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Abstract. In a previous paper, the author proved that in characteristic zero
the jacobian J(C) of a hyperelliptic curve C : y2 = f(x) has only trivial
endomorphisms over an algebraic closure Ka of the ground field K if the
Galois group Gal(f) of the irreducible polynomial f(x) ∈ K[x] is either the
symmetric group Sn or the alternating group An. Here n > 4 is the degree of f .
In another paper by the author this result was extended to the case of certain
“smaller” Galois groups. In particular, the infinite series n = 2r + 1,Gal(f) =
L2(2r) := PSL2(F2r ) and n = 24r+2 + 1,Gal(f) = Sz(22r+1) were treated.
In this paper the case of Gal(f) = U3(2m) := PSU3(F2m ) and n = 23m + 1
is treated.

1. Introduction

In [15] the author proved that in characteristic 0 the jacobian J(C) = J(Cf ) of
a hyperelliptic curve

C = Cf : y2 = f(x)

has only trivial endomorphisms over an algebraic closure Ka of the ground field K
if the Galois group Gal(f) of the irreducible polynomial f ∈ K[x] is “very big”.
Namely, if n = deg(f) ≥ 5 and Gal(f) is either the symmetric group Sn or the
alternating group An, then the ring End(J(Cf )) of Ka-endomorphisms of J(Cf )
coincides with Z. Later the author [16] proved that End(J(Cf )) = Z for an infinite
series of Gal(f) = PSL2(F2r ) and n = 2r + 1 (with dim(J(Cf )) = 2r−1) or when
Gal(f) is the Suzuki group Sz(22r+1) and n = 22(2r+1) + 1 (with dim(J(Cf )) =
24r+1). We refer the reader to [12], [13], [9], [10], [11], [15], [16], [17] for a discussion
of known results about, and examples of, hyperelliptic jacobians without complex
multiplication.

We write R = Rf for the set of roots of f and consider Gal(f) as the corre-
sponding permutation group of R. Suppose q = 2m > 2 is an integral power of 2
and Fq2 is a finite field consisting of q2 elements. Let us consider a non-degenerate
Hermitian (wrt x 7→ xq) sesquilinear form on F3

q2 . In the present paper we prove
that

End(J(Cf )) = Z
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96 YURI G. ZARHIN

when Rf can be identified with the corresponding “Hermitian curve” of isotropic
lines in the projective plane P2(Fq2) in such a way that Gal(f) becomes either
the projective unitary group PGU3(Fq) or the projective special unitary group
U3(q) := PSU3(Fq). In this case n = deg(f) = q3 +1 = 23m+1 and dim(J(Cf )) =
q3/2 = 23m−1.

Our proof is based on an observation that the Steinberg representation is the
only absolutely irreducible nontrivial representation (up to an isomorphism) over
F2 of U3(2m), whose dimension is a power of 2.

I am deeply grateful to the referee for useful comments.

2. Main results

Throughout this paper we assume that K is a field with char(K) 6= 2. We fix its
algebraic closure Ka and write Gal(K) for the absolute Galois group Aut(Ka/K).
If X is an abelian variety defined over K, then we write End(X) for the ring of
Ka-endomorphisms of X .

Suppose f(x) ∈ K[x] is a separable polynomial of degree n ≥ 5. Let R = Rf ⊂
Ka be the set of roots of f , let K(Rf) = K(R) be the splitting field of f and
let Gal(f) := Gal(K(R)/K) be the Galois group of f , viewed as a subgroup of
Perm(R). Let Cf be the hyperelliptic curve y2 = f(x). Let J(Cf ) be its jacobian,
End(J(Cf )) the ring of Ka-endomorphisms of J(Cf ).

Theorem 2.1. Recall that char(K) 6= 2. Assume that there exists a positive integer
m > 1 such that n = 23m+1 and Gal(f) contains a subgroup isomorphic to U3(2m).
Then either End(J(Cf )) = Z or char(K) > 0 and J(Cf ) is a supersingular abelian
variety.

