
Woei-Kae Chen

Department of Electrical and Computer Engineering

North Carolina State University

Raleigh, NC 27695-7911

Matthias F.M. Stallmann and Edward F. Gehringer

Department of Computer Science
North Carolina State University

Raleigh, NC 27695-8206

May, 1990
(to appeal in International Journal of Parallel Programming)

V~l^-^-e. ^"S nuw^Qf 'G OW)

()oiffG 50s-St^
' ;. -1'
, 2 , ;. ,,
v . ,

L . , .. , . . ,.. . . .,:

- . .
. This research is partially supported by the Office of Naval Research under contract . . ,.: , .

+ . Â¥f,: :t<00014-88-K-0555, which is gratefully acknowledged

HYPERCUBE EMBEDDING HEURISTICS: AN EVALUATION

WOEI-KAE CHEN , MATTHIAS F.M. STALLMANN AND EDWARD F. GEHRINGER

Abstract. The hypercube embedding problem, a restricted version of the general mapping prob-
lem, is the problem of mapping a set of communicating processes to a hypercube multiprocessor. The
goal is to find a mapping that minimizes the length of the paths between communicating processes.
Unfortunately the hypercube embedding problem bas been shown to be NP-hard. Thus many heuris-
tics have been proposed for hypercube embedding. This paper evaluates several hypercube embedding
heuristics, including simulated annealing, local search, greedy, and recursive mincut bipartitioning. In
addition to known heuristics, we propose a new greedy heuristic, a new Kernighan-Lin style heuristic,
and some new features to enhance local search. We then assess variations of these strategies (e.g.,
different neighborhood structures) and combinations of them (e.g., greedy as a front end of iterative
improvement heuristics). The asymptotic running times of the heuristics are given, based on efficient
implementations using a priority-queue data structure.

Key Words. mapping problem, hypercube embedding, greedy heuristics, local search, simulated
annealing, priority queues

1. Introduct ion and Problem Description. The communication pattern of a

parallel algorithm can be represented by a communication graph. To execute the algo-

rithm efficiently on a multiprocessor, one attempts to allocate communicating processes

to adjacent processors insofar as possible, so that the communication overhead is min-

imized. This problem is known as the mapping problem [4]. More formally, a set of

communicating processes defines a communication graph (or task graph) in which ver-

tices represent processes, and an edge between process v and process w means that

communication between v and w occurs during execution. An interconnection graph

(or target graph) defines interconnections among the processors on which processes will

execute. Each vertex represents a processor and an edge represents a physical link

between processors.

In recent years, hypercube multiprocessors [8, 24, 371 have become popular, due

to their high regularity, low average distance, and comparatively low construction cost.

This motivates the study of the hypercube embedding (mapping) problem, which is the

special case of the mapping problem where the interconnection graph is a hypercube.

Of course, it may not be possible to allocate all adjacent processes to adjacent

processors. For example, a triangle can never be embedded in a hypercubeexactly. Even

where an exact embedding is possible in a hypercube of unlimited size (as is the case for

tree-structured communication graphs [41]), the number of available processors may not

be large enough to allow it. Thus, a performance metric (the objective function) has to

be defined. We will now formally define the hypercube embedding problem, beginning

with a definition of a hypercube.

A k-cube is an undirected graph H = (VIA, Eh) consisting of n = 2* vertices labeled

from 0 to n - 1, such that there is an edge between any two vertices if and only if the

binary representation of their labels differs by exactly one bit.

According to the above definition, each vertex in a k-cube has exactly k neighbors

(degree k); there are a total of nk/2 edges; and the average distance between pairs of

nodes is kn/2(n - 1) w k/2. We shall use H to denote an arbitrary hypercube and Hi,

for a k-cube. Also, a graph G is said to be k-cubical if G is isomorphic to a subgraph

of H k .

An embedding f of a graph G = (V, E) to a k-cube Hi, = (Vh, E;>) is a one-to-one

function f : V IÃ‘ Vh. For a mapping function f , the dilation cost of an edge {v, w} G E
is d(f (v), f (w)), i.e., the Hamming distance between f (v) and f (w). The expansion

cost of the embedding f is n/lVl, i.e., reciprocal of the processor utilization. Clearly,

a graph G is k-cubical if and only if every edge of G can be embedded in a fe-cube in

dilation 1.

Our graph-theoretic notation is standard. When describing the communication

graph we use n to denote the number of vertices, m to denote the number of edges,

deg(v) for the degree of vertex v, and A(v} for the set of neighbors of vertex v, i.e.

{w I {v, w} ? E l . In reference to a specific mapping f , cn(v, d) denotes D'S neighbor

along cube dimension d, the vertex w for which f(v) and f(w) agree at all but the dth

bit (f is understood from the context). The notation f @ (v, w) means a mapping that

is the same as f , but with the mappings of two vertices f (v) and f (w) interchanged.

1.1. Impor tance of Problem. When commercial hypercubemultiprocessors were

first introduced in 1985, the mapping problem was a major concern. The store-and-

forward message-passing strategy was used, meaning that messages between non-adjacent

processors were stored in memory at intermediate processors until such time as they

could be forwarded toward their destination. Message-transmission time was essentially

proportional to ~ a t h length, so it was important to obtain a low-cost mapping.

Beginning in 1987, the second generation of commercial hypercubes broke the linear

relationship between path length and transmission time by using more sophisticated

"virtual cut-through" routing networks, such as the Intel iPSC/2's Direct-ConnectTM

routing [26]. The iPSC/2 is able to route a message to the most distant processor in a

128-node network in only 10% more time than it takes to reach an adjacent node. With

the new generation of machines, the mapping problem temporarily lost its importance.

We should not expect this situation to persist. Interconnection networks in second-

generation hypercubes tend to have more capacity than their processors are capable

of utilizing. Routing times will be comparatively uniform only as long as networks re-

main uncongested; when a network becomes congested, delays will grow with increasing

path length. Since the interconnection structure is an underutilized resource, and one

whose cost grows as N log N, designers can be expected to modify their architectures

to make more effective use of it. For example, multiple processors can be placed at

each hypercube vertex. The DASH multiprocessor project [32] has placed 4 processors

at each vertex. This follows the lead of the Connection Machine 2 [40], which has 16 . ~

processors per vertex (although the hypercube embedding problem is not relevant to

its unusual architecture). In these systems, we can presume that link utilization will

be driven high enough for the mapping problem to matter again, despite the fact that

store-and-forward overhead has been removed.

For synchronous algorithms, the quality of a mapping f is usually evaluated by its

expansion cost and maximum dilation, r n a ~ ~ , , , ~ ~ ~ d (f (v), f (w)) [25]. If the maximum

2

dilation is a constant (independent of the problem size), the maximum communication

delay can be treated as a constant. Thus the complexity of the algorithm does not

increase as a result of the mapping. On the other hand, if the maximum dilation is not

constant, the overall complexity can be k times greater on a fc-cube, or even worse due

to congestion in network links.

For asynchronous algorithms, communication overhead is usually formulated as a

quadratic assignment problem. That is, given a communication graph G = (V, E) and

a mapping function f the total communication cost is

If all the edges in the communication graph have the same weight, the average dilation,

i.e. (l/lEl) . ~ { c , , , } 6 E d(f(v), f (w)), is used as the performance metric.

The hypercube embedding problem can thus be defined as follows: Given a com-

munication graph G = (V, E) and a k-cube, find a mapping function f such that the

objective function (e.g., maximum dilation, total communication cost, or average dila-

tion) is minimized.

Unfortunately, the problem of identifying whether a given graph is k-cubical has

been shown to be NP-complete [16, 421. In fact, even when the graph is a tree, the
problem is still NP-complete. Since an optimal hypercube embedding algorithm should

be able to obtain the exact embedding if the given graph is a subgraph of a k-cube (i.e.,

be able to answer whether a given graph is a subgraph of a k-cube), the hypercube

embedding problem is NP-hard, no matter which objective function is used.

Many heuristics have been proposed for the general mapping problem 13, 9, 20, 21,

34,36,38,39] and the hypercube embedding problem [14,17,18,30,31,41]. This paper

focuses on the performance of different heuristics for the hypercube embedding prob-

lem. Most previous experimental work has used a version of the quadratic assignment

problem, either simplified (e.g., [9, 141) or complicated (e.g., [17, 31]), as an objective

function. We have chosen to adopt average dilation as our standard performance met-

ric. We wanted to avoid having our results depend on the mechanism for assigning

weights to edges, another source of variability. Average dilation offers good insight into

the communication delay induced by various mappings. Mappings with lower average

dilations will also encounter less queuing delay due to link congestion. It is likely that

other objective functions would produce similar results, insofar as the relative perfor-

mance of the various strategies is concerned. In our experimental data we often report

the total cost of an embedding, x b , w } e E d(f (v), f (w)), in place of or in addition to the

average dilation (large whole numbers are easier to compare than fractions).

1.2. Previous Theoretical Work. Garey and Graham [22] analyzed critical sub-

graphs and characterizations of hypercubes. They posed a number of open questions,

including, "Does there exist a characterization of cubical graphs leading to an effective

procedure for recognizing these graphs?" Wagner and Corneil [42] showed that the em-

bedding of general graphs to hypercubes is NP-complete, and even embedding general

trees in fixed-size hypercubes is NP-complete. It should be noted that the problem of

3

whether an n-vertex graph G is k-cubical, where k = flog nl, has been shown to be

NP-complete only in cases where G consists of many disjoint connected components

[16]. It appears that the complexity of the special case addressed by the experiments

reported here (embedding a connected graph with exactly 2* vertices onto His) is still

open.

A number of researchers have studied the hypercube embedding for regular struc-

tures, such as hypercubes themselves [6], grids [5, 11, 121, trees [41, 431, and binary

trees [7, 33, 41, 431. In particular, Bhat showed that testing whether a given graph is

exactly a hypercube can be done in O(n1ogn) time and Chan [12] showed that all 2D

grids can be embedded in their optimal cubes (the smallest cube that has at least as

many nodes as the grid) in dilation 2.

It is known that some binary trees cannot be embedded into their optimal cubes

with dilation 1 (e.g., complete binary trees; see [43]). Afrati, Papadimitriou, and Papa-

georgiou [I] described a divide-and-conquer algorithm that gives dilation-l embeddings

of a k-cubical tree (k is the smallest k possible) in a hypercube of dimension at most P.
In the case of binary trees, this algorithm embeds an n-node binary tree in a hypercube

of at most O(n1.71) nodes (based on the fact that binary trees can always be divided

into two subtrees each with 113 and 213 of the nodes). Wagner [41] improved this result

by showing that any binary tree can be embedded in an O(n1ogn)-node hypercube in

dilation 1.

