PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 131, Number 1, Pages 95–102 S 0002-9939(02)06689-3 Article electronically published on May 22, 2002

HYPERELLIPTIC JACOBIANS AND SIMPLE GROUPS $U_3(2^m)$

YURI G. ZARHIN

(Communicated by David E. Rohrlich)

ABSTRACT. In a previous paper, the author proved that in characteristic zero the jacobian J(C) of a hyperelliptic curve $C: y^2 = f(x)$ has only trivial endomorphisms over an algebraic closure K_a of the ground field K if the Galois group $\operatorname{Gal}(f)$ of the irreducible polynomial $f(x) \in K[x]$ is either the symmetric group \mathbf{S}_n or the alternating group \mathbf{A}_n . Here n > 4 is the degree of f. In another paper by the author this result was extended to the case of certain "smaller" Galois groups. In particular, the infinite series $n = 2^r + 1$, $\operatorname{Gal}(f) = \mathbf{L}_2(2^r) := \operatorname{PSL}_2(\mathbf{F}_{2^r})$ and $n = 2^{4r+2} + 1$, $\operatorname{Gal}(f) = \mathbf{Sz}(2^{2r+1})$ were treated. In this paper the case of $\operatorname{Gal}(f) = \mathbf{U}_3(2^m) := \operatorname{PSU}_3(\mathbf{F}_{2^m})$ and $n = 2^{3m} + 1$ is treated.

1. INTRODUCTION

In [15] the author proved that in characteristic 0 the jacobian $J(C) = J(C_f)$ of a hyperelliptic curve

$$C = C_f : y^2 = f(x)$$

has only trivial endomorphisms over an algebraic closure K_a of the ground field Kif the Galois group $\operatorname{Gal}(f)$ of the irreducible polynomial $f \in K[x]$ is "very big". Namely, if $n = \operatorname{deg}(f) \geq 5$ and $\operatorname{Gal}(f)$ is either the symmetric group \mathbf{S}_n or the alternating group \mathbf{A}_n , then the ring $\operatorname{End}(J(C_f))$ of K_a -endomorphisms of $J(C_f)$ coincides with \mathbf{Z} . Later the author [16] proved that $\operatorname{End}(J(C_f)) = \mathbf{Z}$ for an infinite series of $\operatorname{Gal}(f) = \operatorname{PSL}_2(\mathbf{F}_{2^r})$ and $n = 2^r + 1$ (with $\dim(J(C_f)) = 2^{r-1}$) or when $\operatorname{Gal}(f)$ is the Suzuki group $\mathbf{Sz}(2^{2r+1})$ and $n = 2^{2(2r+1)} + 1$ (with $\dim(J(C_f)) =$ 2^{4r+1}). We refer the reader to [12], [13], [9], [10], [11], [15], [16], [17] for a discussion of known results about, and examples of, hyperelliptic jacobians without complex multiplication.

We write $\mathfrak{R} = \mathfrak{R}_f$ for the set of roots of f and consider $\operatorname{Gal}(f)$ as the corresponding permutation group of \mathfrak{R} . Suppose $q = 2^m > 2$ is an integral power of 2 and \mathbf{F}_{q^2} is a finite field consisting of q^2 elements. Let us consider a non-degenerate Hermitian (wrt $x \mapsto x^q$) sesquilinear form on $\mathbf{F}_{q^2}^3$. In the present paper we prove that

$$\operatorname{End}(J(C_f)) = \mathbf{Z}$$

©2002 American Mathematical Society

Received by the editors August 30, 2001.

²⁰⁰⁰ Mathematics Subject Classification. Primary 14H40; Secondary 14K05.

Key words and phrases. Hyperelliptic jacobians, endomorphisms of abelian varieties, Steinberg representations, unitary groups, Hermitian curves.

