
Hypercolumns for Object Segmentation and Fine-grained Localization

Bharath Hariharan

University of California

Berkeley

bharath2@eecs.berkeley.edu

Pablo Arbeláez

Universidad de los Andes

Colombia

pa.arbelaez@uniandes.edu.co

Ross Girshick

Microsoft Research

Redmond

rbg@microsoft.com

Jitendra Malik

University of California

Berkeley

malik@eecs.berkeley.edu

Abstract

Recognition algorithms based on convolutional networks

(CNNs) typically use the output of the last layer as a fea-

ture representation. However, the information in this layer

may be too coarse spatially to allow precise localization.

On the contrary, earlier layers may be precise in localiza-

tion but will not capture semantics. To get the best of both

worlds, we define the hypercolumn at a pixel as the vector

of activations of all CNN units above that pixel. Using hy-

percolumns as pixel descriptors, we show results on three

fine-grained localization tasks: simultaneous detection and

segmentation [22], where we improve state-of-the-art from

49.7 mean APr [22] to 60.0, keypoint localization, where

we get a 3.3 point boost over [20], and part labeling, where

we show a 6.6 point gain over a strong baseline.

1. Introduction

Features based on convolutional networks (CNNs) [29]

have now led to the best results on a range of vision tasks:

image classification [28, 36], object segmentation and de-

tection [18, 22], action classification [35], pose estima-

tion [37] and fine-grained category recognition [44, 6]. We

have thus moved from the era of HOG and SIFT to the era

of convolutional network features. Therefore, understand-

ing these features and how best to exploit them is of wide

applicability.

Typically, recognition algorithms use the output of the

last layer of the CNN. This makes sense when the task is

assigning category labels to images or bounding boxes: the

last layer is the most sensitive to category-level semantic

information and the most invariant to “nuisance” variables

such as pose, illumination, articulation, precise location and

so on. However, when the task we are interested in is finer-

grained, such as one of segmenting the detected object or

estimating its pose, these nuisance variables are precisely

what we are interested in. For such applications, the top

layer is thus not the optimal representation.

The information that is generalized over in the top layer

is present in intermediate layers, but intermediate layers are

also much less sensitive to semantics. For instance, bar de-

tectors in early layers might localize bars precisely, but can-

not discriminate between bars that are horse legs and bars

that are tree trunks. This observation suggests that reason-

ing at multiple levels of abstraction and scale is necessary,

mirroring other problems in computer vision where reason-

ing across multiple levels has proven beneficial. For exam-

ple, in optical flow, coarse levels of the image pyramid are

good for correspondence, but finer levels are needed for ac-

curate measurement, and a multiscale strategy is used to get

the best of both worlds [7].

In this paper, we think of the layers of a convolutional

network as a non-linear counterpart of the image pyramids

used in optical flow and other vision tasks. Our hypoth-

esis is that the information of interest is distributed over

all levels of the CNN and should be exploited in this way.

We define the “hypercolumn” at a given input location as

the outputs of all units above that location at all layers of

the CNN, stacked into one vector. (Because adjacent lay-

ers are strongly correlated, in practice we need not consider

all layers but can simply sample a few.) Figure 1 shows a

visualization of the idea. We borrow the term “hypercol-

umn” from neuroscience, where it is used to describe a set

of V1 neurons sensitive to edges at multiple orientations and

multiple frequencies arranged in a columnar structure [24].

However, our hypercolumn includes not just edge detectors

but also more semantic units and is thus a more general no-

tion.

We show the utility of the hypercolumn representation



Convolutional 
Network

Hypercolumn

Figure 1. The hypercolumn representation. The bottom image is

the input, and above it are the feature maps of different layers in

the CNN. The hypercolumn at a pixel is the vector of activations

of all units that lie above that pixel.

on two kinds of problems that require precise localization.

The first problem is simultaneous detection and segmenta-

tion (SDS) [22], where the aim is to both detect and seg-

ment every instance of an object category in the image. The

second problem deals with detecting an object and local-

izing its parts. We consider two variants of this: one, lo-

cating the keypoints [43], and two, segmenting out each

part [41, 40, 3, 31].

We present a general framework for tackling these and

other fine-grained localization tasks by framing them as

pixel classification and using hypercolumns as pixel de-

scriptors. We formulate our entire system as a neural net-

work, allowing end-to-end training for particular tasks sim-

ply by changing the target labels. Our empirical results are:

1. On SDS, the previous state-of-the-art was 49.7 mean

APr [22]. Substituting hypercolumns into the pipeline

of [22] improves this to 52.8. We also propose a more

efficient pipeline that allows us to use a larger network,

pushing up the performance to 60.0.

2. On keypoint prediction, we show that a simple key-

point prediction scheme using hypercolumns achieves

a 3.3 point gain in the APK metric [43] over prior ap-

proaches working with only the top layer features [20].

While there isn’t much prior work on labeling parts of

objects, we show that the hypercolumn framework is

significantly better (by 6.6 points on average) than a

strong baseline based on the top layer features.

