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HYPERCUBE EMBEDDING HEURISTICS: AN EVALUATION 

WOEI-KAE CHEN , MATTHIAS F.M. STALLMANN AND EDWARD F. GEHRINGER 

Abstract. The hypercube embedding problem, a restricted version of the general mapping prob- 
lem, is the problem of mapping a set of communicating processes to a hypercube multiprocessor. The 
goal is to find a mapping that minimizes the length of the paths between communicating processes. 
Unfortunately the hypercube embedding problem bas been shown to be NP-hard. Thus many heuris- 
tics have been proposed for hypercube embedding. This paper evaluates several hypercube embedding 
heuristics, including simulated annealing, local search, greedy, and recursive mincut bipartitioning. In 
addition to known heuristics, we propose a new greedy heuristic, a new Kernighan-Lin style heuristic, 
and some new features to enhance local search. We then assess variations of these strategies (e.g., 
different neighborhood structures) and combinations of them (e.g., greedy as a front end of iterative 
improvement heuristics). The asymptotic running times of the heuristics are given, based on efficient 
implementations using a priority-queue data structure. 

Key Words. mapping problem, hypercube embedding, greedy heuristics, local search, simulated 
annealing, priority queues 

1. Introduct ion and  Problem Description. The communication pattern of a 

parallel algorithm can be represented by a communication graph. To execute the algo- 

rithm efficiently on a multiprocessor, one attempts to allocate communicating processes 

to adjacent processors insofar as possible, so that the communication overhead is min- 

imized. This problem is known as the mapping problem [4]. More formally, a set of 

communicating processes defines a communication graph (or task graph) in which ver- 

tices represent processes, and an edge between process v and process w means that 

communication between v and w occurs during execution. An interconnection graph 

(or target graph) defines interconnections among the processors on which processes will 

execute. Each vertex represents a processor and an edge represents a physical link 

between processors. 

In recent years, hypercube multiprocessors [8, 24, 371 have become popular, due 

to their high regularity, low average distance, and comparatively low construction cost. 

This motivates the study of the hypercube embedding (mapping) problem, which is the 

special case of the mapping problem where the interconnection graph is a hypercube. 

Of course, it may not be possible to allocate all adjacent processes to adjacent 

processors. For example, a triangle can never be embedded in a hypercubeexactly. Even 

where an exact embedding is possible in a hypercube of unlimited size (as is the case for 

tree-structured communication graphs [41]), the number of available processors may not 

be large enough to allow it. Thus, a performance metric (the objective function) has to 

be defined. We will now formally define the hypercube embedding problem, beginning 

with a definition of a hypercube. 

A k-cube is an undirected graph H = (VIA, Eh) consisting of n = 2* vertices labeled 

from 0 to  n - 1, such that there is an edge between any two vertices if and only if the 

binary representation of their labels differs by exactly one bit. 

According to the above definition, each vertex in a k-cube has exactly k neighbors 

(degree k); there are a total of nk/2 edges; and the average distance between pairs of 



nodes is kn/2(n - 1) w k/2. We shall use H to denote an arbitrary hypercube and Hi, 

for a k-cube. Also, a graph G is said to be k-cubical if G is isomorphic to a subgraph 

of H k .  

An embedding f of a graph G = (V,  E) to a k-cube Hi, = (Vh, E;>) is a one-to-one 

function f : V IÃ‘ Vh. For a mapping function f ,  the dilation cost of an edge {v, w} G E 
is d(f (v), f (w)), i.e., the Hamming distance between f (v) and f (w). The expansion 

cost of the embedding f is n/lVl, i.e., reciprocal of the processor utilization. Clearly, 

a graph G is k-cubical if and only if every edge of G can be embedded in a fe-cube in 

dilation 1. 

Our graph-theoretic notation is standard. When describing the communication 

graph we use n to denote the number of vertices, m to denote the number of edges, 

deg(v) for the degree of vertex v, and A(v} for the set of neighbors of vertex v, i.e. 

{w I {v, w} ? E l .  In reference to a specific mapping f ,  cn(v, d) denotes D'S neighbor 

along cube dimension d, the vertex w for which f(v) and f(w) agree at all but the dth 

bit (f is understood from the context). The notation f @ (v, w) means a mapping that 

is the same as f ,  but with the mappings of two vertices f (v) and f (w) interchanged. 

1.1. Impor tance  of Problem. When commercial hypercubemultiprocessors were 

first introduced in 1985, the mapping problem was a major concern. The store-and- 

forward message-passing strategy was used, meaning that messages between non-adjacent 

processors were stored in memory at intermediate processors until such time as they 

could be forwarded toward their destination. Message-transmission time was essentially 

proportional to ~ a t h  length, so it was important to obtain a low-cost mapping. 

Beginning in 1987, the second generation of commercial hypercubes broke the linear 

relationship between path length and transmission time by using more sophisticated 

"virtual cut-through" routing networks, such as the Intel iPSC/2's Direct-ConnectTM 

routing [26]. The iPSC/2 is able to route a message to the most distant processor in a 

128-node network in only 10% more time than it takes to reach an adjacent node. With 

the new generation of machines, the mapping problem temporarily lost its importance. 

We should not expect this situation to persist. Interconnection networks in second- 

generation hypercubes tend to have more capacity than their processors are capable 

of utilizing. Routing times will be comparatively uniform only as long as networks re- 

main uncongested; when a network becomes congested, delays will grow with increasing 

path length. Since the interconnection structure is an underutilized resource, and one 

whose cost grows as N log N, designers can be expected to modify their architectures 

to make more effective use of it. For example, multiple processors can be placed at 

each hypercube vertex. The DASH multiprocessor project [32] has placed 4 processors 

at each vertex. This follows the lead of the Connection Machine 2 [40], which has 16 . ~ 

processors per vertex (although the hypercube embedding problem is not relevant to 

its unusual architecture). In these systems, we can presume that link utilization will 

be driven high enough for the mapping problem to matter again, despite the fact that 

store-and-forward overhead has been removed. 

For synchronous algorithms, the quality of a mapping f is usually evaluated by its 

expansion cost and maximum dilation, r n a ~ ~ , , , ~ ~ ~ d ( f  (v), f (w)) [25]. If the maximum 
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dilation is a constant (independent of the problem size), the maximum communication 

delay can be treated as a constant. Thus the complexity of the algorithm does not 

increase as a result of the mapping. On the other hand, if the maximum dilation is not 

constant, the overall complexity can be k times greater on a fc-cube, or even worse due 

to congestion in network links. 

For asynchronous algorithms, communication overhead is usually formulated as a 

quadratic assignment problem. That is, given a communication graph G = (V, E) and 

a mapping function f the total communication cost is 

If all the edges in the communication graph have the same weight, the average dilation, 

i.e. (l/lEl) . ~ { c , , , } 6 E  d(f(v), f (w)), is used as the performance metric. 

The hypercube embedding problem can thus be defined as follows: Given a com- 

munication graph G = (V, E) and a k-cube, find a mapping function f such that the 

objective function (e.g., maximum dilation, total communication cost, or average dila- 

tion) is minimized. 

Unfortunately, the problem of identifying whether a given graph is k-cubical has 

been shown to be NP-complete [16, 421. In fact, even when the graph is a tree, the 
problem is still NP-complete. Since an optimal hypercube embedding algorithm should 

be able to obtain the exact embedding if the given graph is a subgraph of a k-cube (i.e., 

be able to answer whether a given graph is a subgraph of a k-cube), the hypercube 

embedding problem is NP-hard, no matter which objective function is used. 

Many heuristics have been proposed for the general mapping problem 13, 9, 20, 21, 

34,36,38,39] and the hypercube embedding problem [14,17,18,30,31,41]. This paper 

focuses on the performance of different heuristics for the hypercube embedding prob- 

lem. Most previous experimental work has used a version of the quadratic assignment 

problem, either simplified (e.g., [9, 141) or complicated (e.g., [17, 31]), as an objective 

function. We have chosen to adopt average dilation as our standard performance met- 

ric. We wanted to avoid having our results depend on the mechanism for assigning 

weights to edges, another source of variability. Average dilation offers good insight into 

the communication delay induced by various mappings. Mappings with lower average 

dilations will also encounter less queuing delay due to link congestion. It is likely that 

other objective functions would produce similar results, insofar as the relative perfor- 

mance of the various strategies is concerned. In our experimental data we often report 

the total cost of an embedding, x b , w } e E  d(f (v), f (w)), in place of or in addition to the 

average dilation (large whole numbers are easier to compare than fractions). 

1.2. Previous Theoretical Work. Garey and Graham [22] analyzed critical sub- 

graphs and characterizations of hypercubes. They posed a number of open questions, 

including, "Does there exist a characterization of cubical graphs leading to an effective 

procedure for recognizing these graphs?" Wagner and Corneil [42] showed that the em- 

bedding of general graphs to hypercubes is NP-complete, and even embedding general 

trees in fixed-size hypercubes is NP-complete. It should be noted that the problem of 
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whether an n-vertex graph G is k-cubical, where k = flog nl,  has been shown to be 

NP-complete only in cases where G consists of many disjoint connected components 

[16]. It appears that the complexity of the special case addressed by the experiments 

reported here (embedding a connected graph with exactly 2* vertices onto His) is still 

open. 

A number of researchers have studied the hypercube embedding for regular struc- 

tures, such as hypercubes themselves [6], grids [5, 11, 121, trees [41, 431, and binary 

trees [7, 33, 41, 431. In particular, Bhat showed that testing whether a given graph is 

exactly a hypercube can be done in O(n1ogn) time and Chan [12] showed that all 2D 

grids can be embedded in their optimal cubes (the smallest cube that has at least as 

many nodes as the grid) in dilation 2. 

