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Abstract. The existence of smooth hyperboloidal initial data sets for the vacuum Einstein
equations with non-zero cosmological constantis studied. Supposing that the trage

of the (physical) second fundamental form of the initial hypersurface is constant, there is a
correspondence between the solutions of the vacuum constraints with and without cosmological
constant, respectively. This enables us to extend the results proved by Andersson &uieChru
about the smoothness of the initial data with zero cosmological constant to the case

PACS number: 0420E

1. Introduction

We shall consider vacuum spacetimes with cosmological constant and such spacelike
hypersurfaces, called hyperboloidal hypersurfaces, which intersect conformal infinity (scri).
We shall mainly work in the conformally compactified picture (see [7,8]) and study the
solutions of the (conformal) constraint equations on hyperboloidal hypersurfaces. The case
A = 0 was first studied by Anderssat al [1]: they considered hypersurfaces where the
physical second fundamental form was a pure trace, i.e. proportional to the metric. In
order to get smooth initial data, the free data (in this case the conformal metric) have to
satisfy certain boundary conditions on the conformal compactified initial hypersurface. The
following three statements proved to be equivalent: the conformal initial data are smooth;
the scri is shear-free; the electric part of the four-dimensional Weyl tensor is zero on the
boundary of the initial hypersurface (because of the special situation the magnetic part is
identically zero on the whole hypersurface). This result was generalized by Andersson
and Chriciel [2] to such hypersurfaces where the only restriction on the physical second
fundamental form is that its tracg is a non-zero constant. They derived the boundary
conditions which the free data, i.e. the conformal meirjc and a symmetric trace-free
covariant tensor fieldi,, (see section 3), have to satisfy in order to get smooth conformal
initial data. In the present paper this result will be extended to the case of non-zero
cosmological constant.

The vacuum spacetimes with non-zero cosmological constant differ in some sense
significantly from the ones witlh = 0. For the latter, conformal infinity (if it is sufficiently
smooth) can be represented as a null hypersurface of the conformally extended spacetime
(see [7,8]), but (using signature-, +, +, +)) conformal infinity is timelike or spacelike,
when the cosmological constant is negative or positive, respectively. Despite this difference,
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the conditions which guarantee the smoothness of the initial data differ only slightly from the
ones given by Andersson and Checiel [2]. The main result of this paper, the smoothness
conditions withA # 0, is contained in the following statement.

Theorem 1 Let ug be a conformal hyperboloidal initial data set (see definition 2 later)
with smooth free dat#éh,,, A,,) and with the gauge choices (2.7) and (3.6), to the vacuum
conformal field equations with cosmological constant. Aetatisfy the inequalityh < %22

and lety’ = (3% — 3A)%. Suppose, furthermore, that the trace of the physical second
fundamental formy is a non-zero constant. In this casgis smooth iff the conditions

(a)
X'Aap + Xxap =0;
(b)
8488 1ap + Rapr*? =0, Dixap — 3hash®®Dixcp =0

are satisfied on the boundary of the initial hypersurfagé (see (2.7.3) and conditions
(3.15) later).

Remark Without loss of generality one can choose the tensor figJg such that the
componentsAy, vanish ondM. Supposing this is true, the conditions (a) and (b) can be
explicitly written in terms of the free dat&,,, A,;) and they practically give restrictions
on some of their derivatives normal to the boundary:

(@)
X'Aap+ XAap =0;
(b)
848845 + Raprt =0, D1Aap — 3hagh®DiAcp = 0.

