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HYPERCOMPLEX STRUCTURES

ON FOUR-DIMENSIONAL LIE GROUPS
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(Communicated by Roe Goodman)

Abstract. The purpose of this paper is to classify invariant hypercomplex
structures on a 4-dimensional real Lie group G. It is shown that the 4-
dimensional simply connected Lie groups which admit invariant hypercom-
plex structures are the additive group H of the quaternions, the multiplicative
group H∗ of nonzero quaternions, the solvable Lie groups acting simply transi-
tively on the real and complex hyperbolic spaces, RH4 and CH2, respectively,
and the semidirect product C o C. We show that the spaces CH2 and C o C
possess an RP 2 of (inequivalent) invariant hypercomplex structures while the
remaining groups have only one, up to equivalence. Finally, the corresponding
hyperhermitian 4-manifolds are determined.

1. Introduction

A hypercomplex structure on a manifold M is a pair {Jα}α=1,2 of anticommuting
complex structures on M . A hypercomplex structure on a Lie group G is said to
be invariant if left translations by elements of G are holomorphic with respect to
both J1 and J2.

Given g a real Lie algebra, a hypercomplex structure (abbreviated hcs) on g is
a family {Jα}α=1,2 of endomorphisms of g satisfying the conditions:

J2
α = −I, α = 1, 2, J1J2 = −J2J1,(1.1)

Nα = 0, α = 1, 2,(1.2)

where I is the identity and Nα is the Nijenhuis tensor corresponding to Jα:

Nα(X,Y ) = [JαX, JαY ]− Jα([X, JαY ] + [JαX,Y ])− [X,Y ](1.3)

for all X,Y ∈ g. Clearly, if G is a Lie group with Lie algebra g, a hcs on g induces
by left translations an invariant hypercomplex structure on G.

It follows from (1.1) that J1, J2 and J3 = J1J2 give g a structure of H-module
where H denotes the quaternions so dim g = 4n, n ∈ N. Moreover, one verifies
that (1.1) and (1.2) imply N3 = 0.

Two hypercomplex structures {Jα}α=1,2 and {J ′α}α=1,2 on g are said to be equiv-
alent if there exists an automorphism φ of g such that φJα = J ′αφ for α = 1, 2.
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1044 M. L. BARBERIS

The existence of invariant hypercomplex structures on compact Lie groups has
been studied by Joyce in [4]. Also Spindel et al. consider in [10] products of
simple Lie groups and S1 factors, studying the existence of hypercomplex structures
invariant with respect to a (not necessarily positive definite) metric.

It is the aim of this work to parametrize the equivalence classes of invariant
hypercomplex structures on 4-dimensional simply connected real Lie groups (see
Section 3) and to determine all the (left invariant) associated hyperhermitian man-
ifolds (see Section 4).

The author would like to thank Prof. I. Dotti Miatello for supervision and
invaluable comments, Prof. D. Alekseevsky for suggesting the problem and the
referee for drawing [5] to her attention. This work is part of the author’s doctoral
thesis under the guidance of Prof. I. Dotti Miatello.

2. Preliminaries

A hcs {Jα}α=1,2 on g gives a two-sphere S2 of complex structures

Jx =

3∑
β=1

xβJβ , x2
1 + x2

2 + x2
3 = 1,(2.1)

where J3 = J1J2. Moreover, every pair of orthogonal vectors x = (x1, x2, x3), y =
(y1, y2, y3) on the unit sphere S2, defines a hypercomplex structure {Jx, Jy} on g.

We now prove three lemmas which will be useful in the sequel.

Lemma 2.1. If {Jα}α=1,2 is a family of endomorphisms of R4 satisfying (1.1)
and W ⊂ R4 is an arbitrary two-dimensional subspace then there exists x =
(x1, x2, x3) ∈ S2 such that Jx =

∑3
α=1 xαJα preserves W (as usual J3 = J1J2).

Proof. We take a basis {X,Y } of W and we write Y = x0X +
∑3

α=1 xαJαX .
We may assume that x2

1 + x2
2 + x2

3 = 1, and now the lemma follows by taking
x = (x1, x2, x3).

Lemma 2.2. If Jα is an endomorphism of g such that J2
α = −I and {X1, JαX1,

. . . , Xn, JαXn} is a basis of g, then Nα ≡ 0 if and only if Nα(Xi, Xj) = 0, ∀ i < j.

Proof. It is easy to see that Nα(JαX,Y ) = −JαNα(X,Y ). The lemma now follows
by using that Nα is skew-symmetric.

