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Hyperelastic Tuning of One-Dimensional Phononic

Band Gaps Using Directional Stress

Andriejus Demčenko , Michael Mazilu, Rab Wilson, Arno W. F. Volker, and Jonathan M. Cooper

Abstract— In this paper, we show that acoustoelasticity in
hyperelastic materials can be understood using the framework
of nonlinear wave mixing, which, when coupled with an induced
static stress, leads to a change in the phase velocity of the
propagating wave with no change in frequency. By performing
Floquet wave eigenvalue analysis, we also show that band gaps
for periodic composites, acting as 1-D phononic crystals, can be
tuned using this static stress. In the presence of second-order
elastic nonlinearities, the phase velocity of propagating waves
in the phononic structure changes, leading to observable shifts
in the band gaps. Finally, we present numerical examples as
evidence that the band gaps are tuned by both the direction of
the stress and its magnitude.

Index Terms— Floquet waves, hyperelasticity, nonlinear
ultrasound, phononic crystals.

I. INTRODUCTION

MULTILAYERED periodic composites can be repre-

sented as 1-D phononic crystals [1], [2], comprising

heterogeneous arrays of materials with different elastic prop-

erties. Such composites are increasingly being used in the

automotive, marine, and aerospace industries as load bear-

ing structures. For example, metal-polymer layered structures

are now used in the fuselage of aircraft [3]. Similarly in

the semiconductor industry, multilayered microstructures with

different lattice spacings or with different thermal expansion

coefficients that will induce differential stresses either during

manufacture or in service. The lifetime and performance of

such structures will depend upon the applied and/or the resid-

ual static stresses, induced either during their manufacture [4]

and/or during their operation [5]. The detection of unwanted

static stress states is key in determining the risk of failure

in many of these safety-critical structures [6] as this may lead

to the propagation of defects [7], which will ultimately affect

their structural or functional performance.
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Composite structures can be represented as 1-D phononic

crystals, which can contain measurable band gaps [8] for

ultrasonic waves. The spectral features of the ultrasound

after interacting with the phononic structure will represent

characteristics of its inherent periodic structure. Thus, when

composite structures experience an applied or residual static

stress, the ultrasonic wave propagation velocities will change

within the different layers, as the characteristic of the band

gap changes.

In this paper, starting from the nonlinear equations of

motion [9], we deduce the dispersion relationships in such

1-D phononic structures in the presence of the static stress,

which can be described as a zero-frequency wave [10]. These

equations allow us to interpret the phenomena of acoustoe-

lasticity in terms of a nonlinear wave mixing process [9]

between a propagating wave and a zero-frequency wave.

During this mixing, the output frequency does not shift, but the

phase velocity of the propagating wave changes. The effect is

enhanced by the presence of periodicity within the composite

(which acts as a 1-D phononic crystal). As a consequence of

the interplay between the phononic crystal and the ultrasonic

nonlinear response to the static stress, the effect becomes

observable, and indeed, provides a method of characterizing

changes in the composite.

Using this principle, we now develop a new model to

enable us to analyze how the composite, represented as a

band gap in a 1-D phononic crystal, depends upon the applied

static stress. Our analysis is underpinned using a nonlinear

wave mixing [9] together with a recently revised acoustoe-

lasticity theory in biaxially stressed, hyperelastic platelike

structures [11] and Floquet (Floquet–Bloch) wave theory for

an infinite periodic medium [12].

Using this understanding of band gaps in composites poten-

tially introduces an important new method for structural health

monitoring. The fact that the band gaps can be controlled

actively by the application of a static stress may also, in the

future, lead to development of stress sensitive metamateri-

als [13]. In order to implement this concept, we used a

recursive stiffness matrix method [14] to calculate the Floquet

wavenumbers and reflection coefficients from a periodic semi-

space. Despite the acoustoelastic effect being small [15],

numerical analysis shows that the band gaps were very sensi-

tive both to the static stress direction and to its magnitude—

thus showing the potential of this method to detect defects

in periodic composites. The model was also validated using
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DEMČENKO et al.: HYPERELASTIC TUNING OF ONE-DIMENSIONAL PHONONIC BAND GAPS USING DIRECTIONAL STRESS 1057

data from the previously reported works [11], [16] and these

results are presented in Appendix A.

