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Abstract

Hypercholesterolemia represents a high risk factor for frequent diseases and it has also been associated with poor semen
quality that may lead to male infertility. The aim of this study was to analyze semen and sperm function in diet-induced
hypercholesterolemic rabbits. Twelve adult White New Zealand male rabbits were fed ad libitum a control diet or a diet
supplemented with 0.05% cholesterol. Rabbits under cholesterol-enriched diet significantly increased total cholesterol level
in the serum. Semen examination revealed a significant reduction in semen volume and sperm motility in
hypercholesterolemic rabbits (HCR). Sperm cell morphology was seriously affected, displaying primarily a ‘‘folded head’’-
head fold along the major axe-, and the presence of cytoplasmic droplet on sperm flagellum. Cholesterol was particularly
increased in acrosomal region when detected by filipin probe. The rise in cholesterol concentration in sperm cells was
determined quantitatively by Gas chromatographic-mass spectrometric analyses. We also found a reduction of protein
tyrosine phosphorylation in sperm incubated under capacitating conditions from HCR. Interestingly, the addition of Protein
Kinase A pathway activators -dibutyryl-cyclic AMP and iso-butylmethylxanthine- to the medium restored sperm
capacitation. Finally, it was also reported a significant decrease in the percentage of reacted sperm in the presence of
progesterone. In conclusion, our data showed that diet-induced hypercholesterolemia adversely affects semen quality and
sperm motility, capacitation and acrosomal reaction in rabbits; probably due to an increase in cellular cholesterol content
that alters membrane related events.
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Introduction

Cholesterol (chol) is a steroid lipid found in the cell membranes

and transported in the blood plasma of all animals. However

excessive levels of chol in blood circulation (hypercholesterolemia),

are strongly associated with progression of atherosclerosis [1]. Chol

is an essential component of mammalian plasma membranes (PM)

where it is required to establish proper membrane permeability and

fluidity [2]. Within the PM, chol has also been implicated in cell

signaling processes [3]. Changes in the organization of membrane

lipids can have profound consequences on cellular functions such as

signal transduction and membrane trafficking [4,5].

The lipid bilayer of the rabbit sperm membrane, as other

mammalian sperm cells, consists mainly of phospholipids and chol,

at a molar ratio of 1.5 [6]. Cholesterol is also abundant in other

subfractions of rabbit semen (seminal plasma and droplets). Sperm

membrane undergoes several modifications from the testis, were

they are produced, to the female tract. Membrane lipids, especially

chol, are responsible for changes in membrane fluidity and cell

responsiveness to the environment, alterations involved in a series

of physiological events that are unique for these cells [7]. Chol

efflux from PM leads to changes in membrane structure and

fluidity that give rise to the sperm capacitated state [8].

Capacitation is defined as the time-dependent acquisition of

fertilization competence [9], ability acquired by the sperm during

its transit through the female tract. This process involves a PKA-

regulated increase in tyrosine phosphorylation (p-Y) of a subset of

proteins [4,10,11], and is generally assessed as the ability of the

acrosome-intact sperm to undergo AR in response to physiological

inducers such as the zona pellucida or progesterone [10,12].

Animals fed with saturated fat-enriched diets raise their plasmatic

chol levels and this would have impact on the cell-specific lipid

equilibrium between chol and phospholipids that organize the PM

[13]. The later modification could affect cellular functions as signal
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transduction pathways coupled to membrane chol. Sperm mem-

brane lipids are highly responsive to dietary manipulation [13].

Chol-rich diets have been shown to produce a decrease in spermAR

kinetics [14], and detrimental effects on Leydig and Sertoli cell

secretory capacity in rabbits [15]. Moreover, previous works showed

that human male infertility might be associated with altered lipid

metabolism in seminal plasma [16].

The present study aimed at investigating the effects of diet-

induced hypercholesterolemia on rabbit semen and sperm

physiology, membrane cholesterol concentration, cell motility,

capacitation and acrosome reaction.

Materials and Methods

Ethics statement
The animal studies described here were reviewed and approved

by the animal care and use committees of School of Medicine –

National University of Cuyo (Institutional Committee for Use of

Laboratory Animals, IACUC).