Notation The notation is essentially the same as, for example, in [1]. All the Latin tensor
indices denote tetrad indices. j, k, . . . will denote four-dimensional, i.e. spacetime indices,
and take the valuef®, 1, 2, 3}. @, b,c, ... andA, B, C ... are restricted to the hypersurface

M and to its boundary M, so they take the valued, 2, 3} and {2, 3}, respectively. The
Greek indices are tensor indices with respect to some coordinate syséem. and §

mean the torsion free, metric covariant differential operators on the spacetime, on the initial
hypersurface and on its boundary, respectively. The above equations contain the projections
of the following quantities tdM: x4p and A, denote those of the second fundamental
form of M andd M, respectively;R 45 is that of the Ricci tensot; 4z and A 45 of the free

data onM, i.e. of the conformal metric and the tensor fielg,, respectively. The definition

of the second fundamental form oM, A, p = egegvaelﬂ, differs in sign from the one
used in [1,2]. The physical quantities are distinguished with a tilde from their unphysical
pairs and their indices are raised and lowered with the physical metric.

Conditions (b) and (B are the same as those for the vacuum case, but (a) &nd (a
both of which express the vanishing of the shear of scri, differ slightly from the vacuum
conditions (see [2]). These hold because of the following: supposing that the trace of the
physical second fundamental form is constant, there is then a strong connection between the
solutions of the constraints of the vacuum case with zero cosmological constant and those
with A # 0. Given a solution to the former, then considering the cosmological constant
A as a parameter, we can generate a one-parameter set of solutions to the constraints with
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several values ofA. The trace of the physical second fundamental form of the initial
hypersurfacey varies also (in terms al), such that the quantity’ = (32— 3A)z remains
fixed in a family of solutions characterized with the same= 0 vacuum solution.

When x = 0 the situation differs from the cases considered in theorem 1, because
here one has to add an additional condition to the ones contained in the theorem to get
smooth conformal initial data. One has to require that the trace-free Ipgriof the
conformal (unphysical) second fundamental fog be zero at the boundary of the initial
hypersurface. This is exactly the asymptotic version of the condition which was imposed
in [1] quoted at the beginning of the paragraph. Namely, there the considerations were
restricted to such hyperboloidal initial hypersurfaces whieje= 0 was satisfied over the
whole hypersurface. Imposing,, = 0 on dM an analogue of the result of [1] can be
proved. This is true independently of the value of the cosmological constant satisfying the
inequality A < %)22 and at the same time this includes also the extension of theorem 1 for
the x = 0 case. This result is formulated precisely in the following statement.

Theorem 2 Let ug be a conformal hyperboloidal initial data set with smooth free data
(hap, Agpy) and with the gauge choices (2.7) and (3.6) to the vacuum conformal field
equations with cosmological constant. Lat satisfy the inequalityA < %)“(2. Let us
suppose that the trace-free part of the unphysical second fundamental fpranishes on
aM. In this case the following three statements are equivalent:

e ug is in C®(M);

e lsp=0 anlexAB — %hABhCDD]_XCD =0onoM,;

¢ the (four-dimensional) Weyl tensor vanishes @\ .

Once a smooth conformal initial data s&tis given, a uniqgue smooth Cauchy evolution
exists in some neighbourhood of the initial hypersurface, as shown by Friedrich [4]. He
proved this for theA = 0 case, but this is also true for non-zero cosmological constant
because the evolution equations do not contajnwhich appears only in the constraints.
Considering theA = 0 vacuum case the solution of the hyperboloidal initial-value problem
in the past or in the future extends up to the conformal infinity whenever the hypersurface
intersects past or future null infinity, respectively. However, scri is not a null hypersurface
when the cosmological constant is non-zero. This means that, for example, in the case of a
negative cosmological constant (anti-de Sitter type spacetimes) in order to get a solution up
to the conformal boundary one has to solve an initial-boundary-value problem (see [6]).

2. The initial-value problem

In this section we define the initial-value problem precisely and introduce the formalism
which we shall use. The next two definitions are both modifications of those given in [4]:
they include the cosmological constatt and they do not require smoothness of the data,
only continuity. The very purpose of this paper is to find the additional conditions which
one has to impose to obtain smooth initial data. The definition of the hyperboloidal initial
data sets in terms of the physical quantities is as follows.