Lemma 2.3. If {Jα}α=1,2 is a family of endomorphisms of a real vector space V
satisfying (1.1) then V admits an inner product such that J1 and J2 are orthogonal.
If dimV = 4 then such an inner product is unique up to a positive multiple.

Proof. Let 〈 , 〉 be an arbitrary inner product and define:

(X,Y ) = 〈X,Y 〉+

3∑
α=1

〈JαX, JαY 〉, ∀X,Y ∈ V,

where J3 = J1J2. It is clear that ( , ) is an inner product with the desired properties.
If dimV = 4 and ( , )1 is an inner product on V such that J1 and J2 are orthogonal,
let T ∈ End(V ) be such that (X,Y )1 = (TX, Y ) ∀X,Y ∈ V . If Vλ (λ > 0)
is the eigenspace of T corresponding to the eigenvalue λ , then Jα preserves Vλ
(α = 1, 2); thus dimVλ ≡ 0 (mod 4). Hence Vλ = V and ( , )1 = λ( , ).
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3. Classification of hcs

In this section we shall obtain the main results of this paper. We will parametrize
the equivalence classes of hcs on each four-dimensional real Lie algebra (which does
admit one). From now on g will be a 4-dimensional real Lie algebra with center z and
derived Lie algebra g′ = [g, g]. We will consider separately the cases g nonsolvable
and g solvable.

We first prove:

Theorem 3.1. If g is not solvable then g admits a hcs if and only if g ∼= R⊕so(3).
Moreover, the hcs on R⊕ so(3) is unique up to equivalence.

Proof. The if part of the first assertion follows by exhibiting a hcs {Jα}α=1,2 on
R⊕ so(3). Let {Z,X, Y,W} be a basis of R⊕ so(3) such that Z ∈ R and

[X,Y ] = W, [Y,W ] = X, [W,X ] = Y.

Let J1, J2 ∈ End(R⊕ so(3)) be defined by

J1Z = X, J1Y = W, J2
1 = −I,

J2Z = Y, J2W = X, J2
2 = −I.

It is clear that J1, J2 anticommute. Furthermore

N1(Z, Y ) = [J1Z, J1Y ]− J1[Z, J1Y ]− J1[J1Z, Y ]− [Z, Y ]

= [X,W ]− J1[X,Y ] = 0

and by Lemma 2.2, J1 is integrable. A similar computation shows that N2(Z,W )
vanishes so H ={Jα}α=1,2 defines a hcs on R⊕ so(3).

We assume now that g admits a hcs {Jα}α=1,2 . Since g is not solvable then, by
using the Levi decomposition of g and the classification of real simple 3-dimensional
Lie algebras, we get that g ∼= z⊕ so(3) or g ∼= z⊕ sl(2,R), a direct sum of ideals. If
Z is a nonzero element in z we define

X = J1Z, Y = J2Z, W = J1J2Z.

Then {Z,X, Y,W} is a basis of g. We compute [X,Y ], [Y,W ], [W,X ]. Write
[X,Y ] = aZ + bX + cY + dW . Since N1(Z, Y ) = 0 = N2(Z,X) we have:

J1[X,Y ] = [X,W ], J2[X,Y ] = [Y,W ].

Thus

[W,X ] = bZ − aX + dY − cW, [Y,W ] = −cZ + dX + aY − bW.

Now, the coefficient of Z in [[X,Y ],W ] + [[Y,W ], X ] + [[W,X ], Y ] is a2 + b2 + c2;
hence a = b = c = 0 and

[X,Y ] = dW, [Y,W ] = dX, [W,X ] = dY.(3.1)

Since d 6= 0 (g is not abelian) then {X,Y,W} generates a three dimensional Lie
algebra isomorphic to so(3).

If {J ′α}α=1,2 is another hcs on g, setting J ′3 = J ′1J
′
2, it follows from the above

procedure that there exists d′ 6= 0 such that [J ′αZ, J ′βZ] = d′J ′γZ, where (α, β, γ)

is a cyclic permutation of (1, 2, 3) (this is analogous to (3.1)). Let φ ∈ End(g)
be defined by φZ = d

d′Z and φJα = J ′αφ, for α = 1, 2. One verifies that φ is an
automorphism of g; hence {Jα}α=1,2 and {J ′α}α=1,2 are equivalent. This concludes
the proof of the theorem.
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Remark 3.1. The simply connected Lie group with Lie algebra R ⊕ so(3) is the
multiplicative group H∗ of nonzero quaternions. In the next section we show that
the associated hyperhermitian metric corresponds to the riemannian product R×S3

with the canonical metrics.

