# HYPERELLIPTIC JACOBIANS AND SIMPLE GROUPS $U_{3}\left(2^{m}\right)$ 

YURI G. ZARHIN<br>(Communicated by David E. Rohrlich)


#### Abstract

In a previous paper, the author proved that in characteristic zero the jacobian $J(C)$ of a hyperelliptic curve $C: y^{2}=f(x)$ has only trivial endomorphisms over an algebraic closure $K_{a}$ of the ground field $K$ if the Galois group $\operatorname{Gal}(f)$ of the irreducible polynomial $f(x) \in K[x]$ is either the symmetric group $\mathbf{S}_{n}$ or the alternating group $\mathbf{A}_{n}$. Here $n>4$ is the degree of $f$. In another paper by the author this result was extended to the case of certain "smaller" Galois groups. In particular, the infinite series $n=2^{r}+1, \operatorname{Gal}(f)=$ $\mathbf{L}_{2}\left(2^{r}\right):=\mathrm{PSL}_{2}\left(\mathbf{F}_{2^{r}}\right)$ and $n=2^{4 r+2}+1, \operatorname{Gal}(f)=\mathbf{S z}\left(2^{2 r+1}\right)$ were treated. In this paper the case of $\operatorname{Gal}(f)=\mathbf{U}_{3}\left(2^{m}\right):=\operatorname{PSU}_{3}\left(\mathbf{F}_{2^{m}}\right)$ and $n=2^{3 m}+1$ is treated.


## 1. Introduction

In [15] the author proved that in characteristic 0 the jacobian $J(C)=J\left(C_{f}\right)$ of a hyperelliptic curve

$$
C=C_{f}: y^{2}=f(x)
$$

has only trivial endomorphisms over an algebraic closure $K_{a}$ of the ground field $K$ if the Galois group $\operatorname{Gal}(f)$ of the irreducible polynomial $f \in K[x]$ is "very big". Namely, if $n=\operatorname{deg}(f) \geq 5$ and $\operatorname{Gal}(f)$ is either the symmetric group $\mathbf{S}_{n}$ or the alternating group $\mathbf{A}_{n}$, then the ring $\operatorname{End}\left(J\left(C_{f}\right)\right)$ of $K_{a}$-endomorphisms of $J\left(C_{f}\right)$ coincides with $\mathbf{Z}$. Later the author [16] proved that $\operatorname{End}\left(J\left(C_{f}\right)\right)=\mathbf{Z}$ for an infinite series of $\operatorname{Gal}(f)=\mathrm{PSL}_{2}\left(\mathbf{F}_{2^{r}}\right)$ and $n=2^{r}+1$ (with $\left.\operatorname{dim}\left(J\left(C_{f}\right)\right)=2^{r-1}\right)$ or when $\operatorname{Gal}(f)$ is the Suzuki group $\mathbf{S z}\left(2^{2 r+1}\right)$ and $n=2^{2(2 r+1)}+1\left(\right.$ with $\operatorname{dim}\left(J\left(C_{f}\right)\right)=$ $\left.2^{4 r+1}\right)$. We refer the reader to [12], 13], 9], [10], [11, [15], [16, [17] for a discussion of known results about, and examples of, hyperelliptic jacobians without complex multiplication.

We write $\mathfrak{R}=\mathfrak{R}_{f}$ for the set of roots of $f$ and consider $\operatorname{Gal}(f)$ as the corresponding permutation group of $\Re$. Suppose $q=2^{m}>2$ is an integral power of 2 and $\mathbf{F}_{q^{2}}$ is a finite field consisting of $q^{2}$ elements. Let us consider a non-degenerate Hermitian (wrt $x \mapsto x^{q}$ ) sesquilinear form on $\mathbf{F}_{q^{2}}^{3}$. In the present paper we prove that

$$
\operatorname{End}\left(J\left(C_{f}\right)\right)=\mathbf{Z}
$$

[^0]when $\mathfrak{R}_{f}$ can be identified with the corresponding "Hermitian curve" of isotropic lines in the projective plane $\mathbf{P}^{2}\left(\mathbf{F}_{q^{2}}\right)$ in such a way that $\operatorname{Gal}(f)$ becomes either the projective unitary group $\mathrm{PGU}_{3}\left(\mathbf{F}_{q}\right)$ or the projective special unitary group $\mathbf{U}_{3}(q):=\operatorname{PSU}_{3}\left(\mathbf{F}_{q}\right)$. In this case $n=\operatorname{deg}(f)=q^{3}+1=2^{3 m}+1$ and $\operatorname{dim}\left(J\left(C_{f}\right)\right)=$ $q^{3} / 2=2^{3 m-1}$.