This work was partially supported by NSF grant DMS-0070664.

when \mathfrak{R}_f can be identified with the corresponding "Hermitian curve" of isotropic lines in the projective plane $\mathbf{P}^2(\mathbf{F}_{q^2})$ in such a way that $\operatorname{Gal}(f)$ becomes either the projective unitary group $\operatorname{PGU}_3(\mathbf{F}_q)$ or the projective special unitary group $\mathbf{U}_3(q) := \operatorname{PSU}_3(\mathbf{F}_q)$. In this case $n = \deg(f) = q^3 + 1 = 2^{3m} + 1$ and $\dim(J(C_f)) = q^3/2 = 2^{3m-1}$.

Our proof is based on an observation that the Steinberg representation is the only absolutely irreducible nontrivial representation (up to an isomorphism) over \mathbf{F}_2 of $\mathbf{U}_3(2^m)$, whose dimension is a power of 2.

I am deeply grateful to the referee for useful comments.

2. Main results

Throughout this paper we assume that K is a field with $\operatorname{char}(K) \neq 2$. We fix its algebraic closure K_a and write $\operatorname{Gal}(K)$ for the absolute Galois group $\operatorname{Aut}(K_a/K)$. If X is an abelian variety defined over K, then we write $\operatorname{End}(X)$ for the ring of K_a -endomorphisms of X.

Suppose $f(x) \in K[x]$ is a separable polynomial of degree $n \geq 5$. Let $\mathfrak{R} = \mathfrak{R}_f \subset K_a$ be the set of roots of f, let $K(\mathfrak{R}_f) = K(\mathfrak{R})$ be the splitting field of f and let $\operatorname{Gal}(f) := \operatorname{Gal}(K(\mathfrak{R})/K)$ be the Galois group of f, viewed as a subgroup of Perm (\mathfrak{R}) . Let C_f be the hyperelliptic curve $y^2 = f(x)$. Let $J(C_f)$ be its jacobian, $\operatorname{End}(J(C_f))$ the ring of K_a -endomorphisms of $J(C_f)$.

Theorem 2.1. Recall that $\operatorname{char}(K) \neq 2$. Assume that there exists a positive integer m > 1 such that $n = 2^{3m} + 1$ and $\operatorname{Gal}(f)$ contains a subgroup isomorphic to $U_3(2^m)$. Then either $\operatorname{End}(J(C_f)) = \mathbb{Z}$ or $\operatorname{char}(K) > 0$ and $J(C_f)$ is a supersingular abelian variety.

Remark 2.2. It would be interesting to find explicit examples of irreducible polynomials f(x) of degree $2^{3m} + 1$ with Galois group $\mathbf{U}_3(2^m)$. It follows from results of Belyi [1] that such a polynomial always exists over a certain abelian number field K (depending on m). The celebrated Shafarevich conjecture implies that such polynomials must exist over the field \mathbf{Q} of rational numbers.

We will prove Theorem 2.1 in §5.

3. Permutation groups, permutation modules and very simplicity

Let B be a finite set consisting of $n \ge 5$ elements. We write Perm(B) for the group of permutations of B. A choice of ordering on B gives rise to an isomorphism

$$\operatorname{Perm}(B) \cong \mathbf{S}_n.$$

Let G be a subgroup of Perm(B). For each $b \in B$ we write G_b for the stabilizer of b in G; it is a subgroup of G. Further we always assume that n is odd.

Remark 3.1. Assume that the action of G on B is transitive. It is well-known that each G_b is of index n in G and all the G_b 's are conjugate in G. Each conjugate of G_b in G is the stabilizer of a point of B. In addition, one may identify the G-set B with the set of cosets G/G_b with the standard action by G.

We write \mathbf{F}_2^B for the *n*-dimensional \mathbf{F}_2 -vector space of maps $h: B \to \mathbf{F}_2$. The space \mathbf{F}_2^B is provided with a natural action of $\operatorname{Perm}(B)$ defined as follows. Each

