
Class. Quantum Grav.13 (1996) 3075–3084. Printed in the UK

Hyperboloidal initial data for the vacuum Einstein
equations with cosmological constant

János Ḱanńar†
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Abstract. The existence of smooth hyperboloidal initial data sets for the vacuum Einstein
equations with non-zero cosmological constant3 is studied. Supposing that the tracẽχ
of the (physical) second fundamental form of the initial hypersurface is constant, there is a
correspondence between the solutions of the vacuum constraints with and without cosmological
constant, respectively. This enables us to extend the results proved by Andersson and Chruściel
about the smoothness of the initial data with zero cosmological constant to the case3 6= 0.

PACS number: 0420E

1. Introduction

We shall consider vacuum spacetimes with cosmological constant and such spacelike
hypersurfaces, called hyperboloidal hypersurfaces, which intersect conformal infinity (scri).
We shall mainly work in the conformally compactified picture (see [7, 8]) and study the
solutions of the (conformal) constraint equations on hyperboloidal hypersurfaces. The case
3 = 0 was first studied by Anderssonet al [1]: they considered hypersurfaces where the
physical second fundamental form was a pure trace, i.e. proportional to the metric. In
order to get smooth initial data, the free data (in this case the conformal metric) have to
satisfy certain boundary conditions on the conformal compactified initial hypersurface. The
following three statements proved to be equivalent: the conformal initial data are smooth;
the scri is shear-free; the electric part of the four-dimensional Weyl tensor is zero on the
boundary of the initial hypersurface (because of the special situation the magnetic part is
identically zero on the whole hypersurface). This result was generalized by Andersson
and Chrúsciel [2] to such hypersurfaces where the only restriction on the physical second
fundamental form is that its tracẽχ is a non-zero constant. They derived the boundary
conditions which the free data, i.e. the conformal metrichab and a symmetric trace-free
covariant tensor fieldAab (see section 3), have to satisfy in order to get smooth conformal
initial data. In the present paper this result will be extended to the case of non-zero
cosmological constant.

The vacuum spacetimes with non-zero cosmological constant differ in some sense
significantly from the ones with3 = 0. For the latter, conformal infinity (if it is sufficiently
smooth) can be represented as a null hypersurface of the conformally extended spacetime
(see [7, 8]), but (using signature(−, +, +, +)) conformal infinity is timelike or spacelike,
when the cosmological constant is negative or positive, respectively. Despite this difference,
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the conditions which guarantee the smoothness of the initial data differ only slightly from the
ones given by Andersson and Chruściel [2]. The main result of this paper, the smoothness
conditions with3 6= 0, is contained in the following statement.

Theorem 1. Let u0 be a conformal hyperboloidal initial data set (see definition 2 later)
with smooth free data(hab, Aab) and with the gauge choices (2.7) and (3.6), to the vacuum
conformal field equations with cosmological constant. Let3 satisfy the inequality3 < 1

3χ̃2

and let χ̃ ′ = (χ̃2 − 33)
1
2 . Suppose, furthermore, that the trace of the physical second

fundamental formχ̃ is a non-zero constant. In this caseu0 is smooth iff the conditions
(a)

χ̃ ′λAB + χ̃χAB = 0;
(b)

δAδBλAB + RABλAB = 0, D1χAB − 1
2hABhCDD1χCD = 0

are satisfied on the boundary of the initial hypersurface∂M (see (2.7.3) and conditions
(3.15) later).

Remark. Without loss of generality one can choose the tensor fieldAab such that the
componentsA1b vanish on∂M. Supposing this is true, the conditions (a) and (b) can be
explicitly written in terms of the free data(hab, Aab) and they practically give restrictions
on some of their derivatives normal to the boundary:

(a′)

χ̃ ′λAB + χ̃AAB = 0;
(b′)

δAδBλAB + RABλAB = 0, D1AAB − 1
2hABhCDD1ACD = 0.

