
Hypercubic Lattice Reduction and Analysis of
GGH and NTRU Signatures

Michael Szydlo

RSA Laboratories, Bedford, MA, USA
mszydlo@rsasecurity.com

Abstract. In this paper, we introduce a new lattice reduction technique
applicable to the narrow, but important class of Hypercubic lattices,
(L ∼= Z

N). Hypercubic lattices arise during transcript analysis of
certain GGH, and NTRUSign signature schemes. After a few thousand
signatures, key recovery amounts to discovering a hidden unitary matrix
U , from its Gram matrix G = UUT . This case of the Gram Matrix
Factorization Problem is equivalent to finding the shortest vectors in
the hypercubic lattice, LG, defined by the quadratic form G. Our main
result is a polynomial-time reduction to a conjecturally easier problem:
the Lattice Distinguishing Problem. Additionally, we propose a heuristic
solution to this distinguishing problem with a distributed computation
of many “relatively short” vectors.

Keywords: Lattice Isomorphism, Lattice Distinguishing Oracle, Dis-
tributed Lattice Reduction, Decisional Lattice Problem, Gram Matrix
Factorization, Integral Lattice Embedding Orthogonal Lattice, GGH
Cryptanalysis, NTRUSign.

1 Introduction

This paper discusses lattice reduction of Hypercubic Lattices, which are rotations
of Z

N in Euclidean space. The Gram matrix of such a lattice is always of the
form G = UUT , for an integral unitary matrix U . An equivalent formulation of
this problem is: given the Gram matrix G = UUT , recover U , up to a signed
permutation of its coordinates. To approach this problem, we introduce an a-
priori easier problem: deciding whether two Gram matrices represent isomorphic
lattices. We model the solution to this decisional problem with a Lattice Distin-
guishing Oracle, (LDO). Our principal result is a new oracle-algorithm to reduce
hypercubic lattices, thus factoring G = UUT , after making a polynomial number
of calls to a Lattice Distinguishing Oracle.

Signature Schemes: The study of hypercubic lattices is motivated by crypt-
analysis of two lattice based signature schemes: GGH, and (one version of)
NTRUSign. The first, proposed by Goldreich, Goldwasser and Halevi [11] is
based on the hardness of the closest vector problem (CVP) in a relatively gen-
eral lattice. The second, by Howgrave-Graham, et. al. [12], is also based on the
CVP, but it specifically chooses a class of lattices which have compactly describ-
able bases. Both signature schemes are related to the corresponding, more well
known, encryption schemes.

E. Biham (Ed.): EUROCRYPT 2003, LNCS 2656, pp. 433–448, 2003.
c© International Association for Cryptologic Research 2003

434 M. Szydlo

One measure of the security of lattice based schemes is the difficultly of
reducing the underlying lattice involved. However, neither GGH nor NTRUSign
have a security reduction to the underlying problem. As observed in [10], and
reviewed below, a transcript of valid signatures of each (unmodified)1 scheme
necessarily leaks important information: the product of the private basis matrix
with its transpose. This information can be used to shift the security to an
apparently easier problem: the reduction of an auxiliary hypercubic lattice.

Combinatoric Approaches: The lattices we consider are not always pre-
sented with a basis of vectors with integer coordinates. This motivates a careful
study of lattices presented with a Gram matrix. For such lattices, there is no
Hermite Normal Form, and thus the question of whether or not two lattices are
isomorphic is not easy. Both our reduction proof and discussion of the Lattice
Distinguishing Problem involve novel, combinatoric approaches to special cases
of more well known lattice reduction problems, when the lattices are defined by
Gram matrices.

1.1 Our Contributions

We begin by discussing the equivalence of the hypercubic lattice reduction prob-
lem, a case of the Gram matrix factorization problem, and a case of the integral
lattice embedding problem, and introduce the new Lattice Distinguishing Prob-
lem, which is of central importance in this paper. Secondly, we present a new
algorithm which can solve the Gram matrix factorization problem by making a
polynomial number of calls to a Lattice Distinguishing Oracle. This is the prin-
cipal result of the paper. The number or oracle calls is bounded by kN3, where
k is the maximum bit length of the entries of the solution matrix U , and N is
the dimension of this matrix. Thirdly, we show how to design a heuristic distin-
guishing oracle for the cases our algorithm requires. This construction requires a
distribution of lattice vectors of length approximately O(

√
N) times the shortest

vector.
This last construction is of additional interest for several reasons. First, it

suggests a distributed approach to the Lattice Distinguishing Problem. Second,
this O(

√
N) bound is of theoretical interest to complexity theory. It relates to

the complexity results of Ajtai [1], and Micciancio[21] which suggest the SVP
and approximate

√
2 - SVP lattice problems are in general difficult (NP-hard)

problems. It also relates to the results of Goldreich and Goldwasser [6] which
suggests that the

√
N approximate vector problem is unlikely to be NP hard.

1.2 Organization

The rest of this paper is organized as follows. In Section 2, we recall some back-
ground on lattices and the associated computational problems. We also review
the GGH-NTRUSign cryptanalysis. In Section 3, we formalize the definition of a
1 There have been a variety of perturbation techniques proposed to reduce, or alter,

the information leaked, see [12].

Hypercubic Lattice Reduction and Analysis of GGH and NTRU Signatures 435

Lattice Distinguishing Oracle, and show how it can be used to solve some inter-
esting problems. In Section 4, we show how this oracle provides a new strategy
for the embedding problem. In Section 5, we present the principal result: a poly-
nomial reduction of SVP in hypercubic lattices to the decisional lattice problem.
In Section 6, we show how to heuristically design an LDO using distributions of
lattice vectors. In Section 7, we conclude with a complexity theoretic interpre-
tation, and we make comments on the ramifications for the security of the GGH
and NTRUSign signature schemes. Finally, in the Appendix, we provide addi-
tional material on theta functions, which describe the vector length distributions
of interest to the LDO design.

