
Hyperelliptic linear systems on a K3 surface

Miles Reid∗

0 Introduction

Let X be a K3 surface1 and L ∈ PicX a line bundle such that the linear
system |L| has no fixed components, and such that L2 > 0.

Theorem 0.1 (see [1], [2]) |L| has no base points, and hence defines a
morphism

φL : X → P
g,

(where L2 = 2g − 2). Furthermore,

(i) if |L| contains a nonhyperelliptic curve (of genus g), φL is birational
onto a surface X of degree 2g− 2, having only isolated rational double
points (Du Val singularities);

(ii) if |L| contains a hyperelliptic curve, then φL is a generically 2-to-1
mapping of X onto a surface F of degree g − 1.

In the second case, |L| will be called a hyperelliptic linear system and X
a hyperelliptic K3. The object of this article is to exploit the well known
classification of surfaces of degree g − 1 in Pg (recalled in Section 1) to
give a complete classification of hyperelliptic K3s. The principal result is as
follows:

(i) any hyperelliptic K3 X is a double cover of one of the surface P2 or
Fn (with n = 0, 1, 2, 3 or 4), with ramification curve C ∈ |−2KF |;
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1Definition: KX = OX , and q = h1(OX) = 0. All varieties, line bundles, etc., are
defined over a fixed algebraically closed ground field of characteristic 6= 2.
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(ii) conversely, if C ∈ |−2KFn | is any curve having only “reasonable”
singularities (see Theorem 2.2), then there is a K3 double covering
X → F ramified in C, and this X has hyperelliptic linear systems
|Lr| = |L0 + rE| (with L0 and E ∈ PicX) of degrees 2n + 4r (for
r ≥ 0).

To interpret these results, let 0Mg denote the moduli space of K3 sur-
faces X, together with a line bundle L ∈ PicX which is primitive (not
a multiple in PicX), and such that |L| is without fixed components and
L2 = 2g − 2; 0Mg can be constructed as a quasiprojective variety by the
methods of [5]; alternatively, it can be discussed in the local analytic context
by the methods of Tyurina [1, Chapter IX].

The pairs (X,Lr), with X → Fn as above, define a subvariety Fn;r ⊂
0Mg with g − 1 = n + 2r; and the union of these is just the subvariety of
0Mg consisting of pairs (X,L) which fall into case (ii) of Theorem 0.1.

It turns out that in a certain sense the double covers of F2 and F3 are
degenerate cases of double covers of F0 and F1 (see Theorem 3.5 for a precise
statement). This is equivalent to the inclusions

F2;r ⊂ F0;r+1 and F3;r ⊂ F1;r+1

for the Fn;r ⊂ 0Mg.
Thus if g is even, the hyperelliptic subvariety of 0Mg consists of the

single component F1;r (with r = g/2 − 1), whereas if g is odd it has two
components F0;r+2 and F4;r (with r = (g − 5)/2); these components are in
all cases of codimension 1 in 0Mg, that is, they are 18-dimensional.

Note added in proof The results and methods of this article overlap
substantially with those of Dolgachev [9].

1 The surfaces Fn and a theorem of del Pezzo

In this section I recall what is needed about rational scrolls. Proofs of del
Pezzo’s theorem may be found in [3] and [4]. On P1 consider the vector bun-
dle O

P1(−n)⊕O
P1 . The surface Fn is by definition the associated projective

bundle:
Fn = Proj

P1

(
O
P1(−n)⊕O

P1

)
(defined for n ≥ 0; some of the statements to follow require minor modifi-
cation for the case n = 0). π : Fn → P

1 is the projection map.
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There are two obvious line bundles on Fn, namely L = π∗O(1) – so that
the linear system |L| is just the ruling |A| of Fn, and the “tautological”
Grothendieck bundle M ; π∗M = O

P1(−n) ⊕ O
P1 (the bundle we started

from), so that |M | is the fixed section B of the ruling Fn → P
1. The

following assertions are easy:

Proposition 1.1 (i) The intersection pairings relating A and B are

A2 = 0, A ·B = 1, B2 = −n;

(ii) the classes of A and B generate PicFn;

(iii) the canonical class KFn is given by

−KFn = (n+ 2)A+ 2B;

(iv) B is a fixed component of |aA+bB| if and only if a < nb; B is the only
curve on Fn to be fixed in any linear system, and is the only irreducible
curve with negative self-intersection.