Remark 2.2. It would be interesting to find explicit examples of irreducible poly-
nomials f(x) of degree 23m + 1 with Galois group U3(2m). It follows from results
of Belyi [1] that such a polynomial always exists over a certain abelian number
field K (depending on m). The celebrated Shafarevich conjecture implies that such
polynomials must exist over the field Q of rational numbers.

We will prove Theorem 2.1 in §5.

3. Permutation groups, permutation modules and very simplicity

Let B be a finite set consisting of n ≥ 5 elements. We write Perm(B) for the
group of permutations of B. A choice of ordering on B gives rise to an isomorphism

Perm(B) ∼= Sn.

Let G be a subgroup of Perm(B). For each b ∈ B we write Gb for the stabilizer of
b in G; it is a subgroup of G. Further we always assume that n is odd.

Remark 3.1. Assume that the action of G on B is transitive. It is well-known that
each Gb is of index n in G and all the Gb’s are conjugate in G. Each conjugate of
Gb in G is the stabilizer of a point of B. In addition, one may identify the G-set B
with the set of cosets G/Gb with the standard action by G.

We write FB2 for the n-dimensional F2-vector space of maps h : B → F2. The
space FB2 is provided with a natural action of Perm(B) defined as follows. Each
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s ∈ Perm(B) sends a map h : B → F2 into sh : b 7→ h(s−1(b)). The permutation
module FB2 contains the Perm(B)-stable hyperplane

QB := {h : B → F2 |
∑
b∈B

h(b) = 0}

and the Perm(B)-invariant line F · 1B where 1B is the constant function 1. Since
n is odd, there is a Perm(B)-invariant splitting

FB2 = QB ⊕ F2 · 1B.

Clearly,

dimF2(QB) = n− 1

and FB2 and QB carry natural structures of G-modules. Clearly, QB is a faithful
G-module. It is also clear that the G-module QB can be viewed as the reduction
modulo 2 of the Q[G]-module

(QB)0 := {h : B → Q |
∑
b∈B

h(b) = 0}.

It is well-known that the Q[G]-module (QB)0 is absolutely simple if and only if the
action of G on B is doubly transitive ([14], Sect. 2.3, Ex. 2).

Remark 3.2. Assume that G acts on B doubly transitively and that

#(B)− 1 = dimQ((QB)0)

coincides with the largest power of 2 dividing #(G). Then it follows from a theorem
of Brauer-Nesbitt ([14], Sect. 16.4, pp. 136–137; [7], p. 249) that QB is an abso-
lutely simple F2[G]-module. In particular, QB is (the reduction of) the Steinberg
representation [7], [3].

We refer to [16] for a discussion of the following definition.

Definition 3.3. Let V be a vector space over a field F, let G be a group and
ρ : G→ AutF(V ) a linear representation of G in V . We say that the G-module V
is very simple if it enjoys the following property:

If R ⊂ EndF(V ) is an F-subalgebra containing the identity operator Id such that

ρ(σ)Rρ(σ)−1 ⊂ R ∀σ ∈ G,

then either R = F · Id or R = EndF(V ).

Remarks 3.4. (i) If G′ is a subgroup of G and the G′-module V is very simple,
then obviously the G-module V is also very simple.

(ii) A very simple module is absolutely simple (see [16], Remark 2.2(ii)).
(iii) If dimF(V ) = 1, then obviously the G-module V is very simple.
(iv) Assume that the G-module V is very simple and dimF(V ) > 1. Then V is

not induced from a subgroup G (except G itself) and is not isomorphic to
a tensor product of two G-modules, whose F-dimension is strictly less than
dimF(V ) (see [16], Example 7.1).

(v) If F = F2 and G is perfect, then properties (ii)-(iv) characterize the very
simple G-modules (see [16], Th. 7.7).
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The following statement provides a criterion of very simplicity over F2.

Theorem 3.5. Suppose a positive integer N > 1 and a group H enjoy the following
properties:
• H does not contain a subgroup of index dividing N except H itself.
• Let N = ab be a factorization of N into a product of two positive integers
a > 1 and b > 1. Then either there does not exist an absolutely simple
F2[H ]-module of F2-dimension a or there does not exist an absolutely simple
F2[H ]-module of F2-dimension b.