2 Background and Notation

In this section we present background on lattices and review how cryptanalysis
of GGH and NTRUSign is related to the Gram matrix factorization problem.

2.1 Lattices

We begin with standard definitions and some notation used with Lattices. We
define a general lattice to be discrete subgroup of Euclidean space, R

N . A basis
for a lattice is a set of vectors {vi}, i ∈ {1, . . . k ≤ N} such that each lattice
point is a unique integer linear combination of the {vi}. The integer k is the
dimension of the lattice, and usually k = N . These vectors may be described
with the rows of a basis matrix B. Any other basis matrix B′ is related to B by
a unitary transformation B′ = UB, where U ∈ SLN (Z) is called the change of
basis matrix.

A basis B also defines a positive definite symmetric quadratic form given by
its Gram matrix, G = BBT , where the matrix G = (gi,j), specifies an inner
product vi · vj = gi,j . Conversely, each positive definite symmetric matrix, G,
defines an abstract lattice, LG, as the span of a basis {vi} satisfying the inner
product specified by G. The Gram Schmidt orthogonalization process efficiently
computes an embedding σ : LG → R

N , realizing σ(LG) concretely in R
N . Such

an embedding is determined by L up to an element φ ∈ ON (R), the orthogonal
group. Two lattices are isomorphic, (L1 ∼= L2), if there is a distance preserving
map φ : L1 → L2 between them. If both lattices are contained in the same space
R

N , such an isomorphism is a rotation, given by an element φ ∈ ON (R).
A lattice is called an integral lattice if it is isomorphic to LG for some integral

Gram matrix G ∈ Mn(ZN). If a lattice L is N -dimensional and has an integral
embedding: σ : L → Z

N , it is called an integer coordinate lattice. Such a lattice
determines the integral embedding up to a signed permutation, φ ∈ ON (Z). Inte-
gral lattices are convenient for computation, and some applications only consider
lattices which are subsets of Z

N , the trivial lattice. We define a hypercubic lattice
to be a lattice L ∼= Z

N , i.e., as a subset of R
N , it is a rotation of the trivial

lattice.

436 M. Szydlo

2.2 Lattice Problems

We now review some computational lattice problems of interest to cryptography.
Standard Reduction: The problem of Lattice Reduction is the problem of

replacing one basis with a better one [20], whose vector are shorter and more
orthogonal. A reduced basis helps to solve the shortest vector problem (SVP),
which seeks a shortest vector in the lattice, and the closest vector problem (CVP),
which seeks a lattice vector closest to a point p ∈ L ⊗ Q not in the lattice. The
fundamental tools used to solve these and other integer lattice problems are the
LLL reduction algorithm, and its variants [20].

Reducing Gram Matrices: Many implementations of lattice reduction
require an integral basis B as input and output a transformation matrix U ,
and the more reduced basis B′, which is equal to UB. However, the reduction
algorithms such as LLL do not require an integral embedding as input; they
operate equally well on lattices LG, defined a the Gram matrix G. These general
reduction algorithms take as input a basis specified by an integral Gram matrix
G, and produce a transformation matrix U , and the Gram matrix G′ of the
more reduced basis, so that G′ = UGUT . For example, the implementation
NTL requires an integral basis, while Pari accepts any integral Gram matrix as
input.

Integral Embeddings: There are other interesting computational problems
for lattices LG defined by Gram matrices G. The Lattice embedding problem
seeks an embedding σ : LG → Z

N . This is equivalent to finding an integral
basis B such that G = BBT , so this problem is also called the Gram matrix
factorization problem. A decisional problem of central interest for this paper
is the Lattice isomorphism problem: Given two lattices LG, and LG′ , defined
by Gram matrices G, and G′, determine if LG

∼= LG′ . This is equivalent to
determining whether or not there exists a transformation matrix U such that
G′ = UGUT , so another appropriate name for this problem is the Decisional
lattice conjugacy problem. Note that the lattice isomorphism problem is much
easier when given integral bases: the lattices are isomorphic if and only if they
have the same Hermite Normal Form (HNF).

Hypercubic Lattice Case: This paper focuses on hypercubic lattices, LG,
defined by a Gram matrix G. By definition, a hypercubic lattice is isomorphic to
Z

N , so it must have a Gram matrix of the form G = UUT , where U is a unitary
integer matrix. We review three formulations of this problem.

Proposition 1. Hypercubic Lattice Equivalence
Let G = UUT be the Gram matrix of an integral unitary basis matrix U , and let
LG be the associated hypercubic lattice. The following computational problems
are equivalent:
A. Given G, find the shortest vectors in LG.
B. Given G, recover U , up to sign and order of the coordinates.
C. Given G, construct an embedding LG → Z

N .

We present the simple proof in Appendix A, and note that this equivalence
applies only to these very specific lattices. In general, when considering compu-

Hypercubic Lattice Reduction and Analysis of GGH and NTRU Signatures 437

tational problems we keep in mind that the difficulty depends on the instance
distribution, and that special cases often turn out to be easier.

2.3 GGH and NTRUSign Transcript Application

Here we summarize the observation made in [10] that a transcript of NSS or
NTRUSign essentially recovers a Gram matrix of a certain lattice. In some sense,
the GGH and NTRU Signature schemes are adaptations of the analogous en-
cryption schemes. However, it has been more difficult to link the security of the
signature schemes to the underlying computational lattice problem.

