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Hyperontrativity of simple random variablesbyPaweª Wolff (Warszawa)Abstrat. The optimal hyperontrativity onstant for a natural operator semigroupating on a disrete �nite probability spae is established up to a universal fator. Thetwo-point spaes are proved to be the extremal ase. The onstants obtained are alsooptimal in the related moment inequalities for sums of independent random variables.1. Notation and preliminary results. Let Ω be an arbitrary �niteset and let µ be a probability measure on the measurable spae (Ω, 2Ω). Forany funtion f : Ω → R, Eµf denotes the expeted value of f with respetto µ. To avoid trivialities, we assume that µ has at least two atoms withnon-zero measure.We shall onsider operators ating on the �nite-dimensional spae L2(µ)(for abbreviation, we write Lp(µ) instead of Lp(Ω,µ)) over the real salar�eld. Let L be the orthogonal projetion in L2(µ) onto the subspae offuntions with zero mean, i.e. L = Id−Eµ. We de�ne the semigroup Tt =
e−tL (t ≥ 0) of self-adjoint operators. Throughout the paper, we shall usethe expliit formula

Tt = Eµ + e−tL = (1 − e−t)Eµ + e−t Id,whih implies that (Tt)t≥0 is a non-negativity preserving semigroup of on-trations from Lp(µ) to Lp(µ) for 1 ≤ p ≤ ∞.Definition 1.1. The semigroup (Tt)t≥0 is (p, q)-hyperontrative (for
1 < q < p <∞) if there exists t0 ≥ 0 suh that for all t ≥ t0 and f ∈ Lq(µ),(1.1) ‖Ttf‖Lp(µ) ≤ ‖f‖Lq(µ).If suh a t0 exists and is the least possible (the minimum exists, sine ob-viously Tt is a strongly ontinuous semigroup), then σp,q(µ) := e−t0 is the2000 Mathematis Subjet Classi�ation: Primary 60E15.Key words and phrases: disrete measure, hyperontrativity, moment inequality,simple random vetor.Researh partially supported by MEiN Grant 1 PO3A 012 29.[219℄ © Instytut Matematyzny PAN, 2007



220 P. Wol�
(p, q)-hyperontrativity onstant for the measure µ. (Non-triviality of µ gives
t0 > 0, i.e., σp,q(µ) ∈ (0, 1).)Note that hyperontrativity of the semigroup (Tt)t≥0 does not dependon the set Ω itself, but only on the weights of the atoms of the measure µ.In partiular, if #Ω = 2, then we may assume that µ = βδ−α +αδβ for some
α ∈ (0, 1/2] with β = 1 − α. Therefore we shall use the notation

σp,q(α) := σp,q(βδ−α + αδβ).Remark 1.1. The standard duality argument yields σp,q(µ) = σq′,p′(µ),where p′ = p/(p− 1) and q′ = q/(q − 1). Indeed, self-adjointness of Tt impliesthat ‖Tt‖Lq(µ)→Lp(µ) = ‖Tt‖L
p′

(µ)→L
q′

(µ).Remark 1.2. For f = a + g, where a ∈ R and Eµg = 0, we have
Ttf = a+ e−tg. Sine Tt preserves non-negativity, we have Tt|f | ≥ Ttf and
Tt|−f | ≥ −Ttf , so Tt|f | ≥ |Ttf |. Therefore in order to hek (1.1) we anonsider only f = a + g ≥ 0. Then, exept the trivial ase g ≡ 0, we musthave a > 0 and, by homogeneity, we an assume a = 1. Therefore
(1.2) σp,q(µ) = max{σ ∈ (0, 1) : ‖1 + σg‖Lp(µ) ≤ ‖1 + g‖Lq(µ)whenever Eµg = 0 and 1 + g ≥ 0}and in the ase of the two-point measure µ = βδ−α + αδβ every g is of theform g(x) = xu for u ∈ [−1/β, 1/α].The hyperontrativity of semigroups has been transferred to the ontextof random variables. Let us reall the following de�nition introdued byKrakowiak and Szulga [5℄ (see also [6℄ and [7, Ch. 3℄).Definition 1.2. Let 0 < q < p <∞, let (F, ‖ ·‖) be a separable Banahspae and let X be a random vetor with values in F suh that E‖X‖p <∞.Then we say that X is (p, q)-hyperontrative with onstant σ ∈ (0, 1) if

∀v∈F ‖v + σX‖p ≤ ‖v +X‖q.(The notation ‖Y ‖p means (E‖Y ‖p)1/p.)Remark 1.3. Let X be a zero-mean F-valued random vetor whihis simple (i.e. takes on �nitely many values) and µ be its distribution.A standard reasoning shows that if the semigroup Tt = e−t(Id−Eµ) is (p, q)-hyperontrative, then X is (p, q)-hyperontrative with onstant σp,q(µ).Indeed, taking e−t0 = σ := σp,q(µ) we have ‖Tt0‖Lq(µ)→Lp(µ) ≤ 1. Consi-dering, for a �xed v ∈ F, the onvex funtion f(x) = ‖v + x‖ and using theJensen inequality we obtain
(Tt0f)(X) = (1 − σ)Ef(X) + σf(X) ≥ (1 − σ)f(0) + σf(X) ≥ f(σX),so ‖v + σX‖p = ‖f(σX)‖p ≤ ‖(Tt0f)(X)‖p ≤ ‖f(X)‖q = ‖v +X‖q.Let us reall the following result [6, 7℄:



Hyperontrativity of simple random variables 221Proposition 1.1. Let 0 < q < p < ∞. If (Xk)
n
k=1 is a sequene ofindependent random vetors with values in a separable Banah spae F andeah Xk is (p, q)-hyperontrative with the same onstant σ, then

∀v∈F ‖v + σS‖p ≤ ‖v + S‖qwhere S =
∑n

k=1Xk. In partiular ,
‖S‖p ≤ σ−1‖S‖q.We shall use the following notation. For a, b ∈ R, a ∨ b = max(a, b),

a ∧ b = min(a, b). If x, y ≥ 0 and c ≥ 1 are suh that c−1x ≤ y ≤ cx, thenwe shall write x c
∼ y. We shall often omit the onstant c and write x ∼ ywhenever c is some universal (numerial) onstant. For x, y ≥ 0, x . y meansthat x ≤ cy, where c > 0 is a universal onstant.In Setion 2 we formulate known and new results on the onstants σp,q(α).Proofs of the latter are presented in Setion 4. In Setion 3 we show that