Reagents
Unless otherwise stated, all chemicals and solvents of the highest

grade available were obtained from Sigma (St. Louis, MO, USA)

and Merck (Darmstadt, Germany).

Animals and diets
For the purposes of this study, twelve fertile male White New

Zealand rabbits (1.5 months old of age, acquired from‘‘Don

Cipriano’’ Farm, Mendoza, Argentina) were caged individually for

11 months with a photoperiod of 12 hours light/day and a

temperature ranging from 18–25uC. Animals were fed ad libitum a

standard rabbit diet composed of 17% crude protein, 16% fiber, 2%

minimal ether extract (0% saturated fat), 5.3% minerals (data from

the manufacturer’s analysis, GEPSA FEEDSH). At five months

of age, rabbits were split in two groups (6 each) maintaining

the average of body weight in both experimental groups

(0.93760.052 kg). A first group, which served as control (designated

normal cholesterolemic rabbits, NCR), continued fed with standard

cereal-based chow for the specie; and the other group (hypercho-

lesterolemic rabbits, HCR) was fed with experimental diet, ED:

15% crude protein, 14% fiber, 13.5 fat (6.5% saturated fat). The ED

was prepared by heating (up to 60uC) 200 g of fat derived from caw

named ‘‘primer jugo bovino’’ (Juan Lopez y CIAH; composed by 55%

saturated fat). The term ‘‘primer jugo bovino’’ (solidified fat juice)

corresponds to specific topic of Argentinian Alimentary Code (www.

anmat.gov.ar/codigoa/CAPITULO_VII_Grasos(actualiz11-06).pdf;

artı́culo 543 – (resolución 2012, 19.10.84)). Briefly, this solid

corresponds to the cooling of the liquid obtained after subjecting to

80uC adipose tissue from bovine (Bos taurus). When this solid was

exposed to 60uC it was obtained melted oil. This oil was poured over

1.5 kg of stock diet and thoroughly mechanically mixed. The diet was

stored in darkness under refrigeration until used to avoid peroxida-

tion. The resulting stock ED was enriched up to 6.5% saturated fat

and 0.05% chol (Instituto Nacional de Tecnologı́a Industrial, INTI).

Food intake, body weight (BW), body length (BL) and body mass

index (BMI) were recorded weekly. Body length was defined as the

distance from the tip of the nose to the anus measured in m and BMI

[17] correspond to weight in kg/square of the length expressed in m

(BMI = BW/BL2).

Plasma lipids
Plasma chol was determined twice monthly from their arrival to

our animal facility. Blood samples were collected from the

marginal ear vein of non anesthetized animals fasted overnight,

with heparinized syringes. Plasma was isolated after centrifugation

at 800 g for 10 min. Plasma chol concentration was estimated

using GT lab kit under manufacturer’s instructions (CHOD/PAP,

GT Lab). The initial plasma chol level and body weight were

similar in both groups.

Semen collection and handling
Ejaculated semen from both groups, HCR y NCR, was collected

by an artificial vagina [18] from fertile New Zealand rabbits (6–15

month old), in accordance with the Guide for Care and Use of

Laboratory Animals [19]. Two ejaculates were monthly obtained

from each male, and then stored at 37uC until evaluation 15 min

after collection. Samples containing urine and cell debris were

discarded whereas gel plugs were removed. Semen samples were

immediately assessed for physical parameters as aspect, color, volume

and pH. Percentages of viability and morphological abnormalities

were determined after a vital Eosin stain [20], (eosin 0.5% was

prepared by diluting Y eosin in phosphate buffer saline, PBS: 200 ml

were obtained diluting a Sigma tablet in pure water. Final

concentration: 0.01 M phosphate buffer, 0.027 M KCl, 0.137 M

NaCl, pH 7.4). Non stained cells were considered alive and expressed

as percentage of total sperm cell counted in 40 ml of semen. Cell

counting was performed on a slide mixing a drop of semen and eosin

solution (semen drop plus eosin drop were placed between slide and

cover slide) under 400 X magnification in a bright field microscope.