2. Related work

Combining features across multiple levels: Burt and

Adelson introduced Laplacian pyramids [8], a representa-

tion that is widely used in computer vision. Koenderink

and van Doorn [27] used “jets”, which are sets of partial

derivatives of intensity up to a particular order, to estimate

edge orientation, curvature, etc. Malik and Perona [32] used

the output of a bank of filters as a representation for texture

discrimination. This representation also proved useful for

optical flow [39] and stereo [26]. While the filter banks in

these works cover multiple scales, they are still restricted

to simple linear filters, whereas many of the features in the

hypercolumn representation are highly non-linear functions

of the image.

There has also been work in convolutional networks that

combines multiple levels of abstraction and scale. Farabet

et al. [15] combine CNN outputs from multiple scales of

an image to do semantic segmentation. Tompson et al. [37]

use a similar idea for detecting parts and estimating pose.

However, the features being combined still come from the

same level of the CNN and hence have similar invariance.

Sermanet et al. [34] combine subsampled intermediate lay-

ers with the top layer for pedestrian detection. In contrast,

since we aim for precise localization, we maintain the high

resolution of the lower layers and upsample the higher lay-

ers instead. In contemporary work, Long et al. [30] also use

multiple layers for their fully convolutional semantic seg-

mentation system.

Detection and segmentation: The task of simultaneous

detection and segmentation task, introduced in [22], re-

quires one to detect and segment every instance of a cat-

egory in the image. SDS differs from classical bounding

box detection in its requirement of a segmentation and from

classical semantic segmentation in its requirement of sep-

arate instances. There has been other prior work on seg-

menting out instances of a category, mostly starting from

bounding box detections. Borenstein and Ullman [4] first

suggested the idea of using class-specific knowledge for

segmentation. Yang et al. [42] use figure ground masks as-

sociated with DPM detectors [16] to segment out detected

objects and reason about depth orderings. Parkhi et al. [33]

use color models extracted from the detected cat and dog

heads to segment them out. Dai and Hoiem [12] general-

ize this reasoning to all categories. Fidler et al. [17] and

Dong et al. [13] combine object detections from DPM [16]

with semantic segmentation outputs from O2P [9] to im-

prove both systems. Current leading methods use CNNs

to score bottom-up object proposals, both for object detec-

tion [18] and for SDS [22, 11].

Pose estimation and part labeling: Current best perform-

ers for pose estimation are based on CNNs. Toshev and

Szegedy [38] use a CNN to regress to keypoint locations.

Tompson et al. [37] show large improvements over state-

of-the-art by predicting a heatmap for each keypoint, where

the value of the heatmap at a location is the probability of

the keypoint at that location. These algorithms show re-

sults in the setting where the rough location of the person



is known. Yang and Ramanan [43] propose a more realistic

setting where the location of the person is not known and

one has to both detect the person and identify his/her key-

points. Gkioxari et al. [21] show some results in this set-

ting using HOG-based detectors, but in their later work [20]

show large gains using CNNs.

Related to pose estimation is the task of segmenting out

the different parts of a person, a task typically called “ob-

ject parsing”. Yamaguchi et al. [41, 40] parse fashion pho-

tographs into clothing items. There has also been work on

parsing pedestrians [3, 31]. Ionescu et al. [25] jointly infer

part segmentations and pose. However, the setting is typi-

cally tightly cropped bounding boxes of pedestrians, while

we are interested in the completely unconstrained case.

3. Pixel classification using hypercolumns

Problem setting: We assume an object detection system

that gives us a set of detections. Each detection comes with

a bounding box, a category label and a score (and some-

times an initial segmentation hypothesis). The detections

have already been subjected to non-maximum suppression.

For every detection, we want to segment out the object, seg-

ment its parts or predict its keypoints.

For each task, we expand the bounding box of the detec-

tion slightly and predict a heatmap on this expanded box.

The type of information encoded by this heatmap depends

on the particular task. For segmentation, the heatmap en-

codes the probability that a particular location is inside the

object. For part labeling, we predict a separate heatmap

for each part, where each heatmap is the probability a lo-

cation belongs to that part. For keypoint prediction, again

we output a separate heatmap for each keypoint, with each

heatmap encoding the probability that the keypoint is at a

particular location.

In each case, we predict a 50×50 heatmap that we resize

to the size of the expanded bounding box and splat onto the

image. Thus, in our framework, these diverse fine-grained

localization problems are addressed as the unified task of

assigning a probability to each of the 50 × 50 locations

or, in other words, of classifying each location. We solve

this classification problem using the hypercolumn represen-

tation as described in detail below.

Computing the hypercolumn representation: We take

the cropped bounding box, resize it to a fixed size and feed

it into a CNN as in [18]. For each location, we extract fea-

tures from a set of layers by taking the outputs of the units

that are “above” the location (as shown in Figure 1). All the

intermediate outputs in a CNN are feature maps (the output

of a fully connected layer can be seen as a 1 × 1 feature

map). However, because of subsampling and pooling op-

erations in the CNN, these feature maps need not be at the

same resolution as the input or the target output size. So

which unit lies above a particular location is ambiguous.

We get around this by simply resizing each feature map to

the size we want with bilinear interpolation. If we denote

the feature map by F and the upsampled feature map by f ,

then the feature vector for the ith location has the form:

fi =
∑

k

αikFk (1)

αik depends on the position of i and k in the box and feature

map respectively.