Then each absolutely simple F2[H ]-module of F2-dimension N is very simple.

Proof. This is Corollary 7.9 of [16].

4. Steinberg representation

We refer to [7] and [3] for a definition and basic properties of Steinberg repre-
sentations.

Let us fix an algebraic closure of F2 and denote it by F . We write φ : F → F
for the Frobenius automorphism x 7→ x2. Let q = 2m be a positive integral power
of two. Then the subfield of invariants of φm : F → F is a finite field Fq consisting
of q elements. Let q′ be an integral positive power of q. If d is a positive integer
and i is a non-negative integer, then for each matrix u ∈ GLd(F) we write u(i) for
the matrix obtained by raising each entry of u to the 2ith power.

Remark 4.1. Recall that an element α ∈ Fq is called primitive if α 6= 0 and has
multiplicative order q − 1 in the cyclic multiplicative group F∗q .

Let M < q − 1 be a positive integer. Clearly, the set

µM (Fq) = {α ∈ Fq | αM = 1}

is a cyclic multiplicative subgroup of F∗q and its order M ′ divides both M and q−1.
Since M < q− 1 and q− 1 is odd, the ratio (q − 1)/M ′ is an odd integer > 1. This
implies that 3 ≤ (q − 1)/M ′ and therefore

M ′ = #(µM (Fq)) ≤ (q − 1)/3.

Lemma 4.2. Let q > 2, let d be a positive integer and let G be a subgroup of
GLd(Fq′ ). Assume that one of the following two conditions holds:

(i) There exists an element u ∈ G ⊂ GLd(Fq′ ), whose trace α lies in F∗q and has
multiplicative order q − 1.

(ii) There exist a positive integer r > q−1
3 , distinct α1, · · · , αr ∈ F∗q and elements

u1, · · · , ur ∈ G ⊂ GLd(Fq′ )

such that the trace of ui is αi for all i = 1, · · · , r.
Let V0 = Fd and ρ0 : G ⊂ GLd(Fq′) ⊂ GLd(F) = AutF (V0) be the natural

d-dimensional representation of G over F . For each positive integer i < m let us
put Vi := V0 and define a d-dimensional F-representation

ρi : G→ Aut(Vi)

as the composition of

G ↪→ GLd(Fq′ ), x 7→ x(i)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



HYPERELLIPTIC JACOBIANS AND SIMPLE GROUPS U3(2m) 99

and the inclusion map

GLd(Fq′ ) ⊂ GLd(F) ∼= AutF (Vi).

Let S be a subset of {0, 1, . . . ,m−1}. Let us define a d#(S)-dimensional F-represen-
tation ρS of G as the tensor product of representations ρi for all i ∈ S. If S is a
proper subset of {0, 1, . . . ,m − 1}, then there exists an element u ∈ G such that
the trace of ρS(u) does not belong to F2. In particular, ρS could not be obtained by
extension of scalars to F from a representation of G over F2.

Proof. Clearly,

tr(ρi(u)) = tr(ρ0(u))2i ∀u ∈ G.

This implies easily that

tr(ρS(u)) =
∏
i∈S

tr(ρi(u)) = tr(ρ0(u))M

where M =
∑

i∈S 2i. Since S is a proper subset of {0, 1, · · · ,m− 1}, we have

0 < M <
m−1∑
i=0

2i = 2m − 1 = #(F∗q).

Assume that condition (i) holds. Then there exists u ∈ G such that α = tr(ρ0(u))
lies in F∗q and the exact multiplicative order of α is q − 1 = 2m − 1.

This implies that 0 6= αM 6= 1. Since F2 = {0, 1}, we conclude that αM 6∈ F2.
Therefore

tr(ρS(u)) = tr(ρ0(u))M = αM 6∈ F2.

Now assume that condition (ii) holds. It follows from Remark 4.1 that there exists
α = αi 6= 0 such that αM 6= 1 for some i with 1 ≤ i ≤ r. This implies that if we
put u = ui, then

tr(ρS(u)) = tr(ρ0(u))M = αM 6∈ F2.