σp,q(µ) are omparable with σp,q(α∗), where α∗ is the mass of the least atomof µ. This solves a problem posed by Janson [4℄.2. Hyperontrativity onstants for two-point measures. It isa lassial result [2, 1℄ that for 1 < q < p <∞,(2.1) σp,q(1/2) =

√
q − 1

p− 1
.The values of σ2,q(α) and σp,2(α) for α ∈ (0, 1/2) and 1 < q < 2 < p < ∞were established by Oleszkiewiz [10℄:

σ2,q(α) =

(
β2−2/q − α2−2/q

α1−2/qβ − β1−2/qα

)1/2

, σp,2(α) =

(
β2/p − α2/p

α2/p−1β − β2/p−1α

)1/2

where β = 1 − α. (One an easily hek that limα→1/2− σ2,q(α) = σ2,q(1/2)and limα→1/2− σp,2(α) = σp,2(1/2).) The above results imply that σp,q(α)is well-de�ned for all 1 < q < p < ∞ (i.e. the related semigroup is (p, q)-hyperontrative), sine σp,q(α) ≥ σ2,q(α) for p ≤ 2, σp,q(α) ≥ σp,2(α) for
q ≥ 2, and σp,q(α) ≥ σ2,q(α)σp,2(α) for q < 2 < p. Elementary alulationsshow the asymptoti behaviour of σ2,q(α) (and σp,2(α)) as α → 0 or q → 1(p→ ∞) (for more details see [10, proof of Theorem 2.1℄):

σ2,q(α) ∼





α1/q−1/2 for 1

q − 1
≤ ln

1

α
,

√
(q − 1)α ln(1/α) for 1

q − 1
> ln

1

α
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σp,2(α) ∼





α1/2−1/p for p ≤ ln
1

α
,

√
(1/p)α ln(1/α) for p > ln

1

α
.



222 P. Wol�In Setion 3 we will need the followingLemma 2.1. For 1 < q < 2 < p < ∞, the funtions (0, 1/2] ∋ α 7→
σ2,q(α) and (0, 1/2] ∋ α 7→ σp,2(α) are stritly inreasing.We postpone the proof of Lemma 2.1 and of other results stated in thissetion until Setion 4.The main result of this setion deals with estimates of σp,q(α) for allombinations of parameters α, p, q exept the ase q < 2 < p.Theorem 2.1. For all 1 < q < p ≤ 2 and α ∈ (0, 1/2] we have σp,q(α) ∼
σ̃p,q(α), where

σ̃p,q(α) =





α1/q−1/p for α ∈ I1 =

{
α :

e1/(q−1)

q − 1
≤

1

α
ln

1

α

},
((q − 1) ln(1/α))1/pα1−1/pfor α ∈ I2 =

{
α :

e1/(p−1)

q − 1
≤

1

α
ln

1

α
<
e1/(q−1)

q − 1

}
,

q − 1

p− 1

ln(1/α)

1 + ln
( q−1

p−1
1
α ln 1

α

)

for α ∈ I3 =

{
α :

p− 1

q − 1
≤

1

α
ln

1

α
<
e1/(p−1)

q − 1

}
,

√
q − 1

p− 1
α ln(1/α) for α ∈ I4 =

{
α :

1

α
ln

1

α
<
p− 1

q − 1

}
.As a orollary we obtainTheorem 2.2. For all 2 ≤ q < p < ∞ and α ∈ (0, 1/2] we have

σp,q(α) ∼ σ̃p,q(α), where
σ̃p,q(α) =





α1/q−1/p for α ∈ I ′1 =

{
α : pep ≤

1

α
ln

1

α

}
,

(
ln(1/α)

p

)1−1/q

α1/q for α ∈ I ′2 =

{
α : peq ≤

1

α
ln

1

α
< pep},

q

p

ln(1/α)

1 + ln
( q

p
1
α ln 1
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) for α ∈ I ′3 =

{
α :

p

q
≤

1

α
ln

1

α
< peq

}
,

√
q

p
α ln(1/α) for α ∈ I ′4 =

{
α :

1

α
ln

1

α
<
p

q

}.As in the ase of the onstants σ2,q(α) and σp,2(α), in Setion 3 we willuse the followingLemma 2.2. For all p, q suh that 1 < q < p ≤ 2 or 2 ≤ q < p < ∞ wehave σp,q(α1) . σp,q(α2) for all 0 < α1 < α2 ≤ 1/2.



Hyperontrativity of simple random variables 223By applying results from [8℄, we may observe that up to a universal fator,the onstants σ̃p,q(α) appear as a ratio of the qth and pth moments of ertainsums of independent two-point random variables.Theorem 2.3. Let (Xk)
∞
k=1 be a sequene of independent random vari-ables with a ommon distribution βδ−α +αδβ , where α+β = 1, α ∈ (0, 1/2].Set n(α, p) = ⌈p/ln(1/α)⌉. Then for all 2 ≤ q < p < ∞ and for S =∑n(α,p)

k=1 Xk we have
‖S‖q ∼ σ̃p,q(α)‖S‖p.On the other hand, by Theorem 2.2, Remark 1.3 and Proposition 1.1,for any sum S =

∑n
k=1 vkXk where (vk)

n
k=1 is a sequene in any Banahspae F, we have

‖S‖q & σ̃p,q(α)‖S‖p.Thus we see that the ase n = ⌈p/ln(1/α)⌉ and v1 = · · · = vn 6= 0 (oreven just F = R and v1 = · · · = vn = 1) is extremal up to some universalonstant. It is interesting that n depends only on α and p and does notdepend on q. Moreover, n an be de�ned as the greatest integer for whih
‖
∑n

k=1Xk‖p
c
∼ ‖

∑n
k=1Xk‖∞ with some absolute onstant c > 0 (see theproof of Theorem 2.3).3. Hyperontrativity onstants for disrete measuresTheorem 3.1. Let µ be a disrete measure with the mass of the leastatom equal to α∗ > 0. Then for all 1 < q < p <∞ we have

inf
α∈[α∗,1/2]