We concatenate features from some or all of the feature

maps in the network into one long vector for every loca-

tion which we call the hypercolumn at that location. As an

example, using pool2 (256 channels), conv4 (384 channels)

and fc7 (4096 channels) from the architecture of [28] would

lead to a 4736 dimensional vector.

Interpolating into a grid of classifiers: Because these fea-

ture maps are the result of convolutions and poolings, they

do not encode any information about where in the bounding

box a given pixel lies. However, location can be an im-

portant feature. For instance, in a person bounding box, the

head is more likely to be at the top of the bounding box than

at the bottom. Thus a pixel that looks like a nose should be

considered as part of the person if it occurs at the top of the

box and should be classified as background otherwise. The

reasoning should be the opposite for a foot-like pixel. This

is a highly non-linear effect of location, and such reason-

ing cannot be achieved simply by a location-specific bias.

(Indeed, our classifiers include (x, y) as features but assign

negligible weight to them). Such reasoning requires differ-

ent classifiers for each location.

Location is also needed to make better use of the fea-

tures from the fully connected layers at the top. Since these

features are shared by all the locations in the bounding box,

they can at best contribute a global instance-specific bias.

However, with a different classifier at each location, we

can have a separate instance-specific bias for each loca-

tion. Thus location-specific classifiers in conjunction with

the global, instance-level features from the fully connected

layer produce an instance-specific prior.

The simplest way to get a location-specific classifier is to

train separate classifiers for each of the 50 × 50 locations.

However, doing so has three problems. One, it dramatically

reduces the amount of data each classifier sees during train-

ing. In our training sets, some categories may have only a

few hundred instances, while the dimensionality of the fea-

ture vector is of the order of several thousand. Thus, having

fewer parameters and more sharing of data is necessary to

prevent overfitting. Two, training this many classifiers is

computationally expensive, since we will have to train 2500

classifiers for 20 categories. Three, while we do want the

classifier to vary with location, the classifier should change

slowly: two adjacent pixels that are similar to each other in



appearance should also be classified similarly.

Our solution is to train a coarse K × K grid of classi-

fiers and interpolate between them. In our experiments we

use K = 5 or 10. For the interpolation, we use an exten-

sion of bilinear interpolation where we interpolate a grid of

functions instead of a grid of values. Concretely, each clas-

sifier in the grid is a function gk(·) that takes in a feature

vector and outputs a probability between 0 and 1. We use

this coarse grid of functions to define the function hi at each

pixel i as a linear combination of the nearby grid functions,

analogous to Equation 1:

hi(·) =
∑

k

αikgk(·) (2)

If the feature vector at the ith pixel is fi, then the score

of the ith pixel is:

pi =
∑

k

αikgk(fi) =
∑

k

αikpik (3)

where pik is the probability output by the kth classifier for

the ith pixel. Thus, at test time we run all our K2 classifiers

on all the pixels. Then, at each pixel, we linearly combine

the outputs of all classifiers at that pixel using the above

equation to produce the final prediction. Note that the coef-

ficients of the linear combination depend on the location.

Training this interpolated classifier is a hard optimization

problem. We use a simple heuristic and ignore the interpo-

lation at train time, using it only at test time.We divide each

training bounding box into a K × K grid. The training

data for the kth classifier consists only of pixels from the

kth grid cell across all training instances. Each classifier is

trained using logistic regression. This training methodol-

ogy does not directly optimize the loss we would encounter

at test time, but allows us to use off-the-shelf code such as

liblinear [14] to train the logistic regressor.

Efficient classification using convolutions and upsam-

pling: Our system requires us to resize every feature map

to 50 × 50 and then classify each location. But resizing

feature maps with hundreds of channels can be expensive.

However, we know we are going to run several linear clas-

sifiers on top of the hypercolumn features and we can use

this knowledge to save computation as follows: each feature

map with c channels will give rise to a c-dimensional block

of features in the hypercolumn representation of a location,

and this block will have a corresponding block of weights

in the classifiers. Thus if fi is the feature vector at location

i, then fi will be composed of blocks f
(j)
i corresponding to

the jth feature map. A linear classifier w will decompose

similarly. The dot product between w and fi can then be

written as:

w
T
fi =

∑

j

w
(j)T

f
(j)
i (4)

The jth term in the decomposition corresponds to a lin-

ear classifier on top of the upsampled jth feature map. How-

ever, since the upsampling is a linear operation, we can first

apply the classifier and then upsample using Equation 1:

f
(j)
i =

∑

k

α
(j)
ik F

(j)
k (5)

w
(j)T

f
(j)
i =

∑

k

α
(j)
ik w

(j)T
F

(j)
k (6)

We note that this insight was also used by Barron et al. [2]

in their volumetric semantic segmentation system.

Observe that applying a classifier to each location in a

feature map is the same as a 1×1 convolution. Thus, to run

a linear classifier on top of hypercolumn features, we break

it into blocks corresponding to each feature map, run 1× 1
convolutions on each feature map to produce score maps,

upsample all score maps to the target resolution, and sum.