Our proof is based on an observation that the Steinberg representation is the only absolutely irreducible nontrivial representation (up to an isomorphism) over $\mathbf{F}_{2}$ of $\mathbf{U}_{3}\left(2^{m}\right)$, whose dimension is a power of 2.

I am deeply grateful to the referee for useful comments.

## 2. Main Results

Throughout this paper we assume that $K$ is a field with $\operatorname{char}(K) \neq 2$. We fix its algebraic closure $K_{a}$ and write $\operatorname{Gal}(K)$ for the absolute Galois group $\operatorname{Aut}\left(K_{a} / K\right)$. If $X$ is an abelian variety defined over $K$, then we write $\operatorname{End}(X)$ for the ring of $K_{a}$-endomorphisms of $X$.

Suppose $f(x) \in K[x]$ is a separable polynomial of degree $n \geq 5$. Let $\mathfrak{R}=\mathfrak{R}_{f} \subset$ $K_{a}$ be the set of roots of $f$, let $K\left(\Re_{f}\right)=K(\Re)$ be the splitting field of $f$ and let $\operatorname{Gal}(f):=\operatorname{Gal}(K(\Re) / K)$ be the Galois group of $f$, viewed as a subgroup of $\operatorname{Perm}(\mathfrak{R})$. Let $C_{f}$ be the hyperelliptic curve $y^{2}=f(x)$. Let $J\left(C_{f}\right)$ be its jacobian, $\operatorname{End}\left(J\left(C_{f}\right)\right)$ the ring of $K_{a}$-endomorphisms of $J\left(C_{f}\right)$.

Theorem 2.1. Recall that $\operatorname{char}(K) \neq 2$. Assume that there exists a positive integer $m>1$ such that $n=2^{3 m}+1$ and $\operatorname{Gal}(f)$ contains a subgroup isomorphic to $\mathbf{U}_{3}\left(2^{m}\right)$. Then either $\operatorname{End}\left(J\left(C_{f}\right)\right)=\mathbf{Z}$ or $\operatorname{char}(K)>0$ and $J\left(C_{f}\right)$ is a supersingular abelian variety.

Remark 2.2. It would be interesting to find explicit examples of irreducible polynomials $f(x)$ of degree $2^{3 m}+1$ with Galois group $\mathbf{U}_{3}\left(2^{m}\right)$. It follows from results of Belyi [1] that such a polynomial always exists over a certain abelian number field $K$ (depending on $m$ ). The celebrated Shafarevich conjecture implies that such polynomials must exist over the field $\mathbf{Q}$ of rational numbers.

We will prove Theorem 2.1 in $\$ 5$

## 3. Permutation groups, Permutation modules and very simplicity

Let $B$ be a finite set consisting of $n \geq 5$ elements. We write $\operatorname{Perm}(B)$ for the group of permutations of $B$. A choice of ordering on $B$ gives rise to an isomorphism

$$
\operatorname{Perm}(B) \cong \mathbf{S}_{n}
$$

Let $G$ be a subgroup of $\operatorname{Perm}(B)$. For each $b \in B$ we write $G_{b}$ for the stabilizer of $b$ in $G$; it is a subgroup of $G$. Further we always assume that $n$ is odd.

Remark 3.1. Assume that the action of $G$ on $B$ is transitive. It is well-known that each $G_{b}$ is of index $n$ in $G$ and all the $G_{b}$ 's are conjugate in $G$. Each conjugate of $G_{b}$ in $G$ is the stabilizer of a point of $B$. In addition, one may identify the $G$-set $B$ with the set of cosets $G / G_{b}$ with the standard action by $G$.

We write $\mathbf{F}_{2}^{B}$ for the $n$-dimensional $\mathbf{F}_{2}$-vector space of maps $h: B \rightarrow \mathbf{F}_{2}$. The space $\mathbf{F}_{2}^{B}$ is provided with a natural action of $\operatorname{Perm}(B)$ defined as follows. Each
$s \in \operatorname{Perm}(B)$ sends a map $h: B \rightarrow \mathbf{F}_{2}$ into $s h: b \mapsto h\left(s^{-1}(b)\right)$. The permutation module $\mathbf{F}_{2}^{B}$ contains the $\operatorname{Perm}(B)$-stable hyperplane

$$
Q_{B}:=\left\{h: B \rightarrow \mathbf{F}_{2} \mid \sum_{b \in B} h(b)=0\right\}
$$

and the $\operatorname{Perm}(B)$-invariant line $\mathbf{F} \cdot 1_{B}$ where $1_{B}$ is the constant function 1 . Since $n$ is odd, there is a $\operatorname{Perm}(B)$-invariant splitting