It is known that some binary trees cannot be embedded into their optimal cubes 

with dilation 1 (e.g., complete binary trees; see [43]). Afrati, Papadimitriou, and Papa- 

georgiou [I] described a divide-and-conquer algorithm that gives dilation-l embeddings 

of a k-cubical tree (k is the smallest k possible) in a hypercube of dimension at most P. 
In the case of binary trees, this algorithm embeds an n-node binary tree in a hypercube 

of at most O(n1.71) nodes (based on the fact that binary trees can always be divided 

into two subtrees each with 113 and 213 of the nodes). Wagner [41] improved this result 

by showing that any binary tree can be embedded in an O(n1ogn)-node hypercube in 

dilation 1. 

Bhatt, Chung, Leighton, and Rosenberg first showed that an arbitrary binary tree 

can be embedded in a hypercube with O(1) dilation, O(1) expansion, and also O(1) 

congestion [7]. The constant factor of this embedding is too large to make it of practical 

interest. Monien and Sudbrough [33] improved the result by giving an embedding of 

dilation 3 and expansion O(1) and an embedding of dilation 5 and expansion 1. Finally, 

the embedding of a k-ary tree of height d was shown by Wu [43] to have a dilation 2log k 

on a ((d - 1) log k + 1) cube. 

1.3. Previous Experimental  Work. A well-known early result due to Bokhari 

[9] proposed a local-search algorithm with pairwise exchange for mapping communica- 

tion graphs to a Finite Element Machine (FEM, "eight-nearest neighbor" interconnec- 

tion). Bokhari adopted the cardinality model (i.e., maximizing the number of edges of 

the communication graph that are mapped with dilation 1) as the performance metric 

and tested about 20 structural problems of 9 to 49 nodes for FEM's of size 4 x 4 to 

7 x 7. To avoid local-optima traps, probabilistic jumps were used in the local search to 

improve the performance. 

Lee and Aggarwal [31] formulated a set of new objective functions which accu- 

rately quantify communication overhead for different applications (e.g., asynchronous 

communication, synchronous communication, and parallel image-processing model). A 
greedy heuristic in combination with a local search (pairwise exchange) was also pro- 

posed to solve the mapping problem. The algorithm was tested for 9 problem graphs 

on hypercubes of 8 and 16 nodes respectively. 

A simulated annealing algorithm was studied and reported by Ramanujam, Ercal, 

and Sadayappan [36]. To formulate the communication overhead, a load-imbalance fac- 



tor was taken into account as part of the objective function. Two strategies, namely 

simulated annealing with scaling and simulated annealing with exchange, were investi- 

gated to prevent the load-imbalance factor from trapping the process at local optima. 

Simulations were done for 5 structured and 3 random graphs with 144 to 602 vertices. 

Ercal, Ramanujam, and Sadayappan further proposed an efficient recursive map- 

ping strategy for hypercubes [17] based on repeated application of the Kernighan-Lin 

graph partitioning heuristic [28]. This algorithm was compared with simulated an- 

nealing under the same set of test graphs in [36]. Results showed that this algorithm 

obtained costs slightly worse than simulated annealing, but the cost difference was al- 

ways less than 10% and the computation time of their recursive strategy was several 

orders of magnitude less. 

A processor-and-link assignment algorithm using simulated annealing was devel- 

oped by Bollinger and Midkiff [lo]. Since each link in the multiprocessor may be used 

by several processes (causing traffic congestion on the link), the objective function con- 

siders communication costs and the load on each link. The algorithm employs two 

optimization phases. Process annealing assigns processes to processors (processor as- 

signment) and then connection annealing further reduces the communication cost by 

routing traffic over data paths (link assignment). The performance of the algorithm was 

evaluated by mapping hypercubes with 8 to 512 nodes onto themselves and mapping 

binary trees to hypercubes. Simulation showed that this simulated annealing algorithm 

was able to consistently map hypercubes of size < 128 perfectly. 

Recently Andre, Pazat, and Priol compared the performance of several different 

mapping algorithms for the hypercube embedding problem [2]. They adopted the 

quadratic assignment problem as the objective function and compared four different 

heuristics including Bokhari's algorithm [9], Chen's algorithm [14], a simulated anneal- 

ing algorithm, and what they call the "friendly greedy" algorithm [35]. The comparison 

was based on mapping 4 x 4 grids to 16-node hypercubes and mapping a parallel ray- 

tracing algorithm to 16- and 32-node hypercubes. For each graph and each algorithm, 

100 experiments were performed and algorithms were compared by their average cost. 

1.4. Summary of Contributions. The purpose of our study is to evaluate the 

performance of a variety of different heuristics for hypercube embedding on a variety of 

different communication graphs. We chose the 7-cube as our primary target graph and 

all of our communication graphs had exactly 128 vertices. Differences among heuristics 

with smaller cubes as targets were not as striking (e.g., the 7-cube was the smallest 

target on which the superiority of simulated annealing for random graphs became clear). 

Choosing a larger cube would have severely limited the number of tests we were able to 

do. We did follow up our more interesting findings on larger cubes. Many interesting 

observations emerged; some of these need to be pursued with more extensive testing, 

and, where possible, confidence intervals can be determined for parameters of interest. 

The main contributions of our study are the following. 

Comparisons of 12 heuristics or combinations of heuristics on 7 different types 

of communication graphs (a total of 61 different graphs were used). 

Extensive testing and evaluation of each individual heuristic to obtain a com- 
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petitive implementation. 

Significant improvements in runtime and/or solution quality for several heuris- 

tics. 

A new fast (linear-time) greedy heuristic that obtains significantly better than 

random solutions. 

An adaptation of the Kernighan-Jin graph partitioning heuristic with results 

that are competitive with simulated annealing. 

The use of flat moves, transformations that neither increase nor decrease cost, 

to significantly improve the solution quality of local-search heuristics. 

Tests on random geometric graphs, a class of graphs that exhibits more struc- 

ture than random graphs, but less than other classes, to observe the effect of 

limited structure on the efficacy of the heuristics (random geometric graphs 

were used to test graph partitioning heuristics by Johnson et al. [27]). 

The rest of our paper is organized as follows. Section 2 gives a description of each of 

the heuristics we tested, and our implementations. Section 3 describes our experimental 

methodology. Section 4 gives a detailed account of our results. Section 5 gives some 

conclusions and Section 6 gives suggestions for future work. 

2. The Heuristics. The following is a description of each of the heuristics we 

implemented, with some indication of asymptotic running time and overall performance 

characteristics. The running time of most heuristics on sparse graphs is improved 

significantly by the use of an efficient priority-queue implementation discussed in the 

first subsection. Since most communication graphs are likely to be sparse and since 

the effort to improve mappings of dense graphs may not pay off anyway (for sufficiently 

dense graphs, even random solutions are likely to be close to optimal), the priority-queue 

implementation may well be worth the effort. 

Table 1 gives a summary of all the heuristics we tested, showing their asymptotic 

running times for graphs of arbitrary density (m = number of edges, n = number of 

vertices) and the expected running time for graphs having average degree logn, the 

same as the hypercube. Local search, Kernighan-Lin, and simulated annealing are also 

referred to as iterative improvement heuristics, because existing solutions are repeatedly - 
improved by applying transformations. For these iterative improvement heuristics 1 is 

the expected number of iterations of the outer loon. whose value can onlv be determined 
A ,  

experimentally, since it depends on the rate at which the heuristic converges to a local 

optimum. 

For local-search heuristics, 1 appeared to grow roughly as O(n log n), which is 

the order of the expected difference in cost between a random starting solution 

and the final local optimum (the average amount of improvement per iteration 

was a small constant). 

For Kernighan-Lin 1 appeared to grow as O(1og n). 

For simulated annealing 1 was dependent on the settings of various parameters. 

Also shown are actual average runtimes on a Sun 31260, the machine used to obtain 

our experimental results. The runtimes shown are for hypercubes of dimension 7; we 

checked the asymptotic runtimes with similar experiments on cubes of dimensions 6, 
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8, and 9. These runtimes are, in the case of local search and Kernighan-Lin, for the 

unenhanced versions of these heuristics. Runtimes reported later are larger due to the - 
addition of flat moves or random uphill moves. 

TABLE 1 

Asymptotic running times of various heuristics 

Heuristic 1 Type Time (general) 

SG 
LS 

LSC 
KL 

(m = number of edges, n = number of vertices, and 1 = number of iterations in outer loop) 

RMB 

SAC 

Based on 5 runs on each of 10 random graphs (128 vertices, an average of 448 edges), mapped 

onto cubes of dimension 7 - each heuristic was tested on the same set of graphs and all 

iterative improvement heuristics, i.e. local seaich, Kernighan-Kin, and simulated annealing 

used the same 50 random initial solutions. 

G 1 greedy 
greedy 
local search 
local search 
Ker~chan-Lin 

2.1. Efficient Data Structures. Many of the heuristics described below make 

use of an efficient priority-queue implementation called a bucket list (used by Fiduccia 

and Mattheyses [I91 in their implementation of the Kernighan-Lin heuristic for graph 

partitioning). The general setting is one in which there is a finite set of items X and an 

integer value gain(x) in some limited range for each x Â X. Figure 1 shows the bucket 

list as used in our implementation of Chen's greedy heuristic (G); each item is a pair 

(v, h), where v is a communication graph vertex and h is a hypercube vertex. An item 

can also be a single communication graph vertex (in the simple greedy heuristic SG), a 

pair of vertices to be swapped (in LS and KL), or a pair (v, d), where v is a vertex and 

d is a dimension along which v is to be swapped (in LSC). The priority queue supports 

the operations 

a Insert(x) (put x on the queue), 

Deletetx) (remove x from the queue), 

Max() (return the item with largest gain), and 

a Changetx) (revise x's position in the queue in accordance with the current 

value of gaintx)). 