Remark 3.2. We have actually proved in the theorem that if z 6= {0} then J1z ⊕
J2z ⊕ J3z is either isomorphic to so(3) or is abelian. Thus a 4-dimensional Lie
algebra g with nontrivial center admits a hcs if and only if g ∼= R ⊕ so(3) or g is
abelian.

Remark 3.3. According to Theorem 3.1, R⊕ sl(2,R) does not admit a hcs. On the
other hand, it does admit an invariant complex structure by results of D. Snow [8].

Remark 3.4. As a consequence of Theorem 3.1 we also obtain that quotients of
R × S3 by discrete central subgroups also admit invariant hcs : R × SO(3), S1 ×
S3 and S1 × SO(3). The last two spaces are Hopf surfaces that appear in Boyer’s
classification of compact hyperhermitian 4-manifolds (cf. [1]). Note that via the
diffeomorphism S1×S3 ∼= U(2) we can give U(2) a hypercomplex structure (which
is not necessarily invariant).

In the case when g is solvable we will analyze separately the cases dim g′ =
0, 1, 2, 3.

If dim g′ = 0 then g is abelian. A hcs on g can be obtained by choosing two
endomorphisms satisfying condition (1.1). In this situation the integrability condi-
tion (1.2) is automatically satisfied and one can show, with similar arguments to
those in the complex case ([6]), that there is a one to one correspondence between
hypercomplex structures on g and points in the space GL(4n,R)/GL(n,H). The
correspondence is established by fixing a hcs {J0

α}α=1,2 and sending GL(4n,R) 3
T → {TJ0

αT
−1}α=1,2. In particular, it follows that every hcs is equivalent to

{J0
α}α=1,2.
If the dimension of g′ is 1 we have

Proposition 3.2. If dim g′ = 1 then g does not admit any hcs.

Proof. If g admits a hcs we may assume, in view of Remark 3.2, that z = {0}. Let
X be a nonzero element of g′. There exists Y ∈ g such that [Y,X ] = X . Then g
decomposes

g = ker(adX) ∩ ker(adY )⊕ RX ⊕ RY.

By applying the Jacobi identity to U, V, Y , where U, V ∈ ker(adX)∩ker(adY ), we
get that [U, V ] = 0; hence z = ker(adX) ∩ ker(adY ), a contradiction.

Let Aff(C) be the affine motion group of C under composition. It is isomorphic to
the semidirect product of C with C∗. Its Lie algebra aff(C) decomposes as a direct
sum of an abelian ideal (which corresponds to the normal subgroup of translations)
plus an abelian subalgebra (corresponding to multiplication by a scalar in C∗).
Moreover, there are bases X,Y of the ideal and Z,W of the subalgebra such that
the following relations hold:

[X,Z] = X, [Y, Z] = Y,

[X,W ] = Y, [Y,W ] = −X.
The next theorem settles the case dim g′ = 2.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



HYPERCOMPLEX STRUCTURES ON LIE GROUPS 1047

Theorem 3.3. If dim g′ = 2 then

(i) g admits a hcs if and only if g ∼= aff(C);
(ii) the equivalence classes of hcs on g are parametrized by the space RP 2.

Proof. (i) We show first that aff(C) admits a hcs. Let H ={Jα}α=1,2 be the fol-
lowing family of endomorphisms of aff(C):

J1X = −W, J1Y = Z, J2
1 = −I,

J2X = Y, J2Z = −W, J2
2 = −I.

It is easy to check the integrability of J1 and J2 by using Lemma 2.2.
Conversely, assume now that {Jα}α=1,2 defines a hcs on g. Changing {Jα}α=1,2,

if necessary (see (2.1) and Lemma 2.1), we may assume that J2 : g′ → g′; hence
g = g′ ⊕ J1g

′. Let {X ′, Y ′} be a basis of g′ where Y ′ = J2X
′. It follows that

{X ′, Y ′, J1X
′, J1Y

′} is a basis of g. There exist two skew-symmetric, bilinear forms
α, β on g such that

[V,W ] = α(V,W )X ′ + β(V,W )Y ′ ∀V,W ∈ g.

The integrability condition N1(X
′, Y ′) = 0 and the fact that g′ is abelian (since g

is solvable) yield

[J1X
′, J1Y

′] = 0, [X ′, J1Y
′] = [Y ′, J1X

′],

and from N2(X
′, J1X

′) = 0 we obtain

[X ′, J1X
′] = −[Y ′, J1Y

′].