 $s \in \operatorname{Perm}(B)$ sends a map $h : B \to \mathbf{F}_2$ into $sh : b \mapsto h(s^{-1}(b))$. The permutation module \mathbf{F}_2^B contains the $\operatorname{Perm}(B)$ -stable hyperplane

$$Q_B := \{h : B \to \mathbf{F}_2 \mid \sum_{b \in B} h(b) = 0\}$$

and the Perm(B)-invariant line $\mathbf{F} \cdot \mathbf{1}_B$ where $\mathbf{1}_B$ is the constant function 1. Since n is odd, there is a Perm(B)-invariant splitting

$$\mathbf{F}_2^B = Q_B \oplus \mathbf{F}_2 \cdot \mathbf{1}_B.$$

Clearly,

$$\dim_{\mathbf{F}_2}(Q_B) = n - 1$$

and \mathbf{F}_2^B and Q_B carry natural structures of *G*-modules. Clearly, Q_B is a faithful *G*-module. It is also clear that the *G*-module Q_B can be viewed as the reduction modulo 2 of the $\mathbf{Q}[G]$ -module

$$(\mathbf{Q}^B)^0 := \{h : B \to \mathbf{Q} \mid \sum_{b \in B} h(b) = 0\}.$$

It is well-known that the $\mathbf{Q}[G]$ -module $(\mathbf{Q}^B)^0$ is absolutely simple if and only if the action of G on B is doubly transitive ([14], Sect. 2.3, Ex. 2).

Remark 3.2. Assume that G acts on B doubly transitively and that

$$#(B) - 1 = \dim_{\mathbf{Q}}((\mathbf{Q}_B)^0)$$

coincides with the largest power of 2 dividing #(G). Then it follows from a theorem of Brauer-Nesbitt ([14], Sect. 16.4, pp. 136–137; [7], p. 249) that Q_B is an absolutely simple $\mathbf{F}_2[G]$ -module. In particular, Q_B is (the reduction of) the Steinberg representation [7], [3].

We refer to [16] for a discussion of the following definition.

Definition 3.3. Let V be a vector space over a field **F**, let G be a group and $\rho: G \to \operatorname{Aut}_{\mathbf{F}}(V)$ a linear representation of G in V. We say that the G-module V is *very simple* if it enjoys the following property:

If $R \subset \operatorname{End}_{\mathbf{F}}(V)$ is an **F**-subalgebra containing the identity operator Id such that

$$\rho(\sigma)R\rho(\sigma)^{-1} \subset R \quad \forall \sigma \in G,$$

then either $R = \mathbf{F} \cdot \mathrm{Id}$ or $R = \mathrm{End}_{\mathbf{F}}(V)$.

Remarks 3.4. (i) If G' is a subgroup of G and the G'-module V is very simple, then obviously the G-module V is also very simple.

- (ii) A very simple module is absolutely simple (see [16], Remark 2.2(ii)).
- (iii) If $\dim_{\mathbf{F}}(V) = 1$, then obviously the *G*-module *V* is very simple.
- (iv) Assume that the *G*-module *V* is very simple and $\dim_{\mathbf{F}}(V) > 1$. Then *V* is not induced from a subgroup *G* (except *G* itself) and is not isomorphic to a tensor product of two *G*-modules, whose **F**-dimension is strictly less than $\dim_{\mathbf{F}}(V)$ (see [16], Example 7.1).
- (v) If $\mathbf{F} = \mathbf{F}_2$ and G is *perfect*, then properties (ii)-(iv) characterize the very simple G-modules (see [16], Th. 7.7).

YURI G. ZARHIN

The following statement provides a criterion of very simplicity over \mathbf{F}_2 .

Theorem 3.5. Suppose a positive integer N > 1 and a group H enjoy the following properties:

- *H* does not contain a subgroup of index dividing *N* except *H* itself.
- Let N = ab be a factorization of N into a product of two positive integers a > 1 and b > 1. Then either there does not exist an absolutely simple $\mathbf{F}_2[H]$ -module of \mathbf{F}_2 -dimension a or there does not exist an absolutely simple $\mathbf{F}_2[H]$ -module of \mathbf{F}_2 -dimension b.

Then each absolutely simple $\mathbf{F}_{2}[H]$ -module of \mathbf{F}_{2} -dimension N is very simple.

Proof. This is Corollary 7.9 of [16].

4. Steinberg representation

We refer to [7] and [3] for a definition and basic properties of Steinberg representations.