σp,q(α) ≤ σp,q(µ) ≤ σp,q(α∗).Proof. The seond inequality is quite obvious (e.g. see (1.2)). From nowon, we onsider only the ase p ≥ 2; the ase 1 < q < p < 2 follows from theprevious one and a duality argument (see Remark 1.1). In order to prove the�rst inequality we shall prove that for all t ≥ 0 we have(3.1) ‖Tt‖Lq(µ)→Lp(µ) ≤ sup
α∈[α∗,1/2]

‖S
(α)
t ‖Lq(ν(α))→Lp(ν(α))where (Tt)t≥0 is the semigroup attahed to µ and (S

(α)
t )t≥0 is the semigroupassoiated to the two-point measure ν(α) = βδ−α + αδβ (α + β = 1). Theargument used below is similar to one presented by Diaonis and Salo�-Coste[3℄ and originates in Rothaus [11℄. The main di�erene is the ontext�wedeal with hyperontrativity, whereas in the ited papers this argument wasused to prove logarithmi Sobolev inequalities.For �xed t ≥ 0, set

A = ‖Tt‖Lq(µ)→Lp(µ) = sup{‖Ttf‖Lp(µ) : f ∈ Lq(µ), ‖f‖Lq(µ) = 1}.



224 P. Wol�Clearly, if A = 1 then (3.1) is trivial. So assume A > 1. The fat that Lq(µ)has �nite dimension implies that A < ∞ and there exists f0 for whih theabove supremum is attained. De�ning the funtionals I(f) = ‖Ttf‖
p
Lp(µ)and J(f) = ‖f‖q

Lq(µ) on Lq(µ), we see that f0 maximizes I subjet to theonstraint J(f) = 1. The funtionals I and J are both C1 and DJ(f0) 6= 0,sine J(f0) = 1. Therefore for some onstant λ we have(3.2) DI(f0) = λDJ(f0).Sine Tt preserves non-negativity, we may hoose f0 to be non-negative. Theassumption A > 1 implies that f0 annot be a onstant funtion. We shallshow that f0 takes at most two values. The omputations of the derivativesfrom (3.2) are as follows (〈f, g〉µ stands for Eµfg):
DJ(f0) = q〈f q−1

0 , ·〉µ,

DI(f0) = D‖ · ‖p
Lp(µ)(Ttf0) ◦DTt(f0) = p〈(Ttf0)

p−1, ·〉µ ◦ Tt

= p〈(Ttf0)
p−1, Tt(·)〉µ = p〈Tt((Ttf0)

p−1), ·〉µ(the last equality follows from the fat that Tt is a self-adjoint operator).Thus by (3.2) we have
Tt((Ttf0)

p−1) = λ̃f q−1
0for some onstant λ̃. Sine f0 ≥ 0, also g0 := Ttf0 ≥ 0. We have f0 =

(Tt)
−1g0 = etg0 + (1 − et)Eµg0, so
(e−tgp−1

0 + (1 − e−t)‖g0‖
p−1
Lp−1(µ))

1/(q−1) = λ̃(etg0 + (1 − et)Eµg0).Fixing an argument x of g0 and putting u := g0(x) ∈ [0,∞), we obtain(3.3) ((aup−1 + bvp−1)1/(p−1))(p−1)/(q−1) = cu− dfor some onstants a > 0, b, v ≥ 0 and c, d ∈ R whih do not depend on thehoie of x. The right hand side of (3.3) is a linear funtion of u, whereasthe left hand side of (3.3) is a stritly onvex funtion of u. Indeed, it isthe omposition of the onvex and stritly inreasing funtion [0,∞) ∋ u 7→
(aup−1 + bvp−1)1/(p−1) (this expression is just some Lp−1-norm beause wehave assumed p ≥ 2) and the funtion [0,∞) ∋ z 7→ z(p−1)/(q−1), whih isstritly onvex and stritly inreasing. Therefore the equation (3.3) has atmost two solutions u ∈ [0,∞), so g0 (and also f0) takes on at most twovalues.Therefore f0 takes on exatly two di�erent values. Denote them by u1,
u2 so that µ(f−1

0 (u1)) = α and µ(f−1
0 (u2)) = 1 − α for some α ∈ (0, 1/2].Clearly, α ∈ [α∗, 1/2] and ‖Tt‖Lq(µ)→Lp(µ) = ‖S

(α)
t ‖Lq(ν(α))→Lp(ν(α)), whihproves (3.1).



Hyperontrativity of simple random variables 225Corollary 3.1. Let µ be a disrete measure with the mass of the leastatom equal to α ∈ (0, 1/2). Then for all 1 < q < 2 < p <∞ we have
σ2,q(µ) = σ2,q(α) and σp,2(µ) = σp,2(α),and for all 1 < q < p <∞ satisfying q, p ≤ 2 or q, p ≥ 2 we have

σp,q(µ) ∼ σp,q(α).Proof. The �rst part follows from Theorem 3.1 and Lemma 2.1, whereasthe seond part follows from Theorem 3.1 and Lemma 2.2.It is worth mentioning that Theorem 3.1 allows us to generalize someSobolev-type inequality onsidered by Lataªa and Oleszkiewiz [9, Remark 2℄from a two-point spae to any �nite spae.Corollary 3.2. Let µ be a disrete measure with the mass of the leastatom equal to α ∈ (0, 1/2), β = 1 − α, 1 < q < 2. De�ne the quadrati form
E(f) = EµfLf , where L = Id−Eµ. Then for every funtion f ∈ L2(µ),(3.4) Eµf

2 − (Eµ|f |
q)2/q ≤ Cq(α)E(f)where

Cq(α) =
α1−2/q − β1−2/q

α1−2/qβ − β1−2/qα
.Proof. Consider the self-adjoint semigroup Tt = e−tL. Corollary 3.1 im-plies that if t0 satis�es e−t0 = σ2,q(α) then ‖Tt0‖Lq(µ)→L2(µ) ≤ 1, hene

‖f‖2
Lq(µ) ≥ ‖Tt0f‖

2
L2(µ) = 〈Tt0f, Tt0f〉µ = 〈f, T2t0f〉µ

= e−2t0Eµf
2 + (1 − e−2t0)(Eµf)2 = Eµf

2 − (1 − e−2t0)E(f)