The following lemma is a restatement of the time bound found in [19], presented in 

more general terms. 

LEMMA 2.1. Let QJ be the number of times the priority-queue operations Insert, 

Delete, and Change are called, let QM be the number of calls to Max, let M be the 

maximum gain of any item, and let Â be the maximum amount by which the gain of 
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O(m + n) 
O(mn + l[m + nlog n)) 

O(m1ogn t l(m/n + log n)) 
O(lmn) - 

graph partition 
simulated annealing 

o(l(k1og'n)) 
o(l(ml0gn)) 



possible * Â  gain I4 

p, 0 

Vertices of 
hypercube 

Lowest 
possible gain 1 

Vertices of 
commun. graph it 

F I G .  i. d u c k e t  list" priori ty  queue 

any item may increase between two successive Delete operations. Then, assuming all 

insertions occur at the beginning, the priority queue can be implemented so that the total 

time for all operations is ~ ( Q I  + Q M ~  + M).  

Proof. The priority queue is stored as an array of M distinct buckets, where bucket[i] 

is a linked list of all items whose current gain is i. If every item has a pointer to its 

position in the appropriate list, the operation Change is simply a matter of moving 

an item from one bucket to another and can be done in constant time. Insert and 

Delete can also be done in constant time. To facilitate Max we maintain an auxiliary 

variable best-gain, the value of the largest i for which bucket[i] is non-empty; best-gain 

is updated whenever the gain of an item becomes larger than the current value of 

best-gain as the result of Insert or Change. After a Delete, best-gain may have to be 

decreased (if the bucket containing the item of highest gain was emptied) by scanning 

for the next non-empty bucket. However, the scan for the next non-empty bucket may 

be deferred until the next Max operation. If the time spent scanning is ignored, Max 

can be done in constant time. 

It is easy to see that the total time spent scanning for the next non-empty bucket 

during Max is proportional to the number of buckets, plus the sum over all Max op- 

erations of the increase in best-gain since the previous Max. Except for the increases 

due to the initial insertions, which account for a total of at most M ,  best-gain cannot 

increase in value unless the gain of an individual item increases by at least the same 

amount. Thus the time spent scanning is O(QM6 + M ) .  D 



Some comments are in order. First, the restriction that all insertions take place at 

the beginning is really not a restriction. We can always choose a sufficiently small gain 

to represent the fact that an item is not in the queue, insert all items initially with that 

value, and use Change to simulate all subsequent insertions and deletions. Second, the 

bound given by the lemma is overly pessimistic if the number of Max operations exceeds 

the number of deletions. This is not an issue in our applications of the lemma. Finally, 

if 6 is large, as may be the case when these heuristics are adapted to the quadratic 

assignment model, an ordinary priority queue (heap) can be used to achieve a time 

bound of O((Qi+ QM + M) log s), where s is the maximum number of items in the 

queue. The effect on our reported time bounds is at most an additional logn factor. 

2.2. Greedy Heuristics. Greedy heuristics for hypercube embedding are known 

to be efficient, easy to  implement, stable (predictable), and capable of mapping regular 

structures well (e.g., many greedy heuristics generate the optimal solution when the 

communication graph is a cube). In applications where a solution needs to be generated 

quickly and coding effort is at a premium, a greedy heuristic may be the best choice. 

In our experimental evaluation, greedy heuristics are also used as a front end to iter- 

ative improvement algorithms to generate better initial solutions. Aside from simulated 

annealing, this appeals to be the combination that gives lowest-cost solutions. 

The generic form of a greedy heuristic for hypercube embedding is given in Figure 2. 

Running time and solution quality vary with the sophistication of the gain function. 

We implemented one greedy heuristic of moderate sophistication, namely that of Chen 

[13, 141, referred to as G, and one very simple one, referred to as SG. Chen's heuristic 

appears to be typical in both runtime and solution quality of the other greedy heuristics 

found in the literature. We did some experiments with the heuristic of Lee and Aggarwal 

[31] to verify this claim. Both heuristics as implemented have an asymptotic running 

time of O(mn), although our implementation of Lee and Aggarwal's appears to be 

slightly faster. Solution quality for Chen's heuristic is uniformly better, except on 

perfect cubes, where both obtain optimal solutions. The gap between the two (both 

runtime and solution quality) increases with increasing dimension. Experiments done by 

Andre et al. on smaller graphs had a similar outcome [2]. Note that our implementation 

of Chen's heuristic, due to the use of Lemma 2.1 is more efficient than reported in [13]. 

The same tricks can easily be applied to the other greedy heuristics, and we diduse 

them in our implementation of Lee and Aggarwal's. 

In Chen's heuristic 

gain(v, h) = (logn - d(h,  f (w))). 
wâ‚¬A(v),w 

In other words, gain is a measure of how much better position h is than the worst 

conceivable mapping for v. If a bucket list is used to keep track of gain, the first 

statement in the loop of Figure 2 is implemented by the operation Max(). Updates to 

gain are accomplished by the procedure in Figure 3. 

There are n Max operations, n2 Deletes, and O(mn) Changes. The gain of any 

item increases by at  most logn - 1 during any iteration. Note also that the maximum 
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V := communication graph vertices 

H := hypercube nodes 

initialize gain : V x H i-i- 10.. . C\ 
repeat  

choose a pair (v*, h*) with v* 6 V, h* ? H ,  such that 

gain(v*, h*) = ma3~vav,hii~{gain(v, h ) }  
map v* to h* 

V := V - {v'};  H := H - {h*}  

update values of gain 

until V = 0 

FIG. 2. Generic greedy heuristic for hypercube embedding 

Deletetv*, h*) 

for ? V do  Delete(v, h') end do  

for ? H do  Delete(ve, h )  end do  

for ? A(v*) n V do  

o r  h ? H do  I gain(v, h )  := gain(v, h)  + log n - d(h,  f ( v ) )  

Change(v, h )  

L d  do  

end do  

FIG. 3. Updating gain in Chen's heuristic 



possible gain of an item is (n - l)(logn - 1). We can therefore apply Lemma 2.1 with 

Q j  in O(mn), QM = n, M in O(nlogn), and 15 in O(1ogn) to obtain a time bound of 

O(mn). 

Since the level of sophistication attained by most of the greedy heuristics reported 

in the literature is at the cost of a time bound that is worse than quadratic in the input 

size, we decided to see whether similar solution quality could be achieved by a linear- 

time greedy heuristic. One way to achieve linear time is to make the gain independent 

of h and to use a predetermined sequence of hypercube nodes to guide the mapping. 

The Gray code sequence (see [23] for details) is a natural candidate for an ordering 

of hypercube vertices. It has the property that each vertex in the sequence is adjacent 

to both its immediate predecessor and its immediate successor. Also, vertices that are 

close to each other in Gray code order are likely to be close in Hamming distance. 

In every iteration the simple greedy heuristic chooses a vertex that has a maximum 

number of neighbors already mapped. Figure 4 gives an overview. If a bucket list is 

used to maintain lA(v)nVt1 for each v and the communication graph is in adjacency-list 

format, the overall time is O(m + n) (dominated by 0 (m)  Change operations; 5 = 1 

in this case - see Lemma 2.1). For best results the buckets should be implemented as 

last-in first-out lists. This favors vertices whose neighbors were mapped to more recent 

nodes in the Gray code sequence and are thus more likely to be close to the current 

node. 

V' := 0 /* vertices already mapped */ 
for h 6 H (in Gray code order) do 

choose v* Â V - V so that [A(v*) 0 V'\ is maximized 

map v* to h 

V' := V'U {v*} 

for v e A(v*) do 

increment \A(v) n V'\ (update data structure) 

end do 

end do 

FIG. 4. Simple greedy heuristic 

While SG, the simple greedy heuristic, is by far the fastest heuristic we tested, its 

solution quality is also the worst. The solutions obtained by SG on random graphs had 

costs that were roughly halfway between random solutions and the best solutions ob- 

tained by simulated annealing. In combination with LSC, the fast local search described 

in the next section, SG is still faster than any other heuristic (including LSC by itself) 

and solution costs are competitive with other heuristics. We suspect that with some 

additional sophistication obtainable at the cost of only an additional O(1og n) factor in 

the runtime, the simple greedy heuristic can be made competitive with other greedy 

heuristics. 
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2.3. Local Search. Local search is a general term for heuristics that repeatedly 

improve the quality of a solution by applying local transformations. Two choices must 

be made in implementing a local-search heuristic. The first of these is the choice of 

neighborhood, the set of transformations that may be applied to the current solution in 

order to obtain a new one. The simplest approach is to transform a solution by exchang- 

ing, or swapping, the hypercube nodes to which two vertices are mapped. We consider 

two possibilities. In the all-swaps neighborhood, all n(n - 1)/2 possible exchanges are 

considered. The cube-neighbors neighborhood reduces the neighborhood size, the num- 

ber of ~ossible transformations, to (nlog n) /  by allowing swaps only between vertices 

that are mapped to adjacent hypercube no es. Not surprisingly, the cube-neighbors 

those of the all-swaps approach. 

I 
approach, while significantly quicker, also gides solutions that are not quite as good as 

The second choice is the discipline by $hich a transformation is chosen. Three 

possibilities are first descent - consider the, the swaps in arbitrary order and choose 

the first one that improves the current solutio& steepest descent - choose the swap that 

gives the greatest possible improvement overdue current solution, and random descent 

- choose at random among swaps that impr ve the current solution. Random descent 

is actually a special case of simulated anneal' k g, described later. 

We initially implemented a simple all-styaps, first-descent local-search heuristic. 

This implementation, while significantly slower than the ones reported in our results 

(its worst-case running time was O(lmn)), vises no non-trivial data structures and is 

therefore easy to implement. It also uses les additional space than LS, 0(m)  versus 

0(n2),  a significant consideration when mapp ng sparse graphs onto cubes of dimension 

solutions than those reported for LS. 