Let us fix an algebraic closure of \mathbf{F}_2 and denote it by \mathcal{F} . We write $\phi : \mathcal{F} \to \mathcal{F}$ for the Frobenius automorphism $x \mapsto x^2$. Let $q = 2^m$ be a positive integral power of two. Then the subfield of invariants of $\phi^m : \mathcal{F} \to \mathcal{F}$ is a finite field \mathbf{F}_q consisting of q elements. Let q' be an integral positive power of q. If d is a positive integer and i is a non-negative integer, then for each matrix $u \in \operatorname{GL}_d(\mathcal{F})$ we write $u^{(i)}$ for the matrix obtained by raising each entry of u to the 2^i th power.

Remark 4.1. Recall that an element $\alpha \in \mathbf{F}_q$ is called *primitive* if $\alpha \neq 0$ and has multiplicative order q-1 in the cyclic multiplicative group \mathbf{F}_q^* .

Let M < q - 1 be a positive integer. Clearly, the set

$$\mu_M(\mathbf{F}_q) = \{ \alpha \in \mathbf{F}_q \mid \alpha^M = 1 \}$$

is a cyclic multiplicative subgroup of \mathbf{F}_q^* and its order M' divides both M and q-1. Since M < q-1 and q-1 is odd, the ratio (q-1)/M' is an *odd* integer > 1. This implies that $3 \leq (q-1)/M'$ and therefore

$$M' = \#(\mu_M(\mathbf{F}_q)) \le (q-1)/3$$

Lemma 4.2. Let q > 2, let d be a positive integer and let G be a subgroup of $\operatorname{GL}_d(\mathbf{F}_{q'})$. Assume that one of the following two conditions holds:

- (i) There exists an element $u \in G \subset \operatorname{GL}_d(\mathbf{F}_{q'})$, whose trace α lies in \mathbf{F}_q^* and has multiplicative order q-1.
- (ii) There exist a positive integer $r > \frac{q-1}{3}$, distinct $\alpha_1, \dots, \alpha_r \in \mathbf{F}_q^*$ and elements

$$u_1, \cdots, u_r \in G \subset \operatorname{GL}_d(\mathbf{F}_{q'})$$

such that the trace of u_i is α_i for all $i = 1, \dots, r$.

Let $V_0 = \mathcal{F}^d$ and $\rho_0 : G \subset \operatorname{GL}_d(\mathbf{F}_{q'}) \subset \operatorname{GL}_d(\mathcal{F}) = \operatorname{Aut}_{\mathcal{F}}(V_0)$ be the natural d-dimensional representation of G over \mathcal{F} . For each positive integer i < m let us put $V_i := V_0$ and define a d-dimensional \mathcal{F} -representation

$$\rho_i: G \to \operatorname{Aut}(V_i)$$

as the composition of

$$G \hookrightarrow \operatorname{GL}_d(\mathbf{F}_{q'}), \quad x \mapsto x^{(i)}$$

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

98

and the inclusion map

$$\operatorname{GL}_d(\mathbf{F}_{q'}) \subset \operatorname{GL}_d(\mathcal{F}) \cong \operatorname{Aut}_{\mathcal{F}}(V_i).$$

Let S be a subset of $\{0, 1, \ldots, m-1\}$. Let us define a $d^{\#(S)}$ -dimensional \mathcal{F} -representation ρ_S of G as the tensor product of representations ρ_i for all $i \in S$. If S is a proper subset of $\{0, 1, \ldots, m-1\}$, then there exists an element $u \in G$ such that the trace of $\rho_S(u)$ does not belong to \mathbf{F}_2 . In particular, ρ_S could not be obtained by extension of scalars to \mathcal{F} from a representation of G over \mathbf{F}_2 .