II. METHOD

The nonlinear equation of motion for an ideal isotropic solid

is given in [9]

ρ
∂2vi

∂ t2
− µ

∂2vi

∂x j∂x j

− (λ + µ)
∂2v j

∂xi∂x j

=
∂σij

∂x j

(1)

where ρ is the density of the undeformed medium, v is the

displacement vector in the solid, x1 = x , x2 = y, x3 = z,

and t are the space and time coordinates, and λ and µ are

the Lamé constants. We use here the summation over repeated

indices convention. The left-hand side corresponds to the linear

wave equation and the right-hand side to the divergence of the

nonlinear stress tensor given as
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where A, B , and C are the third-order elastic constants

in Landau and Lifshitz notation [17].

In order to model the nonlinear interaction between the

static strain and an ultrasonic wave, we consider

v = e · r + ue−i(ωt−k·r) (3)

where e is a diagonal static strain tensor with the terms (e11,

e22, and e33) on the diagonal. Using (1) and (2), we define

a modified dispersion relationship linking the static strain to

the phase velocity for a wave propagating in the x1-direction

(detailed calculations presented in these results are presented

in Appendix B)

ρc2
L = 2Ae11 + (2B + λ)(3e11 + e22 + e33)

+ 2C(e11 + e22 + e33) + 6e11µ + ρc2
0L (4)

ρc2
S = (A/2 + 2µ)(e11 + eS)

+ (B + λ)(e11 + e22 + e33) + ρc2
0S (5)

where the subscript S corresponding to the shear wave is either

22 or 33, and c0L and c0S are the longitudinal and shear wave

velocities, respectively, in the unstressed medium. We show

that nonlinear wave mixing and the induction of static stress

lead to an effective change in the phase velocity of the prop-

agating wave with a zero-frequency shift [10]. We note that

propagation along different directions or nondiagonal stress

tensors can also be deduced in a similar manner; however,

the dispersion relations, (4) and (5), will contain more terms

and the stressed media will show anisotropic properties.

To analyze the elastic wave propagation in these hyperelastic

1-D phononic crystals, we implement a recursive stiffness

matrix method. The Floquet wave equation is given as [14]

A3cos(3kzF H)+ A2cos(2kzF H)+ A1cos(kzF H)+ A0 = 0 (6)

Fig. 1. Two-layered unit cell of the periodic medium and coordinate system
for the static stress and wave propagation directions. k0 is the incident wave
and θ is the wave incidence angle from the fluid. The stress is specified in the
primed coordinate system and guided waves propagate along x-direction at
any arbitrary angle φ from x ′-direction. The analysis is conducted in the
unprimed coordinate system (x, y, z), hence the primed coordinate system is
rotated through the angle φ. The coordinate system is selected so that the xz

plane coincides with the wave incident plane, hence ky = 0.

where kzF is the vertical Floquet wavenumber and H is the

unit cell thickness (Fig. 1). The following are the Floquet wave

coefficients, Ai , (these have been modified and updated from

those originally reported [18]) in terms of the unit cell stiffness

matrix
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where M = K22
c − K11

c , |M| is the determinant of matrix

M and Kc is the whole stiffness matrix of the unit periodic

cell [14].

The amplitude reflection coefficient from a submersed semi-

space in terms of the Floquet wave equation parameters [19]

can thus be written in the following form:

Ras =
S33

F − cosθ/(iωρF cF )

S33
F + cosθ/(iωρF cF )

(11)

where θ is the wave incidence angle (Fig. 1), ω = 2π f , f is

the wave frequency, ρF is the volumetric mass density, and cF

is the wave speed. S33
F is the (3, 3) element in the 3×3 surface

compliance matrix for a homogeneous or layered anisotropic

semispace.

As an example of a 1-D phononic crystal (see Fig. 1), we

now show results for a two-layered unit cell of the metal

polymer periodic medium containing an aluminum and a

polyvinylchloride (PVC) layer of 0.1 mm thickness. The

following second-order elastic material properties were used

in the eigenvalue analysis of the Floquet waves in the 1-D

hyperelastic phononic structure: λ1 = 54.307 GPa, µ1 =

27.174 GPa, and ρ1 = 2704 kg/m3; whilst λ2 = 3.8745 GPa,

µ2 = 1.6335 GPa, and ρ2 = 1350 kg/m3 for the aluminum

and PVC layers, respectively [9], [11]. The corresponding
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Fig. 2. Band gaps in the periodic semispace loaded by fluid when the wave
incidence angle θ = 35°. R = 1 and R < 1 zones correspond to stopbands
and passbands, respectively.

third-order elastic constants are in Murnaghans notation [20]:

l1 = −281.5 GPa, m1 = −339 GPa, and n1 = −416 GPa and

l2 = −33.43 GPa, m2 = −20.88 GPa, and n2 = −15.86 GPa.