$$
\mathbf{F}_{2}^{B}=Q_{B} \oplus \mathbf{F}_{2} \cdot 1_{B}
$$

Clearly,

$$
\operatorname{dim}_{\mathbf{F}_{2}}\left(Q_{B}\right)=n-1
$$

and $\mathbf{F}_{2}^{B}$ and $Q_{B}$ carry natural structures of $G$-modules. Clearly, $Q_{B}$ is a faithful $G$-module. It is also clear that the $G$-module $Q_{B}$ can be viewed as the reduction modulo 2 of the $\mathbf{Q}[G]$-module

$$
\left(\mathbf{Q}^{B}\right)^{0}:=\left\{h: B \rightarrow \mathbf{Q} \mid \sum_{b \in B} h(b)=0\right\}
$$

It is well-known that the $\mathbf{Q}[G]$-module $\left(\mathbf{Q}^{B}\right)^{0}$ is absolutely simple if and only if the action of $G$ on $B$ is doubly transitive ( 14 , Sect. 2.3, Ex. 2).
Remark 3.2. Assume that $G$ acts on $B$ doubly transitively and that

$$
\#(B)-1=\operatorname{dim}_{\mathbf{Q}}\left(\left(\mathbf{Q}_{B}\right)^{0}\right)
$$

coincides with the largest power of 2 dividing $\#(G)$. Then it follows from a theorem of Brauer-Nesbitt ([14], Sect. 16.4, pp. 136-137; 7], p. 249) that $Q_{B}$ is an absolutely simple $\mathbf{F}_{2}[G]$-module. In particular, $Q_{B}$ is (the reduction of) the Steinberg representation [7], 3].

We refer to [16] for a discussion of the following definition.
Definition 3.3. Let $V$ be a vector space over a field $\mathbf{F}$, let $G$ be a group and $\rho: G \rightarrow \operatorname{Aut}_{\mathbf{F}}(V)$ a linear representation of $G$ in $V$. We say that the $G$-module $V$ is very simple if it enjoys the following property:

If $R \subset \operatorname{End}_{\mathbf{F}}(V)$ is an $\mathbf{F}$-subalgebra containing the identity operator Id such that

$$
\rho(\sigma) R \rho(\sigma)^{-1} \subset R \quad \forall \sigma \in G
$$

then either $R=\mathbf{F} \cdot \operatorname{Id}$ or $R=\operatorname{End}_{\mathbf{F}}(V)$.
Remarks 3.4. (i) If $G^{\prime}$ is a subgroup of $G$ and the $G^{\prime}$-module $V$ is very simple, then obviously the $G$-module $V$ is also very simple.
(ii) A very simple module is absolutely simple (see [16], Remark 2.2(ii)).
(iii) If $\operatorname{dim}_{\mathbf{F}}(V)=1$, then obviously the $G$-module $V$ is very simple.
(iv) Assume that the $G$-module $V$ is very simple and $\operatorname{dim}_{\mathbf{F}}(V)>1$. Then $V$ is not induced from a subgroup $G$ (except $G$ itself) and is not isomorphic to a tensor product of two $G$-modules, whose $\mathbf{F}$-dimension is strictly less than $\operatorname{dim}_{\mathbf{F}}(V)$ (see [16], Example 7.1).
(v) If $\mathbf{F}=\mathbf{F}_{2}$ and $G$ is perfect, then properties (ii)-(iv) characterize the very simple $G$-modules (see [16], Th. 7.7).

The following statement provides a criterion of very simplicity over $\mathbf{F}_{2}$.
Theorem 3.5. Suppose a positive integer $N>1$ and a group $H$ enjoy the following properties:

- $H$ does not contain a subgroup of index dividing $N$ except $H$ itself.
- Let $N=a b$ be a factorization of $N$ into a product of two positive integers $a>1$ and $b>1$. Then either there does not exist an absolutely simple $\mathbf{F}_{2}[H]$-module of $\mathbf{F}_{2}$-dimension $a$ or there does not exist an absolutely simple $\mathbf{F}_{2}[H]$-module of $\mathbf{F}_{2}$-dimension $b$.
Then each absolutely simple $\mathbf{F}_{2}[H]$-module of $\mathbf{F}_{2}$-dimension $N$ is very simple.
Proof. This is Corollary 7.9 of [16].


## 4. Steinberg representation

We refer to [7] and [3] for a definition and basic properties of Steinberg representations.