= Eµf
2 − Cq(α)E(f),beause, as one may hek, Cq(α) = 1 − σ2

2,q(α).Letting q → 2 in the inequality (3.4) one an obtain the logarithmiSobolev inequality onsidered in [3, Theorem A.1℄:
Eµf

2 ln f2 − Eµf
2 lnEµf

2 ≤
lnβ − lnα

β − α
E(f).By Corollary 3.1, Remark 1.3 and Proposition 1.1 we �nally getCorollary 3.3. Let (Xk)

n
k=1 be a sequene of independent simple ran-dom vetors with values in a Banah spae F, and S =

∑n
k=1Xk. Let

α = min{P (Xk = v) 6= 0: v ∈ F}. Then for every 2 ≤ q < p <∞,
‖S‖p ≤ Cσ−1

p,q (α)‖S‖qwhere C > 0 is a universal onstant , whih may be 1 if q = 2.



226 P. Wol�Moreover, by Theorem 2.2 we learly get ‖S‖p . σ̃−1
p,q (α)‖S‖q, whereasTheorem 2.3 implies that for �xed α, p, q the onstants in the above momentinequalities are optimal up to some universal fator.4. ProofsProof of Lemma 2.1. Due to Remark 1.1 it su�es to prove that f(α) =

σ2
2,q(α) is inreasing for α ∈ (0, 1/2). For x, y > 0, x 6= y and t ∈ (0, 1), wede�ne

ϕ(x, y) =
x1−t − y1−t

xy−t − yx−t
.Clearly, ϕ(x, y) = ϕ(y, x) and ϕ(x, y) = ϕ(λx, λy) for λ > 0. Putting t =

2/q − 1 we have f(α) = ϕ(1 − α, α), thus
f ′(α) = ∂yϕ(1 − α, α) − ∂xϕ(1 − α, α)

=
1

α
∂xϕ

(
1 − α

α
, 1

)
−

1

1 − α
∂xϕ

(
α

1 − α
, 1

)
.Therefore the proof will be ompleted by showing that

∂xϕ(x, 1) > 0 for x ∈ (0, 1) and ∂xϕ(x, 1) < 0 for x ∈ (1,∞).Putting
ψ(x, s) =

1

s
(xs − x−s) =

lnx

s

s\
0

(xu + x−u) du

for x > 0 and s ∈ (0, 1], we have
∂xϕ(x, 1) =

1

(x− x−t)2
((1 − t)x−t(x− x−t) − (x−t+1 − 1)(1 + tx−t−1))

=
tx−t

(x− x−t)2
(ψ(x, t) − ψ(x, 1)).Now it su�es to show that ψ(x, s) is inreasing as a funtion of s ∈ (0, 1] for

x > 1 and dereasing for x ∈ (0, 1). The former statement implies the latter,beause ψ(x, s) = −ψ(1/x, s). Therefore we onsider the ase x > 1. Fix
0 < s1 < s2 ≤ 1 and put λ = s1/s2 < 1. Using the inequality xλu + x−λu <
xu + x−u, whih holds by the onvexity of u 7→ xu, we obtain

ψ(x, s1) =
lnx

s1

s2\
0

(xλu + x−λu)λdu

<
lnx

s2

s2\
0

(xu + x−u) du = ψ(x, s2).



Hyperontrativity of simple random variables 227Now, we turn to the proof of Theorem 2.1. First, note that Remark 1.2implies that σp,q(α) is the greatest σ suh that
(β|1− σαu|p + α|1 + σβu|p)1/p ≤ (β|1− αu|q + α|1 + βu|q)1/q (β = 1− α)for all u ∈ [−1/β, 1/α] (or, equivalently, for all u ∈ R).The following lemmas will be used in the proof of Theorem 2.1.Lemma 4.1. For all 1 < q < p < ∞ and 0 < α1 < α2 ≤ 1/2 with
βi = 1 − αi (i = 1, 2) we have σp,q(α1)

c
∼ σp,q(α2), where c = α2β1/(α1β2).Proof. First, note that for any onvex funtion ϕ : R → R we have

β1ϕ(−α1y) + α1ϕ(β1y) ≤ β2ϕ

(
−α2

β1

β2
y

)
+ α2ϕ

(
β2
β1

β2
y

)
,(4.1)

β2ϕ(−α2y) + α2ϕ(β2y) ≤ β1ϕ

(
−α1

α2

α1
y

)
+ α1ϕ

(
β1
α2

α1
y

)
,(4.2)for every y ∈ R. For any �xed u ∈ R and r ≥ 1 we onsider the onvex fun-tion ϕr(x) = |1 + xu|r. Putting σ = σp,q(α2) and using (4.1), the de�nitionof σp,q and (4.2) we get

(β1ϕp(−α1σ) + α1ϕp(β1σ))1/p ≤

(
β2ϕp

(
−α2

β1

β2
σ

)
+ α2ϕp

(
β2
β1

β2
σ

))1/p

≤

(
β2ϕq

(
−α2

β1

β2

)
+ α2ϕq

(
β2
β1

β2

))1/q

≤ (β1ϕq(−cα1) + α1ϕq(cβ1))
1/q,whih proves σp,q(α2) ≤ cσp,q(α1), sine u ∈ R an be hosen arbitrarily.Putting σ = σp,q(α1) and using (4.2), the de�nition of σp,q and (4.1) we have

(β2ϕp(−α2σ) + α2ϕp(β2σ))1/p ≤

(
β1ϕp

(
−α1

α2

α1
σ

)
+ α1ϕp

(
β1
α2

α1
σ

))1/p

≤

(
β1ϕq

(
−α1

α2

α1

)
+ α1ϕq

(
β1
α2

α1

))1/q

≤ (β2ϕq(−cα2) + α2ϕq(cβ2))
1/q,whih yields σp,q(α1) ≤ cσp,q(α2).Lemma 4.2. For eah C > 1 there exists D > 1 suh that for all 1 < q <

p ≤ 2 and α1, α2 ∈ (0, 1/2], if α1
C
∼ α2, then σ̃p,q(α1)