The Jacobi identity gives

α(X ′, J1X
′) = β(X ′, J1Y

′), α(X ′, J1Y
′) = −β(X ′, J1X

′),

and therefore the bracket in g, determined by c = α(X ′, J1X
′) and d = α(X ′, J1Y

′),
looks as follows:

[X ′, J1X
′] = cX ′ − dY ′, [Y ′, J1X

′] = dX ′ + cY ′,

[X ′, J1Y
′] = dX ′ + cY ′, [Y ′, J1Y

′] = −cX ′ + dY ′,

and we must have c 6= 0 or d 6= 0 because dim g′ = 2. Taking

X = (c2 + d2)−1(dX ′ + cY ′), Y = (c2 + d2)−1(−cX ′ + dY ′),

Z = (c2 + d2)−1(cJ1X
′ + dJ1Y

′), W = (c2 + d2)−1(−dJ1X
′ + cJ1Y

′),

it is easy to see that

[X,Z] = X, [Y, Z] = Y,

[X,W ] = Y, [Y,W ] = −X,
so that g ∼= aff(C), as asserted.

We note that J1 and J2 take the following form relative to the basis {X,Y, Z,W}:
J1X = aZ − bW, J1Y = bZ + aW, J2

1 = −I,
J2X = Y, J2Z = −W, J2

2 = −I,
where a = 2cd(c2 + d2)−1 and b = (d2 − c2)(c2 + d2)−1; hence a2 + b2 = 1. Let
{J0

α}α=1,2 be the hcs obtained by setting

J0
1X = −W, J0

1Y = Z, (J0
1 )2 = −I,
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and J0
2 = J2. We claim that {Jα}α=1,2 and {J0

α}α=1,2 are equivalent. In fact,
one shows that φ ∈ End(g) defined by φX = bX + aY, φY = −aX + bY, φZ =
Z andφW = W gives an automorphism of g such that φJα = J0

αφ, α = 1, 2.
(ii) We have actually proved in (i) that all hypercomplex structures {Jα}α=1,2

with the property that J2 preserves g′ are equivalent. Given a fixed structure
{J0

α}α=1,2 having this property, we define SO(3)0 = { {J0
x , J

0
y} : x, y ∈ S2, x ⊥ y }

where J0
x =

∑3
α=1 xαJ

0
α, J0

y =
∑3

α=1 yαJ
0
α with J0

3 = J0
1J

0
2 . Then any hcs on

g = aff(C) is equivalent to one lying in SO(3)0. To prove this we take an arbitrary

hcs {Jα}α=1,2. By Lemma 2.1 there exists q ∈ S2 such that Jq =
∑3

α=1 qαJα
preserves g′, where J3 = J1J2. If p ∈ S2 is orthogonal to q then {Jp, Jq} is a
hcs equivalent to {J0

α}α=1,2, say by an automorphism φ. Let x, y be the the first
two rows of A−1, where A is the matrix with rows p, q, p ∧ q. Then φ is also an
equivalence between {Jα}α=1,2 and {J0

x , J
0
y}.

We have proved that the map (x, y, x ∧ y) → {J0
x , J

0
y} is surjective from SO(3)

onto the set of equivalence classes of hcs on g. Assume that {J0
α}α=1,2 is the

structure defined in (i); then one shows that {J0
x , J

0
y} and {J0

p , J
0
q } are equivalent

if and only if there exists A = (aij)1≤i,j≤2 ∈ O(2) such that x = Ãp, y = Ãq, where

Ã =
(
a22 0 a12

0 detA 0
a21 0 a11

)
. Therefore, the equivalence classes of hcs on g are in one to

one correspondence with points in the space O(2)\SO(3) = RP 2.

Remark 3.5. Snow classified in [9] the complex structures on a 4-dimensional solv-
able real Lie algebra g such that dim g′ ≤ 2. The Lie algebra appearing in Theorem
3.3 was denoted by S11 in [9], where it is shown that S11 admits four distinct
families of equivalence classes of complex structures. The structures J0

1 andJ0
2

of Theorem 3.3 represent nonequivalent complex structures belonging to different
families.

To settle the classification we consider now the case dim g′ = 3. We first intro-
duce two families of solvable Lie algebras which are related to the real and complex
hyperbolic spaces RHn and CHn, respectively. It is well known that either space
admits a solvable group of isometries acting simply transitively on it (cf. [3]), thus
it is isometric to a (simply connected) solvable Lie group with a left invariant met-
ric. Let (s, 〈 , 〉) denote the corresponding solvable Lie algebra with inner product
〈 , 〉. Then ([3]) s has an orthogonal decomposition s = RA ⊕ a1 ⊕ a2 such that
〈A,A〉 = 1, s′ = a1 ⊕ a2, [s′, s′] = a2 and [s′, a2] = 0, where dim a1 = s(dim a2 + 1)
for some positive integer s. A acts by the identity on a2 and by one half the identity
on a1.