Let us fix an algebraic closure of $\mathbf{F}_{2}$ and denote it by $\mathcal{F}$. We write $\phi: \mathcal{F} \rightarrow \mathcal{F}$ for the Frobenius automorphism $x \mapsto x^{2}$. Let $q=2^{m}$ be a positive integral power of two. Then the subfield of invariants of $\phi^{m}: \mathcal{F} \rightarrow \mathcal{F}$ is a finite field $\mathbf{F}_{q}$ consisting of $q$ elements. Let $q^{\prime}$ be an integral positive power of $q$. If $d$ is a positive integer and $i$ is a non-negative integer, then for each matrix $u \in \mathrm{GL}_{d}(\mathcal{F})$ we write $u^{(i)}$ for the matrix obtained by raising each entry of $u$ to the $2^{i}$ th power.

Remark 4.1. Recall that an element $\alpha \in \mathbf{F}_{q}$ is called primitive if $\alpha \neq 0$ and has multiplicative order $q-1$ in the cyclic multiplicative group $\mathbf{F}_{q}^{*}$.

Let $M<q-1$ be a positive integer. Clearly, the set

$$
\mu_{M}\left(\mathbf{F}_{q}\right)=\left\{\alpha \in \mathbf{F}_{q} \mid \alpha^{M}=1\right\}
$$

is a cyclic multiplicative subgroup of $\mathbf{F}_{q}^{*}$ and its order $M^{\prime}$ divides both $M$ and $q-1$. Since $M<q-1$ and $q-1$ is odd, the ratio $(q-1) / M^{\prime}$ is an odd integer $>1$. This implies that $3 \leq(q-1) / M^{\prime}$ and therefore

$$
M^{\prime}=\#\left(\mu_{M}\left(\mathbf{F}_{q}\right)\right) \leq(q-1) / 3
$$

Lemma 4.2. Let $q>2$, let $d$ be a positive integer and let $G$ be a subgroup of $\mathrm{GL}_{d}\left(\mathbf{F}_{q^{\prime}}\right)$. Assume that one of the following two conditions holds:
(i) There exists an element $u \in G \subset \mathrm{GL}_{d}\left(\mathbf{F}_{q^{\prime}}\right)$, whose trace $\alpha$ lies in $\mathbf{F}_{q}^{*}$ and has multiplicative order $q-1$.
(ii) There exist a positive integer $r>\frac{q-1}{3}$, distinct $\alpha_{1}, \cdots, \alpha_{r} \in \mathbf{F}_{q}^{*}$ and elements

$$
u_{1}, \cdots, u_{r} \in G \subset \mathrm{GL}_{d}\left(\mathbf{F}_{q^{\prime}}\right)
$$

such that the trace of $u_{i}$ is $\alpha_{i}$ for all $i=1, \cdots, r$.
Let $V_{0}=\mathcal{F}^{d}$ and $\rho_{0}: G \subset \mathrm{GL}_{d}\left(\mathbf{F}_{q^{\prime}}\right) \subset \mathrm{GL}_{d}(\mathcal{F})=\operatorname{Aut}_{\mathcal{F}}\left(V_{0}\right)$ be the natural $d$-dimensional representation of $G$ over $\mathcal{F}$. For each positive integer $i<m$ let us put $V_{i}:=V_{0}$ and define a d-dimensional $\mathcal{F}$-representation

$$
\rho_{i}: G \rightarrow \operatorname{Aut}\left(V_{i}\right)
$$

as the composition of

$$
G \hookrightarrow \mathrm{GL}_{d}\left(\mathbf{F}_{q^{\prime}}\right), \quad x \mapsto x^{(i)}
$$

and the inclusion map

$$
\mathrm{GL}_{d}\left(\mathbf{F}_{q^{\prime}}\right) \subset \operatorname{GL}_{d}(\mathcal{F}) \cong \operatorname{Aut}_{\mathcal{F}}\left(V_{i}\right)
$$

Let $S$ be a subset of $\{0,1, \ldots, m-1\}$. Let us define a $d^{\#(S)}$-dimensional $\mathcal{F}$-representation $\rho_{S}$ of $G$ as the tensor product of representations $\rho_{i}$ for all $i \in S$. If $S$ is a proper subset of $\{0,1, \ldots, m-1\}$, then there exists an element $u \in G$ such that the trace of $\rho_{S}(u)$ does not belong to $\mathbf{F}_{2}$. In particular, $\rho_{S}$ could not be obtained by extension of scalars to $\mathcal{F}$ from a representation of $G$ over $\mathbf{F}_{2}$.