Notation. The notation is essentially the same as, for example, in [1]. All the Latin tensor
indices denote tetrad indices.i, j, k, . . . will denote four-dimensional, i.e. spacetime indices,
and take the values{0, 1, 2, 3}. a, b, c, . . . andA, B, C . . . are restricted to the hypersurface
M̄ and to its boundary∂M, so they take the values{1, 2, 3} and {2, 3}, respectively. The
Greek indices are tensor indices with respect to some coordinate system.∇, D and δ

mean the torsion free, metric covariant differential operators on the spacetime, on the initial
hypersurface and on its boundary, respectively. The above equations contain the projections
of the following quantities to∂M: χAB and λAB denote those of the second fundamental
form of M̄ and∂M, respectively;RAB is that of the Ricci tensor,hAB andAAB of the free
data onM̄, i.e. of the conformal metric and the tensor fieldAab, respectively. The definition
of the second fundamental form of∂M, λAB = eα

Ae
β

B∇αe1β , differs in sign from the one
used in [1, 2]. The physical quantities are distinguished with a tilde from their unphysical
pairs and their indices are raised and lowered with the physical metric.

Conditions (b) and (b′) are the same as those for the vacuum case, but (a) and (a′),
both of which express the vanishing of the shear of scri, differ slightly from the vacuum
conditions (see [2]). These hold because of the following: supposing that the trace of the
physical second fundamental form is constant, there is then a strong connection between the
solutions of the constraints of the vacuum case with zero cosmological constant and those
with 3 6= 0. Given a solution to the former, then considering the cosmological constant
3 as a parameter, we can generate a one-parameter set of solutions to the constraints with
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several values of3. The trace of the physical second fundamental form of the initial
hypersurfacẽχ varies also (in terms of3), such that the quantitỹχ ′ = (χ̃2 −33)

1
2 remains

fixed in a family of solutions characterized with the same3 = 0 vacuum solution.
When χ̃ = 0 the situation differs from the cases considered in theorem 1, because

here one has to add an additional condition to the ones contained in the theorem to get
smooth conformal initial data. One has to require that the trace-free partLab of the
conformal (unphysical) second fundamental formχab be zero at the boundary of the initial
hypersurface. This is exactly the asymptotic version of the condition which was imposed
in [1] quoted at the beginning of the paragraph. Namely, there the considerations were
restricted to such hyperboloidal initial hypersurfaces whereLab = 0 was satisfied over the
whole hypersurface. ImposingLab = 0 on ∂M an analogue of the result of [1] can be
proved. This is true independently of the value of the cosmological constant satisfying the
inequality3 < 1

3χ̃2 and at the same time this includes also the extension of theorem 1 for
the χ̃ = 0 case. This result is formulated precisely in the following statement.

Theorem 2. Let u0 be a conformal hyperboloidal initial data set with smooth free data
(hab, Aab) and with the gauge choices (2.7) and (3.6) to the vacuum conformal field
equations with cosmological constant. Let3 satisfy the inequality3 < 1

3χ̃2. Let us
suppose that the trace-free part of the unphysical second fundamental formLab vanishes on
∂M. In this case the following three statements are equivalent:

• u0 is in C∞(M̄);
• λAB = 0 andD1χAB − 1

2hABhCDD1χCD = 0 on ∂M;
• the (four-dimensional) Weyl tensor vanishes on∂M.

Once a smooth conformal initial data setu0 is given, a unique smooth Cauchy evolution
exists in some neighbourhood of the initial hypersurface, as shown by Friedrich [4]. He
proved this for the3 = 0 case, but this is also true for non-zero cosmological constant
because the evolution equations do not contain3, which appears only in the constraints.
Considering the3 = 0 vacuum case the solution of the hyperboloidal initial-value problem
in the past or in the future extends up to the conformal infinity whenever the hypersurface
intersects past or future null infinity, respectively. However, scri is not a null hypersurface
when the cosmological constant is non-zero. This means that, for example, in the case of a
negative cosmological constant (anti-de Sitter type spacetimes) in order to get a solution up
to the conformal boundary one has to solve an initial-boundary-value problem (see [6]).