When a2 = 0 then a1 is abelian and the n-dimensional simply connected Lie
group with left invariant metric associated to (s, 〈 , 〉) is isometric to RHn (cf. [3]).

If a2 =RX (〈X,X〉=1) and a1 has an orthonormal basis {Y1, Z1, . . . , Yn−1, Zn−1}
such that [Zi, Yj ] = −[Yj , Zi] = δijX , then the corresponding 2n-dimensional sim-
ply connected Lie group with left invariant metric is isometric to CHn (cf. [3]).

Theorem 3.4. If dim g′ = 3 and g is solvable then one of the following holds:
(a) g′ is abelian or (b) g′ is a Heisenberg algebra.

In case (a) g admits a hcs if and only if g corresponds to the space RH4. More-
over, g has a unique hcs, up to equivalence.
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In case (b) g admits a hcs if and only if it corresponds to the space CH2. The
equivalence classes of hcs on g are parametrized by the space RP 2.

Proof. Since g′ is nilpotent, the first assertion in the theorem follows since the only
three-dimensional nilpotent, nonabelian Lie algebra is the Heisenberg algebra.

We assume now that condition (a) holds. If g admits a hcs {Jα}α=1,2, let 〈 , 〉 be
an inner product such that Jα is orthogonal for α = 1, 2, 3 with J3 = J1J2 (Lemma
2.3). We fix a nonzero element A ∈ g orthogonal to g′ with respect to 〈 , 〉. Since
clearly {JαA}α=1,2,3 is a basis of g′, we must have

[JαA, JβA] = 0 ∀α, β.
If (α, β, γ) is a cyclic permutation of the indices (1, 2, 3), by the integrability of Jα
we obtain

Jα[A, JβA] = [A, JαJβA], Jα[A, JγA] = [A, JαJγA].(3.2)

If we now compute adA : g′ → g′ with respect to the basis {JαA}α=1,2,3 and use
(3.2) we obtain

adA|g′ = λI(3.3)

which shows that g is isomorphic to the solvable Lie algebra corresponding to the
real hyperbolic space. Conversely, given this Lie algebra, we now exhibit a hcs on it.
We choose a basis {X,Y, Z} of g′ and if A /∈ g′ satisfies (3.3), define H ={Jα}α=1,2

as follows

J1A = X, J1Y = Z, J2
1 = −I,

J2A = Y, J2Z = X, J2
2 = −I.

It is easy to check that N1(A, Y ) = 0 and N2(A,Z) = 0 , so in view of Lemma
2.2 J1 andJ2 are integrable. Furthermore, one obtains that all hypercomplex
structures on g are equivalent to H. In fact, given another hcs {J ′α}α=1,2 with
corresponding inner product 〈 , 〉′, we take A′ ∈ g orthogonal to g′ with respect to
〈 , 〉′ and in the same way as above we obtain adA′|g′ = λ′I for some λ′ 6= 0. Let

φ ∈ End(g) be defined by φA = λ
λ′A

′ and φJα = J ′αφ, for α = 1, 2. One verifies
that φ is an automorphism of g; hence it sets the desired equivalence.

Assume now that (b) holds. If g is the Lie algebra that corresponds to CH2

then it has a basis {A,X, Y, Z} such that

[A,X ] = X, [Z, Y ] = X,

[A, Y ] =
1

2
Y, [A,Z] =

1

2
Z.

We define J1, J2 ∈ End(g) by the following conditions:

J1A = X, J1Y = Z, J2
1 = −I,

J2A =

√
2

2
Z, J2X =

√
2

2
Y, J2

2 = −I.
The integrability of J1 and J2 is easily verified by direct calculation.

Conversely, if g satisfies (b) and admits a hcs {Jα}α=1,2, let 〈 , 〉 be an inner
product such that Jα is orthogonal for α = 1, 2 (cf. Lemma 2.3). We choose a

nonzero element Ã in the orthogonal complement of g′ and by Lemma 2.1 we may
assume that J1Ã ∈ z(g′). We consider the following basis of g: Ã, X̃ = J1Ã, Z =

