∅.

Proof. — Let v ∈ C and suppose { ft} ⊂ M is a one-parameter family such
that

π−1 ◦ ft ◦ π = π−1 ◦ f ◦ π + tv + o(t).

Then for sufficiently small values of t, π−1◦ft◦π > π−1◦f ◦π. Hence f qk
t (0) �= f qk (0)

and thus ft /∈ Dk. ��
Now let f̂ be as above. Elementary considerations of the Intermediate Value

Theorem imply that for every k there exists a value of θ ∈ (0, 1) such that the
map fθ = Rθ ◦ f̂ ∈ Dk. Moreover, if we denote θk the angle with the smallest
absolute value satisfying this property, then θk → 0. Hence, for all k large enough
Rθk(Uf̂ ) ⊃ Ū, so fθk ∈ M. Set fk = fθk and let Tk = TfkDk ⊂ BR

U. Fix v ∈ C . By
Lemma 8.3 and the Hahn-Banach Theorem there exists ε > 0 such that for every
k there exists a linear functional hk ∈ (BR

U)∗ with ||hk|| = 1, such that Ker hk = Tk
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and hk(v) > ε. By the Alaoglu Theorem, we may select a subsequence hnk weakly
converging to h ∈ (BR

U)∗. Necessarily v /∈ Ker h, so h �≡ 0. Set T = Ker h.

Proof of Theorem 8.2. — By the above, we may select a splitting BR
U = T⊕v·R.

Denote p : BR
U → T the corresponding projection, and let ψ : M → BR

U be
a local chart at f̂ . Lemma 8.3 together with the Mean Value Theorem imply
that p ◦ ψ : Dk → T is an isomorphism onto the image, and there exists an open
neighborhood U of the origin in T, such that p ◦ ψ(Dk) ⊃ U . Since the graphs
Dk are analytic, we may select a C1-converging subsequence Dkj whose limit is
a smooth graph G over U . Necessarily, for every g ∈ G, ρ(g) = ρ. As we have
seen above, every point g ∈ Dρ in a sufficiently small neighborhood of f̂ is in G,
and thus G is an open neighborhood in Dρ. ��

9. Proof of the main result

As in the previous section, let f̂ : Uf̂ → C/Z, where Uf̂ � U, be a periodic

point of Rcyl with period m. Set ρ = ρ( f̂ ) and let W be as in Theorem 8.2.
Denote T ≡ Tf̂ (Dρ ∩ W) the tangent space to the codimension one submanifold

at f̂ , and let L be the differential of Rcyl at f̂ :

L = Df̂ R
m
cyl :BR

U → BR
U, L : T → T

Recall that a continuous linear operator on a Banach space is called compact if
it maps the closed unit ball of the space onto a compact set. This condition is
equivalent to the image of every closed bounded set being compact.

Proposition 9.1. — The operator L = Df̂ R
m
cyl : BR

U → BR
U is compact.

Proof. — Denote B1 the unit ball in BR
U and let v ∈ B1. By definition of

Rcyl, the image L v is an analytic vector field on Uf̂ � Ū. Let Cf̂ � U be

the fundamental crescent corresponding to Rcyl f̂ , and φ = πf̂ : Cf̂ → C/Z the
uniformizing coordinate. The first return map R of φ−1(U) ⊂ Cf̂ consists of a finite

collection of iterates f̂ jk . By compactness considerations, the vector field vjk which
is the perturbation of each of these iterates induced by v has norm bounded by
a constant C independent of v. Since φ′ is also bounded in φ−1(U), there exists
D > 0 independent of v such that ||L v|U|| < D. Since the analytic functions in
Uf̂ whose norms in U are bounded by D form a normal family in U, the image
L (B1) is compact. ��

Hyperbolicity: stable direction. — By Proposition 8.1,

sup
k

||L k|T|| < ∞.
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Let us show that for some iterate the norm is strictly less than one:

Proposition 9.2. — There exists k ∈ N such that ||L k|T|| < 1.

Proof. — Assume the contrary. Then the operator L |T has a unit spec-
tral radius. The discreteness of the spectrum of a compact operator implies that
Sp(L |T) ∩ B1 �= ∅, and moreover, since every non-zero element of the spectrum
of a compact operator is an eigenvalue, there is v ∈ T such that L (v) = v. The
space T may then be split into a direct sum Es ⊕ Ec such that Es, the stable
space, is a closed L -invariant subspace such that ||L �|Es || < 1 for some � ∈ N,
and Ec, the central space, is also L -invariant, finite dimensional, and for every
v ∈ Ec, inf�∈N ||L �v|| > 0. The space Ec is spanned by solutions of (T−λ Id)kv = 0,
k ∈ N, λ ∈ B1. If we choose a small perturbation f ∈ Dρ ∩W of f̂ in the direction
of Ec close enough to f̂ , then the dynamics of Rm�

cyl on f is going to be dominated

by the central part L �|Ec . In particular, the rate of convergence Rkm�
cyl f −→

k→∞
f̂ can

not be geometric, contrary to Theorem 4.3. ��
Hyperbolicity: unstable direction. — As before, let

C = {

v ∈ BR
U, such that inf

x∈R
v(x) > 0

}

.