2. The initial-value problem

In this section we define the initial-value problem precisely and introduce the formalism
which we shall use. The next two definitions are both modifications of those given in [4]:
they include the cosmological constant3, and they do not require smoothness of the data,
only continuity. The very purpose of this paper is to find the additional conditions which
one has to impose to obtain smooth initial data. The definition of the hyperboloidal initial
data sets in terms of the physical quantities is as follows.

Definition 1. A triple (M, h̃ab, χ̃ab) is called a hyperboloidal initial data set to the vacuum
Einstein equations with cosmological constant3 if M is a manifold diffeomorphic to the
open unit ball inR3, h̃ab is a (positive definite) Riemannian metric andχ̃ab is a symmetric
covariant tensor field onM, such that

(a) the constraints induced by the field equations hold onM, i.e.

R̃ + χ̃2 − χ̃abχ̃
ab − 23 = 0, D̃a(χ̃a

b − h̃a
bχ̃) = 0; (2.1)
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(b) there exists a conformal closure of this initial data set, i.e.M may be
diffeomorphically identified with the interior of a manifold̄M with boundary∂M, whereM̄

is diffeomorphic to the closed unit ball inR3 (whence∂M is diffeomorphic to the sphere
S2) and onM̄ there exist functions� and6 such that

• � > 0 on M, � = 0 on ∂M,
• at least one of6 or Da� is non-zero on∂M,
• hab = �2h̃ab extends to an at least continuous Riemannian metric onM̄,
• 1

33 − 62 + Da�Da� = 0 on ∂M,

• χab = �(χ̃ab + 6h̃ab) extends to an at least continuous tensor field onM̄. (2.2)

If 3 6= 0, then the second condition of (b) follows from the fourth one. The above
definition requires that the conformal metrichab and the conformal second fundamental
form χab should extend at least continuously to the whole ofM̄. To get smooth initial
data the fieldsχ̃ab and h̃ab have also to satisfy certain ‘fall-off’ conditions. However, it
seems more natural and convenient to treat the hyperboloidal initial-value problem in terms
of the conformal quantities, working entirely on the conformally compactified manifold.
In this way the question of the asymptotic behaviour of the several quantities near to
infinity can be reduced to their local study at the points of∂M. Instead of the Einstein
equations we consider a first-order system initiated by Friedrich, the so-called conformal
field equations (for their original form see [3] and for the equations with cosmological
constant [6]), which contain the following as variables: the conformal factor�, its gradient
6i = ∇i�, s = 1

4∇i∇ i�, an orthonormal tetrad field{eα
i }, the connection coefficientsγ i

jk,
the quantitysij = 1

2(rij − 1
4gij r) which is just half of the trace-free part of the unphysical

Ricci tensor and the rescaled Weyl tensordijkl = Cijkl/�. The vectoreα
0 is the unit normal

of the hypersurfaceM̄ and the tetrad is parallel propagated alongeα
0 . Using the integral

curves ofeα
0 we can define a Gauss coordinate system{t, x, y, z} in some neighbourhood

of M̄, where{t = 0} is the initial hypersurfaceM̄.
Here we quote only the constraints, which are just the inner equations of the conformal

field equations on the initial hypersurfacēM (see [5]):

ta
c
be

µ
c = 0, (2.3.1)

Rab = −χχab + χc
aχbc + �dab + sab + ( 1

6r + s00)hab, (2.3.2a)

Dbχca − Dcχba = �dabc + 2ha[bsc], (2.3.2b)

Da� = 6a, (2.3.3)

Da6b = 6χab − �sab + shab, (2.3.4a)

Da6 = 6cχca − �sa, (2.3.4b)