^ 
9 or higher. In our experiments, the simple1 implementation obtained slightly better 

The two implementations of local search1 in our experiments are LS, an all-swaps 

steepest-descent implementation, and LSC, & cube-neighbors steepest-descent imple- 

mentation. 

LS keeps the possible swaps on a bucket $st, choosing the best swap at each stage. 

The gain of a swap is the cost decrease that results if the swap is performed. Before we 

give details of the time bound, it should be netted that the bucket list strategy can also 

be adapted to a first-descent or random-descent discipline. In this case the gain is 1 if 

the swap leads to lower cost and 0 otherwise. 

The gains of all the swaps can be initialized in O(mn) time: for each pair of vertices 

x, y compute the gain of the swap x, y by computing distances from x and y to their 

neighbors both before and after the swap. T e gain of any single swap is in the range 

zk(n - l)(log n - I), so the maximum gain is O(n log n). Whenever a swap v, w is 
done, it is sufficient to update the gains for t e following pairs: 

v,x and w, x for all x: a recomputati i n of the gain of each of these swaps can 

be done in time O(deg(v) + deg(x)) (^ad O(deg(w) + deg(x))) for a total time 

of O(nd), where d is the expected de ree of a vertex (or neighbor) involved in 

a swap; this step also requires 0(n)  $ hange operations. 

x, y for x â A(v) U A(w), all y: these 'rains need only be adjusted according to 



the new distance between x and v or w; time is dominated by O((deg(v) + deg(w))n) 

Change operations, assuming unit cost to compute hypercube distances. 

In the formula of Lemma 2.1, QI  is dominated by ~ ( l n d )  Change operations, QM = I, 
6 = M = n log n. Our experiments confirm that the expected degree of vertices involved 

in swaps is the same as for vertices in general, that is d KS m/n. 

The overall running time of LS is therefore 0 (mn  + l(m + n log n)). Recall that 

I is the number of swaps before a local optimum is reached. From our experiments i 

appears to grow as O(n1og n). Using a greedy initial solution (see Section 2.2) reduces 

I significantly and also improves solution quality. The observed running time with a 

random starting solution for graphs having m = nlog n, where n = 64, 128, 256, and 

512, was consistent with our theoretical analysis, somewhat worse than 0(n2).  

LSC runs in expected time O(l(m/n + logn)), plus O(m1ogn) for initialization, 

with the growth rate of l being similar to that observed for LS. On the graphs used to test 

asymptotic runtime, both time bounds simplify to O(n(1og n)2) (assuming I w n log n), 

which is consistent with the observed results. Whether the speedup in runtime makes 

up for the loss in solution quality is application dependent. 

The time bound for LSC is obtained with a generalization of a trick used by 

Kernighan and Lin [28]. Let y(v,d) be the decrease in cost that would result from 

changing dimension d of the mapping of vertex v (without changing the mapping of 

any other vertices); that is, 7(v, d) is the number of vertices in A(v) whose dth bit in 

the mapping is different from that of v, minus the number whose dth bit is the same. 

Then gain(v, d), the decrease in cost from performing a swap of v with w = cn(v, d), is 

7(v, d) +7(w, d) -2 x adj(v, w), where adj(v, w) is 1 if v and w are adjacent in the com- 

munication graph, 0 otherwise. Given a specific mapping, the values of y(v, d) for all v 

and d can be initialized in time O(m1ogn). When v and w = cn(v,d) are swapped, the 

values of 7(v, d), $10, d), and 7(x, d) for all x 6 A(v) U A(w) are changed. This changes 

the value of gain for all these vertices and their hypercube neighbors along dimension d. 

Since v and w each have new hypercube neighbors along all other dimensions as well, 

the values gain(v,d1) and gain,(cn(v,d')dl) must change for each dimension dl. The 

same goes for gain(w, d') and gain(cn(w, dl), dl). 

The total number of items whose gain is changed is O(deg(v) + deg(w) + logn). 

Note that the maximum amount by which gain(x, dl) for any x, d' can change during 

the swap is O(deg(x)); the maximum value of gain(x, dl) is deg(x), the minimum value 

is -deg(x). The running time after initialization, using Lemma 2.1 is o ( I ( ~ +  logn)), 

where d is the average degree of vertices involved in swaps. As in the bound for the 

all-swaps steepest-descent heuristic, we use the experimental observation that d w m/n. 

The communication-graph adjacency matrix for computing gain(v, d) (which would 

require 0(n2)  time and space) is not necessary. We only need to know for each vertex 

v and dimension d whether cn(v,d) 6 A(v). For this purpose it suffices to maintain 

an O(n1ogn) size array adj, where adj[u][d] is 1 if cn(v,d) E A(v), 0 otherwise. If 

we assume two cube addresses can be checked for adjacency in constant time, adj can 

easily be updated as 7 is updated during a swap. Otherwise, the time bound for LSC 
needs to be multiplied by a logn factor. Our experiments actually used the explicit 



adjacency matrix; the extra space was not a critical factor. 

We added an additional wrinkle to the traditional local-search approach. During 

our early experiments we discovered that many of the availahle swaps neither increase 

nor decrease solution cost. A traditional local-search heuristic will halt when no further 

improvement is possible, i.e. when all availahle swaps either increase cost or keep it the 

same. We allow a certain number of flat moves, moves that keep cost the same, when 

the current configuration cannot be improved. The number of successive flat moves is 

controlled by an input parameter maxflatmoves. Increasing this parameter increases 

the running time (because more swaps are made overall), but also improves solution 

quality, up to a point. 

LS and LSC have the advantage that flat moves are less costly than for simple local 

search. In a straightforward implementation of local search, each flat move requires a 

scan of all possible swaps to make sure none of them improve cost before a flat move is 

chosen. In LS and LSC, because we always choose the best possible move at each stage, 

a flat moveis no more costly than any other move. Figure 5 shows the tradeoff between 

runtime and solution quality when flat moves are added to LS (based on 20 runs for 

one graph, either random or geometric). The pattern is similar for LSC (with lower 

runtimes). In our experiments we chose 80 as the standard setting of maxflatmoves for 

LS and 40 for LSC -beyond that point the improvement in solution cost (for random 

and geometric graphs) was less than the standard error of the data. 

The importance of flat moves is questionable, of course, when more general cost 

functions, such as the quadratic assignment model, are used. However, it is still possible 

to allow a limited number of moves each of which increases cost by less than some small 

threshold. We suspect that the effect of such a strategy on more general cost functions 

will he similar to the effect that flat moves had here on local-search heuristics. 

2.4. Kernighan-Lin. The KernighamLin heuristic for graph partitioning [28] is a 

variant of local search. We use the term "Kernighan-Lin" to denote any heuristic that, 

during a single stage, tries out a sequence of best moves (swaps in this case) and chooses 

as its initial solution for the next stage the point of lowest cost in the sequence. Our 

implementation of KL, the Kernighan-Lin heuristic for hypercube embedding, is shown 

in Figure 6. To allow escapes from local optima and thus offer better competition with 

simulated annealing in solution quality, we allowed a certain number of randomized 

uphill stages, stages during which no improvement occurs (this includes stages which 

neither increase nor decrease cost). The randomization could be refined so that each 

move during a stage is weighted according to how close to the initial point it is (moves 

that go farther uphill would receive less weight, analogous to simulated annealing). This 

refinement did not improve solution quality for random graphs; our reported results 

are for the unrefined version. Completely randomized uphill moves appear to be a 

more powerful mechanism for escaping local optima than flat moves, particularly when 

mapping communication graphs that are almost hypercubes. Since the Kernighan-Lin 

approach computes a whole sequence of moves during every stage, it is a simple matter 

to choose a random position in that sequence as the destination for a "jump." 

Figure 7 shows the increase in runtime and decrease in mapping cost obtained 
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- Random graphs 

\Â " 
Geometric graphs 

Each point on the curves is \ labeled with the number of flat 
moves that produced it. 

Run time (sec.) 

FIG. 5. Adding fiat moves io LS 



f := an initial mapping (e.g. random or greedy) 

best-f := f 
bestxost := cost of f 

not-better := 0 

repeat  

/* this is the beginning of a stage */ 
initialize a bucket list and insert items v ,  w into it 

(one item for each possible swap; 

let gain(v, w )  = decrease in cost from swapping v ,  w )  

/* "try out" a sequence of swaps, using each item once */ 
V := communication graph vertices 

cost[O] := cost of f 

for i = 1 t o  n /2  do 

v ,  w := M a x ( )  

swap[i\ := v ,  w 

cost[i] := cost[i - 11 - gain(v, w )  

V := V' - {v, w }  

Delete(v, w )  

for x E V d o  Delete(v, x ) ;  Deletetw, x )  end d o  

for x E A ( v )  U A ( w )  d o  

for y 6 V1,  y # x d o  update gain(x ,  Y); Change(x ,  y) end do 

end d o  

end d o  

I* find best cost along the way and perform swaps on current 

mapping to get there */ 
cost[i*\ := m i n ~ < i < ~ ~ ~ ~ ~  cost[i] 

if cost[i*] < be2Tost t hen  

not-better := 0 

for i = 1 t o  i* d o  f := f @ swap[i] end do 

best-f := / 
bestxost := cost[i*] 

else /* no improvement: try a random uphill or flat move */ 
not-better := not-better + 1 

i* := a random number from 1 to n / 2  

for i = 1 t o  i* do f := f @ swap[i] end d o  

endif 

until not-better < rnax~uphill~m.oves 

report best-cost and best-f 

P I G .  6 .  Kernighan-Lin heuristic for hypercube embedding 
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by increasing maxuphillmoves, the parameter that controls the number of consecutive 

random jumps allowed (based on 20 runs for one graph, random or geometric). We 

arbitrarily chose the value of 20 for maxuphillmoves, partly because this value gave 

solutions that were competitive with simulated annealing on all classes of graphs, with 

significantly better runtime. In most cases, increasing maxuphillmoves will lead to even 

better solutions, but also significantly increased runtime. 