Definition 1 A triple (M, hap, Xap) 1S called a hyperboloidal initial data set to the vacuum
Einstein equations with cosmological constantf M is a manifold diffeomorphic to the
open unit ball inR3, h,, is a (positive definite) Riemannian metric afig, is a symmetric
covariant tensor field o, such that

(a) the constraints induced by the field equations holdvari.e.
Ié+)~(2_iab2ah —2A :07 Da()(ab _I’;ab)Z) :0; (21)
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(b) there exists a conformal closure of this initial data set, M. may be
diffeomorphically identified with the interior of a manifold with boundaryd M, whereM
is diffeomorphic to the closed unit ball iR® (whenced M is diffeomorphic to the sphere
$2) and onM there exist function§2 and £ such that

e Q>00nM,Q2=00n0M,

e at least one ot or D, is non-zero oM,

o h,, = Q2h,, extends to an at least continuous Riemannian metridgZon

e 1A — %%+ D'QD,Q2=00n0M,

o xa = Q(Xa» + hap) extends to an at least continuous tensor fieldbn ~ (2.2)

If A # 0, then the second condition of (b) follows from the fourth one. The above
definition requires that the conformal metrig, and the conformal second fundamental
form x,., should extend at least continuously to the wholeMf To get smooth initial
data the fieldsy,, and /., have also to satisfy certain ‘fall-off conditions. However, it
seems more natural and convenient to treat the hyperboloidal initial-value problem in terms
of the conformal quantities, working entirely on the conformally compactified manifold.
In this way the question of the asymptotic behaviour of the several quantities near to
infinity can be reduced to their local study at the pointsddf. Instead of the Einstein
equations we consider a first-order system initiated by Friedrich, the so-called conformal
field equations (for their original form see [3] and for the equations with cosmological
constant [6]), which contain the following as variables: the conformal fa@tats gradient
Y, =VQ, s = %V;V”Q, an orthonormal tetrad fieltk?}, the connection coefficiem;s"jk,
the quantitys;; = %(r,-_,- — %gijr) which is just half of the trace-free part of the unphysical
Ricci tensor and the rescaled Weyl tenggg; = Cjjx/ 2. The vectoref is the unit normal
of the hypersurfacé/ and the tetrad is parallel propagated alagjg Using the integral
curves ofej we can define a Gauss coordinate systen, y, z} in some neighbourhood
of M, where{r = 0} is the initial hypersurfacé/.

Here we quote only the constraints, which are just the inner equations of the conformal
field equations on the initial hypersurfagé (see [5]):

ta“pe =0, (23.0)
Rab = —XXab + XcaXbc + Qdab + Sap + (%r + SOO)hab’ (232(1)
Dpxea — DeXpa = Qdape + Zha[bsc]a (2.3.2b)
D,Q =%, (233)
DTy = xap — SLsap + shap, (2.3.4a)
D, = EcXca — s, (234[7)
Dys = S5, — X50q — 757 Za — 232D, (2.3.5)
Dasb - Dbsa = 2X[L;,Sb]c + Ecdcab’ (236(1)
Dasbc - Dbsac = 2Xc[asb] + 2:dcab + % ecab + lizhc[a Db]rs (236b)
Dcdcab = ch[axcb]s (237&)
Dcdac = XChdcabv (237b)
6Qs + 3Q°r 4+ 3%% — 3%, %% = A, (2.3.8)

2QD“D,Q — 3DQD, Q2 + 1Q?R = —3%2 — 1Q%(x% — xupx“") +2QTx + A. (239

(The last equation is just a consequence of the others, but we have included it in the system
because it will be often used in the later calculations.) The above system contains the
following unknowns:

Uo = (eZa yahm Xab> Q, E, 2(17 Sy 8as Sab, dab’ dabc)~ (24)
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Xab = eg‘ef Vyeop 1s the (unphysical) second fundamental formiaf Together with this
guantity the following projections with respect #§ are used:¥ = Xq, s, = Sou, dap =
duovo, dape = dyaope (the last two are essentially the electric and the magnetic part of the
rescaled Weyl tensor with respect to the normalMy. 1., is the torsion tensor of the
covariant differential operatob, and it vanishes identically becaugeis the Levi-Civita
differential operator of the metrik,,.