Proof. Clearly,

$$\operatorname{tr}(\rho_i(u)) = \operatorname{tr}(\rho_0(u))^{2^i} \quad \forall u \in G.$$

This implies easily that

$$\operatorname{tr}(\rho_S(u)) = \prod_{i \in S} \operatorname{tr}(\rho_i(u)) = \operatorname{tr}(\rho_0(u))^M$$

where $M = \sum_{i \in S} 2^i$. Since S is a proper subset of $\{0, 1, \dots, m-1\}$, we have

$$0 < M < \sum_{i=0}^{m-1} 2^i = 2^m - 1 = \#(\mathbf{F}_q^*).$$

Assume that condition (i) holds. Then there exists $u \in G$ such that $\alpha = \operatorname{tr}(\rho_0(u))$ lies in \mathbf{F}_q^* and the exact multiplicative order of α is $q - 1 = 2^m - 1$.

This implies that $0 \neq \alpha^M \neq 1$. Since $\mathbf{F}_2 = \{0, 1\}$, we conclude that $\alpha^M \notin \mathbf{F}_2$. Therefore

$$\operatorname{tr}(\rho_S(u)) = \operatorname{tr}(\rho_0(u))^M = \alpha^M \notin \mathbf{F}_2.$$

Now assume that condition (ii) holds. It follows from Remark 4.1 that there exists $\alpha = \alpha_i \neq 0$ such that $\alpha^M \neq 1$ for some *i* with $1 \leq i \leq r$. This implies that if we put $u = u_i$, then

$$\operatorname{tr}(\rho_S(u)) = \operatorname{tr}(\rho_0(u))^M = \alpha^M \notin \mathbf{F}_2.$$

Now, let us put $q' = q^2 = p^{2m}$. We write $x \mapsto \bar{x}$ for the involution $a \mapsto a^q$ of \mathbf{F}_{q^2} . Let us consider the special unitary group $\mathrm{SU}_3(\mathbf{F}_q)$ consisting of all matrices $A \in \mathrm{SL}_3(\mathbf{F}_{q^2})$ which preserve a nondegenerate Hermitian sesquilinear form on $\mathbf{F}_{q^2}^3$, say,

$$x, y \mapsto x_1 \bar{y_3} + x_2 \bar{y_2} + x_3 \bar{y_1} \quad \forall x = (x_1, x_2, x_3), y = (y_1, y_2, y_3).$$

It is well-known that the conjugacy class of the special unitary group in $\operatorname{GL}_3(\mathbf{F}_{q^2})$ does not depend on the choice of Hermitian form and that $\#(\operatorname{SU}_3(\mathbf{F}_q)) = (q^3 + 1)q^3(q^2 - 1)$. Clearly, for each $\beta \in \mathbf{F}_q^*$ the group $\operatorname{SU}_3(\mathbf{F}_q)$ contains the diagonal matrix $u = \operatorname{diag}(\beta, 1, \beta^{-1})$ with eigenvalues $\beta, 1, \beta^{-1}$; clearly, the trace of u is $\beta + \beta^{-1} + 1$.

Theorem 4.3. Suppose $G = SU_3(\mathbf{F}_q)$. Suppose V is an absolutely simple nontrivial $\mathbf{F}_2[G]$ -module. Assume that m > 1. If $\dim_{\mathbf{F}_2}(V)$ is a power of 2, then it is equal to q^3 . In particular, V is the Steinberg representation of $SU_3(\mathbf{F}_q)$. *Proof.* Recall ([4], p. 77, 2.8.10c) that the adjoint representation of G in $\operatorname{End}_{\mathbf{F}_{q^2}}(\mathbf{F}_{q^2}^3)$ splits into a direct sum of the trivial one-dimensional representation (scalars) and an absolutely simple $\mathbf{F}_{q^2}[G]$ -module St₂ of dimension 8 (traceless operators). The kernel of the natural homomorphism

$$G = \mathrm{SU}_3(\mathbf{F}_q) \to \mathrm{Aut}_{\mathbf{F}_{q^2}}(\mathrm{St}_2) \cong \mathrm{GL}_8(\mathbf{F}_{q^2})$$

coincides with the center Z(G) which is either trivial or a cyclic group of order 3 depending on whether (3, q + 1) = 1 or 3. In both cases we get an embedding

$$G' := G/Z(G) = \mathbf{U}_3(q) = \mathrm{PSU}_3(\mathbf{F}_q) \subset \mathrm{GL}_8(\mathbf{F}_{q^2}).$$