We now review just enough details of the schemes to recall how the transcript
averaging attack works. GGH and NTRUSign are based on the difficulty of a
closest vector problem in a certain lattice. The main difference between GGH
and NTRUSign is that lattices in NTRUSign are chosen from a more restrictive
class (“bi-circulant”) in order to achieve more efficient computation and storage.
Each scheme employs a lattice with a public basis matrix B, and a private basis
matrix M , related by B = UM , where det(U) = 1. The signing process involves
mapping a hashed message to a vector m ε Z

N , randomly according to some
distribution. The private basis M is used to compute a vector very close to m.
This is essentially accomplished by rounding mM−1 to an integer valued vector
w, and setting s = wM . Since the private basis M is nearly orthogonal, s is
close it m, and the verifier checks that the norm |m−s| is below some threshold.
See [11] and [12] for further details of this process.

One by-product of the projection of random message representatives m is
that, to a sufficient approximation, the coefficients of w are symmetrically dis-
tributed, and nearly independent. That is, for two different coordinates wi, and
wj , the average dot product wi · wj is zero. On the other hand, the average
squared lengths wi · wi are all equal to some positive constant (say K). Armed
with such transcript, the analyst computes the N × N matrix sT s, for each
signature s, (considered as a row vector), and averages them.

Avg(sT s) = Avg(MT wT wM) = MT Avg(wT w)M. (1)

To a sufficient approximation, the diagonal entries of wT w converge to K, and
the others converge to 0, so the average of wT w is about K times the identity
matrix. The matrix average is KMT M , a multiple of MT M , which is the Gram
matrix of the transpose of M . Thus the adversary obtains the Gram Matrix of
the Private Transpose Basis. Combining this with the public basis B, we can
compute

G = B(MT M)−1BT = UMM−1M−T MT UT = UUT . (2)

If we now let U play the role of a basis matrix, we see that the cryptanalyst has G,
the Gram Matrix of the Transformation Basis U . Because U is the transforma-
tion matrix between public and private bases, (B = UM), key recovery amounts
to factoring G = UUT ,(up to sign and permutation of the coordinates). The
cryptanalyst can also consider the equivalent problems of finding the shortest
vectors in LG, or finding an integral embedding σ : L → Z

N .

438 M. Szydlo

3 LDO and Parity Testing

We have already introduced the important lattice isomorphism problem above,
and in this section, we formally define an oracle to solve it. We will see that
this oracle can be used to solve a number of interesting problems. Our oracle
considers two lattices, LG, and LG′ , defined by Gram matrices G, and G′, and
determines if they are isomorphic.

Definition 1. A Lattice Distinguishing Oracle (LDO)
is an efficient algorithm which computes the following function:
Input: G1, G2.
Output: True if LG1

∼= LG1 , or False otherwise.

Notation. We first collect some notation to work with the Gram matrix G,
and potential integral embeddings σ : LG → Z

N . Recall that LG is defined
as the span of N abstract vectors, denoted {vi}, whose dot products vi · vj

are defined by the entries of G. Note that σ is only determined by G up to a
signed permutation of the coordinates2. For a particlar embedding, we denote
the images σ(vi) by v̂i. Since we have no integral coordinates for the {vi}, we
simply record linear combinations w = Σaivi, (ai ∈ Z) with the vector a having
coefficients {ai}. Let T be a matrix whose rows consist of such coefficient vectors.
If the corresponding vectors are independent, T describes a lattice in terms of
the {vi}. Then the Gram matrix of this auxiliary lattice is G(T) = TGTT .
Information from G. Keeping in mind our interest in factoring G = UUT , we
expect to be able to learn some properties of the rows of U which are invariant
under signed permutation. For example, we know vi · vi, the squared lengths of
of these vectors, from the diagonal of G. We are most interested in certain well
defined “parity” measures of a vector w = Σaivi, (ai ∈ Z), which we define as
follows:

Parity Measures
Let λ1(w) be the number of coordinates of ŵ congruent to 1 (mod 2).
Let λ2(w) be the number of coordinates of ŵ congruent to 2 (mod 4).
Let λk(w) be the number of coordinates of ŵ congruent to 2k−1 (mod 2k).

Computing λ1 from the LDO. We would like to know how many of the
coordinates of v̂1 are odd. We remark that we immediately know this number
(mod 4) from its squared length. To learn the actual number we consider the
following auxiliary lattice: the span of the vectors {v1,2v2, . . .2vN}. We have no
coordinates for this lattice, but we know its Gram matrix Gaux = AGAT , where
A is the diagonal matrix with A1,1 = 1, and Ai,i = 2 for i ≥ 2. We also know that
under any integral embedding σ, one basis of 2LG is twice the identity matrix,
2Id. It is also easy to see that that under any embedding σ, the basis defined
by Gaux has a Hermite Normal Form with a very special form: the first row has
only entries in {0, 1}, and all other nonzero entries are 2’s on the diagonal. Up
2 So the σ’s may be also considered as coordinate permutations of the basis U .