This microscopy preparation was also used to evaluate sperm

morphology [21]. In all cases 200 sperm cells were counted. After

that, semen samples from both groups were diluted (1:50, v/v) with

warmed PBS and sperm motility of diluted samples was evaluated at

250 X under a phase-contrast microscope maintained at 37uC.

Motility (progressive and in situ) was expressed as percentage of

motile sperm over 200 cells. At the same time, cell concentration of

diluted samples was estimated using a Macler counting chamber

(Sefi-Medical Instruments, Israel). Finally, samples were washed twice

by centrifugation - resuspension at 600 g for 10 min in PBS to remove

seminal plasma. The final pellet was resuspended with PBS (20 to

200 ml, depending on the pellet volume). Then, the sperm suspension

was adjusted to 5–106106 cells/ml with BWW medium [22] and

incubated in 35 mm Petri dishes (CorningH) under conditions that

support capacitation during 16 h (Capacitation conditions: BWW

supplemented with 4 or 40 mg/ml Bovine Serum Albumin (BSA

fraction V), 20 mMNaHCO3, 37uC, 5% CO2, 95% air, time: 16 h.

Four mg/ml was chosen using an average of the concentrations

previously used by the group of Visconti [11,23] and 40 mg/ml BSA

was used following Guidobaldi’s paper [24] in attempt to capacitate

HCR sperm, since the first concentration failed to trigger the classical

phosphotyrosine (p-Y) pathway. Sperm capacitation was determined

by p-Y proteins and the proportion of AR induced by progesterone.

Membrane cholesterol detection
Sperm cells (capacitated or not) were fixed with 4% parafor-

maldehyde in PBS 30 min at room temperature (RT) from both

rabbit groups. Samples were then washed three times with PBS

and centrifuged 15 min at 800 g. Sperm pellets were incubated

with 0.15 mM (final concentration) of filipin complex 60 min in

PBS (protected from light). A stock solution of 7.6 mM filipin was

made by dissolving the filipin complex or filipin III in

dimethylsulfoxide (DMSO) and stored frozen preserved under a

nitrogen atmosphere inside microtubes. Then cells were washed

once with PBS and centrifuged 15 min at 800 g, Cells were

mounted with PBS-glycerol (50% v/v) for fluorescence microscopy

analysis (380 nm Ex and 475 Em, Nikon). Sperm fluorescence was

observed and recorded with a Hamamatsu C4742-95 camera

attached to inverted microscope NIKON TE-2000. Sperm head
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fluorescence intensity was estimated by Image J software (n = 30)

(Analyze option, histogram function applied to a delimited area =

sperm head or acrosome area; ImageJ 1.32j, http//rsb.info.nih.gov./

ij/Java1.3.1_03). Preliminary results indicated that filipin signal

was preferentially distributed over the acrosomal region. There-

fore, this condition was normalized as the ratio between acrosome

and total head fluorescence: I = Ai/Hi (I: index, Ai: fluorescence

intensity corresponding to the acrosome region, Hi: fluorescence

intensity corresponding to total sperm head surface). This index

was relative and named as relative fluorescence index (RFI). RFI

was calculated for all conditions and established for each sperm

cell. Then, the percentage of cells with RFI 61 was plotted for

HCR and NCR.

Cholesterol analysis
Total lipids from centrifuged spermatozoa were extracted

following the instructions indicated by Laboratorio de Servicios

y Ensayos (I.N.T.I.-Frutas y Hortalizas, Luján de Cuyo, Mendoza,

Argentina). Cholesterol concentration was determined by Gas

Chromatography (AutoSystem XL, Perkin Elmer) and is reported

with respect to 109 spermatozoa.

Membrane integrity
PM integrity was evaluated by Hypo-Osmotic Test (HOS-T),

[25]. Sperm cells were incubated in a hypo-osmotic solution

(25 mM sodium citrate, 75 mM fructose in water) for 30 min at

37uC and then evaluated under phase contrast optic microscopy.

Swelling of sperm cells was identified as changes in the shape of

the tail. At least 100 cells were counted, and the proportion of

spermatozoa that showed swelling in the hypo-osmotic solution

corresponds to (not damaged) spermatozoa with membrane

integrity and normal functional activity.