J2Ã, Y = J2X̃ (note that {X̃, Z, Y } is a basis of g′). Since X̃ ∈ z(g′) it is easy
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to verify that RX̃ is an ideal of g, so there exists λ ∈ R such that [Ã, X̃] = λX̃.
By Remark 3.2 z = {0}; hence λ 6= 0. By assumption g′ is a Heisenberg algebra

with center RX̃ so there exists α ∈ R (α 6= 0) such that [Z, Y ] = αX̃. From

N2(X̃, Z) = 0 and N1(Ã, Z) = 0 one obtains

[Ã, Y ] = (λ− α)Y, [Ã, Z] = J1[Ã, Y ] = (λ− α)Z.(3.4)

Now the Jacobi identity applied to Ã, Z, Y yields α = λ
2 . Taking A = 1

λ Ã, X =
λ
2 X̃, Z, Y and using (3.4), it is straightforward to show that g is the Lie algebra
corresponding to the complex hyperbolic space. In the above basis J1 and J2 take
the following form:

J1A =
2

λ2
X, J1Y = Z, J2

1 = −I,

J2A =
1

λ
Z, J2X =

λ

2
Y, J2

2 = −I,
and if we call J ′1 and J ′2 the structure obtained when we replace λ by λ′, it is easy
to verify that φ ∈ End(g) satisfying φA = A and φJα = J ′αφ, for α = 1, 2, is an au-
tomorphism of g that establishes an equivalence between {J ′α}α=1,2 and {Jα}α=1,2.
We have actually proved that all hypercomplex structures {Jα}α=1,2 with the prop-

erty that J1 leaves RA⊕z(g′) invariant are equivalent. Let us fix λ =
√

2 and denote
by {J0

α}α=1,2 the associated hcs. If we define SO(3)0 as we did in (ii) of Theorem
3.3, by similar arguments we get that every hcs on g is equivalent to one lying in
SO(3)0. One shows that {J0

x , J
0
y} and {J0

p , J
0
q } are equivalent if and only if there

exists A ∈ O(2) such that x = Ãp, y = Ãq, where Ã =
(

detA
A

)
. This condition,

which is analogous to the one obtained in Theorem 3.3, settles the parametriza-
tion.

4. The associated hyperhermitian manifolds

Let (M , {Jα}α=1,2) be a connected hypercomplex manifold. A metric 〈 , 〉 on M
is said to be hyperhermitian if the endomorphisms {Jα}α=1,2 are orthogonal with
respect to 〈 , 〉. It turns out from Lemma 2.3 that, if dimM = 4, all hyperhermitian
metrics (relative to a fixed structure) are conformally equivalent. A differentiable
map f : (M,{Jα}α=1,2) → (M ′, {J ′α}α=1,2) between two hypercomplex manifolds
is said to be hypercomplex if its differential df satisfies dfJα = J ′αdf , for α = 1, 2.
Note that the pull-back of a hyperhermitian metric by a hypercomplex immersion
is hyperhermitian.

From now on G will denote a simply connected 4-dimensional real Lie group
admitting an invariant hypercomplex structure. A left invariant metric on G is
said to be invariant hyperhermitian if it is hyperhermitian with respect to some
invariant hcs on G. In this section we obtain the invariant hyperhermitian metrics
on G. The following result states that, on a given G, all such metrics are equivalent
up to homotheties.

Proposition 4.1. If 〈 , 〉 and 〈 , 〉′ are invariant hyperhermitian metrics on G then
there exists a real number λ > 0 such that (G, λ〈 , 〉) is isometric to (G, 〈 , 〉′).
Proof. By assumption there exist invariant hypercomplex structures {Jα}α=1,2 and
{J ′α}α=1,2 on G corresponding to 〈 , 〉 and 〈 , 〉′, respectively. Both invariant hyper-
complex structures are determined by the endomorphisms they induce on the Lie
algebra g of G. We still denote these endomorphisms by {Jα}α=1,2 and {J ′α}α=1,2,
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and they are hcs on g. From the results of Section 3 we know that there exists a
hcs {J0

α}α=1,2 on g such that any other hcs is equivalent to one which lies in the
corresponding space SO(3)0. Without loss of generality we may assume that one
of the structures, for instance {J ′α}α=1,2, is {J0

α}α=1,2.
Let x, y ∈ S2, x ⊥ y and φ ∈ Aut(g) such that {Jα}α=1,2 is equivalent to

{J0
x, J

0
y} via φ. Let φ̃ be the automorphism of G induced by φ and let 〈 , 〉xy be a left

invariant hyperhermitian metric with respect to {J0
x, J

0
y}. The automorphism φ̃ :

(G,{Jα}α=1,2) → (G, {J0
x , J

0
y}) is hypercomplex; then φ̃∗〈 , 〉xy is hyperhermitian

with respect to {Jα}α=1,2 and therefore there exists a positive differentiable function