Hypercubic Lattice Reduction and Analysis of GGH and NTRU Signatures 439

to isomorphism, there are only N possibilities for the lattice defined by Gaux,
depending on the number of 1’s. Next we simply “artificially” create a Gram
matrices for each such lattice, and denote them Testi (1 ≤ i ≤ N). With these
auxiliary lattices, we can determine λ1(v1) with the following oracle algorithm:

Computing λ1(Gaux) with the LDO

For i=1 to N
If LDO(Gaux, T esti) = True, output i.
Loop
Otherwise, output ERROR

Thus, we can obtain λ1(v1) with N oracle calls. The same approach will compute
λ1(w) for any vector w which is a linear combination of the {vi}. We remark
that by using the knowledge of the squared length (mod 4) the algorithm may
be sped up by a factor of 4.
Secondary Tests: The computation of the other λk quantities can be simi-
larly performed. There is one new detail which appears: In order to limit the
number of isomorphism classes to N , we compute λ2(w) only for vectors w for
which ŵ has only a single coordinate congruent to 1 (mod 4). This way, there
are still only N test lattices needed. and the Gram matrices Testi are created
from the N possible Hermite normal forms of the lattices spanned by the (lin-
early dependent) {w,4v1,4v2, . . .4vN}. As above, the Gram matrix Gaux is
computed by conjugating G with the appropriate transformation matrix. Such
a transformation matrix is easy to find, but it does involves removing a linear
dependency.

In this manner, successive quantities λk(w) can also be evaluated for k >
2. In these cases attention is limited to vectors w for which ŵ has one odd
coordinate, and the rest congruent to 2k−1 (mod 2k). Then, as above there will
be N candidate lattices to compare with the lattice spanned by Gaux.

4 The Embedding Strategy

In this section we describe a strategy to embed the vectors vi into Z
N by using

the parity testing that the LDO provides us with. Henceforth, we allow ourselves
to compute λk(w) for certain vectors w which are linear combinations of the vi.
To give the reader an intuitive feel for the process, we begin very explicitly,
constructing consistent embeddings of v1, v2, and v3. We also illustrate these
early steps with a numerical example.

We begin the construction of an embedding σ : LG → Z
N with v1, using

knowledge of λ1(v1). We can write down v̂1 (mod 2) for some σ by simply letting
v̂1 (mod 2) be the vector whose first λ1(v1) coordinates are 1, and the rest zero.
These values must be correct for some integral embedding σ, but not for every
such embedding. By choosing the first coordinates of v̂1 to be equal to 1 (mod
2), we have effectively partially chosen σ. We illustrate this with a toy example
where we take N = 10, and assume λ1(v1) = 6. We then write

440 M. Szydlo

v̂1 = (1, 1, 1, 1, 1, 1, 0, 0, 0, 0) (mod 2).

Next we would like to continue, and choose v̂2 (mod 2), based on λ1(v2).
However, we want to do this consistently with our choice of v̂1 (mod 2). In
other words, there should exist a single σ which maps v1 to v̂1, and also v2 to
v̂2. The missing information we need to do this is the number of coordinates
for which both v̂1 and v̂2 are odd. We can obtain this additional information
from λ1(v1 + v2), which is clearly λ1(v1) + λ1(v2) minus twice the number of
overlapping odd coordinates.

We continue our example, supposing additionally that λ1(v2) = 5, and
λ1(v1 + v2) = 3. We calculate twice the number of overlapping odd coordinates
to be 5 + 6 − 3 = 8, so there are four. We can then consistently write

v̂2 = (1, 1, 1, 1, 0, 0, 1, 0, 0, 0) (mod 2).

Continuing with v3, we see again that λ1(v3) is not enough information to
write a consistent v̂3. We view the previous choices as effectively dividing the N
coordinates into four “regions”, namely the four possibilities for (v̂1, v̂2), which
are (1, 1), (1, 0), (0, 1), and (0, 0). We want the number of odd coordinates of v̂3

in each region, so we define four variables X1, X2, X3, and X4 to represent these
quantities. Since λ1(v3) determines the total number of 1’s, it provides one con-
straint, namely X1+X2+X3+X4. The quantities λ1(v3 + v1), λ1(v3 + v2), and
λ1(v3 + v2 + v1) provide three more constraints. These equations are linearly
independent, so the solutions may be found with Gaussian elimination.

Continuing our example, suppose λ1(v3) = 6, λ1(v3 + v1) = 6,
λ1(v3 + v2) = 7, and λ1(v3 + v2 + v1) = 7. One can check that X1 = 2, X2 = 1,
X3 = 0, and X4 = 3 are the solutions for this example. Thus we can write

v̂3 = (1, 1, 0, 0, 1, 0, 0, 1, 1, 1) (mod 2).

The number of region variables may expand up to a maximum N , (one for
each coordinate position) when dealing with the subsequent vectors vi, (i > 3).
Of course, the number of independent constraints collected must equal the
number of variables in order to solve the system. As before, these constraints
come from λ1(vi), and enough other values of λ1(vi + v′) where v′ ranges over
nonempty sums of the vj, (j < i). Note that one selects appropriate vectors v′

which guarantee linear independence before calling the oracle.
The above procedure and example are representative of our strategy to embed

the vectors vi. We essentially use the LDO to obtain selected λk values which
allow us to write down approximate values of {v̂i} which are consistent with an
embedding σ. The procedure explained in this section is a major component of
the full embedding algorithm, which we define in the next section. In fact we
have provided an oracle algorithm which given G, produces a set of vectors {v̂i}
(mod 2), which are the images σ(vi), for some embedding σ.

Let us keep in mind the maximum number or oracle calls this step has re-
quired. For each of the N vectors vi, up to N values λ1 were required, and each
of these required up to N LDO calls. In total, this step has cost at most than
N3 LDO calls.