Transmission electron microscopy
Samples were fixed 2 h at 0u–4uC adding to sperm suspensions

(PBS) equal volume of fixative solution consisting of 4%

paraformaldehide (w/v), 4% glutaraldehyde (w/v) and 20% piric

acid (v/v) saturated in PBS [26]. Fixed sperm were washed then by

centrifugation-suspension in fresh PBS for 10 min at 600 g (IEC,

centrifuge). Then sperm cells were centrifuged –equal time and

force– and sperm pellets were post-fixed adding 30 ml of 1% OsO4

(w/v) overnight at 4uC. Osmified samples were dehydrated in

ethanol-acetone (up to absolute acetone) and embedded in epoxy

resin (Epon 812, Pelco). Ultra-thin sections were obtained by

Ultracut equipment (Leitz), stained with classical uranyl acetate

and lead citrate TEM stain and examined with a Zeiss EM 900

(Zeiss, Oberkochen, Germany) at 80 kV.

Phospho-tyrosine evaluation (sperm capacitation status)
Following an incubation period of 16 h, spermatozoa from

HCR and NCR were concentrated by centrifugation 15 min at

850 g at RT, washed twice in 1 ml of PBS containing 0.2 mM

Na3VO4 (unspecific phospahatase inhibitor) at RT and resus-

pended in sample buffer (25 mM Tris, 0.5% SDS and 5%

glycerol, pH 6.8), [27], without mercaptoethanol boiling for

5 min. After centrifuging at 10,000 g for 15 min, the supernatant

was removed and frozen until used. Five percent of 2-

mercaptoethanol was added to defrosted samples (final concen-

tration) and they were boiled for another 5 min and subjected to

SDS-PAGE using 8–10% mini-gels according to Laemmli [27].

Protein extracts loaded per lane were equivalent to 5–106106

sperm. Each gel contained dual-prestained molecular weight

standard (Bio Rad, Hercules, CA). Proteins were transferred to

0.45 mm nitrocellulose membranes (Bio Rad) and nonspecific

reactivity was blocked by incubation over night with 3%

Teleostean fish gelatin dissolved in washing buffer (TBS, Towbin’s

buffer plus 0.1% Tween 20). Blots were incubated with the anti-

phophotyrosine antibody (clone PY20, ICN Biomedicals) 1:5000

in blocking buffer for 1 h at RT. Biotin-conjugated anti-mouse

IgG (Sigma) was used as secondary antibody (1:1250) and

horseradish peroxidase-conjugated extravidine (Sigma) was added

at the end (1:750), both in blocking buffer with a period of

incubation of 1 h at RT each. Excess first and second antibodies

were removed by washing three times for 10 min each in washing

buffer. Detection was accomplished with an enhanced chemilu-

minescence system (ECL; Amersham Biosciences) and subsequent

exposure to Blue Sensitive Cole-Parmer X-ray films (Cole-Parmer

Instrument Company) for 5–30 s. In order to bypass membrane

signal triggering PKA pathway, 1 mmol/L db-cAMP plus

100 mmol/L IBMX were added during the 16 h-capacitation

period.

Acrosome reaction (AR) assay
Capacitated sperm from HCR and NCR were incubated an

additional 15 min with (induced reaction) or without (spontaneous

reaction) progesterone in similar conditions (10 mM progesterone

in DMSO), [28]. Another control was performed with an aliquot

in the presence of DMSO in similar conditions to progesterone.

AR was stopped and evaluated simultaneously by Triple Stain

technique [29]. At least 300 cells were scored from each rabbit (in

all conditions) to evaluate acrosomal reaction. For each experi-

ment, AR percentage was calculated as percentage of reacted

sperm over 300 sperm cells as: (Number of reacted sperm induced by

progesterone - Number of spontaneously reacted sperm)6100/300= AR

percentage. This percentage was first established for NCR and

considered the control AR status. AR index was calculated as a

percentage of this value (AR index). In this way AR index

expresses the 100% for sperm from NCR and the percentage

decreasing in HCR sperm.