Proof. Clearly,

$$
\operatorname{tr}\left(\rho_{i}(u)\right)=\operatorname{tr}\left(\rho_{0}(u)\right)^{2^{i}} \quad \forall u \in G
$$

This implies easily that

$$
\operatorname{tr}\left(\rho_{S}(u)\right)=\prod_{i \in S} \operatorname{tr}\left(\rho_{i}(u)\right)=\operatorname{tr}\left(\rho_{0}(u)\right)^{M}
$$

where $M=\sum_{i \in S} 2^{i}$. Since $S$ is a proper subset of $\{0,1, \cdots, m-1\}$, we have

$$
0<M<\sum_{i=0}^{m-1} 2^{i}=2^{m}-1=\#\left(\mathbf{F}_{q}^{*}\right)
$$

Assume that condition (i) holds. Then there exists $u \in G$ such that $\alpha=\operatorname{tr}\left(\rho_{0}(u)\right)$ lies in $\mathbf{F}_{q}^{*}$ and the exact multiplicative order of $\alpha$ is $q-1=2^{m}-1$.

This implies that $0 \neq \alpha^{M} \neq 1$. Since $\mathbf{F}_{2}=\{0,1\}$, we conclude that $\alpha^{M} \notin \mathbf{F}_{2}$. Therefore

$$
\operatorname{tr}\left(\rho_{S}(u)\right)=\operatorname{tr}\left(\rho_{0}(u)\right)^{M}=\alpha^{M} \notin \mathbf{F}_{2}
$$

Now assume that condition (ii) holds. It follows from Remark 4.1 that there exists $\alpha=\alpha_{i} \neq 0$ such that $\alpha^{M} \neq 1$ for some $i$ with $1 \leq i \leq r$. This implies that if we put $u=u_{i}$, then

$$
\operatorname{tr}\left(\rho_{S}(u)\right)=\operatorname{tr}\left(\rho_{0}(u)\right)^{M}=\alpha^{M} \notin \mathbf{F}_{2}
$$

Now, let us put $q^{\prime}=q^{2}=p^{2 m}$. We write $x \mapsto \bar{x}$ for the involution $a \mapsto a^{q}$ of $\mathbf{F}_{q^{2}}$. Let us consider the special unitary group $\mathrm{SU}_{3}\left(\mathbf{F}_{q}\right)$ consisting of all matrices $A \in \mathrm{SL}_{3}\left(\mathbf{F}_{q^{2}}\right)$ which preserve a nondegenerate Hermitian sesquilinear form on $\mathbf{F}_{q^{2}}^{3}$, say,

$$
x, y \mapsto x_{1} \overline{y_{3}}+x_{2} \overline{y_{2}}+x_{3} \overline{y_{1}} \quad \forall x=\left(x_{1}, x_{2}, x_{3}\right), y=\left(y_{1}, y_{2}, y_{3}\right)
$$

It is well-known that the conjugacy class of the special unitary group in $\mathrm{GL}_{3}\left(\mathbf{F}_{q^{2}}\right)$ does not depend on the choice of Hermitian form and that $\#\left(\mathrm{SU}_{3}\left(\mathbf{F}_{q}\right)\right)=$ $\left(q^{3}+1\right) q^{3}\left(q^{2}-1\right)$. Clearly, for each $\beta \in \mathbf{F}_{q}^{*}$ the group $\mathrm{SU}_{3}\left(\mathbf{F}_{q}\right)$ contains the diagonal matrix $u=\operatorname{diag}\left(\beta, 1, \beta^{-1}\right)$ with eigenvalues $\beta, 1, \beta^{-1}$; clearly, the trace of $u$ is $\beta+\beta^{-1}+1$.

Theorem 4.3. Suppose $G=\mathrm{SU}_{3}\left(\mathbf{F}_{q}\right)$. Suppose $V$ is an absolutely simple nontrivial $\mathbf{F}_{2}[G]$-module. Assume that $m>1$. If $\operatorname{dim}_{\mathbf{F}_{2}}(V)$ is a power of 2 , then it is equal to $q^{3}$. In particular, $V$ is the Steinberg representation of $\mathrm{SU}_{3}\left(\mathbf{F}_{q}\right)$.

Proof. Recall ([4], p. 77, 2.8.10c) that the adjoint representation of $G$ in $\operatorname{End}_{\mathbf{F}_{q^{2}}}\left(\mathbf{F}_{q^{2}}^{3}\right)$ splits into a direct sum of the trivial one-dimensional representation (scalars) and an absolutely simple $\mathbf{F}_{q^{2}}[G]$-module $\mathrm{St}_{2}$ of dimension 8 (traceless operators). The kernel of the natural homomorphism

$$
G=\mathrm{SU}_{3}\left(\mathbf{F}_{q}\right) \rightarrow \operatorname{Aut}_{\mathbf{F}_{q^{2}}}\left(\mathrm{St}_{2}\right) \cong \operatorname{GL}_{8}\left(\mathbf{F}_{q^{2}}\right)
$$

coincides with the center $Z(G)$ which is either trivial or a cyclic group of order 3 depending on whether $(3, q+1)=1$ or 3 . In both cases we get an embedding

$$
G^{\prime}:=G / Z(G)=\mathbf{U}_{3}(q)=\operatorname{PSU}_{3}\left(\mathbf{F}_{q}\right) \subset \mathrm{GL}_{8}\left(\mathbf{F}_{q^{2}}\right)
$$