Hypercubic Lattice Reduction and Analysis of GGH and NTRU Signatures 441

5 Hypercubic Embedding Algorithm

In this section we describe further techniques which, when combined with the
step described in the previous section, yield a complete embedding σ : LG → Z

N .
This will complete our main result, that the equivalent problems of Hypercubic
lattice reduction, Gram matrix factorization problem, and Embedding problem
are polynomial time reducible to the lattice distinguishing problem. Choosing
one formulation, we prove

Theorem 1. Let U be an N -dimensional unitary matrix, and let k be the max-
imum bit-length of the entries, and let G = UUT . Then, given G, U may be
recovered, up to sign and order of the coordinates, by making at most than kN3

calls to a Lattice Distinguishing Oracle.

Notation. We continue to use G, U , vi, v̂i, and λk as defined above, and as
before, σ : LG → Z

N , will always be an integral embedding. Additionally, for
each positive integer k, let T (k) be an integer N × N matrix, with elements
denoted {t

(k)
i,j }. Let wi

(k) = Σ t
(k)
i,j vi, and when an embedding σ is implied, we

let ŵi
(k) = σ(wi

(k)). Finally, let k0 be the maximum bit length of the entries in
U . With this notation in place we can outline the major steps of our algorithm.

Algorithm 2 Embedding Algorithm

1. Find {v̂i} ∈ Z
N | ∃σ with v̂i = σ(vi) (mod 2).

2. Find T (1) defining wi
(1) | ∃σ with ŵi

(1) = ei (mod 2).
3. Find T (2) defining wi

(2) | ∃σ with ŵi
(2) = ei (mod 4).

4. For each 3 ≤ k ≤ k0 Do,
find T (k) defining wi

(k) | ∃σ with ŵi
(k) = ei (mod 2k).

5. For each pair of indices i, j, compute the dot products di,j =
vj · wi

(k0).
6. Output, {v̂i} where the j’th coordinate of v̂i is di,j, reduced to

the smallest representative (mod 2k).

Step 1. This step has been discussed in detail in Section 4, where the values λ1
were used to find vectors {v̂i}. We remark that this step is the most interesting,
due to the linear algebra not required in subsequent steps. We also note that
among the finite number of possible embeddings, σ, the choices made in this
step have fixed the order of the coordinates. Only the sign ambiguity remains.

Step 2. Consider the matrix V defined by the rows of {v̂i}. As V ’s is congruent
to σ(vi) (mod 2), and the latter has determinant one, V is invertible when
considered over the field of two elements. We let T (1) be the integer matrix
with entries 0 and 1, which represents this inverse. Now T (1) defines the vectors
wi

(1) = Σ t
(1)
i,j vi. Thus the images of the wi

(1) under σ are the rows of the matrix
T (1)V , which is the identity, (mod 2). So we conclude that ŵi

(1) = ei (mod 2).
These vectors wi

(1) will be used in subsequent steps.

442 M. Szydlo

Step 3. In this step we will improve the vectors wi
(1), producing vectors wi

(2),
so that ŵi

(2) = ei (mod 4). For a fixed σ satisfying the conditions of Step 1, and
our choice of {wi

(1)}, the i’th coordinate of σ(wi
(1)) is odd, thus ±1 (mod 4).

However, as of step 1, σ had been only been determined up to sign. Among the
2N choices, there is always one for which the i’th coordinate of σ(wi

(2)) is 1. We
retain this choice of σ throughout the remainder of this algorithm. Therefore,
our choices have also fixed v̂i = σ(vi).

For each index i, we initially set wi
(2) = wi

(1) and proceed to modify it.
Recalling Section 3, we learned that the LDO may be used to compute λ2(wi

(2)),
since ŵi

(2) meets the stated criteria: One coordinate is equal to 1 (mod 4), and
the rest are equal to 2 or 0 (mod 4). The value λ2(wi

(2)) lets us measure the
number of two’s in ŵi

(2). Now, for each index j 	= i, we tentatively add 2wj
(1)

to it. Notice that ˆ2wj
(1)

= 2 (mod 4) only in one spot, at the j’th coordinate, so
the operation of adding 2wj

(1) always modifies λ2(wi
(2)) by 1. If it decreases we

keep it, otherwise not, and so after all j 	= i are considered, λ2(wi
(2)) is reduced

to zero. These vector additions are recorded in terms of integral combinations
of the vi, so eventually we obtain the matrix T (2) defining the final wi

(2). Now
that ŵi

(2) = ei (mod 4), and we proceed to the next step. Notice that Step 3
also completes with at most than N3 LDO calls.

Step 4. This step consists of a procedure which is repeated for each k ≥ 3 up
to the bound k0. As with Step 3, the goal is to further improve each of the wi.
Unlike Step 3, however, σ has already been fixed, so when we begin by setting
wi

(k) = wi
(k−1), the the i’th coordinate of σ(wi

(k)) can not be automatically
assumed to be congruent to 1 (mod 2k). Instead, it might be 1+2k−1 (mod 2k),
and this can be easily tested, since then the squared length of wi

(k) will not be
1 (mod 2k+1). If this happens, the first step is to multiply wi

(k) by the scalar
2k−1 + 1.

Once in this form, we can evaluate λ3(wi). We take the same strategy as
above, and add certain vectors 2k−1wj

(1) to it, until λ3(wi
(k)) is reduced to

zero, at which point we have our T (k) defining the final wi
(k).

Step 5. In this step we compute the dot products di,j = vj · wi
(k0). To do this,

we write each wi
(k0) as a linear combination of the {vj} according to the rows

of T (k), and use the fact that we know each vi · vj from the Gram matrix G.
More simply put, we perform a matrix multiplication T (k)G.

Step 6. We now use the fact that σ is an embedding, to reason that vj · wi
(k0),

which we know, also equals v̂j · ŵi
(k0), which equals the i’th coordinate of v̂j

(mod 2k0), since ŵi
(k0) = ei (mod 2k0). But by the assumption on the signed bit

length of U , we actually know v̂j over Z. We have completed the computation
of σ : LG → Z

N , and the algorithm terminates after outputting the exact values
v̂j.