We consider a further modification to this pipeline where

we replace the 1× 1 convolution with a general n× n con-

volution. This corresponds to looking not only at the unit

directly above a pixel but also the neighborhood of the unit.

This captures the pattern of activations of a whole neigh-

borhood, which can be more informative than a single unit,

especially in the lower layers of the network.

Representation as a neural network: We can write our

final hypercolumn classifier using additional layers grafted

onto the original CNN as shown in Figure 2. For each fea-

ture map, we stack on an additional convolutional layer.

Each such convolutional layer has K2 channels, corre-

sponding to the K2 classifiers we want to train. We can

choose any kernel size for the convolutions as described

above, although for fully connected layers that produce 1×1
feature maps, we are restricted to 1 × 1 convolutions. We

take the outputs of all these layers, upsample them using

bilinear interpolation and sum them. Finally, we pass these

outputs through a sigmoid, and combine the K2 heatmaps

using equation 3 to give our final output. Each operation is

differentiable and can be back-propagated over.

Representing our pipeline as a neural network allows us

to train the whole network (including the CNN from which

we extract features) for this task. For such training, we feed

in the target 50 × 50 heatmap as a label. The loss is the

sum of logistic losses (or equivalently, the sum of the neg-

ative log likelihoods) over all the 50 × 50 locations. We

found that treating the sigmoids, the linear combination and

the log likelihood as a single composite function and com-

puting the gradient with respect to that led to simpler, more

numerically stable expressions. Instead of training the net-

work from scratch, we use a pretrained network and fine-

tune, i.e., do backpropagation with a small learning rate.

Finally, this representation as a neural network also allows

us to train the grid classifiers together and use classifier in-



conv conv conv

upsample upsample upsample

sigmoid

classifier 
interpolation

Figure 2. Representing our hypercolumn classifiers as a neural net-

work. Layers of the original classification CNN are shown in red,

and layers that we add are in blue.

terpolation during training, instead of training separate grid

classifiers independent of each other.

Training classifiers for segmentation and part localiza-

tion: For each category we take bottom-up MCG candi-

dates [1] that overlap a ground truth instance by 70% or

more. For each such candidate, we find the ground truth

instance it overlaps most with, and crop that ground truth

instance to the expanded bounding box of the candidate.

Depending on the task we are interested in (SDS, keypoint

prediction or part labeling), we then use the labeling of the

cropped ground truth instance to label locations in the ex-

panded bounding box as positive or negative. For SDS, lo-

cations inside the instance are considered positive, while lo-

cations outside are considered negative. For part labeling,

locations inside a part are positive and all other locations

are negative. For keypoint prediction, the true keypoint lo-

cation is positive and locations outside a certain radius (we

use 10% of the bounding box diagonal) of the true location

are labeled negative.

4. Experiments on SDS

Our first testbed is the SDS task. Our baseline for this

task is the algorithm presented in [22]. This pipeline scores

bottom-up region proposals from [1] using CNN features

computed on both the cropped bounding box of the region

and the cropped region foreground. The regions are sub-

jected to non-max suppression. Finally, the surviving can-

didates are refined using figure-ground predictions based on

the top layer features.

As our first system for SDS, we use the same pipeline

as above, but replace the refinement step with one based

on hypercolumns. (We also add a bounding box regression

step [18] so as to start from the best available bounding

box). We present results with this pipeline in section 4.1,

where we show that hypercolumn-based refinement is sig-

nificantly better than the refinement in [22], and is espe-

cially accurate when it comes to capturing fine details of

the segmentation. We also evaluate several ablations of our

system to unpack this performance gain. For ease of refer-

ence, we call this System 1.

One issue with this system is its computational cost. Ex-

tracting features from region foregrounds is expensive and

doubles the time taken. Further, while CNN-based bound-

ing box detection [18] can be speeded up dramatically us-

ing approaches such as [23], no such speedups exist for re-

gion classification. To address these drawbacks, we pro-

pose as our second system the pipeline shown in Figure 3.

This pipeline starts with bounding box detections after non-

maximum suppression. We expand this set of detections

by adding nearby high-scoring boxes that were removed by

non-maximum suppression but may be better localized (ex-

plained in detail below). This expanded set is only twice

as large as the original set, and about two orders of magni-

tude smaller than the full set of bottom-up proposals. For

each candidate in this set, we predict a segmentation, and

score this candidate using CNN features computed on the

segmentation. Because region-based features are computed

only on a small set, the pipeline is much more efficient. We

call this system System 2.

This pipeline relies crucially on our ability to predict a

good segmentation from just bounding boxes. We use hy-

percolumns to make this prediction. In section 4.2, we show

that these predictions are accurate, and significantly better

than predictions based on the top layer of the CNN.

Finally, the efficiency of this pipeline also allows us to

experiment with larger but more expressive architectures.

While [22] used the architecture proposed by Krizhevsky et

al. [28] (referred to as “T-Net” henceforth, following [19])

for both the box features and the region features, we show in

section 4.2 that the architecture proposed by Simonyan and

Zisserman [36] (referred to as “O-Net” henceforth [19]) is

significantly better.