- Random graphs 

Geometric graphs 

Each point on the curves is labeled 
with the maximum number of uphill 

moves that produced it. 

Run time (sec.) 

FIG. 7 .  Effect of random jumps on the Kernighan-Lin heuristic 

Using an analysis similar to  that of LS, we can show that the asymptotic time 

bound for KL is O(lmn), where l is the number of stages. The value of 1 is also much 

smaller than that for local search (average values for I when mapping a random graph 

to a cube of dimension 6, 7, 8, or 9 were 6, 11, 14, and 19, respectively - based on 20 

runs; these results were obtained without uphill moves; I is, of course, influenced by the 

value of maxuphillmoves), In practice, KL is slower than LS but also gives significantly 

better solutions. 

2.5. Recursive Mincut  Bipartitioning. Proposed by Ercal et al. [17], recursive 

mincut bipartitioningis an interesting blend of greedy strategies and those based on local 

search. A fundamental insight, which is also the basis of much of the theoretical work 

on hypercube embedding (see, e.g. [7, 33]), is that good embeddings can be obtained 

by repeatedly subdividing the communication graph into pieces of roughly equal size 
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so as to minimize the number of edges between pieces. The effect is to minimize the 

number of edges that might map to long paths because their endpoints axe in different 

subcubes. 

A detailed overview of RMB is given in Figure 8. If a graph G = (V, E )  having 

n = 2* vertices is to be mapped to the k-cube Hk, we split G into two subgraphs 

Go = (6 Eo) and Gl = (Vl, El) so that the number of edges between Vy and V, is 

minimized. Then we recursively map each of Go and Gl into disjoint Hk-l, subcubes 

of Hk. A graph with one vertex is mapped trivially to a 0-cube. If the mappings of Go 

and GI are completely unaware of each other, the edges between Vg and Vl may end 

up being mapped in an undesirable way. One way to optimize the mapping of these 

cross edges would be to try out various rotations of the subcube mappings relative to 

each other. The number of possible combinations makes this approach too expensive. 

Actually the RMB heuristic maps Go first and then completes the mapping of Gl using 

information about the mapping of GO, i.e. the cross edges are counted when computing 

the cost of a subpartition of GI. When the current subgraph is partitioned and the A h  

bit o f f  is chosen for its vertices, vertices in other subgraphs whose dth bit has already 

been chosen are taken into account. 

We used the Fiduccia and Mattheyses [19] implementation of the Kernighan-Lin 

heuristic [28] to do the graph partitioning. In our setting, unlike that of Ercal et al., 

the final partition during each recursive call had to be into two exactly equal parts. We 

accomplished this by tolerating a certain level of imbalance during the execution of the 

Kernighan-Lin heuristic (difference between the two partitions was allowed to be 6% of 
their size; this value was chosen by experimentation), and then using a greedy method 

to restore balance at the end. 

Asymptotic running time for RMB is O(Imlogn), where I is the average number of 

stages in the Kernighan-Lin graph partitioning heuristic, which is typically very small. 

In our experiments RMB gives better solutions than either greedy heuristic for random 

graphs, geometric graphs, and cubes with additional edges; however, it does poorly on 

trees. RMB is also faster than all heuristics but SG and LSC. RMB solutions can be 

used as initial solutions for local search. Results for RMB + LS are very promising, 

better and faster than G + LS on most classes of graphs. 

2.6. Simulated Annealing. Simulated annealing, developed by Kirkpatrick et 

al. [29], generalizes local search in several ways. The first difference is that the trans- 

formation to be applied to the current solution is chosen at random. The second is that 

uphill moves, transformations that increase solution cost, are allowed, the probability 

of an uphill move decreasing as the increase in cost gets larger. While these first two 

differences could easily be incorporated into a sophisticated local-search strategy, the 

third feature, that the probability of uphill moves gradually decreases throughout a 

simulated annealing run, is what distinguishes simulated annealing from most local- 

search variants. An overview of simulated annealing for hypercube embedding is given 

in Figure 9. Note that the variable T (for temperature), which decreases throughout 

execution, governs the probability that an uphill move is chosen. 

Our implementation of simulated annealing, based on that of Johnson et al. [27] for 



procedure Map-Subcube(W, d) is 

/* W C V ,  \W\ = n/2-', the dth bit of f(v) 

has not been fixed for any v 6 W */ 

if [ W [  = 1 then  re turn  endif 

let Xo = {v I dth bit of f (v) is fixed at 0 } 
let XI = {v 1 dth bit of f (v) is fixed at 1 } 
(Wo, Wl) := a partition of W which minimizes the number 

of edges between WoUXo and Wl UXi subject 
to the constraint that Po\ = \W1l 

for v ? Wo d o  fix dth bit of f(u) at 0 end d o  

for v ? Wl d o  fix dth bit of f(v) at 1 end d o  

Map.Subcube(Wo, d + 1) 

Map.Subcube(Wl, d + 1) 

/* at this point the dth bit of f(v) is fixed for all v ? W */ 
and Map-Subcube 

procedure RMB(G = (V, E)) is 

initialize all bits of f so they're not fixed 

Map.Subcube(V, 0) 

end RMB 

FIG. 8. Recursive mancut bipartitioning heuristic 

f := an initial mapping (usually random) 

T := start temperature 

repeat  

for some number of iterations do 

choose a random swap v, w 

A := cost(f @ {v,w}) -cost(f) 

i f A 5 O  then  f : = f @ { v , w }  

else f := f @ {v, w} with probability e-^IT 

end d o  

T := rT /* reduce temperature by temp factor r */ 
until  "frozen" 

FIG. 9. Simulated annealing for hypercube embedding 



graph partitioning, requires the user to adjust several parameters that affect running 

time and solution quality. Two of these, start temperature and minpercent, govern the 

initial and terminating conditions of a simulated annealing run. At each temperature, 

the algorithm calculates an acceptance ratio, the ratio of swaps actually performed to 

those considered. The "frozen" condition occurs when no improvement in solution cost 

has been observed for 5 subsequent temperatures and the acceptance ratio is below 

minpercent. Start temperature is often chosen by doing a trial run to see what tem- 

perature gives the desired initial acceptance ratio (usually about 40%). As shown in 

Figure 10, both solution cost and acceptance ratio decrease as temperature is gradually 

decreased. The points along the curve represent 20 runs for a random geometric graph 

using a high start temperature and a low value of minpercent. If start temperature is set 

too high, a lot of time is wasted generating new solutions that are essentially random 

(the initial flat part of the curve in Figure 10(a)). If it is too low, the advantages of 

simulated annealing over local search are lost. In the extreme case, when start temper- 

ature is close to 0, simulated annealing becomes effectively a local search with random 

descent and a large number of flat moves. We found that for either random graphs or 

geometric graphs, increasing the start temperature above 2 does not have a significant 

effect on solution quality. Data for different start temperatures based on 5 runs on each 

of the same 10 geometric graphs is shown in Figure 11. We chose 2% as the value for 

minpercent- setting it below that value had almost no effect on solution quality. 

More critical to both runtime and solution quality were the choices of sizefactor, 

which governs the number of iterations at each temperature, and tempfactor, which 

governs the rate at which temperature decreases and therefore the expected number 

of temperatures. The number of iterations at each temperature is a constant, namely 

sizefactor, times the size of the neighborhood (number of possible swaps from each 

configuration). 

We implemented a version that considers all possible swaps and a version that 

considers only cube-neighbor swaps. We present results only for the cube-neighbors 

implementation, called SAC. Experiments comparing the two versions indicate that 

simulated annealing is powerful enough to overcome the limitations of cube-neighbor 

swapping. If cost is ignored, an arbitrary swap can be emulated by Oflogn) cube- 

neighbor swaps. At high temperatures, cost of the intermediate swaps is not a significant 

factor for simulated annealing, so the power of an all-swaps neighborhood is effectively 

achieved. Our experiments show that for random graphs, the cube-neighbors approach 

takes less time to  achieve the same solution quality as the all-swaps approach. 

The expected asymptotic running time of SAC is O(lmlogn), where I is the ex- 

pected number of temperatures (for all-swaps simulated annealing, asymptotic time is 

O(imn)). No data structures were used; the reduction in cost of a swap v, w was cal- 

culated simply by looking at the effect on all vertices in A(v) U A(w). Maintenance of 

7, as used in LSC, but without bucket lists, might improve running time, but only by 

a small constant factor (runtime per accepted move would increase while runtime for 

non-accepted moves would decrease). 

Figures 12 and 13 illustrate the tradeoff between running time and solution quality 
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F I G .  11.  Effect of using different starting temperatures 

for varying size and temp factors, respectively. The data are based on 5 runs on 10 

geometric graphs for each setting (dimension 7). Other parameters were set at their 

standard values (start temperature = 2, minpercent = 2). The values chosen for the 

remainder of our experiments (sizefactor 16 and tempfactor 0.95) were a compromise 

(see Johnson et al. [27] for discussion of this choice in the context of graph partitioning). 

After extensive testing on various different types of graphs using a variety of combina- 

tions of parameter settings, we concluded that our choice needed to be made somewhat 

arbitrarily. We were almost always able to improve solution quality significantly by 

increasing sizefactor or tempfactor (the only notable exception was when our communi- 

cation graph was a cube and SAC obtained perfect mappings almost all the time with 

reasonable settings); running time increased even more significantly when we did this. 