This completes the algorithm and the proof of Theorem 1. All told, at most
kN3 calls to the lattice distinguishing oracle have been made. The hypercubic

Hypercubic Lattice Reduction and Analysis of GGH and NTRU Signatures 443

lattice reduction problem is polynomial time reducible to the lattice distinguish-
ing problem.

6 Heuristic LDO Implementation

While the focus of this paper is the reduction proof, Theorem 1, it is natural
to ask if such a lattice distinguishing oracle is feasible to implement. In this
section, we discuss a heuristic approach to solving this decision problem for the
specific lattices required in our reduction. We remark immediately, that even if
the LDO is practical, the potentially very large number, (kN3), of oracle calls
might still leave the hypercubic lattice reduction a difficult problem. This should
not be too disappointing, given the exponential nature of the general algorithms
to compute exact shortest lattice vectors. On the other hand, if only Steps 1 and
2 of the algorithm 2 are completed, the difficulty of the original shortest vector
problem can be made significantly easier.

So how hard is it to implement an LDO? Our heuristic algorithm to realize
this oracle will not treat the general problem, but instead will focus on the
cases required for our algorithm. In fact, our oracle will only need to distinguish
between N lattices at a time. Recalling the discussion in section 3, we used the
LDO to compare an unknown lattice defined by the Gram matrix Gaux, with
N potential lattices, Testi, (1 ≤ i ≤ N). This auxiliary lattice defined by Gaux

depends on some input vector defined in terms of the {vi}. On the other hand,
the N matrices {Testi} were specifically constructed from a known integer basis.
By construction the lattice of Gaux, must be the lattice of one Testi. Because
we know the structure of the candidates, Testi, we directly see in what ways
they differ.

6.1 Modular Tests

Our approach relies on the fact that the N candidate lattices enjoy a different
distribution of vectors. For the simplest possible example, it is clear that among
the N possibilities, only Test1 has a vector of length 1. However, it is not easy to
check whether the lattice of Gaux has such a vector. Finding it, at least, requires
the solution of the SVP itself! Fortunately, other distinguishing features of these
distributions can be perceived with larger vectors. The most prominent example
of this considers the lengths of the vector (mod 4). For example, let z be any
vector in the lattice of Gaux which is not in 2LG. If the length of z squared is 1
(mod 4), then the lattice must be isomorphic with that of Testi for some i = 1
(mod 4). The same type of conclusion may be reached if the length squared is
0, 2 or 3 (mod 4). This discussion shows how the isomorphism question may be
easy in certain cases, but in general, these tricks will not be sufficient.

6.2 Statistical Tests

We now explain how to exploit the difference of the distributions in general.
By fixing some bound B, we consider only vectors of length squared less than

444 M. Szydlo

this bound. For now, let us assume that it is possible to collect a large sample
of vectors from the lattice defined by Gaux drawn nearly uniformly among all
vectors in this lattice of squared length less than B. For each of the N possi-
ble test lattices, we also compute a similar distribution. We then compare the
frequency distribution of the lengths from our sample drawn from the lattice
defined by Gaux to the distributions corresponding to one of the Testi lattices.
If the frequency distribution between two lattices matches closely enough, the
lattices will be declared isomorphic.

6.3 Collecting Vectors

The remaining question is how the sample distribution is collected. We want
to use LLL or another lattice reduction algorithm to obtain a medium length
vector. In practice, this is feasible for certain vector length bounds. We set our
bound B, and reduce the lattice until a vector shorter than B is found.

This sample distribution of such vector lengths must be created as uniformly
as possible. To encourage this, the basis is randomized before each lattice reduc-
tion begins. It is possible that other measures may also be needed. We conjecture
that this procedure will produce a sample of sufficient accuracy to decide if two
lattices are isomorphic.

6.4 Calculating Exact Distributions

In Appendix B we show how we can compute the exact distribution of vector
lengths for the test lattices Testi. This slightly simplifies the oracle construction,
and additionally gives us some information about when a (uniformly distributed)
sample size consisting of certain size vectors is likely to be sufficient for the
oracle’s decision.

6.5 Experiments

We performed experiments using the techniques in Appendix B to compute theta
functions, which quantify the extent to which the distributions differ.

We tested lattices of dimension 100 and 500 for lattices defined by Testi for
varying i values. We found that when B was reduced below about 3/10N times
the squared length of the shortest vector, the differences in these distributions
became perceptively different, so that a sample size of several thousand vectors
would suffice to distinguish lattices of the form Testi from one another.

Our experiments suggested that a practical bound for the length of the sam-
ple vectors is some O(

√
N) multiple of the length of the shortest vector. This

bound is merely conjectural, but is intriguing due to the relationship with the
complexity results described in the introduction.

Hypercubic Lattice Reduction and Analysis of GGH and NTRU Signatures 445

7 Conclusions

Our reduction of the hypercubic SVP to certain Lattice Distinguishing Problems
is an interesting connection between a computational and a decisional problem.
A large sequence of correct solutions to the decisional problem combines to solve
the computational problem.

7.1 Security Ramifications

This work on reduction of hypercubic lattices shows that the transcript attacks
reviewed above are indeed relevant to the security of the schemes. The combi-
nation of transcript averaging, and this algorithm, and the potential of a feasi-
ble Distinguishing Oracle, suggest a weakness in signature schemes which leak
this specific kind of information. Currently, the practical security threat to the
schemes is not clear - given the large number of Oracle calls and (albeit easier)
lattice problems behind the LDO. Given the new approaches to the Gram matrix
problem, it seems prudent to always use the perturbation methods with these
schemes. This additional perturbation step may unfortunately reduce efficiency.