Bhatt, Chung, Leighton, and Rosenberg first showed that an arbitrary binary tree

can be embedded in a hypercube with O(1) dilation, O(1) expansion, and also O(1)

congestion [7]. The constant factor of this embedding is too large to make it of practical

interest. Monien and Sudbrough [33] improved the result by giving an embedding of

dilation 3 and expansion O(1) and an embedding of dilation 5 and expansion 1. Finally,

the embedding of a k-ary tree of height d was shown by Wu [43] to have a dilation 2log k

on a ((d - 1) log k + 1) cube.

1.3. Previous Experimental Work. A well-known early result due to Bokhari

[9] proposed a local-search algorithm with pairwise exchange for mapping communica-

tion graphs to a Finite Element Machine (FEM, "eight-nearest neighbor" interconnec-

tion). Bokhari adopted the cardinality model (i.e., maximizing the number of edges of

the communication graph that are mapped with dilation 1) as the performance metric

and tested about 20 structural problems of 9 to 49 nodes for FEM's of size 4 x 4 to

7 x 7. To avoid local-optima traps, probabilistic jumps were used in the local search to

improve the performance.

Lee and Aggarwal [31] formulated a set of new objective functions which accu-

rately quantify communication overhead for different applications (e.g., asynchronous

communication, synchronous communication, and parallel image-processing model). A
greedy heuristic in combination with a local search (pairwise exchange) was also pro-

posed to solve the mapping problem. The algorithm was tested for 9 problem graphs

on hypercubes of 8 and 16 nodes respectively.

A simulated annealing algorithm was studied and reported by Ramanujam, Ercal,

and Sadayappan [36]. To formulate the communication overhead, a load-imbalance fac-

tor was taken into account as part of the objective function. Two strategies, namely

simulated annealing with scaling and simulated annealing with exchange, were investi-

gated to prevent the load-imbalance factor from trapping the process at local optima.

Simulations were done for 5 structured and 3 random graphs with 144 to 602 vertices.

Ercal, Ramanujam, and Sadayappan further proposed an efficient recursive map-

ping strategy for hypercubes [17] based on repeated application of the Kernighan-Lin

graph partitioning heuristic [28]. This algorithm was compared with simulated an-

nealing under the same set of test graphs in [36]. Results showed that this algorithm

obtained costs slightly worse than simulated annealing, but the cost difference was al-

ways less than 10% and the computation time of their recursive strategy was several

orders of magnitude less.

A processor-and-link assignment algorithm using simulated annealing was devel-

oped by Bollinger and Midkiff [lo]. Since each link in the multiprocessor may be used

by several processes (causing traffic congestion on the link), the objective function con-

siders communication costs and the load on each link. The algorithm employs two

optimization phases. Process annealing assigns processes to processors (processor as-

signment) and then connection annealing further reduces the communication cost by

routing traffic over data paths (link assignment). The performance of the algorithm was

evaluated by mapping hypercubes with 8 to 512 nodes onto themselves and mapping

binary trees to hypercubes. Simulation showed that this simulated annealing algorithm

was able to consistently map hypercubes of size < 128 perfectly.

Recently Andre, Pazat, and Priol compared the performance of several different

mapping algorithms for the hypercube embedding problem [2]. They adopted the

quadratic assignment problem as the objective function and compared four different

heuristics including Bokhari's algorithm [9], Chen's algorithm [14], a simulated anneal-

ing algorithm, and what they call the "friendly greedy" algorithm [35]. The comparison

was based on mapping 4 x 4 grids to 16-node hypercubes and mapping a parallel ray-

tracing algorithm to 16- and 32-node hypercubes. For each graph and each algorithm,

100 experiments were performed and algorithms were compared by their average cost.

1.4. Summary of Contributions. The purpose of our study is to evaluate the

performance of a variety of different heuristics for hypercube embedding on a variety of

different communication graphs. We chose the 7-cube as our primary target graph and

all of our communication graphs had exactly 128 vertices. Differences among heuristics

with smaller cubes as targets were not as striking (e.g., the 7-cube was the smallest

target on which the superiority of simulated annealing for random graphs became clear).

Choosing a larger cube would have severely limited the number of tests we were able to

do. We did follow up our more interesting findings on larger cubes. Many interesting

observations emerged; some of these need to be pursued with more extensive testing,

and, where possible, confidence intervals can be determined for parameters of interest.

The main contributions of our study are the following.

Comparisons of 12 heuristics or combinations of heuristics on 7 different types

of communication graphs (a total of 61 different graphs were used).

Extensive testing and evaluation of each individual heuristic to obtain a com-

5

petitive implementation.

Significant improvements in runtime and/or solution quality for several heuris-

tics.

A new fast (linear-time) greedy heuristic that obtains significantly better than

random solutions.

An adaptation of the Kernighan-Jin graph partitioning heuristic with results

that are competitive with simulated annealing.

The use of flat moves, transformations that neither increase nor decrease cost,

to significantly improve the solution quality of local-search heuristics.

Tests on random geometric graphs, a class of graphs that exhibits more struc-

ture than random graphs, but less than other classes, to observe the effect of

limited structure on the efficacy of the heuristics (random geometric graphs

were used to test graph partitioning heuristics by Johnson et al. [27]).

The rest of our paper is organized as follows. Section 2 gives a description of each of

the heuristics we tested, and our implementations. Section 3 describes our experimental

methodology. Section 4 gives a detailed account of our results. Section 5 gives some

conclusions and Section 6 gives suggestions for future work.

2. The Heuristics. The following is a description of each of the heuristics we

implemented, with some indication of asymptotic running time and overall performance

characteristics. The running time of most heuristics on sparse graphs is improved

significantly by the use of an efficient priority-queue implementation discussed in the

first subsection. Since most communication graphs are likely to be sparse and since

the effort to improve mappings of dense graphs may not pay off anyway (for sufficiently

dense graphs, even random solutions are likely to be close to optimal), the priority-queue

implementation may well be worth the effort.

Table 1 gives a summary of all the heuristics we tested, showing their asymptotic

running times for graphs of arbitrary density (m = number of edges, n = number of

vertices) and the expected running time for graphs having average degree logn, the

same as the hypercube. Local search, Kernighan-Lin, and simulated annealing are also

referred to as iterative improvement heuristics, because existing solutions are repeatedly -
improved by applying transformations. For these iterative improvement heuristics 1 is

the expected number of iterations of the outer loon. whose value can onlv be determined
A ,

experimentally, since it depends on the rate at which the heuristic converges to a local

optimum.

For local-search heuristics, 1 appeared to grow roughly as O(n log n), which is

the order of the expected difference in cost between a random starting solution

and the final local optimum (the average amount of improvement per iteration

was a small constant).

For Kernighan-Lin 1 appeared to grow as O(1og n).

For simulated annealing 1 was dependent on the settings of various parameters.

Also shown are actual average runtimes on a Sun 31260, the machine used to obtain

our experimental results. The runtimes shown are for hypercubes of dimension 7; we

checked the asymptotic runtimes with similar experiments on cubes of dimensions 6,

6

8, and 9. These runtimes are, in the case of local search and Kernighan-Lin, for the

unenhanced versions of these heuristics. Runtimes reported later are larger due to the -
addition of flat moves or random uphill moves.

TABLE 1

Asymptotic running times of various heuristics

Heuristic 1 Type Time (general)

SG
LS

LSC
KL

(m = number of edges, n = number of vertices, and 1 = number of iterations in outer loop)

RMB

SAC

Based on 5 runs on each of 10 random graphs (128 vertices, an average of 448 edges), mapped

onto cubes of dimension 7 - each heuristic was tested on the same set of graphs and all

iterative improvement heuristics, i.e. local seaich, Kernighan-Kin, and simulated annealing

used the same 50 random initial solutions.

G 1 greedy
greedy
local search
local search
Ker~chan-Lin

2.1. Efficient Data Structures. Many of the heuristics described below make

use of an efficient priority-queue implementation called a bucket list (used by Fiduccia

and Mattheyses [I91 in their implementation of the Kernighan-Lin heuristic for graph

partitioning). The general setting is one in which there is a finite set of items X and an

integer value gain(x) in some limited range for each x Â X. Figure 1 shows the bucket

list as used in our implementation of Chen's greedy heuristic (G); each item is a pair

(v, h), where v is a communication graph vertex and h is a hypercube vertex. An item

can also be a single communication graph vertex (in the simple greedy heuristic SG), a

pair of vertices to be swapped (in LS and KL), or a pair (v, d), where v is a vertex and

d is a dimension along which v is to be swapped (in LSC). The priority queue supports

the operations

a Insert(x) (put x on the queue),

Deletetx) (remove x from the queue),

Max() (return the item with largest gain), and

a Changetx) (revise x's position in the queue in accordance with the current

value of gaintx)).

The following lemma is a restatement of the time bound found in [19], presented in

more general terms.

LEMMA 2.1. Let QJ be the number of times the priority-queue operations Insert,

Delete, and Change are called, let QM be the number of calls to Max, let M be the

maximum gain of any item, and let Â be the maximum amount by which the gain of

7

0(mn) . .

O(m + n)
O(mn + l[m + nlog n))

O(m1ogn t l(m/n + log n))
O(lmn) -

graph partition
simulated annealing

o(l(k1og'n))
o(l(ml0gn))

possible * Â gain I4

p, 0

Vertices of
hypercube

Lowest
possible gain 1

Vertices of
commun. graph it

F I G . i. d u c k e t list" priori ty queue

any item may increase between two successive Delete operations. Then, assuming all

insertions occur at the beginning, the priority queue can be implemented so that the total

time for all operations is ~ (Q I + Q M ~ + M).

Proof. The priority queue is stored as an array of M distinct buckets, where bucket[i]

is a linked list of all items whose current gain is i. If every item has a pointer to its

position in the appropriate list, the operation Change is simply a matter of moving

an item from one bucket to another and can be done in constant time. Insert and

Delete can also be done in constant time. To facilitate Max we maintain an auxiliary

variable best-gain, the value of the largest i for which bucket[i] is non-empty; best-gain

is updated whenever the gain of an item becomes larger than the current value of

best-gain as the result of Insert or Change. After a Delete, best-gain may have to be

decreased (if the bucket containing the item of highest gain was emptied) by scanning

for the next non-empty bucket. However, the scan for the next non-empty bucket may

be deferred until the next Max operation. If the time spent scanning is ignored, Max

can be done in constant time.