4.1. System 1: Refinement using hypercolumns

In our first set of experiments, we compare a

hypercolumn-based refinement to that proposed in [22]. We

use the ranked hypotheses produced by [22] and refine each

hypothesis using hypercolumns. For the CNN, we use the

same network that was used for the region classification (de-

scribed as C in [22]). This network consists of two path-

ways, each based on T-Net. It takes in both the cropped

bounding box as well as the cropped foreground. For the hy-

percolumn representation we use the top-level fc7 features,

the conv4 features from both pathways using a 1× 1 neigh-

borhood, and the pool2 features from the box pathway with

a 3× 3 neighborhood. We choose these layers because they

are spread out evenly in the network and capture a diverse



Search 
Nearby

Regress 
boxes

Segment 
each box

Score Score Score Score

Figure 3. An alternative pipeline for SDS starting from bounding

box detections (Section 4)

set of features. In addition, for each location, we add as fea-

tures a 0 or 1 encoding if the location was inside the original

region candidate, and a coarse 10× 10 discretization of the

original candidate flattened into a 100-dimensional vector.

This is to be commensurate with [22] where these features

were used in the refinement step. We use a 10 × 10 grid of

classifiers. As a last step, we project our predictions to su-

perpixels by averaging the prediction over each superpixel.

We train on VOC2012 Train and evaluate on VOC2012 Val.

Table 1 shows the results of our experiments. The first

two columns show the performance reported in [22] with

and without the refinement step. “Hyp” is the result we get

using hypercolumns, without bounding box regression or

finetuning. Our mean APr at 0.5 is 1.5 points higher, and

at 0.7 is 6.3 points higher, indicating that our refinement is

much better than that of [22] and is a large improvement

over the original candidate. Bounding box regression and

finetuning the network both provide significant gains, and

with both of these, our mean APr at 0.5 is 3.1 points higher

and at 0.7 is 8.4 points higher than [22].

Table 1 also shows the results of several ablations of our

model (all without bounding box regression or finetuning):

1. Only fc7 uses only fc7 features and is thus similar to

the refinement step in [22]. We include this baseline to

confirm that we can replicate those results.

2. fc7+pool2, fc7+conv4 and pool2+conv4 are refine-

ment systems that use hypercolumns but leave out fea-

tures from conv4, pool2 and fc7 respectively. Each of

these baselines performs worse than our full system.

In each case the difference is statistically significant at

a confidence threshold of 0.05, computed using paired

sample permutation tests.

3. The 1 × 1, 2 × 2 and 5 × 5 models use different grid

resolutions, with the 1 × 1 grid amounting to a single

classifier. There is a significant loss in performance

(2.4 points at 0.7 overlap) when using a 1 × 1 grid.

However this baseline still outperforms [22] indicating

that even without our grid classifiers (and without fc7,

since the global fc7 features are ineffectual without the

grid), the hypercolumn representation by itself is quite

powerful. A 5 × 5 grid is enough to recover full per-

formance.

Finally, following [22], we take our Hyp+FT+bbox-reg

system and use the pasting scheme of [9] to obtain a seman-

tic segmentation. We get a mean IU of 54.6 on VOC2012

Segmentation Test, 3 points higher than [22] (51.6 mean

IU).

4.2. System 2: SDS from bounding box detections

For our experiments with System 2, we use the detec-

tions of R-CNN [18] as the starting point. R-CNN uses

CNNs to classify bounding box proposals from selective

search. We use the final output after non-max suppres-

sion and bounding box regression. However, to allow direct

comparison with our previous experiments, we retrained R-

CNN to work with box proposals from MCG [1]. We do all

training on VOC2012 Train.

We first evaluate our segmentation predictions. As be-

fore, we use the same network as the detector to compute

the hypercolumn transform features. We first experiment

with the T-Net architecture. We use the layers fc7, conv4

with a neighborhood of 1, and pool2 with a neighborhood

of 3. For computational reasons we do not do any finetun-

ing. We use superpixel projection as before.

We show results in Table 2. Since we use only one net-

work operating on bounding boxes instead of two working

on both the box and the region, we expect a drop in perfor-

mance. We find that this is the case, but the loss is small:

we get a mean APr of 49.1 at 0.5 and 29.1 at 0.7, compared

to 51.9 and 32.4 when we have the region features. In fact,

our performance is nearly as good as [22] at 0.5 and about

4 points better at 0.7, and we get this accuracy starting from

just the bounding box.

To see how much of this performance is coming from the

hypercolumn representation, we also run a baseline using

just fc7 features. As expected, this baseline is only able to

output a fuzzy segmentation, compared to the sharp delin-

eation we get using hypercolumns. It performs considerably

worse, losing 5 points at 0.5 overlap and almost 13 points at

0.7 overlap. Figure 4 shows example segmentations.

We now replace the T-Net architecture for the O-Net ar-

chitecture. This architecture is significantly larger, but pro-

vides an 8 point gain in detection AP [19]. We again retrain

the R-CNN system using this architecture on MCG bound-

ing box proposals. Again, for the hypercolumn representa-

tion we use the same network as the detector. We use the

layers fc7, conv4 with a neighborhood of 1 and pool3 with a



neighborhood of 3. (We use pool3 instead of pool2 because

the pool3 feature map has about half the resolution and is

thus easier to work with.)