D
∼ σ̃p,q(α2).Proof. For α1, α2 ∈ Ij (j = 1, . . . , 4) this is quite obvious�it su�es toobserve that ln(1/α1) ∼ ln(1/α2) and in ase α1, α2 ∈ I3 also that

1 + ln

(
q − 1

p− 1

1

α1
ln

1

α1

)
∼ 1 + ln

(
q − 1

p− 1

1

α2
ln

1

α2

)
.To see the assertion for any pair α1, α2 satisfying the assumptions of thelemma, it su�es to show that σ̃p,q(α) ∼ limα′→α+ σ̃p,q(α

′) for α = sup Ij



228 P. Wol�(j = 1, 2, 3). For j = 1, we have
lim

α′→α+
σ̃p,q(α

′) = α1−1/p ∼ α1/q−1/p = σ̃p,q(α),sine α1/q−1 = e1/q ∼ 1. For j = 2,
lim

α′→α+
σ̃p,q(α

′) =
q − 1

p− 1

ln(1/α)

1 + ln(1/(p− 1)) + 1/(p− 1)

∼ (q − 1) ln(1/α),

σ̃p,q(α) = (q − 1) ln(1/α)

(
(q − 1)

1

α
ln

1

α

)1/p−1

= (q − 1) ln(1/α)e−1/p,

(4.3)
and �nally, for j = 3 we have σ̃p,q(α) = α = limα′→α+ σ̃p,q(α

′).In the next two lemmas and in the proof of Theorem 2.1 we shall usethe following notation. Let 1 < q < p ≤ 2, α ∈ (0, 1/2] with β = 1 − α. For
x ∈ [−1/β, 1/α], we de�ne

Lα,p(x) = β(1 − αx)p + α(1 + βx)p − 1,

Rα,q,p(x) = (β(1 − αx)q + α(1 + βx)q)p/q − 1.If α ∈ (0, e−2], we set
L̃α,p(x) =





(p− 1)αx2 for x ∈ [0, e],

e(p− 1)αx lnx for x ∈ (e, e1/(p−1) ∧ 1/α],

αxp for x ∈ (e1/(p−1) ∧ 1/α, 1/α],and, when additionally 1/α 6∈ (e1/(q−1), eq/(q−1)],
R̃α,q,p(x) =

{
(q − 1)αx2 for x ∈ [0, e],
e(q − 1)αx lnx for x ∈ (e, 1/α],

if 1/α ≤ e1/(q−1),and
R̃α,q,p(x) =





(q − 1)αx2 for x ∈ [0, e],

e(q − 1)αx lnx for x ∈ (e, e1/(q−1)],

αxq for x ∈ (e1/(q−1), (1/α)1/q],

αp/qxp for x ∈ ((1/α)1/q, 1/α],

if 1/α > eq/(q−1).

Note that L̃α,p and R̃α,q,p are ontinuous, di�erentiable (exept the ase
1/α > eq/(q−1) when R̃α,q,p is not di�erentiable at (1/α)1/q) and inreasing.



Hyperontrativity of simple random variables 229Additionally, the following approximate formulas will be used: for every
ε > 0 there exist c1, c2, c3 > 0 (eah depends only on ε) suh that

et − 1
c1∼ t for 0 ≤ t ≤ ε,(4.4)

et − 1
c2∼ et for t ≥ ε,(4.5)

ln(1 + t)
c3∼ t for 0 ≤ t ≤ ε.(4.6)Lemma 4.3. For α ≤ e−2 and x ∈ [−1/β, 1/α], L̃α,p(|x|) ∼ Lα,p(x).Proof. Obviously, for all x1, x2 ∈ [0, 1/α] suh that x1

C
∼ x2 we have

L̃α,p(x1)
D
∼ L̃α,p(x2), where D > 0 depends only on C. Moreover, Lα,p isonvex and C∞ on (−1/β, 1/α), hene Lα,p is dereasing on [−1/β, 0] andinreasing on [0, 1/α], sine L′

α,p(0) = 0. Therefore it is su�ient to provethe assertion only for x ∈ {−1/β} ∪ [−1/(2β), 1/(2β)] ∪ [e2, 1/α].Case x ∈ [−1/(2β), 1/(2β)]. It su�es to prove that(4.7) L′′
α,p(x) ∼ (p− 1)α.Indeed, by integrating we get L′

α,p(x) ∼ (p− 1)αx, now, L′
α,p(0) = 0, and byintegrating one again we get Lα,p(x) ∼ (p− 1)αx2, sine Lα,p(0) = 0. Now,

L′′
α,p(x) = p(p− 1)αβ(α(1 − αx)p−2 + β(1 + βx)p−2).Clearly, we have 1 − αx ∼ 1 and 1 + βx ∼ 1. Sine p − 2 ∈ (−1, 0], we alsohave (1 − αx)p−2 ∼ 1 and (1 + βx)p−2 ∼ 1, whih implies (4.7).Case x = −1/β. From (4.4) and (4.6) we have

Lα,p(−1/β) = β(1 + α/β)p − 1 = (1 + α/β)p−1 − 1 = e(p−1) ln(1+α/β) − 1

∼ (p− 1) ln(1 + α/β) ∼ (p− 1)α/β ∼ L̃α,p(1/β),sine (p− 1) ln(1 + α/β) ≤ (p− 1)α/β < 1 and α/β < 1.Case x ∈ [e2, 1/α]. We shall approximate
Lα,p(x) = β(1 − αx)((1 − αx)p−1 − 1) + α(1 + βx)((1 + βx)p−1 − 1)

= M1 +M2.The �rst term is equal to zero if x = 1/α, and is negative otherwise. In thelatter ase we have the following estimate:
M1 = β(1 − αx)(e(p−1) ln(1−αx) − 1) ≥ β(1 − αx)(p− 1) ln(1 − αx)

≥ β(p− 1)(−αx) > −(p− 1)αxwhere the seond inequality follows from the inequality ln(1+y) ≥ y/(1 + y),whih holds for y > −1. For the seond term we have
M2 = α(1 + βx)(e(p−1) ln(1+βx) − 1) ≥ α(1 + βx)(p− 1) ln(1 + βx)