The key properties of C are listed in the next lemma:

Lemma 9.3.

(I) The cone C is renormalization-invariant: L : C → C ,

(II) Moreover, there exists α > 0 and k ∈ N such that for any vector field v ∈ C

inf
x∈R

L k(v(x)) > (1 + α) inf
x∈R

v(x),

(III) Finally, if v ∈ BR
U belongs to the closure of C , and v �= 0, then there exists

� ∈ N for which L �(v) ∈ C .

Proof. — Let f̃ = π−1 ◦ f̂ ◦ π. As follows from an elementary computation, if
f̃t(x) = f̃ (x) + tv(x) + o(t), then

f̃ 2
t (x) = f̃ 2(x) + tv2(x) + o(t)

= f̃ 2(x) + t( f̃ ′( f̃ (x))v(x) + v( f̃ (x))) + o(t),
(9.1)

and more generally, if we write

f̃ n
t (x) = f̃ n(x) + tvn(x) + o(t),

then vn(x) = f ′( f n−1(x))vn−1(x) + v( f n−1(x)).
(9.2)
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Let us denote Ck � U the fundamental crescent of f corresponding to the k-th
cylinder renormalization Rk

cyl f , and Jk = Ck ∩ T. Let πk(x) be the corresponding
uniformizing coordinate Ck → C/Z, and Φk : Cn → C its lift. In the local chart
given by π−1

k , the k-th cylinder renormalization Rk
cyl f is represented by the iterate

gk = f qmk for some m ∈ N.
To prove the first claim, observe that by (9.2),

inf
x∈R

vn(x) ≥ inf
x∈R

v(x) > 0.(9.3)

The image

L v = [(Φk)
′ ◦ gk · (vqmk |Jk)] ◦ (Φk)

−1.(9.4)

Since (Φk)
′ > 0, (I) follows.

To prove (II), note that by the real a priori bounds, the sizes of the intervals Jk

decrease geometrically with k. On the other hand, applying the Koebe Distortion
Theorem to the conformal extension of Φk to Ck and its two neighboring iterates,
we see that the distortion of Φk on the interval gk( Jk) is bounded uniformly in k.
Hence, there exists α > 0 and l ∈ N such that for all k ≥ l

(Φk)
′|gk( Jk) > 1 + α,

and (II) follows from (9.4).
Finally, to see (III), observe that if v(x) �≡ 0, then there exist �, n ≤ qm� such

that v(x) > 0 for every x ∈ f n( J�). The claim now follows from (9.2). ��
We conclude:

Proposition 9.4. — There exists an eigenvector v̂ ∈ C :

L (v̂) = δv̂, where |δ| > 1.

Proof. — Part (II) of the previous Lemma implies that the spectral radius
RSp(L ) > 1. Since the spectrum of a compact operator is discrete, and its every
non-zero element is an eigenvalue, the claim follows. ��

Universality: Proof of Corollary 4.5. — The second claim is an obvious corollary of
the main theorem, the proof of the first one follows. Denote ζ∗ ∈ Es the fixed point of
R with ρ(ζ∗) = (

√
5 − 1)/2, and set f∗ = ι(ζ∗), defined in some annulus Uf∗ ⊃ Ū. By

Theorem 4.4, there exists m ∈ N such that f∗ is a hyperbolic fixed point of Rcyl with
one-dimensional unstable direction. Let Wloc

s be its local stable manifold, set M = mN,
and denote δM > 1 the modulus of the unstable eigenvalue. Set

P±
n = { f ∈ CU, such that ρ( f ) =

n
︷ ︸︸ ︷[1, ..., 1],

and f has a periodic orbit with eigenvalue ± 1}.
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By the Implicit Function Theorem, P±
n is a local submanifold of CU of codi-

mension one. Moreover, in a neighborhood of f∗, Rcyl : P±
n → P±

n−M. Let C ′ be
a subcone of C with C ′ ∩ B1 compact. Then by Theorem 4.4, there exists an
open neighborhood W ⊂ CU of f∗ and K ∈ N, such that for k > K, P±

k ∩ W is
a graph over Wloc

s transversal to C ′ at every point. Moreover, for every n > K the
sequence {P±

n+lM}∞
l=1 converges to Wloc

s at a geometric rate δM. For our purposes
we will set C ′ = Df∗R

m
cyl(C ).