Das = 6sa − 6csca − 1
12r6a − 1

24�Dar, (2.3.5)

Dasb − Dbsa = 2χc
[asb]c + 6cdcab, (2.3.6a)

Dasbc − Dbsac = 2χc[asb] + 6dcab + 6edecab + 1
12hc[aDb]r, (2.3.6b)

Dcdcab = 2dc[aχ
c
b], (2.3.7a)

Dcdac = χcbdcab, (2.3.7b)

6�s + 1
4�2r + 362 − 36a6

a = 3, (2.3.8)

2�DaDa� − 3Da�Da� + 1
2�2R = −362 − 1

2�2(χ2 − χabχ
ab) + 2�6χ + 3. (2.3.9)

(The last equation is just a consequence of the others, but we have included it in the system
because it will be often used in the later calculations.) The above system contains the
following unknowns:

u0 = (eα
a , γ a

bc, χab, �, 6, 6a, s, sa, sab, dab, dabc). (2.4)
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χab = eα
a e

β

b ∇αe0β is the (unphysical) second fundamental form ofM̄. Together with this
quantity the following projections with respect toeα

0 are used:6 = 60, sa = s0a, dab =
da0b0, dabc = da0bc (the last two are essentially the electric and the magnetic part of the
rescaled Weyl tensor with respect to the normal ofM̄). ta

c
b is the torsion tensor of the

covariant differential operatorD, and it vanishes identically becauseD is the Levi-Civita
differential operator of the metrichab.

The conformal hyperboloidal initial data sets are described in the following manner.

Definition 2. A pair (M̄, u0) is called a conformal hyperboloidal initial data set to the
vacuum Einstein equations with cosmological constant3 if M̄ is a manifold diffeomorphic
to the closed unit ball inR3 with boundary∂M and if the components ofu0 in (2.4) are a
collection of fields onM̄ such that

(a) u0 satisfies the constraints induced by the conformal equations onM = M̄ \ ∂M;
(b) � > 0 on M = M̄ \ ∂M and � = 0 on ∂M, but at least one of6 or Da� is

non-zero on∂M (in the 3 6= 0 case the latest follows from the former condition).

The smoothness of the conformal initial data onM̄ guarantees the existence of their
unique local time evolution [4]. We will give conditions (boundary conditions on∂M) on
some components ofu0, which are necessary and sufficient to the smoothness of the initial
data setu0 on the whole ofM̄.

A solution of the above system can be generated as follows: let us suppose that we
have a solution to the physical vacuum constraints with cosmological constant, i.e. the pair
(h̃ab, χ̃ab) is a solution of equations (2.1). After some calculations one can show that their
conformal transformed pair(hab, χab), with some appropriate functions� and 6, satisfy
the equations

R + χ2 − χabχ
ab − 4sa

a − 1
2r = 0, Db(χ

b
a − δb

aχ) − 2sa = 0. (2.5)

These are just the contractions of (2.3.2a) and (2.3.2b), respectively, supposing that the
emerging quantitiessab and sa were calculated from the constraints (2.3.4a) together with
(2.3.8) and from (2.3.4b), respectively. Others of the above constraint equations can also
be considered as the definitions of the further, yet unknown, components ofu0, namely
of (6a, s, dab, dabc). The conformal constraint equations (2.3) are not all independent, but
they satisfy some relations, of which all but one are algebraic (these are almost the same
as those for the case3 = 0 in [4]). Because of these connections the remaining equations
of system (2.3) also hold.

Let us suppose now that a hyperboloidal initial data set as in definition 1 is given.
This means that the conformal quantities(hab, χab, �, 6) and from them some components
of u0, namely (eα

a , γ a
bc, χab, �, 6), are known directly. The remaining quantities, i.e.

(6a, s, sa, sab, dab, dabc), as was mentioned before, can be calculated using some of the
constraint equations just as their definitions. But before doing this explicitly we can make
some simplifications to system (2.3).