Without any guidelines on how to judge the tradeoff between time and solution quality 

we had no basis for saying that any parameter settings were better than any others. To 

be fair, we included data for two different types of simulated annealing runs on each 

class of graphs, one with our standard parameters, the other with parameters adjusted 

so that SAC either had better solution quality than all other heuristics (regardless of 

time), or competitive solution quality with reduced running time. 

The overall idea is that the more time spent annealing, the better the expected 

solution quality. At one extreme, simulated annealing either degenerates to a variant of 

local search (start temperature = 0 or a very small tempfactor) or limited random prob- 

ing around an initial solution (small sizefactor). At the other extreme, it becomes an 

exponential algorithm producing nearly optimal solutions with high probability (note: 

this claim has not been verified for hypercube embedding). 

Following a recommendation from [27], we improved running time by storing values 
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FIG. 12. Tradeoff between runtime and solution quality for different size factors 
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FIG. 13. Tradeoff between runtime and solution quality for different temp factors 



of e x  in a table for values of x in the range where the probability of an uphill move 

is significantly different from 0 and significantly different from 1 (e-* ;a 0.995 when 

x = 11200 and ~i 0.0067 when x = 5). Direct calculation of e-* was replaced by the 

following: 

if x < -5 t h e n  0 else get eL200z1/200 from table, 

that is, e"' was approximated by a table entry for x truncated to the nearest 1/200 or 

0 if x < -5. Test runs where we did not approximate the exponent took almost three 

times as long as identical runs where we did. No improvement in solution quality was 

observed when the exponent was calculated exactly. 

Two final notes on our simulated annealing implementation: Our calculation of 

the acceptance ratio ignored flat moves. We found that, without this modification, 

the program sometimes failed to terminate because the presence of large numbers of 

flat moves prevented it from reaching a low enough acceptance ratio for the frozen 

criterion. An alternative would have been to choose a higher value for minpercent, but 

this would have unnecessarily penalized the runs that did not have many flat moves. 

Finally, the solution values we report for simulated annealing were the best values 

encountered during the run (not necessarily the final solution costs). At the frozen 

point, the difference between the best value and the final value was usually negligible 

if there was a difference at all. The primary effect of keeping track of the best solution 

found so far was to make our results insensitive to the choice of minpercent. 

3. Experimental  Methodology. Here we comment on the two most important 

aspects of our experimental methodology, our choice of test graphs and the introduction 

of randomization into all heuristics. 

3.1. Types  of Communication Graphs. In this paper, four kinds of communi- 

cation graphs are generated to compare the solution quality of various heuristics. These 

are random graphs, random geometric graphs, cubes, and trees. The evaluated graphs 

have exactly the same number of vertices as the hypercubes to which they are mapped. 

One would expect such graphs to be harder to embed efficiently than graphs with fewer 

vertices than their target cubes. Our experiments thus stress the algorithms and make 

comparisons easier. 

A random graph GnP is a graph with n vertices, where each pair of vertices con- 

stitutes an edge with probability p. We set p so that the expected number of edges in 

the random graph is (n log n)/2 (the expected degree of each vertex is log n and the p 

is logn/(n - I).) 

The second class of graphs is the random "geometric" graph which is a variant of the 

one described in [27]. A random geometric graph Und has n vertices. The edges of U are 

generated as follows. First, randomly generate n pairs of numbers uniformly from the 

interval [0,1), and view each pair as a point in the unit square. These points represent 

vertices of U ;  there is an edge between a pair of vertices if and only if their distance 

is d or less, i.e., if the points are (xi, yi) and (xi, yi), 1x1 - xt\ < d and lyi - 1/21 5 d. 

(Note: the "infinity norm" was used to compute distances; this simplified the algorithm 
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and did not significantly alter the characteristics of the graphs.) Again, we wanted to 

make the expected total number of edges in a geometric graph (n log n)/2. Thus the 

expected degree is logn, the probability of an edge is s, and d is $i/!2S2. n-1 

Random permutations of hypercubes are often used as communication graphs to 

evaluate local-search heuristics [2, 101. Since cubes can be embedded in themselves 

exactly, they can be fairly good indications of how close heuristic solutions are to optimal 

solutions. In order to make the pr blem more difficult, we also considered cubes with 

a number of edges randomly adde (or deleted). The number of edges to be added 

in our experiments was chosen so 1 ewhat arbitrarily to  be the dimension of the cube. 

Two types of cubes with edges deleted were tested: one with few deletions (number 

of deletions = dimension) and thelother with more deletions (number of deletions = 
(nlog n)/16). Results for few deletions were very similar to those for exact cubes while 

more deletions produced results mQre like those for random graphs. 

Random trees are also used ad communication graphs. Many parallel algorithms 

are tree structured, since trees are natural to data structures and divide-and-conquer 

algorithms. Also, they are the best candidates for experiments on very sparse graphs. 

An n-vertex random tree Tn was generated by the algorithm in Figure 14. 

S := {v}, where v is a random vertex in T 
/* T is the vertex set ~f Tn */ 

repeat 

v := a randomly chosen vertex from S 
w := a randomly chosen vertex from T - S 
Add the edge {v,w} ta Tn 
S:=SU{w} 

until S = T 

FIG. 14. ~ l ~ o h h m  for generating random trees 

3.2. Randomization. Since stimulated annealing is a randomized algorithm, ob- 

tainine different results for different~runs on identical data. we decided to randomize all - 
the heuristics for fair comparison. The iterative improvement heuristics are naturally 

randomized by the choice of a randdm initial solution. They can be further randomized 

by choosing randomly among equally desirable alternatives. For example, in the case of 

steepest descent there are often several swaps giving the best cost decrease. This second 

type of randomization appears to kip, at the expense of a slight increase in runtime. 

The iterative improvement heuristids other than SAC used in our experiments only did 

randomization with the starting solution and in the choice of a flat move; downhill 

moves were chosen arbitrarily rather than randomly. 

For RMB, randomness is present in the choice of a random starting partition during 

each recursive call. Greedy heuristics were the most difficult to randomize. For Chen's 
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greedy heuristic we randomized the sequence for processing hypercube vertices during 

updates of gain (the inner for loop in Figure 3). If a communication-graph vertex had 

the same gain for two or more different hypercube vertices (gain(v, hi) = gain(v, hi), 

for example), the corresponding entries appear on the bucket list in random order. For 

the simple greedy heuristic we simply permuted the vertices randomly before initially 

inserting them into the bucket list. This random sequence influenced the order among 

equal alternatives later in the bucket list and gave rise to surprisingly large variances 

in the results obtained. 

To compare the average performance of heuristics for each kind of graph, we made 

5 runs on each of 10 graphs. Since the heuristics are all randomized, one run on one 

graph may not be conclusive. In our experiments, all heuristics were run on the same 

set of test graphs. Thus the average solution cost of each heuristic reflects its relative 

solution quality. Also, the iterative improvement heuristics were given the same set of 

initial solutions for each run on each graph, so that they began at the same starting 

point. In cases where G, SG, or RMB was used as a front end to LS, LSC, or KL, the 

results generated by the former were fed directly to the latter. Thus again, LS, LSC, 

and KL were started with the same set of initial solutions and always generated results 

better than their front ends (e.g., the cost obtained by G+LS is always better then pure 

GI. 
We accomplished the controlled randomization described above by providing three 

distinct random number streams: one for communication-graph generators, one for 

heuristics used as front ends (i.e., random initial solution generator, G, SG, and RMB), 
and one for iterative improvement heuristics. Thus our results for combined heuristics 

were not influenced by the effects altering the random number stream of each individual 

heuristic. 

4. Results. As already explained in Section 3, random graphs, geometric graphs, 

trees, and hypercubes are used as communication graphs to evaluate the heuristics. 

Observe that the structure of these four kinds of graphs advances gradually from rau- 

dom to exact hypercubes. Random graphs have no obvious relation to hypercubes. 

Geometric graphs are easier to partition, and thus structurally closer to hypercubes. 

Trees are always subgraphs of hypercubes if we allow arbitrarily large dimensions, but 

the embedding of a tree into a fixed-size hypercube can have large average dilation (for 

example, consider embedding a star with 2* vertices into HI,).  Communication graphs 

that are hypercubes with a few added edges (or deleted edges) are always supergraphs 

(or subgraphs) of hypercubes. Consequently, the results illustrate variations across a 

continuum of structures. In particular, simulated annealing performs better as the com- - - 
munication graph becomes more random, and greedy strategies perform better as the 

communication graph approaches a hypercube. 

We report experimental results for a total of twelve heuristics for hypercube em- 

bedding (those described in Section 2 used singly or in combinations): 

greedy (G); 
simple greedy (SG); 

all-swaps, steepest-descent local search (LS); 
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cube-neighbors, steepest-descent local search (LSC); 

Kernighan-Lin (KL); 

recursive mincut bipartitioning (RMB); 
0 cube-neighbors simulated annealing (SAC); 

0 greedy initial solution followed by LS (G+LS); 

G+LSC; 

G+KL; 

RMB+LS; and 

SG+LSC. 

The reader should bear in mind that our results should be viewed as general indications 

of what types of techniques work well on what types of graphs rather than specific 

endorsements of one heuristic over another. 

The simplegreedy algorithm was easily the fastest heuristic we tested, but produced 

by far the poorest mappings. Apart from SG, LSC was fastest, but also gave the next 

highest cost solutions. SAC was slowest but produced the best solutions. In general, 

SAC'S solutions improved on LSC's by about as much as LSC's improved on SG's. 

Ignoring SG for the moment, the gap in solution cost (on random graphs) between 

the fastest algorithm, LSC, and the slowest, SAC, was never more than about 10%. 

This was also true for selected random graphs with 64, 256 and 512 vertices mapped 

onto hypercubes of dimension 6, 8 and 9 (see Figure 15; data is based on 20 runs on 

one graph). This 10% improvement in solution cost comes at the expense of a factor 

of about 300 in the running time, not an especially good bargain unless the parallel 

program in question is to be executed over a long period of time. 