If m = 2 (i.e., q = 4), then $G = SU_3(\mathbf{F}_4) = \mathbf{U}_3(4)$ and one may use Brauer character tables [8] in order to study absolutely irreducible representations of G in characteristic 2. Notice ([8], p. 284) that the reduction modulo 2 of the irrational constant b5 does not lie in \mathbf{F}_2 . Using the table on p. 70 of [8], we conclude that there is only one (up to an isomorphism) absolutely irreducible representation of G defined over \mathbf{F}_2 and its dimension is $64 = q^3$. This proves the assertion of the theorem in the case of m = 2, q = 4. So further we assume that

$$m \ge 3, \quad q = 2^m \ge 8$$

Clearly, for each $u \in G \subset \operatorname{GL}_3(\mathbf{F}_{q^2})$ with trace $\delta \in \mathbf{F}_{q^2}$ the image u' of u in G' has trace $\bar{\delta}\delta - 1 \in \mathbf{F}_q$. In particular, if $u = \operatorname{diag}(\beta, 1, \beta^{-1})$ with $\beta \in \mathbf{F}_q^*$, then the trace of u' is

$$t_{\beta} := \operatorname{tr}(u') = (1 + \beta + \beta^{-1})(1 + \beta + \beta^{-1}) - 1 = (\beta + \beta^{-1})^2.$$

Now let us start to vary β in the q-2-element set

$$\mathbf{F}_q \setminus \mathbf{F}_2 = \mathbf{F}_q^* \setminus \{1\}.$$

One may easily check that the set of all t_{β} 's consists of $\frac{q-2}{2}$ elements of \mathbf{F}_q^* . Since $q \geq 8$,

$$r := \frac{q-2}{2} > \frac{q-1}{3}.$$

This implies that $G' \subset \operatorname{GL}_8(\mathbf{F}_{q^2})$ satisfies the conditions of Lemma 4.2 with d = 8. In particular, none of representations ρ_S of G' could be realized over \mathbf{F}_2 if S is a *proper* subset of $\{0, 1, \dots, m-1\}$. On the other hand, it is known ([4], p. 77, Example 2.8.10c) that each absolutely irreducible representation of G over \mathcal{F} either has dimension divisible by 3 or is isomorphic to the representation obtained from some ρ_S via $G \to G'$. The rest is clear.

Theorem 4.4. Suppose m > 1 is an integer and let us put $q = 2^m$. Let B be a $(q^3 + 1)$ -element set. Let H be a group acting faithfully on B. Assume that H contains a subgroup G' isomorphic to $\mathbf{U}_3(q)$. Then the H-module Q_B is very simple.

Proof. First, $\mathbf{U}_3(q)$ is a simple non-abelian group whose order is $q^3(q^3+1)(q^2-1)/\nu$ where $\nu = (3, q+1)$ is 1 or 3 according to whether *m* is even or odd ([2], p. XVI, Table 6; [4], pp. 39–40). Second, notice that $\mathbf{U}_3(q) \subset H$ acts transitively on *B*. Indeed, the list of maximal subgroups of $\mathbf{U}_3(q)$ ([5], p. 158; see also [4], Th. 6.5.3 and its proof, pp. 329–332) is as follows:

100

- (1) Groups of order $q^3(q^2 1)/\nu$. The preimage of any such group in $SU_3(\mathbf{F}_q)$ leaves invariant a certain one-dimensional subspace in $\mathbf{F}_{q^2}^3$ (the *centre* of an *elation*; see [5], pp. 142, 158).
- (2) Groups of order $(q+1)(q^2-1)/\nu$.
- (3) Groups of order $6(q+1)^2/\nu$.
- (4) Groups of order $3(q^2 q + 1)\nu$.
- (5) $\mathbf{U}_3(2^r)$ where r is a factor of m and m/r is an odd prime.
- (6) Groups containing $\mathbf{U}_3(2^r)$ as a normal subgroup of index 3 when r is odd and m = 3r.