If $m=2$ (i.e., $q=4$ ), then $G=\mathrm{SU}_{3}\left(\mathbf{F}_{4}\right)=\mathrm{U}_{3}(4)$ and one may use Brauer character tables 8 in order to study absolutely irreducible representations of $G$ in characteristic 2 . Notice ( $[8]$, p. 284) that the reduction modulo 2 of the irrational constant b5 does not lie in $\mathbf{F}_{2}$. Using the table on p. 70 of [8], we conclude that there is only one (up to an isomorphism) absolutely irreducible representation of $G$ defined over $\mathbf{F}_{2}$ and its dimension is $64=q^{3}$. This proves the assertion of the theorem in the case of $m=2, q=4$. So further we assume that

$$
m \geq 3, \quad q=2^{m} \geq 8
$$

Clearly, for each $u \in G \subset \operatorname{GL}_{3}\left(\mathbf{F}_{q^{2}}\right)$ with trace $\delta \in \mathbf{F}_{q^{2}}$ the image $u^{\prime}$ of $u$ in $G^{\prime}$ has trace $\bar{\delta} \delta-1 \in \mathbf{F}_{q}$. In particular, if $u=\operatorname{diag}\left(\beta, 1, \beta^{-1}\right)$ with $\beta \in \mathbf{F}_{q}^{*}$, then the trace of $u^{\prime}$ is

$$
t_{\beta}:=\operatorname{tr}\left(u^{\prime}\right)=\left(1+\beta+\beta^{-1}\right)\left(1+\beta+\beta^{-1}\right)-1=\left(\beta+\beta^{-1}\right)^{2} .
$$

Now let us start to vary $\beta$ in the $q-2$-element set

$$
\mathbf{F}_{q} \backslash \mathbf{F}_{2}=\mathbf{F}_{q}^{*} \backslash\{1\} .
$$

One may easily check that the set of all $t_{\beta}$ 's consists of $\frac{q-2}{2}$ elements of $\mathbf{F}_{q}^{*}$. Since $q \geq 8$,

$$
r:=\frac{q-2}{2}>\frac{q-1}{3} .
$$

This implies that $G^{\prime} \subset \mathrm{GL}_{8}\left(\mathbf{F}_{q^{2}}\right)$ satisfies the conditions of Lemma 4.2 with $d=8$. In particular, none of representations $\rho_{S}$ of $G^{\prime}$ could be realized over $\mathbf{F}_{2}$ if $S$ is a proper subset of $\{0,1, \cdots, m-1\}$. On the other hand, it is known ( 4, p. 77 , Example 2.8.10c) that each absolutely irreducible representation of $G$ over $\mathcal{F}$ either has dimension divisible by 3 or is isomorphic to the representation obtained from some $\rho_{S}$ via $G \rightarrow G^{\prime}$. The rest is clear.

Theorem 4.4. Suppose $m>1$ is an integer and let us put $q=2^{m}$. Let $B$ be $a\left(q^{3}+1\right)$-element set. Let $H$ be a group acting faithfully on $B$. Assume that $H$ contains a subgroup $G^{\prime}$ isomorphic to $\mathbf{U}_{3}(q)$. Then the $H$-module $Q_{B}$ is very simple.