7.2 Complexity Ramifications

We hope that the special techniques for SVP hypercubic lattices may have ana-
logues for general lattices. LDO may be realized given a collection of vectors of
size about

√
N times the shortest vector - the same threshold that the work of

Goldwasser suggests may be feasible. Combining these ideas, there is reasonable
evidence to believe that SVP in hypercubic lattices is strictly easier than SVP
in general lattices. Finally, the Lattice Distinguishing Problem may also be of
independent interest and have other applications.

7.3 Further Work

The most relevant open question is still the feasibility of the LDO. For example,
we would like to know if the sampling techniques yield sufficiently accurate
distributions to realize an LDO.

We suggest a strategy to deal with an LDO which is allowed some chance
of failure. Such a failure may be caught with high probability by repeatedly
applying tests of consistency. One such check is λ(v1 + v2) ≤ λ(v1) + λ(v2).
Proving that such a technique always works would be useful as it would increase
the robustness of algorithms using an LDO.

The collection of sample vectors in our method of implementing an LDO
may be completely distributed. Of course, an important problem would be the
introduction of distributed algorithms for general lattices.

As a general research program, it should also be fruitful to study the diffi-
culty of problems involving lattices with special structure. The hypercubic lattice
problem is also a natural special case to consider, given its several equivalent
formulations.

446 M. Szydlo

Acknowledgments. I would like to thank Craig Gentry, Phong Nguyen, and
Jacques Stern for helpful and interesting discussions. I would also like to thank
the anonymous reviewers for useful advice on how to clarify the presentation of
these results.

References

1. M. Ajtai, The shortest vector problem in L2 is NP-hard for randomized reductions,
in Proc. 30th ACM Symposium on Theory of Computing, 1998, 10–19.

2. H. Cohen, A Course in Computational Algebraic Number Theory, Graduate Texts
in Mathematics, 138. Springer, 1993.

3. D. Coppersmith and A. Shamir, Lattice Attacks on NTRU, in Proc. of Eurocrypt
’97, LNCS 1233, pages 52–61. Springer-Verlag, 1997.

4. I. Dinur, G. Kindler, S. Safra, Approximating CVP to within almost-polynomial
factors is NP-hard, in Proc. 39th Symposium on Foundations of Computer Science,
pages 99–109, 1998.

5. N. Elkies, Lattices, Linear Codes, and Invariants, in Notices of the American Math.
Society, 47 pages 1238–1245, Cambridge University Press, 2000.

6. O. Goldreich and S. Goldwasser, On the Limits of Non-Approximability of Lattice,
In Proc. of the 13th ACM Symposium on the Theory of Computing, 1998.

7. O. Goldreich, D. Micciancio, S. Safra, J.P. Seifert, Using Lattice Problem in Cryp-
tography,1999.

8. C. Gentry, J. Jonsson, J. Stern, M. Szydlo, Cryptanalysis of the NTRU signature
scheme, in Proc. of Asiacrypt ’01, LNCS 2248, pages 1–20. Springer-Verlag, 2001.

9. O. Goldreich, D. Micciancio, S. Safra, J.P. Seifert, Approximating shortest lattice
vectors is not harder than approximating closest lattice vectors, Electronic Collo-
quium on Computational Complexity, 1999.

10. C. Gentry, M. Szydlo, Cryptanalysis of the Revised NTRU signature scheme, in
Proc. of Eurocrypt ’02, LNCS 2332, pages 299–320. Springer-Verlag, 2002.

11. O. Goldreich, S. Goldwasser, S. Halevi, Public-key Cryptography from Lattice Re-
duction Problems, in Proc. of Crypto ’97, LNCS 1294, pages 112–131. Springer-
Verlag, 1997.

12. J. Hoffstein, N. Howgrave-Graham, J. Pipher, J.H. Silverman, W. Whyte,
NTRUSign: Digital Signatures Using the NTRU Lattice, December, 2001. Available
from http://www.ntru.com.

13. J. Hoffstein, B.S. Kaliski, D. Lieman, M.J.B. Robshaw, Y.L. Yin, Secure user iden-
tification based on constrained polynomials, US Patent 6,076,163, June 13, 2000.

14. J. Hoffstein, D. Lieman, J.H. Silverman, Polynomial Rings and Efficient Public
Key Authentication, in Proc. International Workshop on Cryptographic Techniques
and E-Commerce (CrypTEC ’99), Hong Kong, (M. Blum and C.H. Lee, eds.), City
University of Hong Kong Press.

15. J. Hoffstein, J. Pipher, J.H. Silverman. Enhanced encoding and verification methods
for the NTRU signature scheme (ver. 2), May 30, 2001. Available from
http://www.ntru.com.

16. J. Hoffstein, J. Pipher, J.H. Silverman, NSS: The NTRU Signature Scheme,
preprint, November 2000. Available from http://www.ntru.com.

17. J. Hoffstein, J. Pipher, J.H. Silverman, NSS: The NTRU Signature Scheme, in
Proc. of Eurocrypt ’01, LNCS 2045, pages 211–228. Springer-Verlag, 2001.

Hypercubic Lattice Reduction and Analysis of GGH and NTRU Signatures 447

18. J. Hoffstein, J. Pipher, J.H. Silverman, NSS: The NTRU Signature Scheme: Theory
and Practice, preprint, 2001. Available from http://www.ntru.com.