The conformal hyperboloidal initial data sets are described in the following manner.

Definition 2 A pair (M, uo) is called a conformal hyperboloidal initial data set to the
vacuum Einstein equations with cosmological constarit M is a manifold diffeomorphic
to the closed unit ball irR? with boundaryd M and if the components aofy in (2.4) are a
collection of fields onM such that
(a) up satisfies the constraints induced by the conformal equation ea M \ 9 M;
b)Q>00nM=M\dM and2 = 0 on dM, but at least one o& or D,Q is
non-zero ordM (in the A # 0 case the latest follows from the former condition).

The smoothness of the conformal initial data &hguarantees the existence of their
unique local time evolution [4]. We will give conditions (boundary conditionsaad#) on
some components afy, which are necessary and sufficient to the smoothness of the initial
data set«o on the whole ofM.

A solution of the above system can be generated as follows: let us suppose that we
have a solution to the physical vacuum constraints with cosmological constant, i.e. the pair
(Rap, Xab) IS @ solution of equations (2.1). After some calculations one can show that their
conformal transformed paifh.;, x.»), With some appropriate functior@ and X, satisfy
the equations

R+ x% — xapx® — 4s," — %r =0, Dy(x®, —8%4x) — 25, = 0. (2.5)

These are just the contractions of (28.2nd (2.3.2), respectively, supposing that the
emerging quantities,, ands, were calculated from the constraints (248.4ogether with
(2.3.8) and from (2.34), respectively. Others of the above constraint equations can also
be considered as the definitions of the further, yet unknown, components olamely
of (2, s, dup, dape). The conformal constraint equations (2.3) are not all independent, but
they satisfy some relations, of which all but one are algebraic (these are almost the same
as those for the casé = 0 in [4]). Because of these connections the remaining equations
of system (2.3) also hold.

Let us suppose now that a hyperboloidal initial data set as in definition 1 is given.
This means that the conformal quantitiés,, x.,, 2, ) and from them some components
of ug, namely (e, y“,.. xav. 2, X), are known directly. The remaining quantities, i.e.
(Za, 8, Sa, Sap, dap, dape), @S was mentioned before, can be calculated using some of the
constraint equations just as their definitions. But before doing this explicitly we can make
some simplifications to system (2.3).

So far we have not fixed the conformal gauge (i.e. the freedom that the triple
(M, ezgij, 02), for all positived, determines the same physical spacetithé, g;;)), so the
Ricci scalarr of the four-dimensional unphysical metric was a free function in the above
equations. Now we choose it to be

r = 2R, (2.6)

where R denotes the Ricci scalar of the three-dimensional conformal metric on the
{t = constant hypersurfaces, i.e. during the study of the constraits the Ricci scalar
on M. The trace of the physical second fundamental fgris supposed to be a constant.
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Using its conformal transformation rule the trace of the conformal second fundamental form

becomes
3 (X
=_—(Z+2). 2.7.1
=g (L+2) @7.1)
But ¥ can be fixed freely on the initial hypersurface. It is useful to choose
r=-1 onM. (2.7.2)

(On M one has no other possible choice to extegndp to the boundary.) In this case the
conformal second fundamental form is trace-free, i.e.

x=0 onM, (2.7.3)

which means that in this gauge, and its trace-free pait,, can be interchanged.
Taking the above simplifications into account we can calculate the set
(24, S, Say Sap, dap, dape) @s functions of(hy,, xup, 2, X):

Y. =D,Q, (2.8.1)

s = %D”D(,Q - %zQxabxab, (2.8.2)

Se = %D“Xac, (2.8.3)
1 1 X 1 d

b= —=1—| DuDpQ2— —hyy D°D.Q) — Zxupt — ~=hapxcax®, (2.8.4

Sab Q { ( b 3 b ) 3X b} 12 bXed X ( )
1 1 1

diy = = I Rap — ZhapR ) — X xtbe + = hapXeax — sap § » 2.8.5

b Q{( b 3 b) XaXb,+4 bXed X Sb} ( )