Now, let us put q′ = q2 = p2m. We write x 7→ x̄ for the involution a 7→ aq of
Fq2 . Let us consider the special unitary group SU3(Fq) consisting of all matrices
A ∈ SL3(Fq2) which preserve a nondegenerate Hermitian sesquilinear form on F3

q2 ,
say,

x, y 7→ x1ȳ3 + x2ȳ2 + x3ȳ1 ∀x = (x1, x2, x3), y = (y1, y2, y3).

It is well-known that the conjugacy class of the special unitary group in GL3(Fq2)
does not depend on the choice of Hermitian form and that #(SU3(Fq)) =
(q3 + 1)q3(q2 − 1). Clearly, for each β ∈ F∗q the group SU3(Fq) contains the
diagonal matrix u = diag(β, 1, β−1) with eigenvalues β, 1, β−1; clearly, the trace of
u is β + β−1 + 1.

Theorem 4.3. Suppose G = SU3(Fq). Suppose V is an absolutely simple nontriv-
ial F2[G]-module. Assume that m > 1. If dimF2(V ) is a power of 2, then it is equal
to q3. In particular, V is the Steinberg representation of SU3(Fq).
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Proof. Recall ([4], p. 77, 2.8.10c) that the adjoint representation ofG in EndFq2
(F3

q2 )
splits into a direct sum of the trivial one-dimensional representation (scalars) and
an absolutely simple Fq2 [G]-module St2 of dimension 8 (traceless operators). The
kernel of the natural homomorphism

G = SU3(Fq)→ AutFq2
(St2) ∼= GL8(Fq2 )

coincides with the center Z(G) which is either trivial or a cyclic group of order 3
depending on whether (3, q + 1) = 1 or 3. In both cases we get an embedding

G′ := G/Z(G) = U3(q) = PSU3(Fq) ⊂ GL8(Fq2).

If m = 2 (i.e., q = 4), then G = SU3(F4) = U3(4) and one may use Brauer
character tables [8] in order to study absolutely irreducible representations of G in
characteristic 2. Notice ([8], p. 284) that the reduction modulo 2 of the irrational
constant b5 does not lie in F2. Using the table on p. 70 of [8], we conclude that
there is only one (up to an isomorphism) absolutely irreducible representation of
G defined over F2 and its dimension is 64 = q3. This proves the assertion of the
theorem in the case of m = 2, q = 4. So further we assume that

m ≥ 3, q = 2m ≥ 8.

Clearly, for each u ∈ G ⊂ GL3(Fq2 ) with trace δ ∈ Fq2 the image u′ of u in G′

has trace δ̄δ − 1 ∈ Fq. In particular, if u = diag(β, 1, β−1) with β ∈ F∗q , then the
trace of u′ is

tβ := tr(u′) = (1 + β + β−1)(1 + β + β−1)− 1 = (β + β−1)2.

Now let us start to vary β in the q − 2-element set

Fq \ F2 = F∗q \ {1}.

One may easily check that the set of all tβ ’s consists of q−2
2 elements of F∗q . Since

q ≥ 8,

r :=
q − 2

2
>
q − 1

3
.

This implies that G′ ⊂ GL8(Fq2 ) satisfies the conditions of Lemma 4.2 with d = 8.
In particular, none of representations ρS of G′ could be realized over F2 if S is
a proper subset of {0, 1, · · · ,m − 1}. On the other hand, it is known ([4], p. 77,
Example 2.8.10c) that each absolutely irreducible representation of G over F either
has dimension divisible by 3 or is isomorphic to the representation obtained from
some ρS via G→ G′. The rest is clear.

Theorem 4.4. Suppose m > 1 is an integer and let us put q = 2m. Let B be
a (q3 + 1)-element set. Let H be a group acting faithfully on B. Assume that
H contains a subgroup G′ isomorphic to U3(q). Then the H-module QB is very
simple.