≥ αx(p− 1) lnx ≥ 2(p− 1)αx,



230 P. Wol�sine 1 + βx ≥ x and lnx ≥ 2. Therefore M2 ≥M1 +M2 = (M1 +M2/2) +
M2/2 ≥ M2/2, hene Lα,p(x) ∼ M2 and further we deal with M2. Sine
1+βx ≥ x ≥ e2, we have 1+βx ∼ x, ln(1+βx) ∼ lnx and (1+βx)p−1 ∼ xp−1.Thus from (4.4) and (4.5) we obtain

M2 ∼ αx(e(p−1) ln(1+βx) − 1) ∼ αx

{
(p− 1) lnx if x ≤ e1/(p−1),
xp−1 if x > e1/(p−1).Lemma 4.4. For all x ∈ [−1/β, 1/α], R̃α,q,p(|x|) ∼ Rα,q,p(x), whenever

R̃α,q,p is de�ned.Proof. Sine p/q ∈ (1, 2), we have (1 + t)p/q − 1 ∼ (1 + t)p/q ∼ tp/q for
t ≥ 1, and (1 + t)p/q − 1 ∼ t for t ∈ [0, 1]. Therefore

Rα,q,p(x) = (1 + Lα,q(x))
p/q − 1 ∼ Lα,q(x) ∨ Lα,q(x)

p/q,while an easy omputation shows that R̃α,q,p(x) ∼ L̃α,q(x)∨L̃α,q(x)
p/q. ThenLemma 4.3 ompletes the proof.Proof of Theorem 2.1. To prove optimality of the onstants σ̃p,q(α) wemay proeed as follows. Let p′ = p/(p−1), q′ = q/(q−1). Theorem 2.3 yields

‖S‖q′/‖S‖p′ ∼ σ̃−1
q′,p′(α). Transforming (q′, p′) to (p, q) in the formula for

σ̃q′,p′(α) from Theorem 2.2, together with Lemma 4.2, shows that σ̃q′,p′(α) ∼
σ̃p,q(α). On the other hand, Proposition 1.1 implies that ‖S‖q′/‖S‖p′ ≤
σ−1

q′,p′(α) = σ−1
p,q (α) (the last equality follows from Remark 1.1). Thus we get

σ̃p,q(α) & σp,q(α).We proeed to show the onverse inequality, i.e. σ̃p,q(α) . σp,q(α). Lem-mas 4.1 and 4.2 imply that we may neglet some values of α, therefore weassume α 6∈ (e−2, 1/2] and 1/α 6∈ (e1/(q−1), eq/(q−1)], sine e−2 ∼ 1/2 and
e1/(q−1) ∼ eq/(q−1). By Remark 1.2, it su�es to prove that(4.8) Lα,p(σx) ≤ Rα,q,p(x) for all x ∈ [−1/β, 1/α],where σ ∼ σ̃ := σ̃p,q(α). This, in fat, an be redued to showing that forsome universal onstant C1 > 0,(4.9) L̃α,p(σ̃x) ≤ C1R̃α,q,p(x) for all x ∈ [0, 1/α].Indeed, ombining (4.9) with Lemmas 4.3 and 4.4, we get(4.10) Lα,p(σ̃x) ≤ C2Rα,q,p(x) for all x ∈ [−1/β, 1/α],where C2 is some universal onstant. Clearly, we may assume C2 ≥ 1. Sinethe left hand side of (4.10) is a onvex funtion of x, taking the zero value at
x = 0, we have Lα,p(C

−1
2 σ̃x) ≤ C−1

2 Lα,p(σ̃x), whih ombined with (4.10)gives (4.8) with σ = C−1
2 σ̃.We now laim that the ontinuous funtion (0, 1/α) ∋ x 7→ L̃α,p(σ̃x)

R̃α,q,p(x)
isnon-dereasing. Sine it is di�erentiable (exept at the point (1/α)1/q in ase
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1/α > eq/(q−1)), it su�es to show that its �rst derivative is non-negative,or, equivalently, that(4.11) L̂α,p(σ̃x) ≥ R̂α,q,p(x) for all x ∈ (0, 1/α),(exluding x = (1/α)1/q when 1/α > eq/(q−1)), where L̂α,p(x) = x

L̃′

α,p
(x)

L̃α,p(x)
and

R̂α,q,p(x) = x
R̃′

α,q,p
(x)

R̃α,q,p(x)
. Simple omputations give

L̂α,p(x) =





2 for x ∈ (0, e],
1 + 1/lnx for x ∈ (e, e1/(p−1) ∧ 1/α),
p for x ∈ [e1/(p−1) ∧ 1/α, 1/α),

R̂α,q,p(x) = L̂α,p(x) if 1/α ≤ e1/(q−1),

R̂α,q,p(x) =





2 for x ∈ (0, e],

1 + 1/lnx for x ∈ (e, e1/(q−1)],

q for x ∈ (e1/(q−1), (1/α)1/q),

p for x ∈ ((1/α)1/q, 1/α),

if 1/α > eq/(q−1).

L̂α,p is non-inreasing, thus L̂α,p(σ̃x) ≥ L̂α,p(x), sine σ̃ ≤ 1 (this an beheked in many ways, e.g. see the proof of Lemma 2.2, where monotoni-ity of α 7→ σ̃p,q(α) is investigated). Moreover, L̂α,p(x) = R̂α,q,p(x) for x ∈

(0, e1/(p−1) ∧ 1/α) and L̂α,p(x) = p ≥ R̂α,q,p(x) for x ∈ [e1/(p−1) ∧ 1/α, 1/α)(exluding x = (1/α)1/q when 1/α > eq/(q−1)), whih proves (4.11).To omplete the proof, it remains to hek (4.9) for x = 1/α. We onsiderfour ases (as in the formula for σ̃p,q(α)).Case α ∈ I1. Clearly σ̃/α = (1/α)1−1/q+1/p > (1/α)1/p. Sine we as-sumed that 1/α 6∈ (e1/(q−1), eq/(q−1)], we have 1/α > eq/(q−1) > ep/(p−1),and therefore σ̃/α > e1/(p−1), hene L̃α,p(σ̃/α) = α(σ̃/α)p = (1/α)p−p/q =