ρ on G such that φ̃∗〈 , 〉xy = ρ〈 , 〉. Since φ̃ is an automorphism, the pull-back

φ̃∗〈 , 〉xy is also left invariant; hence ρ must be constant on G.
By assumption, 〈 , 〉′ is hyperhermitian with respect to {J0

α}α=1,2; hence J0
z is

〈 , 〉′-orthogonal for all z ∈ S2. Therefore, 〈 , 〉′ is hyperhermitian with respect to
{J0

x, J
0
y} and, again, since 〈 , 〉′ and 〈 , 〉xy are left invariant hyperhermitian metrics

relative to the same structure, there is a positive real number β such that 〈 , 〉′ =

β〈 , 〉xy. Now the proposition follows by taking λ = ρβ and φ̃.

The next step is to obtain the invariant hyperhermitian metrics. It turns out
that there are five different metrics, up to homotheties, as the following theorem
shows.

Theorem 4.2. If 〈 , 〉 is an invariant hyperhermitian metric on G then there exists
a positive real number λ such that (G, λ〈 , 〉) is isometric to one of the following
riemannian spaces:

(i) R4 with the euclidean metric;
(ii) the riemannian product R× S3 with the canonical metrics;
(iii) the riemannian product R × RH3, where RH3 has the symmetric metric of

negative sectional curvature;
(iv) RH4 with the symmetric metric;
(v) R4 with a homogeneous non-symmetric metric of negative sectional curvature.

Moreover, 〈 , 〉 determines G up to isomorphism.

Proof. If g denotes the Lie algebra of G, by the results of Section 3 we have the
following possibilities for g: (i) g is abelian, (ii) g ∼= R ⊕ so(3), (iii) g ∼= aff(C),
(iv) g is the solvable Lie algebra corresponding to RH4 or (v) g is the solvable Lie
algebra corresponding to CH2.

If (i) holds then G is isomorphic to (R4,+). By Proposition 4.1, we may assume
that {Jα}α=1,2 is given by

J1Z = X, J1Y = W, J2
1 = −I,

J2Z = Y, J2W = X, J2
2 = −I,

in a basis {X,Y, Z,W} of g = T0R4, and that 〈 , 〉 is obtained by left translating
the inner product such that this basis is orthonormal. Thus 〈 , 〉 is the canonical
metric on R4.

If (ii) holds then G is isomorphic to R× S3. Again, by Proposition 4.1, we may
assume that {Jα}α=1,2 is as follows:

J1Z = X, J1Y = W, J2
1 = −I,

J2Z = Y, J2W = X, J2
2 = −I,
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where {Z,X, Y,W} is as in Theorem 3.1, and that 〈 , 〉 is obtained by left translating
the inner product such that this basis is orthonormal. The Lie subgroups of G
corresponding to RZ and span{X,Y,W} are R and S3, respectively. From [2]
(Lemma 4.1) it follows that (G, 〈 , 〉) is isometric to the riemannian product R×S3

with the metric induced by 〈 , 〉 on each factor. Note that 〈 , 〉 induces on S3 the
canonical metric with constant sectional curvature 1.

If (iii) holds then g admits a basis {X,Y, Z,W} as in Theorem 3.3. By Proposi-
tion 4.1 we may assume that {Jα}α=1,2 is defined by

J1X = −W, J1Y = Z, J2
1 = −I,

J2X = Y, J2Z = −W, J2
2 = −I,

and that 〈 , 〉 is obtained by left translating the inner product with respect to which
the above basis is orthonormal. Let us denote by T and K the Lie subgroups of G
with Lie algebras span{X,Y, Z} and RW , respectively. Note that adW |span{X,Y,Z}
is skew-symmetric, and, again, by [2] (Lemma 4.1), we obtain that (G, 〈 , 〉) is
isometric to the riemannian product T × K with the metric induced by 〈 , 〉 on
each factor. Both, T and K, must be simply connected; therefore T is the simply
connected solvable Lie group corresponding to RH3 and K = R. Note that 〈 , 〉
induces on T the left invariant metric that makes T isometric to RH3 (cf. [3]).

If (iv) holds then g admits a basis {A,X, Y, Z} as in part (a) of Theorem 3.4.
By Proposition 4.1 we may assume that {Jα}α=1,2 is given by

J1A = X, J1Y = Z, J2
1 = −I,

J2A = Y, J2Z = X, J2
2 = −I,

and that 〈 , 〉 is the left invariant metric induced by the inner product whith respect
to which the above basis is orthonormal. By results of [3] (G, 〈 , 〉) is isometric to
the symmetric space RH4.