Statistical Analysis
Data were analyzed using statistical package software GraphPad

Prism 4 (http//www.graphpad.com/prism/Prism.htm, San Diego,

Figure 1. Rabbits fed with fat-rich diet increased plasma
cholesterol. Plasma cholesterol concentration from NCR (N) and HCR
(%) during the 11 experimental months. Values are expressed as mean
6 SEM. Arrowhead indicates fat intake start in HCR, and arrow indicates
the moment from which HCR weight resulted significantly different
from NCR, (p,0.001).
doi:10.1371/journal.pone.0013457.g001
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CA, USA). Unless otherwise expressly noted, results in the text,

table, and graphs are reported as means 6 SEM of at least three

independent experiments performed in duplicate. Differences

between groups were evaluated by the Student’s t-test considering

a P value of less than 0.05 as statistically significant.

Results

Rabbit’s cholesterolemia and body weight
Feeding of male rabbits on a diet containing 0.05% cholesterol

significantly (p,0.001) increased total cholesterol level in the

serum (Figure 1) without showing significant difference in body

weight throughout the experimental time (body weight at the end

of the experiment: 4.0860.17 kg NCR and 4.3760.24 kg HCR;

data not shown), and body mass index (BMI) did not present

difference between groups (and 17.6561.36 NCR and

17.3861.59 HCR, estimated at the end of the experiment, data

not shown).

NCR displayed a low constant cholesterolemia (26.1063.40 mg/

dl), compared to the literature [30] throughout the study, whereas in

HCR it was significantly increased (45.56611 mg/dl, Figure 1B) 45

days after they began to feed the ED (6.5 months of age; Figure 1B,

arrow). Chol in HCR reached the maximum level (87.77623

mg/dl) at 3 months of ED.

Semen quality parameters
The semen characteristics of NCR and HCR are summarized

in Table 1. Semen pH, sperm concentration and vitality were not

affected by dietary cholesterol. However, ejaculate volume and

sperm motility significantly decreased in HCR. Moreover, sperm

from HCR showed increased number of morphological alterations

compared to NCR. Among other changes, there were two clearly

noticeable: atypical sperm heads with the appearance of ‘‘folded

head’’ -head fold along the major axe-, and the presence of

cytoplasmic droplet. Ultrastructure of control (NCR) sperm head

(Figure 2A) contrasted with electron-lucent membrane vesicles

inside the acrosome (Figure 2B), remaining tail drop (Figure 2C)

and sperm head folded along the major axe (Figure 2D). Nucleus,

Table 1. General characteristics of fresh rabbit semen
samples (mean 6 SEM).

NCR HCR

Volume (ml) 759,8668.66 432.2645.6*

pH (mean 6 SD) 7.560.5 7.560.25

Sperm viability after eosin staining (%) 88.861.28 85.861.15

Sperm concentration (6106/ml) 629.2690.62 5216118.4

Total Motility (% A+B+C) 76.863.3 54.664.1*

Total sperm abnormalities (%) 21.162.4 33.663.5*

*p,0.001, n= 25.
doi:10.1371/journal.pone.0013457.t001

Figure 2. Ultrastructural changes. Transmission-electron micrographs of rabbit sperm heads from NCR (A) and HCR (B to D). Notice the small
vesicles in the acrosome region in B and the long side fold of sperm head in D. Some sperm cells show the remaining residual body (white empty
arrow, C). A and C, X 12,000; B and D, X 20,000.
doi:10.1371/journal.pone.0013457.g002
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Figure 3. Spermmembrane cholesterol was elevated in HCR. A: Fluorescence micrographs showing cholesterol content in plasma membrane
of ejaculated rabbit spermatozoa detected by filipin probe. Images correspond to phase contrast (inset) and filipin-stained sperm cells (X 600) from
NCR and HCR at the beginning of the experiment (first row, ED start) and four months later (second row, 4 months ED). B: Bars represent RFI means
(6 SEM) in sperm cells isolated from NCR and HCR as described in ‘‘Materials and Methods’’, from both conditions, non capacitated (- BSA/NaCOH3)
and capacitated (+ BSA/NaCOH3). Asterisks = significantly different from control (**, p,0.01, ***, p,0.001).
doi:10.1371/journal.pone.0013457.g003
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chromatin and mitochondrias showed normal morphological

structure in both groups (data not shown).