The classification of maximal subgroups of $\mathbf{U}_3(q)$ easily implies that each subgroup of $\mathbf{U}_3(q)$ has index $\geq q^3 + 1 = \#(B)$ (see also [6], pp. 213–214). This implies that $\mathbf{U}_3(q)$ acts transitively on B. Third, we claim that this action is, in fact, doubly transitive. Indeed, the stabilizer $\mathbf{U}_3(q)_b$ of a point $b \in B$ has index $q^3 + 1$ in $\mathbf{U}_3(q)$ and therefore is a maximal subgroup. It follows easily from the same classification that the maximal subgroup $\mathbf{U}_3(q)_b$ is (the image of) the stabilizer (in $SU_3(\mathbf{F}_q)$) of a one-dimensional subspace L in $\mathbf{F}_{q^2}^3$. The counting arguments easily imply that L is isotropic. Hence $\mathbf{U}_3(q)_b$ is (the image of) the stabilizer of an isotropic line in $\mathbf{F}_{q^2}^3$. Taking into account that the set of isotropic lines in $\mathbf{F}_{q^2}^3$ has cardinality $q^3 + 1 = \#(B)$, we conclude that $B = \mathbf{U}_3(q)/\mathbf{U}_3(q)_b$ is isomorphic (as $\mathbf{U}_3(q)$ -set) to the set of isotropic lines on which $\mathbf{U}_3(q)$ acts doubly transitively and we are done.

By Remark 3.2, the double transitivity implies that the $\mathbf{F}_2[\mathbf{U}_3(q)]$ -module Q_B is absolutely simple. Since $SU_3(\mathbf{F}_q) \to \mathbf{U}_3(q)$ is surjective, the corresponding $\mathbf{F}_2[SU_3(\mathbf{F}_q)]$ -module Q_B is also absolutely simple.

Recall that $\dim_{\mathbf{F}_2}(Q_B) = \#(B) - 1 = q^3 = 2^{3m}$. By Theorem 4.3, there are no absolutely simple nontrivial $\mathbf{F}_2[\mathrm{SU}_3(\mathbf{F}_q)]$ -modules whose dimension *strictly* divides 2^{3m} . This implies that Q_B is *not* isomorphic to a tensor product of absolutely simple $\mathbf{F}_2[\mathrm{SU}_3(\mathbf{F}_q)]$ -modules of dimension > 1. Therefore Q_B is *not* isomorphic to a tensor product of absolutely simple $\mathbf{F}_2[\mathrm{SU}_3(\mathbf{F}_q)]$ -modules of dimension > 1. Therefore Q_B is *not* isomorphic to a tensor product of absolutely simple $\mathbf{F}_2[\mathrm{U}_3(q)]$ -modules of dimension > 1. Recall that all subgroups in $G' = \mathbf{U}_3(q)$ that are different from $\mathbf{U}_3(q)$ itself have index $\geq q^3 + 1 > q^3 = \dim_{\mathbf{F}_2}(Q_B)$. It follows from Theorem 3.5 that the G'-module Q_B is very simple. Now the desired very simplicity of the H-module Q_B is an immediate corollary of Remark 3.4(i).

5. Proof of Theorem 2.1

Recall that $\operatorname{Gal}(f) \subset \operatorname{Perm}(\mathfrak{R})$. It is also known that the natural homomorphism $\operatorname{Gal}(K) \to \operatorname{Aut}_{\mathbf{F}_2}(J(C)_2)$ factors through the canonical surjection $\operatorname{Gal}(K) \twoheadrightarrow \operatorname{Gal}(K(\mathfrak{R})/K) = \operatorname{Gal}(f)$, and the $\operatorname{Gal}(f)$ -modules $J(C)_2$ and $Q_{\mathfrak{R}}$ are isomorphic (see, for instance, Th. 5.1 of [16]). In particular, if the $\operatorname{Gal}(f)$ -module $Q_{\mathfrak{R}}$ is very simple, then the $\operatorname{Gal}(f)$ -module $J(C)_2$ is also very simple and therefore is absolutely simple.