Let V ⊃ T be an equatorial annulus chosen so that fµ∗ ∈ CV. By compex
a priori bounds, there exists N1 ∈ N such that for all n > N1 the renormaliza-
tion Rnfµ∗ extends to a holomorphic commuting pair with universal bounds. Since
Rnfµ∗ → ζ∗ ∈ Es and by Lemma 7.6, there exists N2 ≥ N1 such that for all k > N2

the map fµ∗ ∈ CV is cylinder-renormalizable with period qk, and the corresponding
cylinder renormalization gk is in CU. Fix some such k. By Proposition 7.3, there
is a neighborhood G of fµ∗ in CV such that the cylinder renormalization fµ∗ �→ gk

extends to an analytic operator Z : G → CU. Provided G is sufficiently small, there
is an iterate Rt

cyl(G) ⊂ W. Denote {hµ} ⊂ CU the smooth family Rt
cyl(Z({ fµ}∩G)).

Let u ∈ BR
V be the tangent vector to the family fµ at fµ∗ , and v ∈ BR

U its image
Dfµ∗ (R

t
cyl ◦ Z)u. As in Lemma 9.3 we have inf Dfµ∗ Zu > 0 and hence v ∈ C ′.

Note that the curve {hµ for µ ∈ Ii+lM} for i large is bounded by a pair of points
f ±
n ∈ P±

n , where n = i + lM − k − tM, and the claim follows from the transversality
property of P±

n . ��

10. Concluding remarks

Let us conclude by discussing some remaining open problems in the field. Of
primary importance to us is bringing Lanford’s Program to a completion. Passing
from the hyperbolicity of periodic orbits of Rcyl to the hyperbolicity of the whole
renormalization horseshoe requires, as a preliminary step, endowing the local sta-
ble sets of the points in the horseshoe with the structure of analytic submani-
folds. In addition, the case of unbounded type necessitates analyzing the situation
when the periods of renormalization grow without a bound, and showing that the
rate of convergence to the horseshoe remains uniformly bounded in this situation.
We recently carried out the relevant analysis in a joint paper with A. Epstein
[EY]. We extend the result of this paper to the whole horseshoe in a forthcoming
work [Ya3].

Commonly, renormalization convergence results in one-dimensional dynamics
are connected with rigidity properties of the renormalized maps. The problem
relevant to our study is a C1+α rigidity question:

When is the conjugacy between two critical circle maps with the same irrational rotation

number, which maps 0 to 0, C1+α-smooth?
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The study of this question is the main subject of the papers of de Faria
and de Melo [dFdM1,dFdM2]. These authors demonstrate that the conjugacy has
the desired smoothness in the case when both maps are analytic, and the type of
the rotation number is bounded. They prove that, with these restrictions, the C1+α

rigidity is equivalent to the geometric rate of convergence of renormalizations, and
derive their result from their Theorem 4.3. On the other hand, they show that if
both of the conditions are relaxed, the statement does not hold. As we described
above, we expect our methods to bring Lanford’s Program to a completion, and
in particular, to extend Theorem 4.3 to unbounded types. It is then an intriguing
problem, whether the answer to the above question is positive when the two maps
are analytic, but the rotation numbers are unbounded. The situation when the
type is bounded, but the maps are only smooth also requires study.

In this paper we have introduced a new renormalization for critical circle
maps. We hope that the reader has been convinced that apart from enabling us to
solve the hyperbolicity problem, this new construction is more natural. It would be
instructive therefore to re-do the proof of Theorem 4.1 using Rcyl instead of R.
This mainly requires understanding the geometry of a periodic point of Rcyl to
define an appropriate analogue of the Epstein class, and finding the corresponding
replacements of de Faria’s holomorphic commuting pairs. For the moment, the
only situation when we are able to carry out the whole theory without recourse
to commuting pairs is the degenerate case of parabolic renormalization, studied
in [EY].

Let us also comment that our method should be applicable to the study of
universality of Siegel disks (see e.g. [MP]) in the situation when complex a priori

bounds exist (such as Siegel quadratics of bounded type, cf. [Ya1]). This problem
is analogous to the study of renormalization of non-real quadratic polynomials and
the related aspects of the geometry of the Mandelbrot set, and should lead to the
construction of hyperbolic non-real periodic orbits of Rcyl.
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141–144.

M. Y.
Department of Mathematics
University of Toronto
Toronto, Ontario M5S 3G3
Canada
yampol@math.utoronto.ca

Manuscrit reçu le 5 décembre 2000.