It is easy to see that the total time spent scanning for the next non-empty bucket

during Max is proportional to the number of buckets, plus the sum over all Max op-

erations of the increase in best-gain since the previous Max. Except for the increases

due to the initial insertions, which account for a total of at most M , best-gain cannot

increase in value unless the gain of an individual item increases by at least the same

amount. Thus the time spent scanning is O(QM6 + M) . D

Some comments are in order. First, the restriction that all insertions take place at

the beginning is really not a restriction. We can always choose a sufficiently small gain

to represent the fact that an item is not in the queue, insert all items initially with that

value, and use Change to simulate all subsequent insertions and deletions. Second, the

bound given by the lemma is overly pessimistic if the number of Max operations exceeds

the number of deletions. This is not an issue in our applications of the lemma. Finally,

if 6 is large, as may be the case when these heuristics are adapted to the quadratic

assignment model, an ordinary priority queue (heap) can be used to achieve a time

bound of O((Qi+ QM + M) log s), where s is the maximum number of items in the

queue. The effect on our reported time bounds is at most an additional logn factor.

2.2. Greedy Heuristics. Greedy heuristics for hypercube embedding are known

to be efficient, easy to implement, stable (predictable), and capable of mapping regular

structures well (e.g., many greedy heuristics generate the optimal solution when the

communication graph is a cube). In applications where a solution needs to be generated

quickly and coding effort is at a premium, a greedy heuristic may be the best choice.

In our experimental evaluation, greedy heuristics are also used as a front end to iter-

ative improvement algorithms to generate better initial solutions. Aside from simulated

annealing, this appeals to be the combination that gives lowest-cost solutions.

The generic form of a greedy heuristic for hypercube embedding is given in Figure 2.

Running time and solution quality vary with the sophistication of the gain function.

We implemented one greedy heuristic of moderate sophistication, namely that of Chen

[13, 141, referred to as G, and one very simple one, referred to as SG. Chen's heuristic

appears to be typical in both runtime and solution quality of the other greedy heuristics

found in the literature. We did some experiments with the heuristic of Lee and Aggarwal

[31] to verify this claim. Both heuristics as implemented have an asymptotic running

time of O(mn), although our implementation of Lee and Aggarwal's appears to be

slightly faster. Solution quality for Chen's heuristic is uniformly better, except on

perfect cubes, where both obtain optimal solutions. The gap between the two (both

runtime and solution quality) increases with increasing dimension. Experiments done by

Andre et al. on smaller graphs had a similar outcome [2]. Note that our implementation

of Chen's heuristic, due to the use of Lemma 2.1 is more efficient than reported in [13].

The same tricks can easily be applied to the other greedy heuristics, and we diduse

them in our implementation of Lee and Aggarwal's.

In Chen's heuristic

gain(v, h) = (logn - d(h, f (w))).
wâ‚¬A(v),w

In other words, gain is a measure of how much better position h is than the worst

conceivable mapping for v. If a bucket list is used to keep track of gain, the first

statement in the loop of Figure 2 is implemented by the operation Max(). Updates to

gain are accomplished by the procedure in Figure 3.

There are n Max operations, n2 Deletes, and O(mn) Changes. The gain of any

item increases by at most logn - 1 during any iteration. Note also that the maximum

9

V := communication graph vertices

H := hypercube nodes

initialize gain : V x H i-i- 10.. . C\
repeat

choose a pair (v*, h*) with v* 6 V, h* ? H , such that

gain(v*, h*) = ma3~vav,hii~{gain(v, h) }
map v* to h*

V := V - {v'}; H := H - {h*}

update values of gain

until V = 0

FIG. 2. Generic greedy heuristic for hypercube embedding

Deletetv*, h*)

for ? V do Delete(v, h') end do

for ? H do Delete(ve, h) end do

for ? A(v*) n V do

o r h ? H do I gain(v, h) := gain(v, h) + log n - d(h, f (v))

Change(v, h)

L d do

end do

FIG. 3. Updating gain in Chen's heuristic

possible gain of an item is (n - l)(logn - 1). We can therefore apply Lemma 2.1 with

Q j in O(mn), QM = n, M in O(nlogn), and 15 in O(1ogn) to obtain a time bound of

O(mn).

Since the level of sophistication attained by most of the greedy heuristics reported

in the literature is at the cost of a time bound that is worse than quadratic in the input

size, we decided to see whether similar solution quality could be achieved by a linear-

time greedy heuristic. One way to achieve linear time is to make the gain independent

of h and to use a predetermined sequence of hypercube nodes to guide the mapping.

The Gray code sequence (see [23] for details) is a natural candidate for an ordering

of hypercube vertices. It has the property that each vertex in the sequence is adjacent

to both its immediate predecessor and its immediate successor. Also, vertices that are

close to each other in Gray code order are likely to be close in Hamming distance.

In every iteration the simple greedy heuristic chooses a vertex that has a maximum

number of neighbors already mapped. Figure 4 gives an overview. If a bucket list is

used to maintain lA(v)nVt1 for each v and the communication graph is in adjacency-list

format, the overall time is O(m + n) (dominated by 0 (m) Change operations; 5 = 1

in this case - see Lemma 2.1). For best results the buckets should be implemented as

last-in first-out lists. This favors vertices whose neighbors were mapped to more recent

nodes in the Gray code sequence and are thus more likely to be close to the current

node.

V' := 0 /* vertices already mapped */
for h 6 H (in Gray code order) do

choose v* Â V - V so that [A(v*) 0 V'\ is maximized

map v* to h

V' := V'U {v*}

for v e A(v*) do

increment \A(v) n V'\ (update data structure)

end do

end do

FIG. 4. Simple greedy heuristic

While SG, the simple greedy heuristic, is by far the fastest heuristic we tested, its

solution quality is also the worst. The solutions obtained by SG on random graphs had

costs that were roughly halfway between random solutions and the best solutions ob-

tained by simulated annealing. In combination with LSC, the fast local search described

in the next section, SG is still faster than any other heuristic (including LSC by itself)

and solution costs are competitive with other heuristics. We suspect that with some

additional sophistication obtainable at the cost of only an additional O(1og n) factor in

the runtime, the simple greedy heuristic can be made competitive with other greedy

heuristics.

11

2.3. Local Search. Local search is a general term for heuristics that repeatedly

improve the quality of a solution by applying local transformations. Two choices must

be made in implementing a local-search heuristic. The first of these is the choice of

neighborhood, the set of transformations that may be applied to the current solution in

order to obtain a new one. The simplest approach is to transform a solution by exchang-

ing, or swapping, the hypercube nodes to which two vertices are mapped. We consider

two possibilities. In the all-swaps neighborhood, all n(n - 1)/2 possible exchanges are

considered. The cube-neighbors neighborhood reduces the neighborhood size, the num-

ber of ~ossible transformations, to (nlog n) / by allowing swaps only between vertices

that are mapped to adjacent hypercube no es. Not surprisingly, the cube-neighbors

those of the all-swaps approach.

I
approach, while significantly quicker, also gides solutions that are not quite as good as

The second choice is the discipline by $hich a transformation is chosen. Three

possibilities are first descent - consider the, the swaps in arbitrary order and choose

the first one that improves the current solutio& steepest descent - choose the swap that

gives the greatest possible improvement overdue current solution, and random descent

- choose at random among swaps that impr ve the current solution. Random descent

is actually a special case of simulated anneal' k g, described later.

We initially implemented a simple all-styaps, first-descent local-search heuristic.

This implementation, while significantly slower than the ones reported in our results

(its worst-case running time was O(lmn)), vises no non-trivial data structures and is

therefore easy to implement. It also uses les additional space than LS, 0(m) versus

0(n2), a significant consideration when mapp ng sparse graphs onto cubes of dimension

solutions than those reported for LS.

^
9 or higher. In our experiments, the simple1 implementation obtained slightly better

The two implementations of local search1 in our experiments are LS, an all-swaps

steepest-descent implementation, and LSC, & cube-neighbors steepest-descent imple-

mentation.

LS keeps the possible swaps on a bucket $st, choosing the best swap at each stage.

The gain of a swap is the cost decrease that results if the swap is performed. Before we

give details of the time bound, it should be netted that the bucket list strategy can also

be adapted to a first-descent or random-descent discipline. In this case the gain is 1 if

the swap leads to lower cost and 0 otherwise.

The gains of all the swaps can be initialized in O(mn) time: for each pair of vertices

x, y compute the gain of the swap x, y by computing distances from x and y to their

neighbors both before and after the swap. T e gain of any single swap is in the range

zk(n - l)(log n - I), so the maximum gain is O(n log n). Whenever a swap v, w is
done, it is sufficient to update the gains for t e following pairs:

v,x and w, x for all x: a recomputati i n of the gain of each of these swaps can

be done in time O(deg(v) + deg(x)) (^ad O(deg(w) + deg(x))) for a total time

of O(nd), where d is the expected de ree of a vertex (or neighbor) involved in

a swap; this step also requires 0(n) $ hange operations.

x, y for x â A(v) U A(w), all y: these 'rains need only be adjusted according to

the new distance between x and v or w; time is dominated by O((deg(v) + deg(w))n)

Change operations, assuming unit cost to compute hypercube distances.

In the formula of Lemma 2.1, QI is dominated by ~ (l n d) Change operations, QM = I,
6 = M = n log n. Our experiments confirm that the expected degree of vertices involved

in swaps is the same as for vertices in general, that is d KS m/n.

The overall running time of LS is therefore 0 (mn + l(m + n log n)). Recall that

I is the number of swaps before a local optimum is reached. From our experiments i

appears to grow as O(n1og n). Using a greedy initial solution (see Section 2.2) reduces

I significantly and also improves solution quality. The observed running time with a

random starting solution for graphs having m = nlog n, where n = 64, 128, 256, and

512, was consistent with our theoretical analysis, somewhat worse than 0(n2).

LSC runs in expected time O(l(m/n + logn)), plus O(m1ogn) for initialization,

with the growth rate of l being similar to that observed for LS. On the graphs used to test

asymptotic runtime, both time bounds simplify to O(n(1og n)2) (assuming I w n log n),

which is consistent with the observed results. Whether the speedup in runtime makes

up for the loss in solution quality is application dependent.

The time bound for LSC is obtained with a generalization of a trick used by

Kernighan and Lin [28]. Let y(v,d) be the decrease in cost that would result from

changing dimension d of the mapping of vertex v (without changing the mapping of

any other vertices); that is, 7(v, d) is the number of vertices in A(v) whose dth bit in

the mapping is different from that of v, minus the number whose dth bit is the same.