Proposition 1.2 For any r ≥ 0 the linear system |B+ (n+ r)A| is without
base points and defines a morphism

φn;r : Fn → P
n+2r+1;

except for the case n = r = 0, the image Fn;r of φn;r is a surface of degree
n+ 2r.

(i) If r > 0, φn;r : Fn → Fn;r is an isomorphism.

(ii) Fn;0 is a cone with vertex O = φn;0(B); φn;0 induces an isomorphism
of Fn \B with Fn;0 \O, taking the ruling |A| of Fn into the generators
of Fn;0 (passing through O).

Thus the surface Fn may be regarded as the natural desingularisation of
the cone on the twisted nic rational curve in Pn.

Theorem 1.3 (del Pezzo) Let F ⊂ Pg be an irreducible surface of degree
g − 1 and not contained in any hyperplane of Pg. Then F is projectively
equivalent to either Fn;r for some n, r with n+ 2r = g − 1, or the Veronese
surface V4 ⊂ P5.

Remark 1.4 Fn;r is distinguished among the surfaces of degree n + 2r by
the fact that it has a ruling by straight lines of Pg, and a hyperplane section
can be found containing n+ r lines of the ruling, but no more; that is, if H
is the hyperplane section, and A a line of the ruling, then

H0(OF (H − (n+ r)A) 6= 0, H0(OF (H − (n+ r + 1)A) = 0.
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2 Double coverings of the surfaces Fn

Let X be a K3 surface, and D a hyperelliptic divisor on X as in Theorem 0.1
(ii). D2 > 0, so that φD : X → F ⊂ Pg, with g ≥ 2; φD has degree 2, so
that F has degree g − 1, and since F does not lie in any hyperplane of Pg

it is either P2, P2 in its Veronese embedding or one of the Fn;r. In this
section we consider only the last possibility. If F is Fn;r and r > 0, then F
is isomorphic to Fn, so that φD defines a double cover X → Fn; in the case
r = 0 the same also holds:

Lemma 2.1 Let φD : X → Fg−1;0. Then φD factorises through φg−1;0;

X
φD−−→ Fg−1;0

↘ ↗φg−1;0

Fg−1

Proof Fg−1;0 is a cone with vertex O. The proper transform φ−1
D (|A|) of

the ruling |A| of Fg−1;0 is obviously a pencil |E| of irreducible curves on X.
I am going to show that |E| is in fact an elliptic pencil (that is, E2 = 0),
so that then |D + E| defines a morphism φD+E : X → Fg−1;1

∼= Fg−1 to
complete the above triangle.

Taking a hyperplane section of Fg−1;0 through the vertex O gives

D ∼ (g − 1)E +
∑

niEi,

the Ei being components of φ−1
D (0), and ni ≥ 0; E and the Ei have no

components in common, so E · Ei ≥ 0. But now

D · E = 2A · (hyperplane) = 2 = (g − 1)E2 +
∑

niE · Ei;

E2 = 0 then follows since g ≥ 3 and E2 is even.
D ·

∑
niEi = 0, and so there is no positive divisor in |D − gE| =

|
∑
niEi − E|. The linear system |D + E| is still hyperelliptic (since |E|

cuts out a g1
2 on any curve in |D + E|), and φD+E takes X onto Fg−1;1,

since it certainly goes into some ruled surface Fn;r with n + 2r = g + 1,
and precisely g of the lines of the ruling can be contained in a hyperplane
section. The commutativity of the above triangle is obvious, and the lemma
is proved.

Hence we know that there is a morphism φ : X → Fn such that the linear
system |φ∗((n + r)A + B)| is hyperelliptic (for some r > 0). It is easy to
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see by arguing on the genus of E = φ∗(A) and of φ∗((n+ r)A+B) that the
ramification curve C of φ is linearly equivalent to (2n+ 4)A+ 4B ∼ −2KF .
This proves that any such K3 is of the type constructed in the following
theorem.

Theorem 2.2 Let C be a curve on Fn in the linear system |−2KFn |. Sup-
pose that C is either nonsingular or has only isolated singularities with (an-
alytic) local equations of the type (i) y2 = zn+1; (ii) y2z = zn−1; (iii)
y3 = z4, z3y or z5. Then there is a K3 surface X and a double covering
X → Fn whose ramification locus is precisely the curve C.