The relationships between the third-order elastic constants

in Landau and Lifshitz and Murnaghan’s notations are given

in Appendix C. The above semispace fluid properties are

cF = 1480 m/s and ρF = 1000 kg/m3.

III. RESULTS

In our analysis three scenarios were investigated, namely:

1) using an applied static stress σ22, which is constant and

equal to 200 MPa (tensile case), but where we vary both

the angle φ (see Fig. 1) in the range 0° − 90° with 1°

increments and the incident wave frequency f in the range

0–20.0 MHz with 1 kHz increments (this scenario corresponds

to φ − f plane); 2) using an angle φ which is constant and

equal to 90°, but where we vary both the stress σ22 in the range

−200–200 MPa with 4.35 MPa increments and the incident

wave frequency varies in the range 0–20.0 MHz, with 1 kHz

increments (this scenario corresponds to σ − f plane); and

3) the scenario where the frequency of the incidence wave

is kept constant and equal to 20 MHz, and where we vary

both the angle φ in the range 0°–90° and the stress σ22

in the range −200 –+200 MPa (the last scenario corresponds

to σ − φ plane). In all three scenarios, the wave incidence

angle was θ = 35° (to provide a representative illustration of

the influence of the acoustoelastic effect on band gaps in the

periodic semispace).

Fig. 2 shows the subsequent 3-D plot of the energy reflection

coefficient from the fluid loaded stressed periodic semispace.

We used a static stress limit of ±200 MPa, which can be either

be an applied or residual stress within the structure [21].

For band gaps which correspond to zones where R = 1,

passbands are formed where R < 1. The results also show that

the band gaps have a strong dependence (band gap becomes

2.5 times narrower due to the stress) on the static stress and

the wave propagation direction φ (Fig. 1) in the periodic

semispace (φ − f plane). The band gaps depend significantly

on the stress value when φ = 90°, see plane σ − f in Fig. 2.

When σ = 0 MPa, the energy reflection coefficient corre-

sponds to the unstressed semispace case. When the incidence

wave frequency f is equal to 20.0 MHz (plane σ − φ),

the results also show that a band gap is formed in a wide

range of the parameters σ and φ. The results are presented

in more detail for the second scenario, which demonstrates

the corresponding response for compression and tensile stress

case in φ − f plane.

Furthermore, we represent the ultrasonic wave response of

the periodic structure in terms of Floquet wavenumbers, where

the unit cell thickness product ℜ(kzF×H) and energy reflection

coefficients R from a periodic semispace loaded by a fluid

when the angle φ = 90°, 45°, 0°, see Fig. 1. Two separate

cases are considered in the analysis with respect to the angle φ,

namely, when the shear horizontal wave motion is not coupled

to the sagittal wave motion [Fig. 3(a)–(c) and (g)–(i)], and

second, when coupling occurs between the shear horizontal

and sagittal wave motions [22] [Fig. 3(d)–(f)]. In the reference

case, where σ22 = 0 MPa, and mo,i and mi,j denote the out-

of-plane shear wave and in-plane shear and longitudinal wave

modes, respectively. Modes in both compressive and tensile

cases are denoted as no,i and ni,j. For the reference case,

the 1-D phononic crystal contains three well-defined zones

[see Fig. 3(a)] comprising an effective homogeneous medium

from 0 to 3.7 MHz, [see Fig. 3(b), mode mi1]; the first band

gap in the frequency range 3.7–9.1 MHz, and finally, the main

passband in the frequency range 10.0–17.1 MHz.

When the static stress direction is coincident with the wave

propagation direction (φ = 90°), Fig. 3(a)–(c), significant

changes occur in the band gap zones of the phononic crystal,

despite the shear wave motion being decoupled from the

sagittal wave motion. In this case, however, the first band

gap is almost unaffected in the compression stress. However,

in the tensile case, this band gap reduces from 3.7–9.1 MHz

to 3.8–5.9 MHz, becoming 2.5 times narrower. This is due

to a change in the mode dispersion of the structure as shown

in Fig. 3(b) of the stressed mode ni2 with respect to the same

reference mode mi2. The tensile static stress [Fig. 3(c)] also

shifts down the second band gap which occurs in the frequency

range 12.4–13.9 MHz, see the modes mi3, mi4 and ni3, ni4.

The compression stress [Fig. 3(a)] causes a significant band-

gap shift in the frequency range 10–13.3 MHz, this is shown

in Fig. 3(b) where the reference mode mi3 is shifted up, but

the dispersion remains unchanged, whereas mi2 mode does

not shift significantly but its dispersion is changed. The out-of

plane modes mo,i are relatively insensitive to the applied stress

in comparison with mi,j modes.