So far we have not fixed the conformal gauge (i.e. the freedom that the triple
(M̄, θ2gij , θ�), for all positiveθ , determines the same physical spacetime(M, g̃ij )), so the
Ricci scalarr of the four-dimensional unphysical metric was a free function in the above
equations. Now we choose it to be

r = 2R, (2.6)

where R denotes the Ricci scalar of the three-dimensional conformal metric on the
{t = constant} hypersurfaces, i.e. during the study of the constraintsR is the Ricci scalar
on M̄. The trace of the physical second fundamental formχ̃ is supposed to be a constant.
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Using its conformal transformation rule the trace of the conformal second fundamental form
becomes

χ = 3

�

(
χ̃

3
+ 6

)
. (2.7.1)

But 6 can be fixed freely on the initial hypersurface. It is useful to choose

6 = − 1
3χ̃ on M̄. (2.7.2)

(On ∂M one has no other possible choice to extendχ up to the boundary.) In this case the
conformal second fundamental form is trace-free, i.e.

χ = 0 on M̄, (2.7.3)

which means that in this gaugeχab and its trace-free partLab can be interchanged.
Taking the above simplifications into account we can calculate the set

(6a, s, sa, sab, dab, dabc) as functions of(hab, χab, �, 6):

6a = Da�, (2.8.1)

s = 1
3DaDa� − 1

12�χabχ
ab, (2.8.2)

sc = 1
2Daχac, (2.8.3)

sab = 1

�

{
−

(
DaDb� − 1

3
habD

cDc�

)
− χ̃

3
χab

}
− 1

12
habχcdχ

cd, (2.8.4)

dab = 1

�

{(
Rab − 1

3
habR

)
− χc

aχbc + 1

4
habχcdχ

cd − sab

}
, (2.8.5)

dabc = 1

�

{
Dbχca − Dcχba + 1

2
hacD

dχdb − 1

2
habD

dχdc

}
. (2.8.6)

Supposing that the unphysical metrichab is smooth (this holdsa priori in the following,
because the process of solving the (physical) constraints starts with a smooth unphysical
metric), in order to get aC∞conformal initial data setu0, we have to study only the
behaviour of the quantities(�, χab, sab, dab, dabc).

3. On the solutions of the constraints

In their paper, Andersson and Chruściel [2] have studied the solutions of the vacuum
constraints in the cases where the trace of the second fundamental formχ̃ was taken to
be a non-zero constant. Their results are easily applicable for non-vanishing cosmological
constant as well.

Let us denote byL̃ab the trace-free part of the (physical) second fundamental form,
i.e. χ̃ab = L̃ab + 1

3h̃abχ̃ . Becauseχ̃ is supposed to be a constant, the (physical) vacuum
constraint equations (2.1) take the form

D̃bL̃b
a = 0, R̃ + 2

3χ̃2 − L̃abL̃
ab − 23 = 0. (3.1)

Let us suppose, furthermore, that the cosmological constant satisfies3 6 1
3χ̃2. This holds

for all the anti-de Sitter type problems and also for some de Sitter like cases whenχ̃ 6= 0.
Then equations (3.1) can be written as

D̃bL̃b
a = 0, R̃ + 2

3(χ̃2 − 33) − L̃abL̃
ab = 0, (3.2)

which look like the ordinary vacuum constraints with second fundamental form

χ̃ ′
ab = L̃ab + 1

3h̃abχ̃
′, whereχ̃ ′ = (χ̃2 − 33)

1
2 . (3.3)
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Considering this transformation from the opposite point of view, we can say that whenever
we have a solution(h̃ab, χ̃ab = L̃ab + 1

3h̃abχ̃
′) to the physical vacuum constraints with a

constantχ̃ ′, then(h̃ab, χ̃ab = L̃ab+ 1
3h̃abχ̃), whereχ̃ = (χ̃ ′2+33)