1 1 1

dabc = 5 {Dcha - Dcha + éhachde - ZhadeXdc} . (286)

Supposing that the unphysical metfig, is smooth (this holds priori in the following,
because the process of solving the (physical) constraints starts with a smooth unphysical
metric), in order to get aC>conformal initial data setg, we have to study only the
behaviour of the quantitie&2, xus, Sap» dub, dape)-

3. On the solutions of the constraints

In their paper, Andersson and CBuaiel [2] have studied the solutions of the vacuum
constraints in the cases where the trace of the second fundamentalifoves taken to
be a non-zero constant. Their results are easily applicable for non-vanishing cosmological
constant as well.

Let us denote byl,, the trace-free part of the (physical) second fundamental form,
i.e. Xap = Lap + 3hap¥. Becausey is supposed to be a constant, the (physical) vacuum
constraint equations (2.1) take the form

DyLb, =0, R+23%— LyL™ —2A =0. (3.1)

Let us suppose, furthermore, that the cosmological constant sarzisﬁ:e%iz. This holds
for all the anti-de Sitter type problems and also for some de Sitter like cases jvke0.
Then equations (3.1) can be written as

DyLb, =0, R+2(32-30) — Lyl =0, (3.2)
which look like the ordinary vacuum constraints with second fundamental form

Ko =La+Yhai’,  whereg = (32 —3A)%, (3.3)
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Considering this transformation from the opposite point of view, we can say that whenever
we have a solutior(/,, Xab = La + L habX ) to the physical vacuum constraints with a
constanty’, then(fap, % Xab = a,,+3ha,,x) wherey = (X’2+3A)z is a solution with a cos-
mological constant\, supposing that > — 1 %'2. Because of its special behaviour, the case
x = 0 will be separately studied at the end of this section. For now we assumg th&t

Using the Lichnerowitz—Choquet-Bruhat-York method, one starts with a set
(M huh» ab P) where

e M is a manifold diffeomorphic to the closed unit ball B¢ with boundaryd M,

e 1, is a (positive definite)’> Riemannian metric o/,

e A, is an arbitrary symmetric, traceless® tensor field onM,

e p is aC®> defining function ofoM: p > 0onM; p =0, D,p Z0 ondM.
The functionp can be chosen so that the Ricci scalar of the méafjjc= (1/p?)h,, satisfies

R(h*) = —6 + R3p>, where R € C*®(M). (3.4)

After possible rescaling gf andh,;, by some smooth positive factér(i.e. o — 0p, hy, —
6%h.), we can get, in addition to the above, that

DpD,p =1 in some neighbourhood ofM. (3.5

This means that = p can be chosen in some neighbourhood #f as the Gauss coordinate
which is normal to the boundary and the tetrad vectors in this region can be chosen to be
parallel propagated alongf = D*x. Using k., and p with these features, we get, for the
traceA of the second fundamental foriy, of the {x = constan} surfaces, that

A=0, A =—}R onaM. (3.6)
dax 4
As we have seen in the second section a solution to the conformal constraints ithcan
be generated easily, by making a conformal transformation and using the formulae (2.8),
from a solution of the physical vacuum constraint (3.1). Furthermore, as was explained
earlier, the solutions to the physical vacuum constraints with cosmological constant can be
generated from the solutions of the vacuum constraints without cosmological constant. So

first we treat these physical vacuum constraints, which we start by solving the equation

D, [xla <D“Xb + Db X — §DCXCh”b> + xlzB“b] =0, (3.7)
for X¢, supposing thaB®® = A%*. Then, defining

X = 13<D"Xb + DPXx* — 2 DCX“h“”> + iB“b, (3.8)

X 3 x2

the scalar equation faw,

QDD,Q — 3D*QD,Q + Q%R — QXX ) + 362 =0, (3.9)
takinge = % should be solved. Considering