Proof. First, $\mathbf{U}_{3}(q)$ is a simple non-abelian group whose order is $q^{3}\left(q^{3}+1\right)\left(q^{2}-1\right) / \nu$ where $\nu=(3, q+1)$ is 1 or 3 according to whether $m$ is even or odd ([2], p. XVI, Table 6; 4], pp. 39-40). Second, notice that $\mathbf{U}_{3}(q) \subset H$ acts transitively on $B$. Indeed, the list of maximal subgroups of $\mathbf{U}_{3}(q)$ ([5], p. 158; see also [4], Th. 6.5.3 and its proof, pp. 329-332) is as follows:
(1) Groups of order $q^{3}\left(q^{2}-1\right) / \nu$. The preimage of any such group in $\mathrm{SU}_{3}\left(\mathbf{F}_{q}\right)$ leaves invariant a certain one-dimensional subspace in $\mathbf{F}_{q^{2}}^{3}$ (the centre of an elation; see [5], pp. 142, 158).
(2) Groups of order $(q+1)\left(q^{2}-1\right) / \nu$.
(3) Groups of order $6(q+1)^{2} / \nu$.
(4) Groups of order $3\left(q^{2}-q+1\right) \nu$.
(5) $\mathbf{U}_{3}\left(2^{r}\right)$ where $r$ is a factor of $m$ and $m / r$ is an odd prime.
(6) Groups containing $\mathbf{U}_{3}\left(2^{r}\right)$ as a normal subgroup of index 3 when $r$ is odd and $m=3 r$.
The classification of maximal subgroups of $\mathbf{U}_{3}(q)$ easily implies that each subgroup of $\mathbf{U}_{3}(q)$ has index $\geq q^{3}+1=\#(B)$ (see also [6], pp. 213-214). This implies that $\mathbf{U}_{3}(q)$ acts transitively on $B$. Third, we claim that this action is, in fact, doubly transitive. Indeed, the stabilizer $\mathbf{U}_{3}(q)_{b}$ of a point $b \in B$ has index $q^{3}+1$ in $\mathbf{U}_{3}(q)$ and therefore is a maximal subgroup. It follows easily from the same classification that the maximal subgroup $\mathbf{U}_{3}(q)_{b}$ is (the image of) the stabilizer (in $\mathrm{SU}_{3}\left(\mathbf{F}_{q}\right)$ ) of a one-dimensional subspace $L$ in $\mathbf{F}_{q^{2}}^{3}$. The counting arguments easily imply that $L$ is isotropic. Hence $\mathbf{U}_{3}(q)_{b}$ is (the image of) the stabilizer of an isotropic line in $\mathbf{F}_{q^{2}}^{3}$. Taking into account that the set of isotropic lines in $\mathbf{F}_{q^{2}}^{3}$ has cardinality $q^{3}+1=\#(B)$, we conclude that $B=\mathbf{U}_{3}(q) / \mathbf{U}_{3}(q)_{b}$ is isomorphic (as $\mathbf{U}_{3}(q)$-set) to the set of isotropic lines on which $\mathbf{U}_{3}(q)$ acts doubly transitively and we are done.

By Remark [3.2, the double transitivity implies that the $\mathbf{F}_{2}\left[\mathbf{U}_{3}(q)\right]$-module $Q_{B}$ is absolutely simple. Since $\mathrm{SU}_{3}\left(\mathbf{F}_{q}\right) \rightarrow \mathbf{U}_{3}(q)$ is surjective, the corresponding $\mathbf{F}_{2}\left[\mathrm{SU}_{3}\left(\mathbf{F}_{q}\right)\right]$-module $Q_{B}$ is also absolutely simple.

Recall that $\operatorname{dim}_{\mathbf{F}_{2}}\left(Q_{B}\right)=\#(B)-1=q^{3}=2^{3 m}$. By Theorem 4.3, there are no absolutely simple nontrivial $\mathbf{F}_{2}\left[\mathrm{SU}_{3}\left(\mathbf{F}_{q}\right)\right]$-modules whose dimension strictly divides $2^{3 m}$. This implies that $Q_{B}$ is not isomorphic to a tensor product of absolutely simple $\mathbf{F}_{2}\left[\mathrm{SU}_{3}\left(\mathbf{F}_{q}\right)\right]$-modules of dimension $>1$. Therefore $Q_{B}$ is not isomorphic to a tensor product of absolutely simple $\mathbf{F}_{2}\left[\mathbf{U}_{3}(q)\right]$-modules of dimension $>1$. Recall that all subgroups in $G^{\prime}=\mathbf{U}_{3}(q)$ that are different from $\mathbf{U}_{3}(q)$ itself have index $\geq q^{3}+1>q^{3}=\operatorname{dim}_{\mathbf{F}_{2}}\left(Q_{B}\right)$. It follows from Theorem 3.5 that the $G^{\prime}$-module $Q_{B}$ is very simple. Now the desired very simplicity of the $H$-module $Q_{B}$ is an immediate corollary of Remark 3.4 (i).

## 5. Proof of Theorem 2.1

Recall that $\operatorname{Gal}(f) \subset \operatorname{Perm}(\mathfrak{R})$. It is also known that the natural homomor$\operatorname{phism} \operatorname{Gal}(K) \rightarrow \operatorname{Aut}_{\mathbf{F}_{2}}\left(J(C)_{2}\right)$ factors through the canonical surjection $\operatorname{Gal}(K) \rightarrow$ $\operatorname{Gal}(K(\mathfrak{R}) / K)=\operatorname{Gal}(f)$, and the $\operatorname{Gal}(f)$-modules $J(C)_{2}$ and $Q_{\mathfrak{R}}$ are isomorphic (see, for instance, Th. 5.1 of [16]). In particular, if the $\operatorname{Gal}(f)$-module $Q_{\mathfrak{R}}$ is very simple, then the $\operatorname{Gal}(f)$-module $J(C)_{2}$ is also very simple and therefore is absolutely simple.