1
2 , is a solution with a cos-

mological constant3, supposing that3 > − 1
3χ̃ ′2. Because of its special behaviour, the case

χ̃ = 0 will be separately studied at the end of this section. For now we assume thatχ̃ 6= 0.
Using the Lichnerowitz–Choquet–Bruhat–York method, one starts with a set

(M̄, hab, Aab, ρ), where
• M̄ is a manifold diffeomorphic to the closed unit ball inR3 with boundary∂M,
• hab is a (positive definite)C∞ Riemannian metric onM̄,
• Aab is an arbitrary symmetric, traceless,C∞ tensor field onM̄,
• ρ is a C∞ defining function of∂M: ρ > 0 on M; ρ = 0, Daρ 6= 0 on ∂M.

The functionρ can be chosen so that the Ricci scalar of the metrich∗
ab = (1/ρ2)hab satisfies

R(h∗) = −6 + R3ρ
3, whereR3 ∈ C∞(M̄). (3.4)

After possible rescaling ofρ andhab by some smooth positive factorθ (i.e. ρ → θρ, hab →
θ2hab), we can get, in addition to the above, that

DaρDaρ = 1 in some neighbourhood of∂M. (3.5)

This means thatx = ρ can be chosen in some neighbourhood of∂M as the Gauss coordinate
which is normal to the boundary and the tetrad vectors in this region can be chosen to be
parallel propagated alongeα

1 = Dαx. Using hab andρ with these features, we get, for the
traceλ of the second fundamental formλab of the {x = constant} surfaces, that

λ = 0,
∂λ

∂x
= −1

4
R on ∂M. (3.6)

As we have seen in the second section a solution to the conformal constraints with3 6= 0 can
be generated easily, by making a conformal transformation and using the formulae (2.8),
from a solution of the physical vacuum constraint (3.1). Furthermore, as was explained
earlier, the solutions to the physical vacuum constraints with cosmological constant can be
generated from the solutions of the vacuum constraints without cosmological constant. So
first we treat these physical vacuum constraints, which we start by solving the equation

Da

[
1

x3

(
DaXb + DbXa − 2

3
DcX

chab

)
+ 1

x2
Bab

]
= 0, (3.7)

for Xa, supposing thatBab = Aab. Then, defining

Xab = 1

x3

(
DaXb + DbXa − 2

3
DcX

chab

)
+ 1

x2
Bab, (3.8)

the scalar equation for�,

�DaDa� − 3
2Da�Da� + 1

4�2(R − �4XabXab) + 3
2ε2 = 0, (3.9)

taking ε = 1
3χ̃ ′ should be solved. Considering

Lab = �2Xab, (3.10)

the physical quantities

h̃ab = 1

�2
hab, χ̃ab = 1

�
Lab + 1

�2
hab

χ̃

3
, (3.11)

where

χ̃ = (χ̃ ′2 + 33)
1
2 (3.12)

solve the vacuum constraints (3.1) with cosmological constant3.
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In [2] Andersson and Chruściel solved (proved the existence of and characterized the
solutions to) the above problem in the caseε = 1 for arbitrary smoothBab. Let us suppose
that the cosmological constant satisfies the inequality

3 < 1
3χ̃2. (3.13)

This is a technical condition: by now excluding the equality we assure that the constant
χ̃ ′ = (χ̃2 − 33)

1
2 is non-zero. This ensures the applicability of the results of [2]. With

Bab = ( 1
3χ̃ ′)2Aab andε = 1 let us denote the solutions of the equations (3.8)–(3.10) with

X̄ab, �̄ andL̄ab, respectively. Then it is easy to see that the solutions in our case, i.e. with
Bab = Aab and ε = 1

3χ̃ ′, areXab = ( 1
3χ̃ ′)−2X̄ab, � = 1

3χ̃ ′�̄ andLab = L̄ab. In general,
these solutions are not smooth at∂M, but � ∈ C3(M̄) andLab ∈ C1(M̄). Near∂M they
cannot be written simply as power series of the coordinatex, but as a series also containing
logarithmic terms, powers of log(x). Including the (3.6) gauge condition the conformal
factor � near∂M takes the form

� = 1
3χ̃ ′{x − 1

12LABLABx3 − 1
8[RABλAB + δAδBλAB − LABD1LAB ]x4 log(x) + h.o.t.}.