L% = Q2x, (3.10)
the physical quantities

hap = %ham Xab = éLah + ézh h):; (3.11)
where

%= (1?+3n): (3.12)

solve the vacuum constraints (3.1) with cosmological constant
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In [2] Andersson and Chéciel solved (proved the existence of and characterized the
solutions to) the above problem in the case 1 for arbitrary smoothB¢’. Let us suppose
that the cosmological constant satisfies the inequality

A< 7% (3.13)

This is a technical condition: by now excluding the equality we assure that the constant
7= (3% - 3A)2 is non-zero. This ensures the applicability of the results of [2]. With
B = (3%)%A ande = 1 let us denote the solutions of the equations (3.8)—(3.10) with
X $ and L, respectively. Then it is easy to see that the solutions in our case, i.e. with
B = A" ande = 13, are X = (172X, Q@ = 13’Q andL® = L. In general,
these solutions are not smootha¥, but Q € C3(M) and L* € C1(M). NeardM they
cannot be written simply as power series of the coordinateut as a series also containing
logarithmic terms, powers of l@g). Including the (3.6) gauge condition the conformal
factor Q nearaM takes the form

Q= 17'{x — SLapL*x® — L[Rapr*® 4+ 6488 hap — L*P D1 L op]x* log(x) + h.ot.}.
(3.14)

Let us suppose (also taking into account the gauge choices (2.7) and (3.6)) that
X'Aap+XLap =0 onoM, (3.15.1)

which means that scri is shear-free (because one can get (3.15.1) through the decomposition
of the conditionV,;V;Q — %giijVkQ = 0 onaM). In this case, where neithégr nor x’

can be zero (i.eL,p is proportional toi,p), the smoothness of the dafa and L., is
equivalent to the conditions

8488145 + Rapr*® =0 onaM; (3.15.2)
D1Lsg — 3haph®’DiLcp =0 onoM. (3.15.3)

(The second condition we have written with covariant derivative, instead of the coordinate
derivative which was used in [2], because this form is more suitable to the following
calculations.) Choosing free data such thgt = 0 does not restrict the generality. Writing
conditions (3.15) in terms ofi,, instead of the trace-free part of the second fundamental
form L, they look like

)z,)"AB_’_XAAB =0 onoM; (3161)
848814 + Rapr?® =0 onaM; (3.16.2)
D1Aap — 3hash“?D1Acp =0 onoM. (3.16.3)

Now we are in the position to prove the theorems formalized in the introduction. First we
show that the (3.15) conditions (or the equivalent (3.16) ones) also guarantee the smoothness
of the whole conformal initial data saf. From (2.8.4) we can see that, under the above
conditions,s, is smooth iff D,D,Q — 21, DD Q = —1% Ly, (because of (2.7L,, and
Xap are exchangeable). After it + 1) decomposition ab M, using the expression (3.14)
of @, we get the following three requirements:

Li1=0, L4y =0, X~/)\.AB+XLAB =0. (317)

The first two are just consequences of the (ZBebnstraint equation and the (2.7.2) choice
of ¥ (which yieldsy,, = L,,). The last one is our first condition (3.15.1), so the smoothness
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of s, really follows from (3.15). Using L’Hospital's rule one can determine the concrete
form of s,p:

s11= — 1R+ SLapL"® — (/%) D1L11,
s14 = —(X/X")D1L1a,
sap = Rap — jrl,,hABR - %hAB)\CD)\CD - %hABLCDLCD — (X/X)D1L s. (3.18)

From formulae (2.8.5) and (2.8.6), one can see thatand d,,. are smooth iffC,;, = 0
andC,,. = 0 atoM, respectively, i.e. the electric and the magnetic parts of the Weyl tensor
vanish on the boundary. Substituting the (2.8.3) formspofinto constraint (2.3.4) and
using L’Hospital’s rule we can find that

Dixa1 = 3D"xab (3.19.1)
on the boundary. From this result, by (2+1) decomposition, we have the formulae
D1L13 = —AapLl?8, D1L = 88L gy, (3.19.2)

which are used in the later calculations. These expressions together with the (3.18) values
of s4p give us, from definitions (2.8.5) and (2.8.6),