Then gain(v, d), the decrease in cost from performing a swap of v with w = cn(v, d), is

7(v, d) +7(w, d) -2 x adj(v, w), where adj(v, w) is 1 if v and w are adjacent in the com-

munication graph, 0 otherwise. Given a specific mapping, the values of y(v, d) for all v

and d can be initialized in time O(m1ogn). When v and w = cn(v,d) are swapped, the

values of 7(v, d), $10, d), and 7(x, d) for all x 6 A(v) U A(w) are changed. This changes

the value of gain for all these vertices and their hypercube neighbors along dimension d.

Since v and w each have new hypercube neighbors along all other dimensions as well,

the values gain(v,d1) and gain,(cn(v,d')dl) must change for each dimension dl. The

same goes for gain(w, d') and gain(cn(w, dl), dl).

The total number of items whose gain is changed is O(deg(v) + deg(w) + logn).

Note that the maximum amount by which gain(x, dl) for any x, d' can change during

the swap is O(deg(x)); the maximum value of gain(x, dl) is deg(x), the minimum value

is -deg(x). The running time after initialization, using Lemma 2.1 is o (I (~ + logn)),

where d is the average degree of vertices involved in swaps. As in the bound for the

all-swaps steepest-descent heuristic, we use the experimental observation that d w m/n.

The communication-graph adjacency matrix for computing gain(v, d) (which would

require 0(n2) time and space) is not necessary. We only need to know for each vertex

v and dimension d whether cn(v,d) 6 A(v). For this purpose it suffices to maintain

an O(n1ogn) size array adj, where adj[u][d] is 1 if cn(v,d) E A(v), 0 otherwise. If

we assume two cube addresses can be checked for adjacency in constant time, adj can

easily be updated as 7 is updated during a swap. Otherwise, the time bound for LSC
needs to be multiplied by a logn factor. Our experiments actually used the explicit

adjacency matrix; the extra space was not a critical factor.

We added an additional wrinkle to the traditional local-search approach. During

our early experiments we discovered that many of the availahle swaps neither increase

nor decrease solution cost. A traditional local-search heuristic will halt when no further

improvement is possible, i.e. when all availahle swaps either increase cost or keep it the

same. We allow a certain number of flat moves, moves that keep cost the same, when

the current configuration cannot be improved. The number of successive flat moves is

controlled by an input parameter maxflatmoves. Increasing this parameter increases

the running time (because more swaps are made overall), but also improves solution

quality, up to a point.

LS and LSC have the advantage that flat moves are less costly than for simple local

search. In a straightforward implementation of local search, each flat move requires a

scan of all possible swaps to make sure none of them improve cost before a flat move is

chosen. In LS and LSC, because we always choose the best possible move at each stage,

a flat moveis no more costly than any other move. Figure 5 shows the tradeoff between

runtime and solution quality when flat moves are added to LS (based on 20 runs for

one graph, either random or geometric). The pattern is similar for LSC (with lower

runtimes). In our experiments we chose 80 as the standard setting of maxflatmoves for

LS and 40 for LSC -beyond that point the improvement in solution cost (for random

and geometric graphs) was less than the standard error of the data.

The importance of flat moves is questionable, of course, when more general cost

functions, such as the quadratic assignment model, are used. However, it is still possible

to allow a limited number of moves each of which increases cost by less than some small

threshold. We suspect that the effect of such a strategy on more general cost functions

will he similar to the effect that flat moves had here on local-search heuristics.

2.4. Kernighan-Lin. The KernighamLin heuristic for graph partitioning [28] is a

variant of local search. We use the term "Kernighan-Lin" to denote any heuristic that,

during a single stage, tries out a sequence of best moves (swaps in this case) and chooses

as its initial solution for the next stage the point of lowest cost in the sequence. Our

implementation of KL, the Kernighan-Lin heuristic for hypercube embedding, is shown

in Figure 6. To allow escapes from local optima and thus offer better competition with

simulated annealing in solution quality, we allowed a certain number of randomized

uphill stages, stages during which no improvement occurs (this includes stages which

neither increase nor decrease cost). The randomization could be refined so that each

move during a stage is weighted according to how close to the initial point it is (moves

that go farther uphill would receive less weight, analogous to simulated annealing). This

refinement did not improve solution quality for random graphs; our reported results

are for the unrefined version. Completely randomized uphill moves appear to be a

more powerful mechanism for escaping local optima than flat moves, particularly when

mapping communication graphs that are almost hypercubes. Since the Kernighan-Lin

approach computes a whole sequence of moves during every stage, it is a simple matter

to choose a random position in that sequence as the destination for a "jump."

Figure 7 shows the increase in runtime and decrease in mapping cost obtained

14

- Random graphs

\Â "
Geometric graphs

Each point on the curves is \ labeled with the number of flat
moves that produced it.

Run time (sec.)

FIG. 5. Adding fiat moves io LS

f := an initial mapping (e.g. random or greedy)

best-f := f
bestxost := cost of f

not-better := 0

repeat

/* this is the beginning of a stage */
initialize a bucket list and insert items v , w into it

(one item for each possible swap;

let gain(v, w) = decrease in cost from swapping v , w)

/* "try out" a sequence of swaps, using each item once */
V := communication graph vertices

cost[O] := cost of f

for i = 1 t o n /2 do

v , w := M a x ()

swap[i\ := v , w

cost[i] := cost[i - 11 - gain(v, w)

V := V' - {v, w }

Delete(v, w)

for x E V d o Delete(v, x) ; Deletetw, x) end d o

for x E A (v) U A (w) d o

for y 6 V1, y # x d o update gain(x , Y); Change(x , y) end do

end d o

end d o

I* find best cost along the way and perform swaps on current

mapping to get there */
cost[i*\ := m i n ~ < i < ~ ~ ~ ~ ~ cost[i]

if cost[i*] < be2Tost t hen

not-better := 0

for i = 1 t o i* d o f := f @ swap[i] end do

best-f := /
bestxost := cost[i*]

else /* no improvement: try a random uphill or flat move */
not-better := not-better + 1

i* := a random number from 1 to n / 2

for i = 1 t o i* do f := f @ swap[i] end d o

endif

until not-better < rnax~uphill~m.oves

report best-cost and best-f

P I G . 6 . Kernighan-Lin heuristic for hypercube embedding

16

by increasing maxuphillmoves, the parameter that controls the number of consecutive

random jumps allowed (based on 20 runs for one graph, random or geometric). We

arbitrarily chose the value of 20 for maxuphillmoves, partly because this value gave

solutions that were competitive with simulated annealing on all classes of graphs, with

significantly better runtime. In most cases, increasing maxuphillmoves will lead to even

better solutions, but also significantly increased runtime.

- Random graphs

Geometric graphs

Each point on the curves is labeled
with the maximum number of uphill

moves that produced it.

Run time (sec.)

FIG. 7 . Effect of random jumps on the Kernighan-Lin heuristic

Using an analysis similar to that of LS, we can show that the asymptotic time

bound for KL is O(lmn), where l is the number of stages. The value of 1 is also much

smaller than that for local search (average values for I when mapping a random graph

to a cube of dimension 6, 7, 8, or 9 were 6, 11, 14, and 19, respectively - based on 20

runs; these results were obtained without uphill moves; I is, of course, influenced by the

value of maxuphillmoves), In practice, KL is slower than LS but also gives significantly

better solutions.

2.5. Recursive Mincut Bipartitioning. Proposed by Ercal et al. [17], recursive

mincut bipartitioningis an interesting blend of greedy strategies and those based on local

search. A fundamental insight, which is also the basis of much of the theoretical work

on hypercube embedding (see, e.g. [7, 33]), is that good embeddings can be obtained

by repeatedly subdividing the communication graph into pieces of roughly equal size

17

so as to minimize the number of edges between pieces. The effect is to minimize the

number of edges that might map to long paths because their endpoints axe in different

subcubes.

A detailed overview of RMB is given in Figure 8. If a graph G = (V, E) having

n = 2* vertices is to be mapped to the k-cube Hk, we split G into two subgraphs

Go = (6 Eo) and Gl = (Vl, El) so that the number of edges between Vy and V, is

minimized. Then we recursively map each of Go and Gl into disjoint Hk-l, subcubes

of Hk. A graph with one vertex is mapped trivially to a 0-cube. If the mappings of Go

and GI are completely unaware of each other, the edges between Vg and Vl may end

up being mapped in an undesirable way. One way to optimize the mapping of these

cross edges would be to try out various rotations of the subcube mappings relative to

each other. The number of possible combinations makes this approach too expensive.

Actually the RMB heuristic maps Go first and then completes the mapping of Gl using

information about the mapping of GO, i.e. the cross edges are counted when computing

the cost of a subpartition of GI. When the current subgraph is partitioned and the A h

bit o f f is chosen for its vertices, vertices in other subgraphs whose dth bit has already

been chosen are taken into account.

We used the Fiduccia and Mattheyses [19] implementation of the Kernighan-Lin

heuristic [28] to do the graph partitioning. In our setting, unlike that of Ercal et al.,

the final partition during each recursive call had to be into two exactly equal parts. We

accomplished this by tolerating a certain level of imbalance during the execution of the

Kernighan-Lin heuristic (difference between the two partitions was allowed to be 6% of
their size; this value was chosen by experimentation), and then using a greedy method

to restore balance at the end.

Asymptotic running time for RMB is O(Imlogn), where I is the average number of

stages in the Kernighan-Lin graph partitioning heuristic, which is typically very small.

In our experiments RMB gives better solutions than either greedy heuristic for random

graphs, geometric graphs, and cubes with additional edges; however, it does poorly on

trees. RMB is also faster than all heuristics but SG and LSC. RMB solutions can be

used as initial solutions for local search. Results for RMB + LS are very promising,

better and faster than G + LS on most classes of graphs.

2.6. Simulated Annealing. Simulated annealing, developed by Kirkpatrick et

al. [29], generalizes local search in several ways. The first difference is that the trans-

formation to be applied to the current solution is chosen at random. The second is that

uphill moves, transformations that increase solution cost, are allowed, the probability

of an uphill move decreasing as the increase in cost gets larger. While these first two

differences could easily be incorporated into a sophisticated local-search strategy, the

third feature, that the probability of uphill moves gradually decreases throughout a

simulated annealing run, is what distinguishes simulated annealing from most local-

search variants. An overview of simulated annealing for hypercube embedding is given

in Figure 9. Note that the variable T (for temperature), which decreases throughout

execution, governs the probability that an uphill move is chosen.