Finally, if (v) holds then g admits a basis {A,X,Z, Y } as in part (b) of Theorem
3.4. By Proposition 4.1 we may assume that {Jα}α=1,2 is as follows:

J1A = X, J1Y = Z, J2
1 = −I,(4.1)

J2A =

√
2

2
Z, J2X =

√
2

2
Y, J2

2 = −I,
and that 〈 , 〉 is the left invariant metric induced by the inner product with or-

thonormal basis {A,X,
√

2
2 Z,

√
2

2 Y }. G is isomorphic to the solvable Lie group cor-

responding to the the complex hyperbolic space CH2; thus the underlying manifold
structure on G is the euclidean structure on R4. The metric 〈 , 〉 is not symmet-
ric ([3], Proposition 3), and one obtains by direct calculation that it has negative
sectional curvature.

The last assertion in the theorem follows from the fact that invariant hyperhermi-
tian metrics on non-isomorphic Lie groups give rise to non-homothetic riemannian
spaces.

Remark 4.1. The fact that a left invariant hyper-Kähler metric is flat together with
Theorem 4.2 implies that, except for the euclidean metric, the invariant hyperher-
mitian metrics in dimension 4 are not hyper-Kählerian.

The solvable Lie algebra s corresponding to the complex hyperbolic space CH2

(see Theorem 3.4 (b)) has a canonical complex structure J given by JA = X, JZ =
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Y and J2 = −I. It is well known that the symmetric metric on CH2 is Kählerian
with respect to J . It is easy to verify that this metric is hermitian, non-Kählerian
with respect to the complex structure J1 considered in (v) of Theorem 4.2 (equations
(4.1)). Moreover, it is not hard to prove that J1 is not of Kähler type; that is, there
is no left invariant metric which is Kählerian with respect to J1. In particular, J1

is not equivalent to J by an automorphism of s. Identifying CH2 with the open
unit ball D2(C) = {(z1, z2) ∈ C2 : z1z̄1 + z2z̄2 < 1} (see [6]), the symmetric metric
on CH2 corresponds to the Bergman metric on D2(C) and the complex structure
J corresponds to the canonical complex structure (inherited from C2) on D2(C).
The complex structure J1 can be transferred to D2(C) via the above identifications
and therefore the Bergman metric is hermitian, non-Kählerian with respect to J1.
It follows from [5] that D2(C) with the Bergman metric is the only irreducible
homogeneous bounded domain in C2 up to holomorphic isometries. This fact and
the above observations imply:

Corollary 4.3. Every irreducible homogeneous bounded domain D in C2 admits
a complex structure J1 (invariant by a solvable group of isometries) which is not
equivalent (by a holomorphic isometry) to the canonical complex structure on D
and such that the Bergman metric is hermitian, non-Kählerian with respect to J1.

Using the geometric results obtained in this section we can conclude that the
simply connected hypercomplex 4-manifolds arising from non-isomorphic Lie groups
are not equivalent even by a hypercomplex diffeomorphism.

All the 4-dimensional simply connected Lie groups that admit invariant hyper-
complex structures, other than R × S3, are diffeomorphic to R4. This says that
R× S3 with its (unique) invariant hcs is not equivalent, by a hypercomplex diffeo-
morphism, to any of the remaining Lie groups with invariant hcs.

R4 with its (unique) invariant hcs is not equivalent to the simply connected
solvable Lie group S corresponding to the complex hyperbolic space CH2, with any
of its invariant hcs. If they were equivalent, then the hypercomplex diffeomorphism
would give a conformal equivalence between the hyperhermitian metrics, which by
Theorem 4.2 are homothetic to (i) and (v), respectively. Therefore (v) would be
conformally flat, a contradiction. In fact, an easy computation shows that the Weyl
tensor of (v) does not vanish. The same argument shows that S is not equivalent,
as a hypercomplex manifold, to R× RH3 or RH4.

Finally, from a result of [7], one gets that R4, RH4 and R × RH3 belong to
different conformal equivalence classes and therefore the corresponding groups with
invariant hcs are not equivalent by a hypercomplex diffeomorphism.

We can summarize the above observations as follows:

Corollary 4.4. Let G and G′ be simply connected 4-dimensional Lie groups with
invariant hypercomplex structures {Jα}α=1,2 and {J ′α}α=1,2, respectively. If there
exists a hypercomplex diffeomorphism f : (G, {Jα}α=1,2) → (G′, {J ′α}α=1,2) then G
and G′ are isomorphic as Lie groups.
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