C11=0, Ciz =0, Cap = (X/X)(D1Lap — 3hash“"D1Lcp), (3.20)
for the electric part and

Cuapc =0,

Capr = —(D1Lap — 3hagh®?D1Lcp) — (LacASp — ShapLeph©P),

Cigc = Lppr®c — LepAP s, Cuc =0, (3.21)

for the magnetic part of the Weyl tensor. Taking into account ‘the zero shear and the
‘smoothness’ conditions, i.e. (3.15), and using the idertity A€ = Shapicpr®P, one

can see that all the components of the Weyl tensor vanistddn This means that,
similarly to the case of vanishing cosmological constant, conditions (3.15) are really enough
to guarantee the smoothness of a conformal hyperboloidal initial datg.s&he converse

is also true: a smooth sab satisfies conditions (3.15). Indeed, the ‘zero shear’ follows
from the smoothness af;, and the other two conditions are implied by the smoothness of
Q andL,,.

The Weyl tensor 0@ M vanishes whenever the conformal initial dataare inC> (M)

(or equivalently conditions (3.15) are satisfied). But the converse does not hold: a zero
Weyl tensor oo M does not imply the smoothnessaf. Indeed, considering (2.8.5), from

C.» = 0 it follows thats,, is at least inC1(M). Because& is in C3(M), the ‘zero shear’
condition (3.15.1) follows from (2.8.4) and the differentiability pf. Formulae (3.20) and
(3.21) for the components of the Weyl tensor hold even in this case. All this means that
the vanishing of the Weyl tensor dh/ guarantees the vanishing of the shear of scri, but
neither the smoothness @f,, nor that of 2, because (3.15.2) is not guaranteed to hold.
(In the special case considered in [1], where the conformal second fundamentdl fpism
identically zero onM and A is zero, the vanishing of the Weyl tensor i/ is equivalent

to the smoothness of the conformal initial data Here (3.15.2) is satisfied trivially.)

Finally, we shall consider the special case when the trace of the conformal second
fundamental form vanishes, i.€.= 0 (this requires that the cosmological constant should
be non-zero, becausg is not allowed to vanish). In this case the ‘zero shear’ condition
(3.15.1) takes the form

Aap=0 onoM. (322)
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Conditions (3.15.2) and (3.15.3) guarantee the smoothness arfid L,, only if L,p is
proportional toi 45 (see [2]). This means that we have to impose an additional condition,
namely that

L,p=0 onoM. (323)

Because of the choice (2.7.2) & i.e. x = 0 on M and x1, = 0 on dM (from (2.3.4)),
this is equivalent to the condition

Xab =0 onoM. (3.24)

The first of the ‘smoothness’ conditions (3.15.2) is simply a consequence of (3.22), i.e.
the conformal factor2 is automatically smooth when (3.22) and (3.23) (or equivalently
(3.22) and (3.24)) hold. In order to make,; also smooth, we need only impose condition
(3.15.3). The same formulae as in the geneyal- 0, case remain true (of course with the
simplification y = 0), so under conditions (3.22), (3.23) and (3.15.3) the initial dgtare
smooth. However, in contrast to the=# 0 case, the converse does not hold: with smooth
ug condition (3.23) is not necessarily satisfied.

Let us restrict ourselves to the case of such initial hypersurfaces, whgre O (i.e.
L., = 0) on the boundary. This is the asymptotic version of the condition which was
imposed in [1]. In this case, from (3.22) we find that (3.15.1) and (3.15.2) are satisfied.
It is easy to see from the above that for this class of initial hypersurfaces the following
three conditions, ir11dependently of the value of the cosmological constant (satisfying only

the inequalityA < é)22), are really equivalent:

e ug is in C®(M),
e lspg=0andDiL,p — %hABhCDDlLCD =0onoM,
e the Weyl tensor vanishes dhv.
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