Our implementation of simulated annealing, based on that of Johnson et al. [27] for

procedure Map-Subcube(W, d) is

/* W C V , \W\ = n/2-', the dth bit of f(v)

has not been fixed for any v 6 W */

if [W [= 1 then re turn endif

let Xo = {v I dth bit of f (v) is fixed at 0 }
let XI = {v 1 dth bit of f (v) is fixed at 1 }
(Wo, Wl) := a partition of W which minimizes the number

of edges between WoUXo and Wl UXi subject
to the constraint that Po\ = \W1l

for v ? Wo d o fix dth bit of f(u) at 0 end d o

for v ? Wl d o fix dth bit of f(v) at 1 end d o

Map.Subcube(Wo, d + 1)

Map.Subcube(Wl, d + 1)

/* at this point the dth bit of f(v) is fixed for all v ? W */
and Map-Subcube

procedure RMB(G = (V, E)) is

initialize all bits of f so they're not fixed

Map.Subcube(V, 0)

end RMB

FIG. 8. Recursive mancut bipartitioning heuristic

f := an initial mapping (usually random)

T := start temperature

repeat

for some number of iterations do

choose a random swap v, w

A := cost(f @ {v,w}) -cost(f)

i f A 5 O then f : = f @ { v , w }

else f := f @ {v, w} with probability e-^IT

end d o

T := rT /* reduce temperature by temp factor r */
until "frozen"

FIG. 9. Simulated annealing for hypercube embedding

graph partitioning, requires the user to adjust several parameters that affect running

time and solution quality. Two of these, start temperature and minpercent, govern the

initial and terminating conditions of a simulated annealing run. At each temperature,

the algorithm calculates an acceptance ratio, the ratio of swaps actually performed to

those considered. The "frozen" condition occurs when no improvement in solution cost

has been observed for 5 subsequent temperatures and the acceptance ratio is below

minpercent. Start temperature is often chosen by doing a trial run to see what tem-

perature gives the desired initial acceptance ratio (usually about 40%). As shown in

Figure 10, both solution cost and acceptance ratio decrease as temperature is gradually

decreased. The points along the curve represent 20 runs for a random geometric graph

using a high start temperature and a low value of minpercent. If start temperature is set

too high, a lot of time is wasted generating new solutions that are essentially random

(the initial flat part of the curve in Figure 10(a)). If it is too low, the advantages of

simulated annealing over local search are lost. In the extreme case, when start temper-

ature is close to 0, simulated annealing becomes effectively a local search with random

descent and a large number of flat moves. We found that for either random graphs or

geometric graphs, increasing the start temperature above 2 does not have a significant

effect on solution quality. Data for different start temperatures based on 5 runs on each

of the same 10 geometric graphs is shown in Figure 11. We chose 2% as the value for

minpercent- setting it below that value had almost no effect on solution quality.

More critical to both runtime and solution quality were the choices of sizefactor,

which governs the number of iterations at each temperature, and tempfactor, which

governs the rate at which temperature decreases and therefore the expected number

of temperatures. The number of iterations at each temperature is a constant, namely

sizefactor, times the size of the neighborhood (number of possible swaps from each

configuration).

We implemented a version that considers all possible swaps and a version that

considers only cube-neighbor swaps. We present results only for the cube-neighbors

implementation, called SAC. Experiments comparing the two versions indicate that

simulated annealing is powerful enough to overcome the limitations of cube-neighbor

swapping. If cost is ignored, an arbitrary swap can be emulated by Oflogn) cube-

neighbor swaps. At high temperatures, cost of the intermediate swaps is not a significant

factor for simulated annealing, so the power of an all-swaps neighborhood is effectively

achieved. Our experiments show that for random graphs, the cube-neighbors approach

takes less time to achieve the same solution quality as the all-swaps approach.

The expected asymptotic running time of SAC is O(lmlogn), where I is the ex-

pected number of temperatures (for all-swaps simulated annealing, asymptotic time is

O(imn)). No data structures were used; the reduction in cost of a swap v, w was cal-

culated simply by looking at the effect on all vertices in A(v) U A(w). Maintenance of

7, as used in LSC, but without bucket lists, might improve running time, but only by

a small constant factor (runtime per accepted move would increase while runtime for

non-accepted moves would decrease).

Figures 12 and 13 illustrate the tradeoff between running time and solution quality

Temperature

(4

10 1 0.1

Temperature

(b)

FIG. 10. Progress of simulated annealing

860 -

840 - Each point on the curve is
labeled with fee start
temperature that produced it.

800

780 -

I 1 I I I 1

0 100 200 300 400 500 600

CPU see

F I G . 11. Effect of using different starting temperatures

for varying size and temp factors, respectively. The data are based on 5 runs on 10

geometric graphs for each setting (dimension 7). Other parameters were set at their

standard values (start temperature = 2, minpercent = 2). The values chosen for the

remainder of our experiments (sizefactor 16 and tempfactor 0.95) were a compromise

(see Johnson et al. [27] for discussion of this choice in the context of graph partitioning).

After extensive testing on various different types of graphs using a variety of combina-

tions of parameter settings, we concluded that our choice needed to be made somewhat

arbitrarily. We were almost always able to improve solution quality significantly by

increasing sizefactor or tempfactor (the only notable exception was when our communi-

cation graph was a cube and SAC obtained perfect mappings almost all the time with

reasonable settings); running time increased even more significantly when we did this.

Without any guidelines on how to judge the tradeoff between time and solution quality

we had no basis for saying that any parameter settings were better than any others. To

be fair, we included data for two different types of simulated annealing runs on each

class of graphs, one with our standard parameters, the other with parameters adjusted

so that SAC either had better solution quality than all other heuristics (regardless of

time), or competitive solution quality with reduced running time.

The overall idea is that the more time spent annealing, the better the expected

solution quality. At one extreme, simulated annealing either degenerates to a variant of

local search (start temperature = 0 or a very small tempfactor) or limited random prob-

ing around an initial solution (small sizefactor). At the other extreme, it becomes an

exponential algorithm producing nearly optimal solutions with high probability (note:

this claim has not been verified for hypercube embedding).

Following a recommendation from [27], we improved running time by storing values

Each point on the curve is
labeled with the size factor
that produced it.

Run time (sec.)

FIG. 12. Tradeoff between runtime and solution quality for different size factors

Each point on the curve is
labeled with the temp factor
that produced it.

730 ! I I I I I I

0 200 400 600 800 1000 1200

Run time (sec.)

FIG. 13. Tradeoff between runtime and solution quality for different temp factors

of e x in a table for values of x in the range where the probability of an uphill move

is significantly different from 0 and significantly different from 1 (e-* ;a 0.995 when

x = 11200 and ~i 0.0067 when x = 5). Direct calculation of e-* was replaced by the

following:

if x < -5 t h e n 0 else get eL200z1/200 from table,

that is, e"' was approximated by a table entry for x truncated to the nearest 1/200 or

0 if x < -5. Test runs where we did not approximate the exponent took almost three

times as long as identical runs where we did. No improvement in solution quality was

observed when the exponent was calculated exactly.

Two final notes on our simulated annealing implementation: Our calculation of

the acceptance ratio ignored flat moves. We found that, without this modification,

the program sometimes failed to terminate because the presence of large numbers of

flat moves prevented it from reaching a low enough acceptance ratio for the frozen

criterion. An alternative would have been to choose a higher value for minpercent, but

this would have unnecessarily penalized the runs that did not have many flat moves.

Finally, the solution values we report for simulated annealing were the best values

encountered during the run (not necessarily the final solution costs). At the frozen

point, the difference between the best value and the final value was usually negligible

if there was a difference at all. The primary effect of keeping track of the best solution

found so far was to make our results insensitive to the choice of minpercent.

3. Experimental Methodology. Here we comment on the two most important

aspects of our experimental methodology, our choice of test graphs and the introduction

of randomization into all heuristics.

3.1. Types of Communication Graphs. In this paper, four kinds of communi-

cation graphs are generated to compare the solution quality of various heuristics. These

are random graphs, random geometric graphs, cubes, and trees. The evaluated graphs

have exactly the same number of vertices as the hypercubes to which they are mapped.

One would expect such graphs to be harder to embed efficiently than graphs with fewer

vertices than their target cubes. Our experiments thus stress the algorithms and make

comparisons easier.

A random graph GnP is a graph with n vertices, where each pair of vertices con-

stitutes an edge with probability p. We set p so that the expected number of edges in

the random graph is (n log n)/2 (the expected degree of each vertex is log n and the p

is logn/(n - I).)

The second class of graphs is the random "geometric" graph which is a variant of the

one described in [27]. A random geometric graph Und has n vertices. The edges of U are

generated as follows. First, randomly generate n pairs of numbers uniformly from the

interval [0,1), and view each pair as a point in the unit square. These points represent

vertices of U ; there is an edge between a pair of vertices if and only if their distance

is d or less, i.e., if the points are (xi, yi) and (xi, yi), 1x1 - xt\ < d and lyi - 1/21 5 d.

(Note: the "infinity norm" was used to compute distances; this simplified the algorithm

24

and did not significantly alter the characteristics of the graphs.) Again, we wanted to

make the expected total number of edges in a geometric graph (n log n)/2. Thus the

expected degree is logn, the probability of an edge is s, and d is $i/!2S2. n-1

Random permutations of hypercubes are often used as communication graphs to

evaluate local-search heuristics [2, 101. Since cubes can be embedded in themselves

exactly, they can be fairly good indications of how close heuristic solutions are to optimal

solutions. In order to make the pr blem more difficult, we also considered cubes with

a number of edges randomly adde (or deleted). The number of edges to be added

in our experiments was chosen so 1 ewhat arbitrarily to be the dimension of the cube.

Two types of cubes with edges deleted were tested: one with few deletions (number

of deletions = dimension) and thelother with more deletions (number of deletions =
(nlog n)/16). Results for few deletions were very similar to those for exact cubes while

more deletions produced results mQre like those for random graphs.

Random trees are also used ad communication graphs. Many parallel algorithms

are tree structured, since trees are natural to data structures and divide-and-conquer

algorithms. Also, they are the best candidates for experiments on very sparse graphs.

An n-vertex random tree Tn was generated by the algorithm in Figure 14.