19. J. Hoffstein, J. Pipher and J.H. Silverman, NTRU: A New High Speed Public Key
Cryptosystem, in Proc. of Algorithm Number Theory (ANTS III), LNCS 1423,
pages 267–288. Springer-Verlag, 1998.

20. A.K. Lenstra, H.W. Lenstra Jr., L. Lovász, Factoring Polynomials with Rational
Coefficients, Mathematische Ann. 261 (1982), 513–534.

21. D. Micciancio, The Shortest Vector in a Lattice is Hard to Approximate to within
Some Constant, in Proc. 39th Symposium on Foundations of Computer Science,
1998, 92–98.

22. P. Nguyen, Cryptanalysis of the Goldreich-Goldwasser-Halevi Cryptosystem from
Crypto ’97, 1999

23. P. Nguyen and J. Stern, Lattice Reduction in Cryptology: An Update, in Proc.
of Algorithm Number Theory (ANTS IV), LNCS 1838, pages 85–112. Springer-
Verlag, 2000.

24. C.-P. Schnorr, A Hierarchy of Polynomial Time Lattice Basis Reduction Algo-
rithms, Theoretical Computer Science 53 (1987), 201–224.

25. J.H. Silverman, Estimated Breaking Times for NTRU Lattices, NTRU Technical
Note #012, March 1999. Available from http://www.ntru.com.

26. L. Washington, Introduction to Cyclotomic Fields, Graduate Texts in Mathematics
83, 1982.

27. Consortium for Efficient Embedded Security. Efficient Embedded Security Stan-
dard (EESS) # 1: Draft 3.0. Available from http://www.ceesstandards.org.

A Proof of Proposition 1

As in Proposition 1, let G = UUT be the Gram matrix of an integral unitary
basis matrix U , and let LG be the associated hypercubic lattice. By definition,
every hypercubic lattice is isomorphic to Z

N , so has a Gram matrix of this form.
The three problems to be shown equivalent are:
(A) Given G, find the shortest vectors in LG.
(B) Given G, recover U , up to sign and order of the coordinates.
(C) Given G, construct an embedding LG → Z

N .
Proof: (A)⇒(B): To know the shortest vectors in terms of the basis represented
by G is to have of a unitary V such that V GV T is the identity. Then G =
V −1V −T , so V −1 a is solution to G = UUT . As V U is orthogonal, V −1 recovers
U up to sign and order of the coordinates. (B)⇒(C): Given any U such that
G = UUT , the rows of U embed LG into Z

N . (C)⇒(A): Since det(G) = 1, the
embedding, LG → Z

N is surjective. By Gaussian elimination, we can find ei in
terms of the basis defined by G, thus the shortest vectors of LG.

B Theta Series

The theta series, of a lattice is a lattice invariant, of interest as a tool to dis-
tinguish non-isomorphic lattices3. Given a lattice L, and an integer m, define
3 Non-isomorphic lattices may have identical theta functions.

448 M. Szydlo

Nm to be the number of lattice points of length squared m. Traditionally, these
lattice invariants are collected into an element of the power series ring Z[[q]] as
follows

Θ(L, q) = 1 + Σ∞
i=0Nmqm. (3)

A convenient effect of this packaging is the relationship among theta series for
lattices with an orthogonal decomposition (direct sum). Suppose L3 = L1 ⊕ L2.
Then suppressing q,

Θ(L3) = Θ(L1) ∗ Θ(L2). (4)

As examples, θ(Z) = 1 + 2q + 2q4 + 2q9 . . . , and by Eq.4,

θ(ZN) = (1 + 2q + 2q4 + 2q9 . . .)N .

We are interested in the theta series as a means of understanding how difficult
it is to realize a lattice distinguishing oracle. For the purposes of this paper, we
can focus on the “Test” Gram matrices introduced in Section 3, since these are
the only one used with the lattice distinguishing oracle.

These lattices are particularly simple, so we can easily compute the theta
series by hand. Consider the lattices Testi used to compute λ1(v). There are N
such lattices, one for each i ∈ {1, 2, . . . , N}. As subsets of Z

N , these lattices are
spanned by the rows of twice the identity matrix, and one other vector, with
exactly i odd coordinates. We calculate this theta series by adding together two
power series. The first, representing vectors with all even coordinates is:

θ(2Z
N) = (1 + 2q2∗2 + 2q4∗4 + 2q6∗6 . . .)N . (5)

The second series, θ2 ,represents vectors with i odd coordinates:

θ2 = (2q1 + 2q3∗3 + 2q5∗5 . . .)i · (1 + 2q2∗2 + 2q4∗4 + 2q6∗6 . . .)N−i. (6)

The second summand of the theta series of this lattices clearly depends on i.
For example, if i = ±1 (mod 4), then the shortest vector of odd squared length
vector has squared length i. We can multiply two power series products above
to any degree of precision and thus obtain Nm, the number of vectors of length
squared m.

Similar calculations for the lattices involved in the computation of λ1(v),
k ≥ 2 are similarly easy. These calculations provide interesting statistics which
measure ways in which the lattices compared by the LDO differ.

	Introduction
	Our Contributions
	Organization

	Background and Notation
	Lattices
	Lattice Problems
	GGH and NTRUSign Transcript Application

	LDO and Parity Testing
	The Embedding Strategy
	Hypercubic Embedding Algorithm
	Heuristic LDO Implementation
	Modular Tests
	Statistical Tests
	Collecting Vectors
	Calculating Exact Distributions
	Experiments

	Conclusions
	Security Ramifications
	Complexity Ramifications
	Further Work

	Proof of Proposition T @ref {tfae}
	Theta Series