In the case of the mi,j modes, the results show that the

smallest difference in ultrasonic response from the stressed

periodic structures is observed when the wave propagation and

stress directions are orthogonal (φ = 0°) [see Fig. 3(g)–(i)].

In this case, the mo,i modes are sensitive to the applied stress

and these modes are consequently significantly shifted (see the

modes no2 and no3).

Finally, when the angle φ = 0° or φ = 90°, the modes

present in the structure are pure. However, when the angle

φ deviates from these values, the modes no longer remain

pure and the shear horizontal wave motion couples into the
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Fig. 3. Ultrasonic response from a periodic semispace loaded by fluid when
the incident beam angle θ = 35° and angle φ is (a)–(c) φ = 90°, (d)–(f)
φ = 45°, and (g)–(i) φ = 0°. The energy reflection coefficients for the
compression case [(a), (d), and (g)] and tensile stress case [(c), (f), and (i)]
are shown. The corresponding Floquet wavenumber and unit cell thickness
product ℜ(kzF ×H) is depicted in (b), (e), and (h). Blue curves: the reference
case when σ22 = 0 MPa. Green curves: the response when σ22 = −200 MPa.
Red curves: the response σ22 = 200 MPa.

sagittal wave motion. For example, this coupling is shown for

the case when φ = 45° in the reflection coefficient, for the

frequency range 3.8–5.3 MHz [Fig. 3(f), mode no1] in the

tensile stress case (where weaker coupling is observed in the

compression stress case). The modes no2 and no3 have a higher

coupling to the sagittal wave motion. In the compression

stress case [Fig. 3(d)], the first band gap is less affected than

in the tensile stress case. The results show that in the tensile

stress case, the first band gap is formed in the frequency

range 5.3–7.5 MHz, and it is 2.5 narrower compared with

the band gap when σ22 = 0 [see Fig. 3(f)]. The narrowing

Fig. 4. Lamb wave phase velocity dependence on the angle φ in aluminum
plate of thickness 6.35 mm when σ11 = 57.5 MPa, where circles indicate
the reported data from [11]. Calculations are performed at the following
frequencies: 0.25 (s0 mode), 0.4 (a1 mode), and 0.6 MHz (s1 mode).

is caused by a change in the mi2 reference mode dispersion,

see ni2. The main passband is also narrower as is seen in the

frequency ranges 12.0–17.4 MHz and 10.9–15.0 MHz for the

compression and tensile stress cases, respectively. These latter

changes occur due to mi3 mode shifting up in the case of

compression stress, and shifting down in the case of tensile

stress, see mode ni3.

IV. CONCLUSION

In conclusion, we show that static stress together with

second-order material nonlinearities have a significant influ-

ence on the band gaps in 1-D phononic crystals. This acous-

toelastic effect can be understood as the nonlinear wave mixing

between a zero-frequency wave and a propagating wave. Our

results extend recently reported work [13], where analysis

was conducted using small amplitude motions in a normal

direction, while we now consider finite amplitude elastic waves

having oblique angle propagation.

We show that the band gaps are highly tunable with respect

to the direction and the magnitude of static stress. We also

show that the effect is enhanced both by the resonances in the

1-D phononic crystals and by the coupling between the shear

horizontal and sagittal wave. In the future, our study has the

potential to enable a number applications in industries using

periodic composites structures, including the integrity of large-

scale composite structures used in the aerospace industry or of

stresses caused by thermal mismatches in microstructures

created within the semiconductor industry.

APPENDIX A

VALIDATION OF THE IMPLEMENTATION OF THE STIFFNESS

MATRIX METHOD FOR GUIDED AND FLOQUET WAVES

IN LAYERED STRUCTURES

Fig. 4 shows the Lamb wave phase velocity dependence

for three modes, two of which are symmetric, s0 and s1,

and one that is antisymmetric a1, with respect to the angle
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Fig. 5. Relation between ℜ(kzF ×H) and f × H . Red color: data from [16].
The viscoelastic unit cell comprises aluminum and epoxy of equal thickness.
The incidence angle is 80° corresponding to longitudinal wave in nylon.

φ in a single-layered aluminum plate when applied stress

σ11 = 57.5 MPa. The material properties are listed in [11]. Our

results, carried out as replicates, show an excellent agreement

with the reported results in [11], see Fig. 10.

Fig. 5 also shows Floquet wavenumbers for the two-layered

viscoelastic unit cell comprising aluminum and epoxy layers

of equal thickness. The incidence angle of longitudinal wave

in nylon is 80°. The material properties are listed in [16]. Our

results show an excellent agreement with the reported results

in [16], see Fig. 2(b).