S := {v}, where v is a random vertex in T
/* T is the vertex set ~f Tn */

repeat

v := a randomly chosen vertex from S
w := a randomly chosen vertex from T - S
Add the edge {v,w} ta Tn
S:=SU{w}

until S = T

FIG. 14. ~ l ~ o h h m for generating random trees

3.2. Randomization. Since stimulated annealing is a randomized algorithm, ob-

tainine different results for different~runs on identical data. we decided to randomize all -
the heuristics for fair comparison. The iterative improvement heuristics are naturally

randomized by the choice of a randdm initial solution. They can be further randomized

by choosing randomly among equally desirable alternatives. For example, in the case of

steepest descent there are often several swaps giving the best cost decrease. This second

type of randomization appears to kip, at the expense of a slight increase in runtime.

The iterative improvement heuristids other than SAC used in our experiments only did

randomization with the starting solution and in the choice of a flat move; downhill

moves were chosen arbitrarily rather than randomly.

For RMB, randomness is present in the choice of a random starting partition during

each recursive call. Greedy heuristics were the most difficult to randomize. For Chen's

25

greedy heuristic we randomized the sequence for processing hypercube vertices during

updates of gain (the inner for loop in Figure 3). If a communication-graph vertex had

the same gain for two or more different hypercube vertices (gain(v, hi) = gain(v, hi),

for example), the corresponding entries appear on the bucket list in random order. For

the simple greedy heuristic we simply permuted the vertices randomly before initially

inserting them into the bucket list. This random sequence influenced the order among

equal alternatives later in the bucket list and gave rise to surprisingly large variances

in the results obtained.

To compare the average performance of heuristics for each kind of graph, we made

5 runs on each of 10 graphs. Since the heuristics are all randomized, one run on one

graph may not be conclusive. In our experiments, all heuristics were run on the same

set of test graphs. Thus the average solution cost of each heuristic reflects its relative

solution quality. Also, the iterative improvement heuristics were given the same set of

initial solutions for each run on each graph, so that they began at the same starting

point. In cases where G, SG, or RMB was used as a front end to LS, LSC, or KL, the

results generated by the former were fed directly to the latter. Thus again, LS, LSC,

and KL were started with the same set of initial solutions and always generated results

better than their front ends (e.g., the cost obtained by G+LS is always better then pure

GI.
We accomplished the controlled randomization described above by providing three

distinct random number streams: one for communication-graph generators, one for

heuristics used as front ends (i.e., random initial solution generator, G, SG, and RMB),
and one for iterative improvement heuristics. Thus our results for combined heuristics

were not influenced by the effects altering the random number stream of each individual

heuristic.

4. Results. As already explained in Section 3, random graphs, geometric graphs,

trees, and hypercubes are used as communication graphs to evaluate the heuristics.

Observe that the structure of these four kinds of graphs advances gradually from rau-

dom to exact hypercubes. Random graphs have no obvious relation to hypercubes.

Geometric graphs are easier to partition, and thus structurally closer to hypercubes.

Trees are always subgraphs of hypercubes if we allow arbitrarily large dimensions, but

the embedding of a tree into a fixed-size hypercube can have large average dilation (for

example, consider embedding a star with 2* vertices into HI,). Communication graphs

that are hypercubes with a few added edges (or deleted edges) are always supergraphs

(or subgraphs) of hypercubes. Consequently, the results illustrate variations across a

continuum of structures. In particular, simulated annealing performs better as the com- - -
munication graph becomes more random, and greedy strategies perform better as the

communication graph approaches a hypercube.

We report experimental results for a total of twelve heuristics for hypercube em-

bedding (those described in Section 2 used singly or in combinations):

greedy (G);
simple greedy (SG);

all-swaps, steepest-descent local search (LS);

26

cube-neighbors, steepest-descent local search (LSC);

Kernighan-Lin (KL);

recursive mincut bipartitioning (RMB);
0 cube-neighbors simulated annealing (SAC);

0 greedy initial solution followed by LS (G+LS);

G+LSC;

G+KL;

RMB+LS; and

SG+LSC.

The reader should bear in mind that our results should be viewed as general indications

of what types of techniques work well on what types of graphs rather than specific

endorsements of one heuristic over another.

The simplegreedy algorithm was easily the fastest heuristic we tested, but produced

by far the poorest mappings. Apart from SG, LSC was fastest, but also gave the next

highest cost solutions. SAC was slowest but produced the best solutions. In general,

SAC'S solutions improved on LSC's by about as much as LSC's improved on SG's.

Ignoring SG for the moment, the gap in solution cost (on random graphs) between

the fastest algorithm, LSC, and the slowest, SAC, was never more than about 10%.

This was also true for selected random graphs with 64, 256 and 512 vertices mapped

onto hypercubes of dimension 6, 8 and 9 (see Figure 15; data is based on 20 runs on

one graph). This 10% improvement in solution cost comes at the expense of a factor

of about 300 in the running time, not an especially good bargain unless the parallel

program in question is to be executed over a long period of time.

3.0 1 SAC! 10wOj SAC!

6 7 8 9

Dimension !
6 7 8 9

Dimension

Fro. 15. Comparison of SAC with LSC

This observation also suggests that, rather than improving the sophistication of

existing heuristics, at the expense of increasing running time, more effort should go

into the development of fast and simple heuristics whose solutions fall within this 10%

27
! I

threshold. Our LSC heuristic is a step in that direction. We also expect that a slightly

more sophisticated variant of SG will meet this goal.

Although the differences in solution quality in most experiments are not great, it

is worth noting that (a) there are situations when nearly optimal mappings are worth

additional computation time, (b) other applications of hypercube embedding, such as

coding theory, may require high quality embeddings, (c) low-cost mappings are more

important in large cubes, especially when link contention is taken into account, and

(d) some of our results show an interesting trend in the efficacy of simulated anneal-

ing versus other heuristics on random versus structured problems (similar results are

reported for graph partitioning by Johnson et al. [27]).
In general LS, LSC, and KL do better when they have better initial solutions. Thus,

in both running time and solution quality, G+LS dominates LS, G+KL dominates KL,

SG+LSC dominates LSC, and RMB+LS dominates LS.

At the extremes of solution quality, two questions arise naturally: (a) how much

better is SG than random? and (b) how close is SAC to optimal? The experiments

demonstrate that SG betters random mappings by a large margin, and that SAC also

beats SG by a large margin. It is difficult to say whether SAC is close to optimal for the

"average" communication graph. The experiments on cube-structured communication

graphs do confirm that the "pushed" SAC (SAC with higher size and/or tempfactor)

is capable of obtaining optimal solutions all the time, and that SAC with our standard

parameters maps hypercubes to hypercubes with near perfection. However, for ran-

dom graphs the story may be completely different, making it difficult to draw general

conclusions about the optimality of SAC.

The tables within each subsection include data showing solution quality and runtime

for the various heuristics. We also show the average and the minimum cost of a randomly

generated solution as a basis for comparison. For each heuristic we indicate how its

average solution compared with an average random solution (the "% of random" column

gives the ratio ~~~~:~ as a percentage).

4.1. Random graphs. As shown in Table 2, the results for random graphs exhibit

a typical tradeoff between running time and solution quality. Simulated annealing is at

its best on random graphs. As the table shows, SAC beats all other heuristics except for

G+KL and KL in solution quality by a wide margin. Runtime for SAC with standard

parameter settings is not competitive, however. We included a relaxed version of SAC in

the table to show the that reasonable solution quality can be achieved by SAC without

outrageous runtime.

At one end of the runtime/solution-quality spectrum, the most interesting story is

the competition between SAC and G+KL. For either, solution cost can be reduced by

adjusting parameters (sizefactor and tempfactor in the case of SAC, uphill moves in the

case of G+KL). We were unable to find a leveling-off point for either heuristic, a point

at which the improvement in solution quality achieved by increased runtime becomes

negligible. It appears that G+KL has lower runtime than SAC for the same solution

quality. This observation must be tempered by two cautionary remarks. First, SAC

has better asymptotic runtime and may in fact do better for larger cubes. Second, SAC

TABLE 2
Results for mapping random graphs

Heuristic

SAC*

G+KL*

a sizefactor = 2
* Indicates a "competitive" heuristic, one with a lower runtime than all heuristics that

achieved a lower average cost.

" L

can be implemented in linear space, while both G and KL require space proportional

to n2. Space becomes a significant limiting factor for n2-space heuristics on cubes of

dimension 10 or more.

In the middle of the range, the best competitors are various local-search variants

with better than random starting solutions. RMB appears to be an excellent choice for

starting solutions; even RMB by itself is competitive, especially when its asymptotic

runtimeis taken into account (asymptotic runtime for RMB is much better than G+LSC

and about the same as SG+LSC). Somemidrange entries that do not appear in the table

are RMB+LS with no flat moves and a cube-neighbors Kernighan-Lin implementation

with a greedy initial solution (no uphill moves). Both fall into the gap between LS and

G+LSC in terms of solution quality and have runtimes significantly better than that of

RMB+LS with flat moves (but not quite as good as G+LSC).

If runtime is the major consideration, SG is the best among the heuristics we

tested. SG+LSC is a good choice with fast runtime and reasonable solution quality.

The gap between G and SG can be filled by other greedy heuristics, for example, a more

sophisticated version of SG.

Since the statistics in the table come from 10. different random graphs, the minimum

cost reported is not likely to be robust - all the minimum cost data come from the

same graph, so this statistic is really based on 5 runs rather than 50. Also, the gap

between minimum and average cost is not a true indicator of variance. To make up

29

Min

844

855

G

SG*

Random

Avg. Cost

916.3

923.7

943

1189

1472

Avg. Dila.

2.042

2.059

1024.7

1286.1

1578.0

% of random

58.1 %
58.5%

2.284

2.867

3.518

64.9 %
81.5 %

100.0 %

CPU sec.

175.17

93.79

0.86

0.03
-

for these shortcomings Figure 16 shows histograms based on 100 runs of each of four

heuristics (SAC, SG, G+KL, and SG+LSC). All runs are on the same random graph.

Note that the heuristics with better solution quality haveless variance. This is a general

trend that holds for all of the heuristics we tested.

An interesting question to ask is: what is the expected minimum cost solution for

each heuristic if we do as many runs of it as can be accommodated within a fixed amount

of time? For example, will 100 runs of RMB+LS give a better minimum solution than

6 runs of SAC (the fixed amount of time is roughly 1000 CPU seconds)? On random

graphs this sort of competition appears to favor simulated annealing (Johnson et al.

[27] did a more extensive study for the graph partitioning problem, where simulated

annealing was also the winner on random graphs).