R̃α,q,p(1/α).Case α ∈ I2. Clearly, R̃α,q,p(1/α) = e(q − 1) ln(1/α). If σ̃/α > e1/(p−1),then L̃α,p(σ̃/α) = α(σ̃/α)p = (q− 1) ln(1/α), and if σ̃/α ≤ e1/(p−1), then bythe monotoniity of L̃α,p(x) and x 7→ x lnx we have
L̃α,p(σ̃/α) ≤ e(p− 1)αe1/(p−1) ln(e1/(p−1)) = αep/(p−1) ≤ (q − 1) ln(1/α),where the last inequality is due to the fat that α ∈ I2.Case α ∈ I3. R̃α,q,p(1/α) is the same as in the previous ase. We nowshow that σ̃/α ≤ e1/(p−1). Setting

u0 := ln

(
q − 1

p− 1

1

α
ln

1

α

)
,



232 P. Wol�we get σ̃/α = eu0/(1 + u0). Sine α ∈ I3, we have
0 ≤ u0 ≤

1

p− 1
+ ln

1

p− 1
.The funtion h(u)=eu/(1 + u) is inreasing for u≥0 (h′(u)=ueu/(1 + u)2),hene

σ̃/α ≤ h

(
1

p− 1
+ ln

1

p− 1

)
< e1/(p−1).We next estimate the fration L̃α,p(σ̃/α)/R̃α,q,p(1/α). If σ̃/α > e, then

L̃α,p(σ̃/α) = e(p − 1)σ̃ ln(σ̃/α), otherwise, by the monotoniity of L̃α,p(x),
L̃α,p(σ̃/α) ≤ (p− 1)αe2. In the �rst ase, the fration above is equal to

e(p− 1)σ̃ ln(σ̃/α)

e(q − 1) ln(1/α)
=
u0 + ln 1

1+u0

1 + u0
< 1.In the seond ase the same fration is equal to

(p− 1)αe2

e(q − 1) ln(1/α)
≤ e, since

p− 1

q − 1
≤

1

α
ln

1

α(beause α ∈ I3).Case α ∈ I4. R̃α,q,p(1/α) is as in the previous ase. Clearly, σ̃/α ∈ (0, 1),thus
L̃α,p(σ̃/α)

R̃α,q,p(1/α)
=

(p− 1)σ̃2/α

e(q − 1) ln(1/α)
= e−1.This gives (4.9) with the onstant C1 = e, whih ompletes the proof.Proof of Theorem 2.2. At the beginning of the proof of Theorem 2.1 westated that σ̃p,q(α) ∼ σ̃q′,p′(α) for p′ = p/(p − 1), q′ = q/(q − 1), whereasTheorem 2.1 and Remark 1.1 imply that σ̃q′,p′(α) ∼ σq′,p′(α) = σp,q(α).Proof of Lemma 2.2. By Remark 1.1, we an assume 1 < q < p ≤ 2.Theorem 2.1 implies that it su�es to prove σ̃p,q(α1) . σ̃p,q(α2), and Lem-ma 4.2 shows that it su�es to do it only for α1, α2 ∈ Ij , j = 1, . . . , 4.Case α1, α2 ∈ I1. The funtion α 7→ α1/q−1/p is inreasing, sine 1/q −

1/p > 0.Case α1, α2 ∈ I2. We hek that the funtion h(α) = (ln(1/α))1/pα1−1/pis inreasing for α ≤ e−1/(p−1), so in partiular for α ∈ I2. Indeed,
h′(α) = −

1

p
(α ln(1/α))−1h(α) +

(
1 −

1

p

)
α−1h(α)

= α−1h(α)

(
1 −

1

p
(1 + (ln(1/α))−1)

)
,whih is non-negative, sine 1 + (ln(1/α))−1 ≤ p.
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h(α) =

h1(α)

1 + lnh2(α)
=

ln(1/α)

1 + ln
( q−1

p−1
1
α ln 1

α

)is inreasing if ln(1/α) ≤ (p− 1)/(q − 1) and dereasing otherwise. Indeed,the sign of its �rst derivative is the same as the sign of
h′1(α)(1 + lnh2(α)) − h1(α)

h′2(α)

h2(α)

= −α−1(1 + lnh2(α)) + h1(α)
1 + ln(1/α)

α ln(1/α)

= −α−1(lnh2(α) − ln(1/α)) = −α−1 ln

(
q − 1

p− 1
ln

1

α

)
.Thus if {α : ln(1/α) > (p− 1)/(q − 1)} ∩ I3 = ∅, then this ase is done.Assume the opposite. Then we have the non-empty interval (α, α] (where

α = inf I3 and ln(1/α) = (p− 1)/(q − 1)) on whih h(α) is dereasing. So
α < α, whih implies that

p− 1

q − 1
e(p−1)/(q−1) <

1

q − 1
e1/(p−1),so

1

q − 1
<

1

(p− 1)2
+

1

p− 1
ln

1

p− 1
<

2

(p− 1)2
,hene

ln
1

q − 1
< ln 2 + 2 ln

1

p− 1
<

3

p− 1
.It su�es to show that for some universal onstant C ≥ 1 we have

limα→α+ σ̃p,q(α) ≤ Cσ̃p,q(α). Clearly,
σ̃p,q(α) =

1

1 + p−1
q−1

∼
q − 1

p− 1and from (4.3) we have
lim

α→α+
σ̃p,q(α) ∼ (q − 1) ln

1

α
∼ (q − 1)

(
1

p− 1
+ ln

1

q − 1

)
,sine

ln
1

α
∼ ln

e1/(p−1)

q − 1
.Hene

lim
α→α+

σ̃p,q(α) ∼
q − 1

p− 1
, since ln

1

q − 1
.

1

p− 1
.Case α1, α2 ∈ I4. We hek that the funtion α 7→ α ln(1/α) is inreas-ing for α ≤ e−1. Indeed, its �rst derivative is ln(1/α)− 1. By Lemma 4.2 wehave σ̃p,q(α) ∼ σ̃p,q(e

−1) for α ∈ (e−1, 1/2], so this ase is done.