Lemma 5.1. If the Gal(f)-module $Q_{\mathfrak{R}}$ is very simple, then either End $(J(C_f)) = \mathbb{Z}$ or char(K) > 0 and $J(C_f)$ is a supersingular abelian variety.

Proof. This is Corollary 5.3 of [16].

It follows from Theorem 4.4 that under the assumptions of Theorem 2.1, the $\operatorname{Gal}(f)$ -module $Q_{\mathfrak{R}}$ is very simple. Applying Lemma 5.1, we conclude that either $\operatorname{End}(J(C_f)) = \mathbb{Z}$ or $\operatorname{char}(K) > 0$ and $J(C_f)$ is a supersingular abelian variety.

YURI G. ZARHIN

References

- G. V. Belyi, On extensions of the maximal cyclotomic field having a given classical Galois group. J. Reine Angew. Math. 341 (1983), 147–156. MR 84h:12010
- [2] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups. Clarendon Press, Oxford, 1985. MR 88g:20025
- [3] Ch. W. Curtis, The Steinberg character of a finite group with a (B, N)-pair. J. Algebra 4 (1966), 433-441. MR 34:1406
- [4] D. Gorenstein, R. Lyons, R. Solomon, The classification of the finite simple groups, Number 3. Mathematical Surveys and Monographs 40.3, AMS, Providence, RI, 1998. MR 98j:20011
- [5] R. W. Hartley, Determination of the ternary collineation groups whose coefficients lie in the GF(2ⁿ). Ann. of Math. 27 (1926), 140–158.
- [6] A. R. Hoffer, On unitary collineation groups. J. Algebra 22 (1972), 211–218. MR 46:780
- [7] J. E. Humphreys, The Steinberg representation. Bull. AMS (N.S.) 16 (1987), 247–263. MR 88c:20050
- [8] Ch. Jansen, K. Lux, R. Parker, R. Wilson, An Atlas of Brauer characters. Clarendon Press, Oxford, 1995. MR 96k:20016
- [9] N. Katz, Monodromy of families of curves: applications of some results of Davenport-Lewis. In: Séminaire de Théorie des Nombres, Paris 1979-80 (ed. M.-J. Bertin); Progress in Math. 12, pp. 171–195, Birkhäuser, Boston-Basel-Stuttgart, 1981. MR 83d:14012
- [10] N. Katz, Affine cohomological transforms, perversity, and monodromy. J. Amer. Math. Soc. 6 (1993), 149–222. MR 94b:14013
- [11] D. Masser, Specialization of some hyperelliptic jacobians. In: Number Theory in Progress (eds. K. Györy, H. Iwaniec, J.Urbanowicz), vol. I, pp. 293–307; de Gruyter, Berlin-New York, 1999. MR 2000j:11088
- [12] Sh. Mori, The endomorphism rings of some abelian varieties. Japanese J. Math. 2 (1976), 109–130. MR 56:12013
- [13] Sh. Mori, The endomorphism rings of some abelian varieties. II, Japanese J. Math. 3 (1977), 105–109. MR 80e:14009
- [14] J.-P. Serre, Linear representations of finite groups, Springer-Verlag, 1977. MR 56:8675
- [15] Yu. G. Zarhin, Hyperelliptic jacobians without complex multiplication. Math. Res. Letters 7 (2000), 123–132. MR 2001a:11097
- [16] Yu. G. Zarhin, Hyperelliptic jacobians and modular representations. In: Moduli of abelian varieties (C. Faber, G. van der Geer, F. Oort, eds.), pp. 473–490, Progress in Math., Vol. 195, Birkhäuser, Basel–Boston–Berlin, 2001. MR 2002b:11082
- [17] Yu. G. Zarhin, Hyperelliptic jacobians without complex multiplication in positive characteristic. Math. Res. Letters 8 (2001), 429–435.

Department of Mathematics, Pennsylvania State University, University Park, Pennsylvania 16802

E-mail address: zarhin@math.psu.edu