(3.14)

Let us suppose (also taking into account the gauge choices (2.7) and (3.6)) that

χ̃ ′λAB + χ̃LAB = 0 on ∂M, (3.15.1)

which means that scri is shear-free (because one can get (3.15.1) through the decomposition
of the condition∇i∇j� − 1

4gij∇k∇k� = 0 on ∂M). In this case, where neither̃χ nor χ̃ ′

can be zero (i.e.LAB is proportional toλAB), the smoothness of the data� and Lab is
equivalent to the conditions

δAδBλAB + RABλAB = 0 on ∂M; (3.15.2)

D1LAB − 1
2hABhCDD1LCD = 0 on ∂M. (3.15.3)

(The second condition we have written with covariant derivative, instead of the coordinate
derivative which was used in [2], because this form is more suitable to the following
calculations.) Choosing free data such thatA1b = 0 does not restrict the generality. Writing
conditions (3.15) in terms ofAab instead of the trace-free part of the second fundamental
form Lab they look like

χ̃ ′λAB + χ̃AAB = 0 on ∂M; (3.16.1)

δAδBλAB + RABλAB = 0 on ∂M; (3.16.2)

D1AAB − 1
2hABhCDD1ACD = 0 on ∂M. (3.16.3)

Now we are in the position to prove the theorems formalized in the introduction. First we
show that the (3.15) conditions (or the equivalent (3.16) ones) also guarantee the smoothness
of the whole conformal initial data setu0. From (2.8.4) we can see that, under the above
conditions,sab is smooth iffDaDb� − 1

3habD
cDc� = − 1

3χ̃Lab (because of (2.7)Lab and
χab are exchangeable). After its(2 + 1) decomposition at∂M, using the expression (3.14)
of �, we get the following three requirements:

L11 = 0, L1A = 0, χ̃ ′λAB + χ̃LAB = 0. (3.17)

The first two are just consequences of the (2.3.4b) constraint equation and the (2.7.2) choice
of 6 (which yieldsχab ≡ Lab). The last one is our first condition (3.15.1), so the smoothness
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of sab really follows from (3.15). Using L’Hospital’s rule one can determine the concrete
form of sab:

s11 = − 1
12R + 1

4LABLAB − (χ̃/χ̃ ′)D1L11,

s1A = −(χ̃/χ̃ ′)D1L1A,

sAB = RAB − 1
3hABR − 1

2hABλCDλCD − 1
4hABLCDLCD − (χ̃/χ̃ ′)D1LAB. (3.18)

From formulae (2.8.5) and (2.8.6), one can see thatdab and dabc are smooth iffCab = 0
andCabc = 0 at∂M, respectively, i.e. the electric and the magnetic parts of the Weyl tensor
vanish on the boundary. Substituting the (2.8.3) form ofsa into constraint (2.3.4b) and
using L’Hospital’s rule we can find that

D1χa1 = 1
2Dbχab (3.19.1)

on the boundary. From this result, by (2+1) decomposition, we have the formulae

D1L11 = −λABLAB, D1LA1 = δBLBA, (3.19.2)

which are used in the later calculations. These expressions together with the (3.18) values
of sAB give us, from definitions (2.8.5) and (2.8.6),