234 P. Wol�Proof of Theorem 2.3. Let (X ′
k)

∞
k=1 be an independent opy of the se-quene (Xk)

∞
k=1. We set Yk = Xk − X ′

k, S′ =
∑n(α,p)

k=1 X ′
k and S′′ = S − S′and X = X1, Y = Y1. Eah random variable Yk is symmetri and its dis-tribution is equal to αβδ−1 + (1 − 2αβ)δ0 + αβδ1. Moreover, for any r ≥ 1we have ‖X‖r ≤ ‖Y ‖r ≤ 2‖X‖r (the �rst inequality omes from the Jenseninequality and the fat that EX = 0, whereas the seond is just the triangleinequality for the Lr-norm). Clearly, the same applies to S and S′′. Thereforewe proeed to show that ‖S′′‖q/‖S

′′‖p ∼ σ̃p,q(α).First, note that if p ≤ ln(1/α) (equivalently n(α, p) = 1), then α ∈ I ′1and we have ‖S′′‖q = ‖Y ‖q = (2αβ)1/q ∼ α1/q and ‖S′′‖p ∼ α1/p.Further we assume that p > ln(1/α) (equivalently, n := n(α, p) ≥ 2). Itis a simple matter to approximate ‖S′′‖p. Indeed, we have n/2 < p/ln(1/α),thus e−4p < α2n < (αβ)n, so P (S′′ = n) > e−4p. Hene
n = ‖S′′‖∞ ≥ ‖S′′‖p ≥ nP (S′′ = n)1/p > ne−4,so ‖S′′‖p ∼ n ∼ p/ln(1/α). We now want to approximate ‖S′′‖q. Originallythe author just used an expliit approximate formula due to Rafaª Lataªa[unpublished℄. We may also apply [8, Corollary 2℄ whih states that for q ≥ 2and i.i.d. symmetri random variables Z,Z1, . . . , Zn,

‖Z1 + · · · + Zn‖q ∼ sup

{
q

s

(
n

q

)1/s

‖Z‖s : 2 ∨
q

n
≤ s ≤ q

}
.In our situation, we have

‖S′′‖q

‖S′′‖p
∼ f̄ := sup

{
f(s) =

1

s

(
q

p
ln

1

α

)1−1/s

α1/s : 2 ∨
q

⌈ p
ln(1/α)⌉

≤ s ≤ q

}
,sine n1/s ∼ (p/ln(1/α))1/s. Note that f is di�erentiable for s ∈ (0,∞) and

f ′(s) =

(
q

p
ln

1

α

)(
1

s

(
q

p

1

α
ln

1

α

)−1/s)′

=
1

s2
f(s)

(
ln

(
q

p

1

α
ln

1

α

)
− s

)
,hene f(s) is inreasing for 0 < s < s0 and dereasing for s0 < s <∞, where

s0 = ln
( q

p
1
α ln 1

α

). Let us onsider three ases:Case (p/q)eq ≤ (1/α) ln(1/α) < pep. Clearly, s0 ≥ q, hene
f̄ = f(q) = q−1/q

(
ln(1/α)

p

)1−1/q

α1/q ∼

(
ln(1/α)

p

)1−1/q

α1/q.If peq ≤ (1/α) ln(1/α) < pep (i.e. α ∈ I ′2), then we have f̄ ∼ σ̃p,q(α). If
(p/q)eq ≤ (1/α) ln(1/α) < peq (hene α ∈ I ′3), then we see that

σ̃p,q(α)
( ln(1/α)

p

)1−1/q
α1/q

=
q

1 + ln
( q

p
1
α ln 1

α

)
(

1

p

1

α
ln

1

α

)1/q

∼ 1,
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( q

p
1
α ln 1

α

)
< q + ln q, as also is theseond, beause q−1eq ≤ 1

p
1
α ln 1

α < eq, so this ase is done.Case (p/q)e2 ≤ (1/α) ln(1/α) < (p/q)eq. First, we show that
2 ∨

q

⌈p/ln(1/α)⌉
≤ s0 < q.It is lear that 2 ≤ s0 < q. If s0 < q/⌈p/ln(1/α)⌉, we would have s0 <

(q/p) ln(1/α), hene by monotoniity of ln we would obtain
ln

1

α
< ln

2

α
< ln

(
q

p

1

α
ln

1

α

)
= s0 <

q

p
ln

1

α
,whih is a ontradition, sine q < p. Therefore f̄ = f(s0). We now showthat f(s0) ∼ σ̃p,q(α). Sine s0 ≥ 2, we have s0 ∼ 1 + s0, so

f(s0) ∼
q

p

ln(1/α)

1 + s0

(
q

p

1

α
ln

1

α

)−1/s0

= σ̃p,q(α)(es0)−1/s0 ∼ σ̃p,q(α).Case (1/α) ln(1/α) < (p/q)e2. In this ase s0 < 2 and
q

⌈p/ln(1/α)⌉
≤
q

p
ln

1

α
< αe2.If αe2 ≤ 2, then q/⌈p/ln(1/α)⌉ < 2. Hene in the ase α ≤ 2e−2 or α ∈

(2e−2, 1/2] and q/⌈p/ln(1/α)⌉ ≤ 2 we have f̄ = f(2) = 1
2

√
(q/p)α ln(1/α),whih is ∼ σ̃p,q(α) if α ∈ I ′4. If α ∈ I ′3, i.e. p/q ≤ (1/α) ln(1/α) < (p/q)e2,then by Lemma 4.2 (more preisely: by an analogous fat whih deals withthe dual ase 2 ≤ q < p < ∞) we get f̄ ∼ α ∼ σ̃p,q(α). There remains thease when α ∈ (2e−2, 1/2] and s1 := q/⌈p/ln(1/α)⌉ > 2. Then f̄ = f(s1)and 2 < s1 ≤ (q/p) ln(1/α) < αe2 ≤ 1

2e
2. Thus f̄ ∼ 1 and q/p ∼ 1, sine

ln(1/α) ∼ 1. The latter implies that σ̃p,q(1/2) ∼ 1 and from Lemma 4.2 weknow that σ̃p,q(α) ∼ σ̃p,q(1/2).Aknowledgments. The author wishes to express his thanks to Prof.Krzysztof Oleszkiewiz for suggesting the problem and for many stimulatingonversations. The author is also indebted to Prof. Rafaª Lataªa for sharingvery useful unpublished results.
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