Sperm membrane cholesterol
Cholesterol dietary supplementation affected the cholesterol

distribution in sperm cells after 4 months (Figure 3A). Percentage

of cells with RFI $1 was signicantly higher for HCR sperms both

in capacitation and non capacitation conditions (Figure 3B). At the

end of the study, the cholesterol content of spermatozoa from

HCR was 110 mg/109 cells, whereas in the NCR was 64 mg/109

cells.

Sperm plasma membrane functionality
Spermatozoa from HCR showed a reduced sperm membrane

response to the hypo-osmotic swelling test (Figure 4A and B) and

to the induction of protein tyrosine phosphorylation under

capacitation conditions (Figure 5A lane 6 and 2). Spermatozoa

from HCR did not show the same pattern of p-Y bands compared

to control either under non capacitating (Figure 5A, lanes 1 and 5)

or capacitating (Figure 5A, lanes 2 and 6) media. The addition of

tenfold amount of BSA to capacitation medium slightly improved

the p-Y signal (Figure 5A, lanes 6 and 7) but not comparable to

NCR p-Y pattern (Figure 5A, lanes 7 and 2). The treatment with

two PK-A pathway stimulating compounds, db-cAMP plus

IBMX, restored protein p-Y when chol removal signal was

bypassed (Figure 5A, lanes 3 and 8). As expected, the increase in

cholesterol concentration at plasma membrane level reduced the

rate of acrosome reactive spermatozoa (Figure 5B).

Discussion

Fat increment (0.05% chol) in standard diet promoted changes

on sperm membrane chol concentration and distribution that

ultimately altered membrane-coupled sperm specific functions:

AR index decreased and p-Y pathway (capacitation) downgraded

in White New Zealand rabbits. These changes were also associated

with a reduction in motility and increase in sperm morphology

alterations.

Plasma chol level reported for rabbit ranges from 35–53 mg/dl

according to Harkness and Wagner [30]. However, we found that

cholesterolemia from rabbits under control conditions maintained

below that range all over the experimental period. On the other

hand, it is widely known that saturated fat-enriched diets induce

hypercholesterolemia in adult male rabbits [13,14]. Accordingly,

serum cholesterol level in HCR significantly increased at 45 days

of ED diet.

The measures determined for different semen parameters

(Table 1) were in agreement with standard estimations [31,32,33].

It is well known that diet lipids have consequences on sperm

lipid composition [13,14,15,34,35]. Animals treated with flax-

seed [34] or a-linolenic acid [35] improves semen quality by

modifying sperm lipid composition. On the other hand, feeding

saturated fat rich diets had been shown to trigger detrimental

effects over rabbit semen [13,14,15]. In our results, ED diet did

not affect semen parameters as pH and sperm viability. In

previous results [15], high serum chol was associated with a

decrease in sperm concentration and sperm motility. Our results

confirm the reduction in sperm motility, although our experi-

mental conditions differed in feeding time (longer) and fat intake

(lower). In contrast to previous work [15], we found that semen

volume significantly decreased in HCR. Probably, the feeding

time used in the aforementioned study was not enough to affect

the glands involved in seminal production and thus reduce the

semen volume.

In our study, ED diet altered the filipin-sterol complexes

distribution in the PM of the acrosomal region, indicating that

hypercholesterolemia induces changes in sperm membrane lipid

domains. This is in accordance to previous works [13,14] though

using a different methodology to detect membrane chol. The

cholesterol concentration of spermatozoa we report is not in

agreement with those of Castellini et al [6], but it has to be taken

Figure 4. Saturated-fat consumption damaged sperm plas-
ma membrane in rabbits. Photographs (X 250) represent sperm
cell morphology after hypo-osmotic stress. A (NCR): normal coiled
tails and B (HCR): straight tails. C: Bars represent the percentage
(means 6 SEM) of spermatozoa swollen from NCR (black bar) and
HCR (white bar) rabbits. ** = significantly different from control (p,
0.01).
doi:10.1371/journal.pone.0013457.g004

Sperm Defects under Fat-Diet

PLoS ONE | www.plosone.org 6 October 2010 | Volume 5 | Issue 10 | e13457



into consideration that in our work the samples were only

centrifuged for spermatozoa separation.