Lemma 5.1. If the $\operatorname{Gal}(f)$-module $Q_{\mathfrak{R}}$ is very simple, then either $\operatorname{End}\left(J\left(C_{f}\right)\right)=\mathbf{Z}$ or $\operatorname{char}(K)>0$ and $J\left(C_{f}\right)$ is a supersingular abelian variety.
Proof. This is Corollary 5.3 of [16].
It follows from Theorem 4.4 that under the assumptions of Theorem 2.1, the $\operatorname{Gal}(f)$-module $Q_{\mathfrak{R}}$ is very simple. Applying Lemma [5.1, we conclude that either $\operatorname{End}\left(J\left(C_{f}\right)\right)=\mathbf{Z}$ or $\operatorname{char}(K)>0$ and $J\left(C_{f}\right)$ is a supersingular abelian variety.

## References

[1] G. V. Belyi, On extensions of the maximal cyclotomic field having a given classical Galois group. J. Reine Angew. Math. 341 (1983), 147-156. MR 84h:12010
[2] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups. Clarendon Press, Oxford, 1985. MR 88g:20025
[3] Ch. W. Curtis, The Steinberg character of a finite group with a $(B, N)$-pair. J. Algebra 4 (1966), 433-441. MR 34:1406
[4] D. Gorenstein, R. Lyons, R. Solomon, The classification of the finite simple groups, Number 3. Mathematical Surveys and Monographs 40.3, AMS, Providence, RI, 1998. MR 98j:20011
[5] R. W. Hartley, Determination of the ternary collineation groups whose coefficients lie in the $G F\left(2^{n}\right)$. Ann. of Math. 27 (1926), 140-158.
[6] A. R. Hoffer, On unitary collineation groups. J. Algebra 22 (1972), 211-218. MR 46:780
[7] J. E. Humphreys, The Steinberg representation. Bull. AMS (N.S.) 16 (1987), 247-263. MR 88c:20050
[8] Ch. Jansen, K. Lux, R. Parker, R. Wilson, An Atlas of Brauer characters. Clarendon Press, Oxford, 1995. MR 96k:20016
[9] N. Katz, Monodromy of families of curves: applications of some results of Davenport-Lewis. In: Séminaire de Théorie des Nombres, Paris 1979-80 (ed. M.-J. Bertin); Progress in Math. 12, pp. 171-195, Birkhäuser, Boston-Basel-Stuttgart, 1981. MR 83d:14012
[10] N. Katz, Affine cohomological transforms, perversity, and monodromy. J. Amer. Math. Soc. 6 (1993), 149-222. MR 94b:14013
[11] D. Masser, Specialization of some hyperelliptic jacobians. In: Number Theory in Progress (eds. K. Györy, H. Iwaniec, J.Urbanowicz), vol. I, pp. 293-307; de Gruyter, Berlin-New York, 1999. MR 2000j:11088
[12] Sh. Mori, The endomorphism rings of some abelian varieties. Japanese J. Math. 2 (1976), 109-130. MR 56:12013
[13] Sh. Mori, The endomorphism rings of some abelian varieties. II, Japanese J. Math. 3 (1977), 105-109. MR 80e:14009
[14] J.-P. Serre, Linear representations of finite groups, Springer-Verlag, 1977. MR 56:8675
[15] Yu. G. Zarhin, Hyperelliptic jacobians without complex multiplication. Math. Res. Letters 7 (2000), 123-132. MR 2001a:11097
[16] Yu. G. Zarhin, Hyperelliptic jacobians and modular representations. In: Moduli of abelian varieties (C. Faber, G. van der Geer, F. Oort, eds.), pp. 473-490, Progress in Math., Vol. 195, Birkhäuser, Basel-Boston-Berlin, 2001. MR 2002b:11082
[17] Yu. G. Zarhin, Hyperelliptic jacobians without complex multiplication in positive characteristic. Math. Res. Letters 8 (2001), 429-435.

Department of Mathematics, Pennsylvania State University, University Park, PennSYLVANIA 16802

E-mail address: zarhin@math.psu.edu


[^0]:    Received by the editors August 30, 2001.
    2000 Mathematics Subject Classification. Primary 14H40; Secondary 14K05.
    Key words and phrases. Hyperelliptic jacobians, endomorphisms of abelian varieties, Steinberg representations, unitary groups, Hermitian curves.

    This work was partially supported by NSF grant DMS-0070664.