3.0 1 SAC! 10wOj SAC! 

6 7 8 9 

Dimension ! 
6 7 8 9 

Dimension 

Fro. 15. Comparison of SAC with LSC 

This observation also suggests that, rather than improving the sophistication of 

existing heuristics, at the expense of increasing running time, more effort should go 

into the development of fast and simple heuristics whose solutions fall within this 10% 
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threshold. Our LSC heuristic is a step in that direction. We also expect that a slightly 

more sophisticated variant of SG will meet this goal. 

Although the differences in solution quality in most experiments are not great, it 

is worth noting that (a) there are situations when nearly optimal mappings are worth 

additional computation time, (b) other applications of hypercube embedding, such as 

coding theory, may require high quality embeddings, (c) low-cost mappings are more 

important in large cubes, especially when link contention is taken into account, and 

(d) some of our results show an interesting trend in the efficacy of simulated anneal- 

ing versus other heuristics on random versus structured problems (similar results are 

reported for graph partitioning by Johnson et al. [27]). 
In general LS, LSC, and KL do better when they have better initial solutions. Thus, 

in both running time and solution quality, G+LS dominates LS, G+KL dominates KL, 

SG+LSC dominates LSC, and RMB+LS dominates LS. 

At the extremes of solution quality, two questions arise naturally: (a) how much 

better is SG than random? and (b) how close is SAC to optimal? The experiments 

demonstrate that SG betters random mappings by a large margin, and that SAC also 

beats SG by a large margin. It is difficult to say whether SAC is close to optimal for the 

"average" communication graph. The experiments on cube-structured communication 

graphs do confirm that the "pushed" SAC (SAC with higher size and/or tempfactor) 

is capable of obtaining optimal solutions all the time, and that SAC with our standard 

parameters maps hypercubes to hypercubes with near perfection. However, for ran- 

dom graphs the story may be completely different, making it difficult to draw general 

conclusions about the optimality of SAC. 

The tables within each subsection include data showing solution quality and runtime 

for the various heuristics. We also show the average and the minimum cost of a randomly 

generated solution as a basis for comparison. For each heuristic we indicate how its 

average solution compared with an average random solution (the "% of random" column 

gives the ratio ~~~~:~ as a percentage). 

4.1. Random graphs. As shown in Table 2, the results for random graphs exhibit 

a typical tradeoff between running time and solution quality. Simulated annealing is at 

its best on random graphs. As the table shows, SAC beats all other heuristics except for 

G+KL and KL in solution quality by a wide margin. Runtime for SAC with standard 

parameter settings is not competitive, however. We included a relaxed version of SAC in 

the table to show the that reasonable solution quality can be achieved by SAC without 

outrageous runtime. 

At one end of the runtime/solution-quality spectrum, the most interesting story is 

the competition between SAC and G+KL. For either, solution cost can be reduced by 

adjusting parameters (sizefactor and tempfactor in the case of SAC, uphill moves in the 

case of G+KL). We were unable to find a leveling-off point for either heuristic, a point 

at which the improvement in solution quality achieved by increased runtime becomes 

negligible. It appears that G+KL has lower runtime than SAC for the same solution 

quality. This observation must be tempered by two cautionary remarks. First, SAC 

has better asymptotic runtime and may in fact do better for larger cubes. Second, SAC 



TABLE 2 
Results for mapping random graphs 

Heuristic 

SAC* 

G+KL* 

a sizefactor = 2 
* Indicates a "competitive" heuristic, one with a lower runtime than all heuristics that 

achieved a lower average cost. 

" L 

can be implemented in linear space, while both G and KL require space proportional 

to n2. Space becomes a significant limiting factor for n2-space heuristics on cubes of 

dimension 10 or more. 

In the middle of the range, the best competitors are various local-search variants 

with better than random starting solutions. RMB appears to be an excellent choice for 

starting solutions; even RMB by itself is competitive, especially when its asymptotic 

runtimeis taken into account (asymptotic runtime for RMB is much better than G+LSC 

and about the same as SG+LSC). Somemidrange entries that do not appear in the table 

are RMB+LS with no flat moves and a cube-neighbors Kernighan-Lin implementation 

with a greedy initial solution (no uphill moves). Both fall into the gap between LS and 

G+LSC in terms of solution quality and have runtimes significantly better than that of 

RMB+LS with flat moves (but not quite as good as G+LSC). 

If runtime is the major consideration, SG is the best among the heuristics we 

tested. SG+LSC is a good choice with fast runtime and reasonable solution quality. 

The gap between G and SG can be filled by other greedy heuristics, for example, a more 

sophisticated version of SG. 

Since the statistics in the table come from 10. different random graphs, the minimum 

cost reported is not likely to be robust - all the minimum cost data come from the 

same graph, so this statistic is really based on 5 runs rather than 50. Also, the gap 

between minimum and average cost is not a true indicator of variance. To make up 
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Min 

844 

855 

G 

SG* 

Random 

Avg. Cost 

916.3 

923.7 

943 

1189 

1472 

Avg. Dila. 

2.042 

2.059 

1024.7 

1286.1 

1578.0 

% of random 

58.1 % 
58.5% 

2.284 

2.867 

3.518 

64.9 % 
81.5 % 

100.0 % 

CPU sec. 

175.17 

93.79 

0.86 

0.03 
- 



for these shortcomings Figure 16 shows histograms based on 100 runs of each of four 

heuristics (SAC, SG, G+KL, and SG+LSC). All runs are on the same random graph. 

Note that the heuristics with better solution quality haveless variance. This is a general 

trend that holds for all of the heuristics we tested. 

An interesting question to ask is: what is the expected minimum cost solution for 

each heuristic if we do as many runs of it as can be accommodated within a fixed amount 

of time? For example, will 100 runs of RMB+LS give a better minimum solution than 

6 runs of SAC (the fixed amount of time is roughly 1000 CPU seconds)? On random 

graphs this sort of competition appears to favor simulated annealing (Johnson et al. 

[27] did a more extensive study for the graph partitioning problem, where simulated 

annealing was also the winner on random graphs). 

4.2. Geometric graphs. Table 3 reports results for geometric graphs. The gen- 

eral trends are similar to those of random graphs but there are some important differ- 

ences. The most important difference is that SAC is no longer a clear leader. Geometric 

graphs have enough structure that other heuristics can exploit while simulated anneal- 

ing does a lot of random probing. As the first line of the table indicates, we can always 

push SAC to the point where its solution cost significantly beats other heuristics, but 

with significant increases in runtime. 

TABLE 3 
Results for mapping random geometric graphs 

'Â sizefactor = 32, lempfaclor = 0.975 

Another significant difference is the improved position of the greedy heuristics. 

Greedy heuristics are at their best on highly structured graphs, and we begin to see 

this phenomenon even in the relatively unstructured random geometric graphs. 

As with random graphs, we include some histograms in Figure 17. Except for the 
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F I G .  16. Histograms of heuristics on random graphs 



slight overlap between G+KL and SG+LSC and the lower cost of SG by itself, the 

picture is similar to that of random graphs. 

Note also that for most heuristics, the solution cost for geometric graphs is nearly 

20% less than for random graphs even though the average number of edges in these 

graphs is roughly the same. This is not surprising, since geometric graphs are struc- 

turally closer to hypercubes than random graphs are. 

4.3. Trees. For trees, as shown in Table 4, the absolute cost difference between 

heuristics is much smaller than for either random graphs or geometric graphs, but the 

relative cost difference is actually larger. The best average dilation obtained by any run 

of any heuristic was 1.06 which is quite close to 1, the theoretical minimum. The worst 

average dilation obtained by SG+LSC was 1.35. 

TABLE 4 

Results for mapping random trees 

Heuristic 1 Min 1 Avg. Cost 1 Avg. Dila. 1 % of random 1 CPU sec. 

SACfuushed)*" I 136 1 140.7 1 1.108 1 31.5% I 797.17 

'Â sizefactor = 64 

Since trees are more structured than geometric graphs, it is not surprising that 

Chen's greedy heuristic, G ,  is a strong competitor. SG, however, is not sophisticated 

enough to take full advantage of the structure of trees. Choosing the next vertex to 

embed based only on how many neighbors have already been embedded is not a good 

strategy for trees, which have low connectivity. G is also better than RMB on trees, 

both by itself and as a front end to iterative improvement heuristics. For trees there 

are many close to optimal partitionings, some resulting in good embeddings, others 

not. Partitioning by itself is not a good indicator of average dilation for trees. The 

greedy heuristic, on the other hand, tries to map large connected components of each 

tree perfectly, and ends up having to sacrifice (i.e. assign large dilation to) only a small 

number of edges in the process. 
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F I G .  17. Histograms of heuristics on geometric graphs 
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Another significant phenomenon for trees is the importance of flat moves in iterative 

improvement heuristics. Simulated annealing takes a lot of time, more than for random 

graphs, because many of the moves that are accepted lead to no improvement. On the 

other hand, G+LS with 640 flat moves (not shown in the table) achieves an average 

solution cost of 139.5 with an average runtime of only 20.76. The average dilations 

achieved by this combination are evidently close to optimum. 

4.4. Cubes. In this section we report results for cubes and graphs that are very 

close to cubes. There exist efficient algorithms for mapping cubes to themselves exactly 

161, so results for heuristics mapping exact cubes are of questionable practical impor- 

tance (we are not aware of any exact algorithms for mapping cubes with a small number 

of edges added or deleted, however). The results for cubes and near-cubes do illustrate 

some interesting points. Cubes are the most structured communication graphs possi- 

ble for this problem. Hence the greedy heuristics and RMB tend to outperform the 

iterative-improvement heuristics. Cubes and near-cubes are also the only communica- 

tion graphs for which we know the cost of the optimal solutions, so we can, in this 

idealized setting, judge the solutions obtained in relation to known optimum solutions. 