We observe that the O-Net architecture is significantly

better than the T-Net: we get a boost of 7.5 points at the

0.5 overlap threshold and 8 points at the 0.7 threshold. We

also find that this architecture gives us the best performance

on the SDS task so far: with simple bounding box detec-

tion followed by our hypercolumn-based mask prediction,

we achieve a mean APr of 56.5 at an overlap threshold of

0.5 and a mean APr of 37.0 at an overlap threshold of 0.7.

These numbers are about 6.8 and 11.7 points better than the

results of [22]. Last but not the least, we observe that the

large gap between our hypercolumn system and the only-fc7

baseline persists, and is equally large for the O-Net architec-

ture. This implies that the gain provided by hypercolumns

is not specific to a particular network architecture. Figure 4

visualizes our O-Net results.

We now implement the full pipeline proposed in Fig-

ure 3. For this, we expand the initial pool of detections as

follows. We pick boxes with score higher than a threshold

that were suppressed by NMS but that overlap the detec-

tions by less than 0.7. We then do a non-max suppression

with a lenient threshold of 0.7 to get a pool of candidates

to rescore. Starting from 20K initial detections per category

across the dataset, our expanded pool is typically less than

50K per category, and less than 600K in total.

Next we segment each candidate using hypercolumns

and score it using a CNN trained to classify regions. This

network has the same architecture as O-Net. However, in-

stead of a bounding box, this network takes as input the

bounding box with the region background masked out. This

network is trained as described in [22]. We use features

from the topmost layer of this network and concatenate

them with the features from the top layer of the detection

network, and feed these into an SVM. For training data,

we use our expanded pool of candidates on the training set,

and take all candidates for which segmentation predictions

overlap groundtruth by more than 70% as positive and those

with overlap less than 50% as negative. After rescoring, we

do a non-max suppression using region overlap to get the

final set of detections (we use an overlap threshold of 0.3).

We get 60.0 mean APr at 0.5, and 40.4 mean APr at

0.7. These numbers are state-of-the-art on the SDS bench-

mark (in contemporary work, [11] get slightly higher per-

formance at 0.5 but do not report the performance at 0.7;

our gains are orthogonal to theirs). Finally, on the semantic

segmentation benchmark, we get a mean IU of 62.6, which

is comparable to state-of-the-art.

5. Experiments on part localization

We evaluate part localization in the unconstrained detec-

tion setting, where the task is to both detect the object and

Figure 4. Figure ground segmentations starting from bounding box

detections. Top row: baseline using fc7, bottom row: Ours.

Metric T-Net T-Net O-Net O-Net O-Net

Only Hyp Only Hyp Hyp+

fc7 fc7 Rescore

mAPr at 0.5 44.0 49.1 52.6 56.5 60.0

mAPr at 0.7 16.3 29.1 22.4 37.0 40.4

Table 2. Results on SDS on VOC 2012 val using System 2. Our

final pipeline is state-of-the-art on SDS. (Section 4.2)

label its keypoints/segment its parts. This is different from

most prior work on these problems [38, 37, 41, 40, 3, 31],

which operates on the immediate vicinity of ground-truth

instances. We start from the detections of [22]. We use the

same features and network as in Section 4.1. As before, we

do all training on VOC2012 Train.

Keypoint prediction We evaluate keypoint prediction on

the “person” category using the protocol described in [21].

The test set for evaluating keypoints is the person images

in the second half of VOC2009 val. We use the APK met-

ric [43], which evaluates keypoint predictions in a detection

setting. Each detection comes with a keypoint prediction

and a score. A predicted keypoint within a threshold dis-

tance (0.2 of the torso height) of the ground-truth keypoint

is a true positive, and is a false positive otherwise. The area

under the PR curve gives the APK for that keypoint.

We start from the person detections of [22]. We use

bounding box regression to start from a better bounding

box. As described in Section 3 we train a separate sys-

tem for each keypoint using the hypercolumn representa-

tion. We use keypoint annotations collected by [5]. We pro-

duce a heatmap for each keypoint and then take the highest

scoring location of the heatmap as the keypoint prediction.

The APK metric requires us to attach a score with each

keypoint prediction. This score must combine the confi-

dence in the person detection and the confidence in the key-

point prediction, since predicting a keypoint when the key-

point is invisible counts as a false positive. For this score we

multiply the value of the keypoint heatmap at the predicted

location with the score output by the person detector (which

we pass through a sigmoid).

Results are shown in Table 3. We compare our perfor-



Metric [22] [22] Hyp Hyp Hyp+FT Only fc7+ fc7+ pool2+ 1× 1 2× 2 5× 5

refined +bbox-reg +bbox-reg fc7 pool2 conv4 conv4 grid grid grid

mean APr at 0.5 47.7 49.7 51.2 51.9 52.8 49.7 50.5 51.0 50.7 50.3 51.2 51.3

mean APr at 0.7 22.8 25.3 31.6 32.4 33.7 25.8 30.6 31.2 30.8 28.8 30.2 31.8

Table 1. Results on SDS on VOC2012 val using System 1. Our system (Hyp+FT+bbox-reg) is significantly better than [22] (Section 4.1).