Male infertility is correlated with sperm structure [36]. The

morphological abnormalities we found can also be a sign of some

degree of subfertility and could be further characterized. It would

also be interesting to analyze if in a severe case of hypercholes-

terolemia those abnormalities correlate with male infertility. The

unusual morphological abnormality we found (long-side folding of

sperm heads) had not been reported and the mechanism

underneath became difficult to explain.

The higher level of cholesterol content in sperms from HCR

was associated with a decrease in membrane fluidity. Chol

incorporation to the lipid bilayer could have affected normal

sperm membrane integrity [37]. In human sperm cells increased

membrane chol (poor-quality sperm) and decreased membrane

fluidity are connected events [38]. Results presented here and

those from literature could explain the reduction in HOS-t

response.

Sperm capacitation and progesterone-induced AR resulted

seriously affected in animals under fat-rich diets, suggesting that

the main defect might reside on the PM. Spermatozoa from HCR

were unable to achieve normal levels of protein p-Y even with ten

fold increase of BSA. Therefore, it is probable that sperm from

HCR may have more than the chol-related deficiency, which

impairs their ability to successfully capacitate. An association

between high chol content and capacitation deficiencies in human

spermatozoa has recently been observed [38]. Thus, defects in

membrane dynamics and sperm functional quality are strongly

associated events.

In the presence of PK-A pathway activators (db-cAMP +

IBMX) sperm from HCR achieved similar pattern of p-Y proteins

as NCR. Those compounds bypassed the sperm PM signal and

directly acted on intracellular molecules, thus the main kinase

systems involved in capacitation-associated sperm protein p-Y

were not affected. The defect, therefore, should be upstream from

the kinases.

We wondered whether changes in membrane chol would

affect AR, as it is known that a decrease in its content favors

whereas an increase inhibits AR [39]. Spermatozoa from HCR

have diminished sperm capacity to AR under a well known

stimulus. This is consistent with previous report [13] showing

that chol-enriched diet leads to modifications in sperm AR

kinetics.

In conclusion, increased fat in a nutritionally complete diet

altered the chol content and distribution of rabbit sperm PM. The

dietary high fat level had serious consequences on sperm specific

functions that depend on membrane integrity/dynamics. At least,

two of the proposed pathways involved in regulating sperm

capacitation and AR via chol resulted compromised. This

outcome could resemble high-fat men consumers, with critical

consequences on semen quality and therein on male fertility. Such

study has also a clinical concern as hypercholesterolemia is a

health global social problem [40]. Cellular events implicated will

have to be understood to make harder progress not only in

diagnosis and treatment but also in prevention.
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Figure 5. Hypercholesterolemia altered sperm capacitation
and acrosome reaction. Protein tyrosine phosphorylation (A) and
acrosomal exocytosis index (B) of spermatozoa from control (NCR) and
HCR. Non capacitated: culture medium without (2) and capacitated
with (+) BSA 4 (4 mg/ml), BSA 40 (40 mg/ml), IBMX (100 mmol/L)/db-
cAMP (1 mmol/L). A: phospho-Y proteins showed different patterns
ranging from one band (control-non capacitated, approximately
60 kDa) to many bands (capacitated with IBMX/db-cAMP, from over
20 to 100 kDa). Notice that the p-Y pattern differed between NCR and
HCR: Non capacitated sperm presented one/two phosphorylated
proteins (figure A, lane 1) but under capacitation conditions NCR
showed wider molecular weight range of p-Y proteins compared with
HCR (lanes 2 and 6). The experiment was performed at least three times
and representative blot is shown. B: Bars represent AR index after 10 mM
progesterone sperm incubation. AR index corresponds to normalized
data (see Materials and Methods). *** = significantly different from
control (p,0.001).
doi:10.1371/journal.pone.0013457.g005
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