Proof. First, U3(q) is a simple non-abelian group whose order is q3(q3+1)(q2−1)/ν
where ν = (3, q + 1) is 1 or 3 according to whether m is even or odd ([2], p. XVI,
Table 6; [4], pp. 39–40). Second, notice that U3(q) ⊂ H acts transitively on B.
Indeed, the list of maximal subgroups of U3(q) ([5], p. 158; see also [4], Th. 6.5.3
and its proof, pp. 329–332) is as follows:
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(1) Groups of order q3(q2 − 1)/ν. The preimage of any such group in SU3(Fq)
leaves invariant a certain one-dimensional subspace in F3

q2 (the centre of an
elation; see [5], pp. 142, 158).

(2) Groups of order (q + 1)(q2 − 1)/ν.
(3) Groups of order 6(q + 1)2/ν.
(4) Groups of order 3(q2 − q + 1)ν.
(5) U3(2r) where r is a factor of m and m/r is an odd prime.
(6) Groups containing U3(2r) as a normal subgroup of index 3 when r is odd and

m = 3r.
The classification of maximal subgroups of U3(q) easily implies that each sub-

group of U3(q) has index ≥ q3 +1 = #(B) (see also [6], pp. 213–214). This implies
that U3(q) acts transitively on B. Third, we claim that this action is, in fact,
doubly transitive. Indeed, the stabilizer U3(q)b of a point b ∈ B has index q3 + 1
in U3(q) and therefore is a maximal subgroup. It follows easily from the same
classification that the maximal subgroup U3(q)b is (the image of) the stabilizer
(in SU3(Fq)) of a one-dimensional subspace L in F3

q2 . The counting arguments
easily imply that L is isotropic. Hence U3(q)b is (the image of) the stabilizer of an
isotropic line in F3

q2 . Taking into account that the set of isotropic lines in F3
q2 has

cardinality q3 + 1 = #(B), we conclude that B = U3(q)/U3(q)b is isomorphic (as
U3(q)-set) to the set of isotropic lines on which U3(q) acts doubly transitively and
we are done.

By Remark 3.2, the double transitivity implies that the F2[U3(q)]-module QB
is absolutely simple. Since SU3(Fq) → U3(q) is surjective, the corresponding
F2[SU3(Fq)]-module QB is also absolutely simple.

Recall that dimF2(QB) = #(B) − 1 = q3 = 23m. By Theorem 4.3, there are no
absolutely simple nontrivial F2[SU3(Fq)]-modules whose dimension strictly divides
23m. This implies that QB is not isomorphic to a tensor product of absolutely
simple F2[SU3(Fq)]-modules of dimension > 1. Therefore QB is not isomorphic to
a tensor product of absolutely simple F2[U3(q)]-modules of dimension > 1. Recall
that all subgroups in G′ = U3(q) that are different from U3(q) itself have index
≥ q3 +1 > q3 = dimF2(QB). It follows from Theorem 3.5 that the G′-module QB is
very simple. Now the desired very simplicity of the H-module QB is an immediate
corollary of Remark 3.4(i).

5. Proof of Theorem 2.1

Recall that Gal(f) ⊂ Perm(R). It is also known that the natural homomor-
phism Gal(K)→ AutF2(J(C)2) factors through the canonical surjection Gal(K)�
Gal(K(R)/K) = Gal(f), and the Gal(f)-modules J(C)2 and QR are isomorphic
(see, for instance, Th. 5.1 of [16]). In particular, if the Gal(f)-module QR is very
simple, then the Gal(f)-module J(C)2 is also very simple and therefore is absolutely
simple.

Lemma 5.1. If the Gal(f)-module QR is very simple, then either End(J(Cf )) = Z
or char(K) > 0 and J(Cf ) is a supersingular abelian variety.

Proof. This is Corollary 5.3 of [16].

It follows from Theorem 4.4 that under the assumptions of Theorem 2.1, the
Gal(f)-module QR is very simple. Applying Lemma 5.1, we conclude that either
End(J(Cf )) = Z or char(K) > 0 and J(Cf ) is a supersingular abelian variety.
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