Method L.S L.E L.W R.S R.E R.W L.H L.K L.A R.H R.K R.A N Mean

[21] 27.3 11.8 2.8 27.1 12.2 3.4 11.4 4.9 3.2 10.6 4.4 3.8 42.9 12.8

[20] 32.1 14.6 5.6 32.5 16.6 5.9 10.8 4.8 4.8 9.7 4.0 4.6 52.0 15.2

Only fc7 22.7 9.9 2.8 25.5 10.0 2.6 6.6 3.5 5.2 7.7 3.4 4.2 34.0 10.6

Hyp 32.2 16.5 11.5 31.2 16.6 9.3 9.6 7.1 9.1 8.0 4.2 8.2 57.5 17.0

Hyp+FT 33.7 21.9 12.3 35.2 20.9 15.3 6.7 7.7 8.1 9.1 5.6 6.1 58.4 18.5

Table 3. Results on keypoint prediction (APK on the Person subset of VOC2009 val). Our system is 3.3 points better than [20] (Section 5).

Figure 5. Keypoint prediction (left wrist). Top row: baseline us-

ing fc7, bottom row: ours (hypercolumns without finetuning). In

black is the bounding box and the predicted heatmap is in red. We

normalize each heatmap so that the maximum value is 1.

APr
part at 0.5 Person Horse Cow Sheep Cat Dog Bird

Only fc7 21.9 16.6 14.5 38.9 19.2 8.5 15.4

Hyp 28.5 27.8 21.5 44.9 30.3 14.2 14.2

Table 4. Results on part labeling. Our approach (Hyp) is almost

uniformly better than using top level features (Section 5).

mance to [20], the previous best on this dataset. Gkioxari et

al. [20] finetuned a network for pose, person detection and

action classification, and then trained an SVM to assign a

score to the keypoint predictions. Without any finetuning

for pose, our system achieves a 1.8 point boost. A baseline

system trained using our pipeline but with just the fc7 fea-

tures performs significantly worse than our system, and is

even worse than a HOG-based method [21]. This confirms

that the gains we get are from the hypercolumn representa-

tion. Figure 5 shows some example predictions.

Finetuning the network as described in Section 3 gives

an additional 1.5 point gain, raising mean APK to 18.5.

Part labeling We evaluate part labeling on the articulated

object categories in PASCAL VOC: person, horse, cow,

sheep, cat, dog, bird. We use the part annotations provided

by [10]. We group the parts into top-level parts: head, torso,

Figure 6. Part labeling. Top: baseline using fc7, bottom: ours (hy-

percolumns). Both rows use the same figure-ground segmentation.

Red: head, green: torso, blue: legs, magenta: arms.

arms and legs for person, head, torso, legs and tail for the

four-legged animals and head, torso, legs, wings, tail for the

bird. We train separate classifiers for each part. At test time,

we use the Hyp+bbox-reg+FT system from Section 4.1 to

predict a figure-ground mask for each detection, and to ev-

ery pixel in the figure-ground mask, we assign the part with

the highest score at that pixel.

For evaluation, we modify the definition of intersection-

over-union in the APr metric [22]: we count in the intersec-

tion only those pixels for which we also get the part label

correct. We call this metric APr
part. As before, we evaluate

both our system and a baseline that uses only fc7 features.

Table 4 shows our results. We get a large gain in almost all

categories by using hypercolumns. Note that this gain is en-

tirely due to improvements in the part labeling, since both

methods use the same figure-ground mask. Figure 6 shows

some example part labelings.

6. Conclusion

We have shown that the hypercolumn representation pro-

vides large gains in three different tasks. We also believe

that this representation might prove useful for other fine-

grained tasks such as attribute or action classification. We

leave an investigation of this to future work.



Acknowledgments. This work was supported by ONR

MURI N000141010933, a Google Research Grant and a

Microsoft Research fellowship. We thank NVIDIA for pro-

viding GPUs through their academic program.

References

[1] P. Arbeláez, J. Pont-Tuset, J. Barron, F. Marques, and J. Ma-

lik. Multiscale combinatorial grouping. In CVPR, 2014.

[2] J. T. Barron, P. Arbeláez, S. V. E. Keränen, M. D. Biggin,

D. W. Knowles, and J. Malik. Volumetric semantic segmen-

tation using pyramid context features. ICCV, 2013.

[3] Y. Bo and C. C. Fowlkes. Shape-based pedestrian parsing.

In CVPR, 2011.

[4] E. Borenstein and S. Ullman. Class-specific, top-down seg-

mentation. In ECCV. 2002.

[5] L. Bourdev, S. Maji, T. Brox, and J. Malik. Detecting peo-

ple using mutually consistent poselet activations. In ECCV,

2010.

[6] S. Branson, G. Van Horn, P. Perona, and S. Belongie. Im-

proved bird species recognition using pose normalized deep

convolutional nets. In BMVC, 2014.

[7] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High ac-

curacy optical flow estimation based on a theory for warping.

In ECCV. 2004.

[8] P. J. Burt and E. H. Adelson. The laplacian pyramid as a

compact image code. Communications, IEEE Transactions

on, 31(4), 1983.