C11 = 0, C1B = 0, CAB = (χ̃/χ̃ ′)(D1LAB − 1
2hABhCDD1LCD), (3.20)

for the electric part and

CABC = 0,

CAB1 = −(D1LAB − 1
2hABhCDD1LCD) − (LACλC

B − 1
2hABLCDλCD),

C1BC = LBDλD
C − LCDλD

B, C11C = 0, (3.21)

for the magnetic part of the Weyl tensor. Taking into account ‘the zero shear’ and the
‘smoothness’ conditions, i.e. (3.15), and using the identityλACλC

B = 1
2hABλCDλCD, one

can see that all the components of the Weyl tensor vanish on∂M. This means that,
similarly to the case of vanishing cosmological constant, conditions (3.15) are really enough
to guarantee the smoothness of a conformal hyperboloidal initial data setu0. The converse
is also true: a smooth setu0 satisfies conditions (3.15). Indeed, the ‘zero shear’ follows
from the smoothness ofsab and the other two conditions are implied by the smoothness of
� andLab.

The Weyl tensor on∂M vanishes whenever the conformal initial datau0 are inC∞(M̄)

(or equivalently conditions (3.15) are satisfied). But the converse does not hold: a zero
Weyl tensor on∂M does not imply the smoothness ofu0. Indeed, considering (2.8.5), from
Cab = 0 it follows that sab is at least inC1(M̄). Because� is in C3(M̄), the ‘zero shear’
condition (3.15.1) follows from (2.8.4) and the differentiability ofsab. Formulae (3.20) and
(3.21) for the components of the Weyl tensor hold even in this case. All this means that
the vanishing of the Weyl tensor on∂M guarantees the vanishing of the shear of scri, but
neither the smoothness ofLab nor that of�, because (3.15.2) is not guaranteed to hold.
(In the special case considered in [1], where the conformal second fundamental formLab is
identically zero onM̄ and3 is zero, the vanishing of the Weyl tensor on∂M is equivalent
to the smoothness of the conformal initial datau0. Here (3.15.2) is satisfied trivially.)

Finally, we shall consider the special case when the trace of the conformal second
fundamental form vanishes, i.e.χ̃ = 0 (this requires that the cosmological constant should
be non-zero, becausẽχ ′ is not allowed to vanish). In this case the ‘zero shear’ condition
(3.15.1) takes the form

λAB = 0 on ∂M. (3.22)
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Conditions (3.15.2) and (3.15.3) guarantee the smoothness of� and Lab only if LAB is
proportional toλAB (see [2]). This means that we have to impose an additional condition,
namely that

LAB = 0 on ∂M. (3.23)

Because of the choice (2.7.2) of6, i.e. χ = 0 on M̄ andχ1a = 0 on ∂M (from (2.3.4b)),
this is equivalent to the condition

χab = 0 on ∂M. (3.24)

The first of the ‘smoothness’ conditions (3.15.2) is simply a consequence of (3.22), i.e.
the conformal factor� is automatically smooth when (3.22) and (3.23) (or equivalently
(3.22) and (3.24)) hold. In order to makeLab also smooth, we need only impose condition
(3.15.3). The same formulae as in the general,χ̃ 6= 0, case remain true (of course with the
simplification χ̃ = 0), so under conditions (3.22), (3.23) and (3.15.3) the initial datau0 are
smooth. However, in contrast to thẽχ 6= 0 case, the converse does not hold: with smooth
u0 condition (3.23) is not necessarily satisfied.

Let us restrict ourselves to the case of such initial hypersurfaces, whereχab = 0 (i.e.
Lab = 0) on the boundary. This is the asymptotic version of the condition which was
imposed in [1]. In this case, from (3.22) we find that (3.15.1) and (3.15.2) are satisfied.
It is easy to see from the above that for this class of initial hypersurfaces the following
three conditions, independently of the value of the cosmological constant (satisfying only
the inequality3 < 1

3χ̃2), are really equivalent:
• u0 is in C∞(M̄),
• λAB = 0 andD1LAB − 1

2hABhCDD1LCD = 0 on ∂M,
• the Weyl tensor vanishes on∂M.
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