4.2. Geometric graphs. Table 3 reports results for geometric graphs. The gen-

eral trends are similar to those of random graphs but there are some important differ-

ences. The most important difference is that SAC is no longer a clear leader. Geometric

graphs have enough structure that other heuristics can exploit while simulated anneal-

ing does a lot of random probing. As the first line of the table indicates, we can always

push SAC to the point where its solution cost significantly beats other heuristics, but

with significant increases in runtime.

TABLE 3
Results for mapping random geometric graphs

'Â sizefactor = 32, lempfaclor = 0.975

Another significant difference is the improved position of the greedy heuristics.

Greedy heuristics are at their best on highly structured graphs, and we begin to see

this phenomenon even in the relatively unstructured random geometric graphs.

As with random graphs, we include some histograms in Figure 17. Except for the

30

F I G . 16. Histograms of heuristics on random graphs

slight overlap between G+KL and SG+LSC and the lower cost of SG by itself, the

picture is similar to that of random graphs.

Note also that for most heuristics, the solution cost for geometric graphs is nearly

20% less than for random graphs even though the average number of edges in these

graphs is roughly the same. This is not surprising, since geometric graphs are struc-

turally closer to hypercubes than random graphs are.

4.3. Trees. For trees, as shown in Table 4, the absolute cost difference between

heuristics is much smaller than for either random graphs or geometric graphs, but the

relative cost difference is actually larger. The best average dilation obtained by any run

of any heuristic was 1.06 which is quite close to 1, the theoretical minimum. The worst

average dilation obtained by SG+LSC was 1.35.

TABLE 4

Results for mapping random trees

Heuristic 1 Min 1 Avg. Cost 1 Avg. Dila. 1 % of random 1 CPU sec.

SACfuushed)*" I 136 1 140.7 1 1.108 1 31.5% I 797.17

'Â sizefactor = 64

Since trees are more structured than geometric graphs, it is not surprising that

Chen's greedy heuristic, G , is a strong competitor. SG, however, is not sophisticated

enough to take full advantage of the structure of trees. Choosing the next vertex to

embed based only on how many neighbors have already been embedded is not a good

strategy for trees, which have low connectivity. G is also better than RMB on trees,

both by itself and as a front end to iterative improvement heuristics. For trees there

are many close to optimal partitionings, some resulting in good embeddings, others

not. Partitioning by itself is not a good indicator of average dilation for trees. The

greedy heuristic, on the other hand, tries to map large connected components of each

tree perfectly, and ends up having to sacrifice (i.e. assign large dilation to) only a small

number of edges in the process.

32

F I G . 17. Histograms of heuristics on geometric graphs

33

Another significant phenomenon for trees is the importance of flat moves in iterative

improvement heuristics. Simulated annealing takes a lot of time, more than for random

graphs, because many of the moves that are accepted lead to no improvement. On the

other hand, G+LS with 640 flat moves (not shown in the table) achieves an average

solution cost of 139.5 with an average runtime of only 20.76. The average dilations

achieved by this combination are evidently close to optimum.

4.4. Cubes. In this section we report results for cubes and graphs that are very

close to cubes. There exist efficient algorithms for mapping cubes to themselves exactly

161, so results for heuristics mapping exact cubes are of questionable practical impor-

tance (we are not aware of any exact algorithms for mapping cubes with a small number

of edges added or deleted, however). The results for cubes and near-cubes do illustrate

some interesting points. Cubes are the most structured communication graphs possi-

ble for this problem. Hence the greedy heuristics and RMB tend to outperform the

iterative-improvement heuristics. Cubes and near-cubes are also the only communica-

tion graphs for which we know the cost of the optimal solutions, so we can, in this

idealized setting, judge the solutions obtained in relation to known optimum solutions.

Finally, it can be argued that in order for a heuristic to be of practical interest, it should

do a reasonable job on graphs that have perfect mappings. Cubes and cubes with edges

deleted are a good way to test this quality.

Table 5 gives our data for mapping randomly permuted cubes. Chen's greedy

heuristic always obtains the optimal solution in this case (as does the heuristic of Lee

and Aggarwal). Obviously this eliminates the need to include data for G+LS or G+LSC.

If SAC is pushed slightly it also obtains optimal solutions consistently (an observation

also made for the simulated annealing implementation of Ramanujam et al. [36]). Most

of the other heuristics manage to obtain at least one optimal solution.

TABLE 5
Results for mapping randomly permuted cubes

a sizefactor = 64, tempfactor = 0.975

The only heuristics not obtaining at least one optimal solution in 50 runs are L S and

34

LSC. In fact LS and LSC don't do much to improve the quality of their initial solutions

unless these are random (compare results for SG+LSC with those for SG). Figure 18

illustrates a serious shortcoming of LSC when mapping cubes. If two opposite corners on

the same face of a 3-cube are swapped, the resulting mapping is a local optimum, even if

we allow flat moves. No swap of cube neighbors can be done without strictly increasing

cost. This trap does not exist for LS which allows swaps between two arbitrary vertices.

Figure 19 illustrates a local optimum on a 4-cube for LS. One of the two main subcubes

is rotated with respect to the other. Every individual swap will strictly increase cost

(for example, in order to align 1111 with 0111 one of the two has to be moved away

from its 3 neighbors in the subcube). The number of such local optima (and their cost

relative to the optimum cost) increases dramatically as cube dimension increases.

There are several ways to avoid getting stuck at local optima. Flat moves, which

appear to be promising for more random graphs, are useless here. Simulated annealing

avoids the traps by doing random uphill moves. KL does so by doing both random and

systematic uphill swaps.

The results for cubes with 7 edges deleted, reported in Table 6, are similar to those

for cubes. With more edges deleted (56 was chosen arbitrarily), the resulting graphs

are considerably more random and the sequence of contenders looks more like that for

geometric graphs - results are shown in Table 7. The main differences between the

results for cubes minus 56 edges and those for geometric graphs are that (a) RMB
does significantly better for the cube subgraphs, and (b) the local search variants by

themselves do significantly worse for the cube subgraphs. The influence of the cube

structure is a factor, but not enough of one to make Chen's greedy heuristic competitive.

This is because Chen's heuristic (or any other greedy heuristic) examines local structure,

which for cubes missing many edges looks random. RMB, with its top-down recursive

approach, takes advantage of global structure, which appears to be the overriding factor

here. Note that the 392 minimum achieved by most of the heuristics is the optimum

solution.

For cubes with 7 edges added the results are reported in Table 8. Here the clear-cut

champion is RMB. Local search does badly for reasons already suggested. Simulated

annealing gets good solutions only at the expense of long runtime (pushing SAC beyond

the factors shown in the table merely increased runtime but did not improve average

solution cost). There are enough extra edges to fool Chen's greedy heuristic, preventing

optimum solutions. We suspect that the 470 minimum attained by about half of the

heuristics is an optimum solution.

5. Conclusions. A variety of conclusions can be drawn from the results we report.

In each of the following paragraphs we highlight one major observation we were able to

make.

The heuristics we studied exhibit a wide range of options along a continuum. There

appears to be a clear tradeoff between solution quality and runtime. Often it is possible

to obtain several favorable points along the continuum by modifying a single heuristic

(adding flat moves or random jumps to local search, varying parameters for simulated

annealing, adding more sophisticated choice mechanisms to greedy heuristics).

35

F I G . 18. Local optimum for the LSC heuristic

1000

0000

1010

0010

F I G . 19. Local optimum for the LS heuristic

TABLE 6
Results for mapping cubes with 7 edges deleted

I

LSC 1 847 1 912.9 1 2.070 1 58.4% 1 0.62
Random 1 1508 1 1563.0 1 3.544 1 100.0% 1 -

a sizefactor = 128, tempfactor = 0.975

TABLE 7
Results for mapping cubes with 56 edges deleted

a sizefactor = 128, tempfactor = 0.975

TABLE 8
Results for mapping cubes with 7 additional edges

sizefactor = 64, tempfactor = 0.975

Iterative improvement heuristics perform better when the starting solution is better

than random (greedy or recursive mincut bipartitioning are good methods for generat-

ing starting solutions). As the sophistication of the iterative improvement heuristic in-

creases, the difference made by better-than-random starting solutions is less pronounced

(for example, solutions obtained by KL and SAC are not significantly improved when

greedy initial solutions are used).

The choice of transformations (neighborhood) has an impact on the quality of

solutions obtained by iterative improvement heuristics. As is the case with better

starting solutions, the effect of choosing a more powerful (i.e., larger) neighborhood

diminishes as the sophistication of the underlying heuristic improves. For local search,

a strategy that allows all swaps is significantly better than one that only allows swaps

between cube neighbors. Unfortunately a larger neighborhood also has the effect of

increasing runtime significantly. Hence, with sophisticated heuristics such as simulated

annealing or Kernighan-Lin, it may be better to choose a more limited neighborhood.

The structure of the communication graph must be taken into account when choos-

ing a heuristic. For completely random graphs, the best choices tend to be iterative

improvement heuristics. For graphs that are cubes or almost cubes, greedy heuristics

are the best choice. The advantages of simulated annealing diminish as the communi-

cation graphs become more structured. The type of structure may also be a factor. For

example, RMB did poorly on trees, which have local structure, but well on cubes with

edges deleted, where the structure in relation to exact cubes is more global.

Simulated annealing, because of the wide range of results obtainable by adjusting

parameters, is the most versatile heuristic we tested. At the standard parameter set-

38

tings we chose, simulated annealing obtained consistently good results on all runs for

all graphs. Other heuristics had larger variances for runs on a single graph or were

ineffective for certain classes of graphs. The two primary disadvantages of simulated

annealing are the large runtimes and the effort required to adjust parameters.

6. Further Research. One of our aims is to stimulate further research into the

many questions raised by the performance of the heuristics we evaluated. Our initial

goal was to implement and test efficient versions of several standard heuristics already

reported in the literature. By doing extensive testing on several different kinds of graphs

we sought to gain insights about the relative efficacy of different kinds of heuristics for

different kinds of communication graphs. We found that, in pitting so many heuristics

against each other, a natural tendency to improve the competitiveness of each heuristic

emerged. If the performance of one heuristic is enhanced by a particular maneuver, it

is natural to consider the effect of a similar enhancement on other heuristics.