[9] J. Carreira, R. Caseiro, J. Batista, and C. Sminchisescu. Se-

mantic segmentation with second-order pooling. In ECCV,

2012.

[10] X. Chen, R. Mottaghi, X. Liu, S. Fidler, R. Urtasun, and

A. Yuille. Detect what you can: Detecting and representing

objects using holistic models and body parts. In CVPR, 2014.

[11] J. Dai, K. He, and J. Sun. Convolutional feature masking for

joint object and stuff segmentation. In CVPR, 2015.

[12] Q. Dai and D. Hoiem. Learning to localize detected objects.

In CVPR, 2012.

[13] J. Dong, Q. Chen, S. Yan, and A. Yuille. Towards unified

object detection and semantic segmentation. In European

Conference on Computer Vision (ECCV), 2014.

[14] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-

J. Lin. Liblinear: A library for large linear classification.

JMLR, 9, 2008.

[15] C. Farabet, C. Couprie, L. Najman, and Y. LeCun. Learning

hierarchical features for scene labeling. TPAMI, 35(8), 2013.

[16] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ra-

manan. Object detection with discriminatively trained part-

based models. TPAMI, 32(9), 2010.

[17] S. Fidler, R. Mottaghi, A. Yuille, and R. Urtasun. Bottom-up

segmentation for top-down detection. In CVPR, 2013.

[18] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-

ture hierarchies for accurate object detection and semantic

segmentation. In CVPR, 2014.

[19] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-

ture hierarchies for accurate object detection and semantic

segmentation. arXiv preprint arXiv:1409.1556, 2014.

[20] G. Gkioxari, B. Hariharan, R. Girshick, and J. Malik. R-

CNNs for pose estimation and action detection. 2014.

[21] G. Gkioxari, B. Hariharan, R. Girshick, and J. Malik. Us-

ing k-poselets for detecting people and localizing their key-

points. In CVPR, 2014.

[22] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik. Simul-

taneous detection and segmentation. In ECCV, 2014.

[23] K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling

in deep convolutional networks for visual recognition. In

ECCV, 2014.

[24] D. H. Hubel and T. N. Wiesel. Receptive fields, binocular

interaction and functional architecture in the cat’s visual cor-

tex. The Journal of physiology, 160(1), 1962.

[25] C. Ionescu, J. Carreira, and C. Sminchisescu. Iterated

second-order label sensitive pooling for 3d human pose esti-

mation. In CVPR, 2014.

[26] D. G. Jones and J. Malik. Determining three-dimensional

shape from orientation and spatial frequency disparities. In

ECCV, 1992.

[27] J. J. Koenderink and A. J. van Doorn. Representation of local

geometry in the visual system. Biological cybernetics, 55(6),

1987.

[28] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

NIPS, 2012.

[29] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E.

Howard, W. Hubbard, and L. D. Jackel. Backpropagation

applied to handwritten zip code recognition. Neural compu-

tation, 1(4), 1989.

[30] J. Long, E. Schelhamer, and T. Darrell. Fully convolutional

networks for semantic segmentation. In CVPR, 2015.

[31] P. Luo, X. Wang, and X. Tang. Pedestrian parsing via deep

decompositional network. In ICCV, 2013.

[32] J. Malik and P. Perona. Preattentive texture discrimination

with early vision mechanisms. Journal of the Optical Society

of America A, 7(5), 1990.

[33] O. M. Parkhi, A. Vedaldi, C. Jawahar, and A. Zisserman. The

truth about cats and dogs. In ICCV, 2011.

[34] P. Sermanet, K. Kavukcuoglu, S. Chintala, and Y. LeCun.

Pedestrian detection with unsupervised multi-stage feature

learning. In CVPR, 2013.

[35] K. Simonyan and A. Zisserman. Two-stream convolutional

networks for action recognition in videos. arXiv preprint

arXiv:1406.2199, 2014.

[36] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556, 2014.

[37] J. Tompson, A. Jain, Y. LeCun, and C. Bregler. Joint training

of a convolutional network and a graphical model for human

pose estimation. In NIPS (To appear), 2014.

[38] A. Toshev and C. Szegedy. Deeppose: Human pose estima-

tion via deep neural networks. In CVPR, 2014.

[39] J. Weber and J. Malik. Robust computation of optical flow

in a multi-scale differential framework. IJCV, 14(1), 1995.

[40] K. Yamaguchi, M. H. Kiapour, and T. L. Berg. Paper doll

parsing: Retrieving similar styles to parse clothing items. In

ICCV, 2013.



[41] K. Yamaguchi, M. H. Kiapour, L. E. Ortiz, and T. L. Berg.

Parsing clothing in fashion photographs. In CVPR, 2012.

[42] Y. Yang, S. Hallman, D. Ramanan, and C. C. Fowlkes. Lay-

ered object models for image segmentation. TPAMI, 34(9),

2012.

[43] Y. Yang and D. Ramanan. Articulated human detection with

flexible mixtures of parts. TPAMI, 35(12), 2013.

[44] N. Zhang, J. Donahue, R. Girshick, and T. Darrell. Part-

based R-CNNs for fine-grained category detection. In

ECCV, 2014.