APPENDIX B

STATIC STRAIN DISPERSION RELATIONS

Using the ultrasonic wave and static strain superposition

defined by (3), we can determine separately the linear and

nonlinear effects in equation of motion (1). To simplify

the notations, we consider the longitudinal and shear waves

separately. In the case of longitudinal waves propagating in the

x1-direction, we have the linear part equal to

ρ
∂2 vi

∂ t2
− µ

∂2 vi

∂x j∂x j

− (λ + µ)
∂2 v j

∂xi∂x j

= ui e
−i(ωt−k·r)k2

(

λ + 2µ − ρc2
0L

)

(12)

where the polarization amplitude u is parallel to the wave

vector k. Similarly, we can determine the nonlinear stress

tensor for the superposition (3)

∂σij

∂x j

= −ui e
−i(ωt−k·r)k2(2C(e11 + e22 + e33)2Ae11

+ (2B + λ)(3e11 + e22 + e33) + 6e11µ). (13)

Equating (12) and (13) allows us to introduce a new sta-

tic strain dependent wave velocity, c0L , as defined by (4).

The wave part of the superposition is then a solution of

the linear wave equation taking this modified velocity into

account.

In the same way, we proceed to evaluate the effect of the

static strain on shear waves. In this case, the linear part of the

wave equation evaluates to

ρ
∂2 vi

∂ t2
− µ

∂2 vi

∂x j∂x j

− (λ + µ)
∂2 v j

∂xi∂x j

= ui e
−i(ωt−k·r)k2

(

µ − ρc2
0S

)

(14)

where the polarization amplitude u is perpendicular to the

wave vector k. The nonlinear stress tensor for the superpo-

sition (3) in this case is equal to

∂σij

∂x j

= −ui e
−i(ωt−k·r)k2(A/2 + 2µ)(e11 + eS)

+ (B + λ)(e11 + e22 + e33) (15)

where the subscript S corresponding to the shear wave direc-

tion with indices equal to either 22 or 33. Similar to the

longitudinal case, equating (14) and (15) allows us to introduce

a new static strain dependent wave velocity c0S as defined

by (5). The wave part of the superposition is then a solution

of the linear wave equation taking this modified velocity into

account.

APPENDIX C

RELATIONSHIP BETWEEN THIRD-ORDER ELASTIC

CONSTANTS FOR ISOTROPIC SOLIDS

The relationships between the third-order elastic constants

in Landau and Lifshitz (A, B , and C) and Murnaghan’s

notations are given as

l = B + C, m = A/2 + B, n = A (16)

where l, m, and n are the third-order elastic constants

in Murnaghan’s notations.

ACKNOWLEDGMENT

The authors would like to thank Dr. J. Michaels from

Georgia Tech and Dr. E. L. Tan from Nanyang Technolog-

ical University for providing data used in Figs. 4 and 5,

and also thank Dr. M. Tassieri for his helpful discussions.

All data created during this research are openly available

from the University of Glasgow at http://dx.doi.org/10.5525/

gla.researchdata.600.

REFERENCES

[1] J. H. Page et al., “Phononic crystals,” Phys. Status Solidi B, vol. 241,
no. 15, pp. 3454–3462, Dec. 2004.

[2] Y. Pennec, J. O. Vasseur, B. Djafari-Rouhani, L. Dobrzyński, and
P. Deymier, “Two-dimensional phononic crystals: Examples and appli-
cations,” Surf. Sci. Rep., vol. 65, no. 8, pp. 229–291, 2010.

[3] L. B. Vogelesang and A. Vlot, “Development of fibre metal laminates
for advanced aerospace structures,” J. Mater. Process. Technol., vol. 103,
no. 1, pp. 1–5, 2000.

[4] S. U. Khan, R. C. Alderliesten, and R. Benedictus, “Delamination
growth in fibre metal laminates under variable amplitude loading,”
Compos. Sci. Technol., vol. 69, nos. 15–16, pp. 2604–2615, 2009.

[5] P. Peddiraju, J. Noh, J. Whitcomb, and D. Lagoudas, “Prediction of
cryogen leak rate through damaged composite laminates,” J. Compos.

Mater., vol. 41, no. 1, pp. 41–71, 2007.
[6] T. Zhang, Q. Zhu, W. L. Huang, Z. Xie, and X. Xin, “Stress field and

failure probability analysis for the single cell of planar solid oxide fuel
cells,” J. Power Sour., vol. 182, no. 2, pp. 540–545, 2008.
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