Many of the heuristics were sensitive to adjustments of various parameters which

affected tradeoff between runtime and solution quality. The most pressing need that

we felt in the process of adjusting parameters was for some kind of analytical model of

what constitutes a good tradeoff between runtime and solution quality. Is it beneficial to

double the runtime in order to decrease the average solution cost by 10 units? Questions

such as this can only be answered if more is known about the specific application. Most

of our attempts to meld statistics on runtime and solution quality into a single number

favored the fastest heuristics (unless we postulate that runtime should be exponentially

related to the difference between average solution cost and some estimate of optimal

solution cost). Analytical models of the tradeoff and practical justifications for them

would be extremely useful in any further research of this kind. Without such models it

is difficult to establish fair comparisons among heuristics with adjustable parameters.

Hypercube embedding is an unusually difficult problem, even among NP-hard graph

problems. It is NP-hard even for trees. Most successful heuristics reported in the liter-

ature have asymptotic running times of O(n3) or worse. Experimental data, including

ours, has been limited to relatively small problems. Lower bounds on the cost of an

optimal solution appear to be difficult to obtain. We propose the following items as

worthy of future experimental study.

Development of a reasonable exhaustive search or branch-and-bound strategy

so that optimal solutions for random test graphs can be generated.

More tests on larger problems (dimension 10, for example) to see if the relative

standing of the heuristics holds up asymptotically.

Variations to improve the solution quality of the simple greedy heuristic.

Extensive testing of variations on the KL heuristic to determine the relative

merits of flat moves versus random jumps and all swaps versus cube neighbors.

More testing of a Kernighan-Lin type heuristic based on cube-neighbor swaps

(the success of simulated annealing with cube-neighbor swaps suggests that this

combination may also do well; preliminary experiments with a cube-neighbors

KL implementation are promising - see [15]; Ercal and Sadayappan [IS] also

report experiments with a cube-neighbors Kernighan-Lin heuristic, but their

39

strategy does not consider uphill moves).

More testing and refinement of the RMB heuristic (with better graph parti-

tioning heuristics).

More testing to determine the relative merits of flat moves versus Bokhari-

style random jumps as enhancements to local search heuristics (random jumps

appear to give better solutions based on some preliminary experiments, but

more testing needs to be done).

Implementation and testing of iterative improvement heuristics based on sub-

cube rotations rather than swaps (the example in Figure 19 suggests that sub-

cube rotations might be an effective method for sidestepping local optima;

cube-neighbor swaps are rotations of subcubes of dimension 1; a more general

strategy that allows rotations of subcubes of dimensions 2 and/or 3 might be

worth considering)

More testing to determine the effect of sparsity on various heuristics (with the

exception of trees, our test graphs all had roughly (n logn)/2 edges).

REFERENCES

[I] F. AFRATI, C. PAPADIMITRIOU, AND G. PAPAGEORGIOU, The complexity of cubical graphs,
Information and Control, 66 (1985), pp. 53 - 60.

[2] F. ANDR*, J . PAZAT, AND T. PRIOL, Experiments with mapping algorithms on a hypercube,
in Proceedings Fourth Conference on Hypercubes, Concurrent Computers, and Applications,
1989.

[3] F. BERMAN, Experience with an automatic solution to the mapping problem, in The Character-
istics of Parallel Algorithms, L. Jamieson, D. Gannon, and R. Douglas, eds., MIT Press,
1987.

[4] F. BERMAN AND L. SNYDER, On mapping parallel algorithms into parallel architectures, Journal
of Parallel and Distributed Computing, 4 (1987), pp. 439 - 458.

[5] S. BETTAYEB, Z. MILLER, AND I. SUDBOROUGH, Embedding grids into hyperciibes, in VLSI
Algorithms and Architectures: 3rd Aegean Workshop on Computing, Lecture Notes in Com-
puter Science 319, Springer Verlag, 1988, pp. 201 - 211.

[6] K. BHAT, On the complexity of testing a graph for N-cube, Information Processing Letters, 11
(1980), pp. 16 - 19.

[7] S. BHATT, F. CHUNG, F. LEIGHTON, AND A. ROSENBERG, Efficient embeddings of trees in
hypercubes. Typescript, Department of Computer Science, Yale University, New Haven, CT
06520.

[8] L. BHUTAN AND D. P. AGRAWAL, Generalized hypercube and hyperbus structures for a computer
network, IEEE Transactions on Computers, C-33 (1984), pp. 323-333.

[9] S. BOKHARI, On the mapping problem, IEEE Transactions on Computers, C-30 (1981), pp. 207
- 214.

[lo] S. BOLLINGER AND S. MIDKIFF, Processor and link assignment in multiprocessors using simu-
lated annealing, in Proceedings International Conference on Parallel Processing, 1988, pp. 1-6.

[l l] J. BRANDENBURG AND D. SCOTT, Embedding of communication trees and grids into hypercubes,
Tech. Rep. 280182-001, Intel Scientific Computers, 1985.

[12] M. CHAN, Dilation-2 embeddings of grids into hypercubes, in Proceedings International Confer-

ence on Parallel Processing, 1988, pp. 295 - 298.
[13] W.-K. CHEN, A graph-oriented mapping strategy for a hypercube, Master's thesis, North Carolina

State University, 1988.
[l4] W.-K. CHEN AND E. GEHRINGER, A graph-oriented mapping strategy for a hypercube, in pro-

ceedings Third Conference on Hypercube Concurrent Computers and Applications, 1988,

40

pp. 200 - 209.
[15] W.-K. CHEN AND M. STALLMANN, Localsearch variants for hypercube embedding, in Proceedings

Fifth Distributed Memory Computing Conference, 1990. To appear.
[16] G. CYBENKO, D. KRUMME, AND K. VENKATARAMAN, Fixed hypercube embedding, Information

Processing Letters, 25 (1987), pp. 35 - 39.
[17] F . ERCAL, J . RAMANUJAM, AND P. SADAYAPPAN, Task allocation onto a hypercube by recursive

mincut bipwtitioning, Journal of Parallel and Distribnted Computing, (1990). To appear.
[18] F. ERCAL AND P. SADAYAPPAN, One-to-one mapping process graphs onto a hypercube, in Pro-

ceedings Supercomputing '89, ACM, 1989, pp. 91 - 98.
[19] C. FIDUCCIA AND R. MATTHEYSES, A linear-time heuristic for improving network partitions, in

Proceedings 19th Design Automation Conference, 1982, pp. 175 - 181.
[20] K. FUKUNAGA, S . YAMADA, AND T. KASAI, Assignment of job modules onto array processors,

IEEE Transactions on Computers, '2-36 (1987), pp. 888 - 891.
[21] A. GABRIELIAN AND D. TYLER, Optimal object allocation in distributed computer systems, in

Proceedings International Conference on Distributed Computer Systems, 1984, pp. 88 - 95.
[22] M. GAREY AND R. GRAHAM, On cubical graphs, Journal of Combinatorial Theory, 18 (1975).
[23] F. HEATH, Origins of the binary code, Scientific American, 227 (1972), pp. 76 - 83.
1241 W. HILLIS, The Connection Machine, MIT Press, 1985.
(251 J . HONG, K. MEHLHORN, AND A. ROSENBERG, Cost trade-offs in graph embeddings with appli-

cations, J. Assoc. Comput. Mach., 30 (1983), pp. 709 - 728.
[26] INTEL SCIENTIFIC COMPUTERS, Direct-Connect" routing solves node communications challenge,

iSC Currents, (1987), pp. 5-6.
[27] D. S. JOHNSON, C. R. ARAGON, L. A. MCGEOGH, AND C. SCHEVON, Optimization b y simu-

lated annealing: A n experimental evaluation (part I). Typescript.
[28] B. KERNIGHAN AND S. LIN, A n efficient heuristic procedure for partitioning graphs, Bell System

technical Journal, (1970), pp. 291 - 307.
[29] S. KIRKPATRICK, C. GELATT, JR., AND M. VECCHI, Optimization by simulated annealing,

Science, (1983), pp. 671 - 680.
[30] 0. KRAMER AND H. MUHLENBEIN, Mapping strategies i n message-based multiprocessor systems,

Parallel Computing, 9 (1989), pp. 213 - 225.
[31] s.-Y. LEE AND J. AGGARWAL, A mapping strategy for parallel processing, IEEE Transactions

on Computers, C-36 (1987), pp. 433 - 442.
[32] D. LENOSKI, J . LAUDON, A. G. KOUROSH GHARACHORLOO, AND J. HENNESSY, The directory-

based cache coherence protocol for the dash multiprocessor, in Proceedings of 17th Interna-
tional Symposium on Computer Architecture, May 1990. To appear.

[33] B. MONIEN AND I. SUDBOROUGH, Simulating binary trees on hypercubes, in VLSI Algorithms
and Architectures: 3rd Aegean Workshop on Computing, Lecture Notes in Computer Science
319, Springer Verlag, 1988, pp. 170 - 180.

[34] H. MWHLENBEIN, M. GORGES-SCHLEUTER, AND 0. KRAMER, New solutions to the muf f ing
problem of parallel systems: The evolution approach, Parallel Computing, 4 (1987), pp. 269 -
279.

[35] J.-L. PAZAT, Outils pour la Programmation d'un Muliiprocesseur 6 M h o i r e s Distributes, PhD
thesis, Universitb de Bordeaux I, February 1989.

[36] J. RAMANUJAM, F. ERCAL, AND P. SADAYAPPAN, Task allocation by simulated annealing, in
Proceedings International Conference on Supercomputing, 1988.

[37] Y. SAAD AND M. H. SCHULTZ, Topological properties of hypercubes, IEEE Transactions on
Computers, C-37 (1988).

[38] P. SADAYAPPAN AND F . ERCAL, Nearest-neighbor mapping of finite element graphs onto proces-

sor meshes, IEEE Transactions on Computeis, G36 (1987), pp. 1408 - 1424.
[39] K. SCHWAN AND C. GAIMON, Automating resource allocation for the Cm* multiprocessor, in

Proceedings International Conference on Distribnted Computer Systems, 1984, pp. 310 -
320.

[40] L. W. TUCKER AND G. G. ROBERTSON, Architecture and applications of the Connection Ma-
chine, IEEE Computer, 21 (1988), pp. 26-38.

41

[4l] A. WAGNER, Embedding arbitrary binary trees in a hypercube, Journal of Parallel and Distributed

Computing, 7 (1989), pp. 503-520.
[42] A. WAGNER AND D. CORNEIL, Embedding trees in the hypercube is NP-complete, SIAM Journal

on Computing, 19 (1990), pp. 570 - 590.
[43] A. WU, Embedding of tree networks into hypercubes, Journal of Parallel and Distributed Com-

puting, 2 (1985), pp. 238 - 249.