Finally, it can be argued that in order for a heuristic to be of practical interest, it should 

do a reasonable job on graphs that have perfect mappings. Cubes and cubes with edges 

deleted are a good way to test this quality. 

Table 5 gives our data for mapping randomly permuted cubes. Chen's greedy 

heuristic always obtains the optimal solution in this case (as does the heuristic of Lee 

and Aggarwal). Obviously this eliminates the need to include data for G+LS or G+LSC. 

If SAC is pushed slightly it also obtains optimal solutions consistently (an observation 

also made for the simulated annealing implementation of Ramanujam et al. [36]). Most 

of the other heuristics manage to obtain at least one optimal solution. 

TABLE 5 
Results for mapping randomly permuted cubes 

a sizefactor = 64,  tempfactor = 0.975 

The only heuristics not obtaining at least one optimal solution in 50 runs are L S  and 
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LSC. In fact LS and LSC don't do much to improve the quality of their initial solutions 

unless these are random (compare results for SG+LSC with those for SG). Figure 18 

illustrates a serious shortcoming of LSC when mapping cubes. If two opposite corners on 

the same face of a 3-cube are swapped, the resulting mapping is a local optimum, even if 

we allow flat moves. No swap of cube neighbors can be done without strictly increasing 

cost. This trap does not exist for LS which allows swaps between two arbitrary vertices. 

Figure 19 illustrates a local optimum on a 4-cube for LS. One of the two main subcubes 

is rotated with respect to the other. Every individual swap will strictly increase cost 

(for example, in order to align 1111 with 0111 one of the two has to be moved away 

from its 3 neighbors in the subcube). The number of such local optima (and their cost 

relative to the optimum cost) increases dramatically as cube dimension increases. 

There are several ways to avoid getting stuck at local optima. Flat moves, which 

appear to be promising for more random graphs, are useless here. Simulated annealing 

avoids the traps by doing random uphill moves. KL does so by doing both random and 

systematic uphill swaps. 

The results for cubes with 7 edges deleted, reported in Table 6, are similar to those 

for cubes. With more edges deleted (56 was chosen arbitrarily), the resulting graphs 

are considerably more random and the sequence of contenders looks more like that for 

geometric graphs - results are shown in Table 7. The main differences between the 

results for cubes minus 56 edges and those for geometric graphs are that (a) RMB 
does significantly better for the cube subgraphs, and (b) the local search variants by 

themselves do significantly worse for the cube subgraphs. The influence of the cube 

structure is a factor, but not enough of one to make Chen's greedy heuristic competitive. 

This is because Chen's heuristic (or any other greedy heuristic) examines local structure, 

which for cubes missing many edges looks random. RMB, with its top-down recursive 

approach, takes advantage of global structure, which appears to be the overriding factor 

here. Note that the 392 minimum achieved by most of the heuristics is the optimum 

solution. 

For cubes with 7 edges added the results are reported in Table 8. Here the clear-cut 

champion is RMB. Local search does badly for reasons already suggested. Simulated 

annealing gets good solutions only at the expense of long runtime (pushing SAC beyond 

the factors shown in the table merely increased runtime but did not improve average 

solution cost). There are enough extra edges to fool Chen's greedy heuristic, preventing 

optimum solutions. We suspect that the 470 minimum attained by about half of the 

heuristics is an optimum solution. 

5. Conclusions. A variety of conclusions can be drawn from the results we report. 

In each of the following paragraphs we highlight one major observation we were able to 

make. 

The heuristics we studied exhibit a wide range of options along a continuum. There 

appears to be a clear tradeoff between solution quality and runtime. Often it is possible 

to obtain several favorable points along the continuum by modifying a single heuristic 

(adding flat moves or random jumps to local search, varying parameters for simulated 

annealing, adding more sophisticated choice mechanisms to greedy heuristics). 
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F I G .  18. Local optimum for the LSC heuristic 

1000 

0000 

1010 

0010 

F I G .  19. Local optimum for the LS heuristic 



TABLE 6 
Results for mapping cubes with 7 edges deleted 

I 

LSC 1 847 1 912.9 1 2.070 1 58.4% 1 0.62 
Random 1 1508 1 1563.0 1 3.544 1 100.0% 1 - 

a sizefactor = 128, tempfactor = 0.975 

TABLE 7 
Results for mapping cubes with 56 edges deleted 

a sizefactor = 128, tempfactor = 0.975 



TABLE 8 
Results for mapping cubes with 7 additional edges 

sizefactor = 64, tempfactor  = 0.975 

Iterative improvement heuristics perform better when the starting solution is better 

than random (greedy or recursive mincut bipartitioning are good methods for generat- 

ing starting solutions). As the sophistication of the iterative improvement heuristic in- 

creases, the difference made by better-than-random starting solutions is less pronounced 

(for example, solutions obtained by KL and SAC are not significantly improved when 

greedy initial solutions are used). 

The choice of transformations (neighborhood) has an impact on the quality of 

solutions obtained by iterative improvement heuristics. As is the case with better 

starting solutions, the effect of choosing a more powerful (i.e., larger) neighborhood 

diminishes as the sophistication of the underlying heuristic improves. For local search, 

a strategy that allows all swaps is significantly better than one that only allows swaps 

between cube neighbors. Unfortunately a larger neighborhood also has the effect of 

increasing runtime significantly. Hence, with sophisticated heuristics such as simulated 

annealing or Kernighan-Lin, it may be better to choose a more limited neighborhood. 

The structure of the communication graph must be taken into account when choos- 

ing a heuristic. For completely random graphs, the best choices tend to be iterative 

improvement heuristics. For graphs that are cubes or almost cubes, greedy heuristics 

are the best choice. The advantages of simulated annealing diminish as the communi- 

cation graphs become more structured. The type of structure may also be a factor. For 

example, RMB did poorly on trees, which have local structure, but well on cubes with 

edges deleted, where the structure in relation to exact cubes is more global. 

Simulated annealing, because of the wide range of results obtainable by adjusting 

parameters, is the most versatile heuristic we tested. At the standard parameter set- 
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tings we chose, simulated annealing obtained consistently good results on all runs for 

all graphs. Other heuristics had larger variances for runs on a single graph or were 

ineffective for certain classes of graphs. The two primary disadvantages of simulated 

annealing are the large runtimes and the effort required to adjust parameters. 

6. Further Research. One of our aims is to  stimulate further research into the 

many questions raised by the performance of the heuristics we evaluated. Our initial 

goal was to implement and test efficient versions of several standard heuristics already 

reported in the literature. By doing extensive testing on several different kinds of graphs 

we sought to gain insights about the relative efficacy of different kinds of heuristics for 

different kinds of communication graphs. We found that, in pitting so many heuristics 

against each other, a natural tendency to improve the competitiveness of each heuristic 

emerged. If the performance of one heuristic is enhanced by a particular maneuver, it 

is natural to consider the effect of a similar enhancement on other heuristics. 

Many of the heuristics were sensitive to adjustments of various parameters which 

affected tradeoff between runtime and solution quality. The most pressing need that 

we felt in the process of adjusting parameters was for some kind of analytical model of 

what constitutes a good tradeoff between runtime and solution quality. Is it beneficial to 

double the runtime in order to decrease the average solution cost by 10 units? Questions 

such as this can only be answered if more is known about the specific application. Most 

of our attempts to meld statistics on runtime and solution quality into a single number 

favored the fastest heuristics (unless we postulate that runtime should be exponentially 

related to the difference between average solution cost and some estimate of optimal 

solution cost). Analytical models of the tradeoff and practical justifications for them 

would be extremely useful in any further research of this kind. Without such models it 

is difficult to establish fair comparisons among heuristics with adjustable parameters. 

Hypercube embedding is an unusually difficult problem, even among NP-hard graph 

problems. It is NP-hard even for trees. Most successful heuristics reported in the liter- 

ature have asymptotic running times of O(n3) or worse. Experimental data, including 

ours, has been limited to relatively small problems. Lower bounds on the cost of an 

optimal solution appear to be difficult to obtain. We propose the following items as 

worthy of future experimental study. 

Development of a reasonable exhaustive search or branch-and-bound strategy 

so that optimal solutions for random test graphs can be generated. 

More tests on larger problems (dimension 10, for example) to see if the relative 

standing of the heuristics holds up asymptotically. 

Variations to improve the solution quality of the simple greedy heuristic. 

Extensive testing of variations on the KL heuristic to determine the relative 

merits of flat moves versus random jumps and all swaps versus cube neighbors. 

More testing of a Kernighan-Lin type heuristic based on cube-neighbor swaps 

(the success of simulated annealing with cube-neighbor swaps suggests that this 

combination may also do well; preliminary experiments with a cube-neighbors 

KL implementation are promising - see [15]; Ercal and Sadayappan [IS] also 

report experiments with a cube-neighbors Kernighan-Lin heuristic, but their 

39 



strategy does not consider uphill moves). 

More testing and refinement of the RMB heuristic (with better graph parti- 

tioning heuristics). 

More testing to determine the relative merits of flat moves versus Bokhari- 

style random jumps as enhancements to  local search heuristics (random jumps 

appear to  give better solutions based on some preliminary experiments, but 

more testing needs to be done). 

Implementation and testing of iterative improvement heuristics based on sub- 

cube rotations rather than swaps (the example in Figure 19 suggests that sub- 

cube rotations might be an effective method for sidestepping local optima; 

cube-neighbor swaps are rotations of subcubes of dimension 1; a more general 

strategy that allows rotations of subcubes of dimensions 2 and/or 3 might be 

worth considering) 

More testing to  determine the effect of sparsity on various heuristics (with the 

exception of trees, our test graphs all had roughly (n logn)/2 edges). 
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