Remark 2.3 If C has isolated singularities not of the above analytic type,
then the double cover of Fn ramified in C is not birationally equivalent to a
K3 surface, since it has pg = 0. We shall also subsequently need the obvious
fact that if C contains B as a repeated component then the double cover
ramified in C is rational, since it has a pencil of curves of genus 0.

Proof of Theorem 2.2 The double covering π : X → Fn given locally by
the equation z2 = (equation of C) has only isolated Du Val singularities,
and X has a canonical desingularisation f : X → X with trivial canonical
class (see Appendix).

Let us prove that H1(X,OX) = 0; first, if f : X → X is the desingular-
isation map then Rif∗OX = 0 for i > 0 since X has only rational singu-
larities. Hence H1(X,OX) = H1(X,OX) by the Leray spectral sequence.
Since π : X → F is finite, H1(X,OX) = H1(F, π∗OX); but by definition of
X (see Appendix), π∗OX = OF ⊕KF, and hence the result.

Corollary 2.4 Let X be a K3 surface, |D| a hyperelliptic linear system,
and suppose that φD : X → Fn is the corresponding double cover; then n =
0, 1, 2, 3 or 4.

Proof −2KFn ∼ (2n+ 4)A+ 4B; but by Proposition 1.1 (iv), 2B will be
fixed in |−2KFn | if 2n + 4 < 3n, that is, if n ≥ 5. Then the ramification
curve will have B as double component, which contradicts the hypothesis
that X is a K3 surface, by Remark 2.3 above.

Appendix to Section 2

I summarise some well known facts on double coverings.
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Definition Let S be a scheme; a finite double covering of S is a finite
S-scheme π : Z → S whose corresponding OS-algebra π∗OZ is a locally free
OS-module of rank 2.

Proposition 2.5 Let B be a locally free OS-algebra of rank 2; let L denote
the cokernel of the structure map OS → B. Then L is a line bundle (locally
free OS-module of rank 1).

Let 2 be invertible in OS. Then the exact sequence

0→ OS → B → L→ 0

has a splitting α : L → B which is uniquely determined by the requirement
that α takes any local section of L into a local section of B whose square is
in OS.

In other words, we have an isomorphism of coherent OS-algebras B =
OS ⊕ L, the multiplication in OS ⊕ L being given by an OS-linear map
L⊗L→ OS , that is, a section of L⊗−2; since two different sections of L⊗−2

define isomorphic algebras B if and only if they differ by multiplication by
the square of an invertible element of H0(OS), we have the following result.

Corollary 2.6 There is a bijection between the following two sets:{
finite double

coverings of S

}
←→

{
pairs (L, s) with L ∈ PicS, and
s ∈ H0(S, L⊗−2)/(H0(OS)∗)2

}
.

We shall see that this correspondence makes sense of the equation z2 = s
in the affine space L corresponding to L.

The proposition is proved in three steps: (i) by localisation one can
assume that S is affine, and that B is a free OS-module of rank 2; (ii) B
can be given a basis (1, t) with t ∈ B; (iii) completing the square, B can be
given a basis (1, s) with s2 ∈ OS .

Since Z is defined as SpecS(B), and B is a quotient of the symmetric
algebra

⊕
L⊗n, we have the inclusion

Z ⊂ L = SpecS(
⊕
L⊗n)

↘ ↙f

S

and indeed, as a divisor in L, Z is defined by the vanishing of the single
section (z2 − s) of f∗(L⊗−2) = OL(Z). From this we get the following
adjunction formula:
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Proposition 2.7 Suppose that S is a nonsingular variety2 with canonical
line bundle KS, and let s ∈ H0(S, L⊗−2) be such that the divisor D ∈ |−2L|
(ramification locus) is nonsingular; then Z is nonsingular, and the canonical
class of Z is given by

KZ = π∗(KS ⊗ L−1).

Proof Since the tangent space to L is f∗(TS ⊕ L−1), we have

Ωn+1
L = f∗(Ωn

S ⊗ L)

for the top exterior powers of the cotangent bundles (n = dimS); the formula
for KZ then follows from the usual adjunction formula.

Proposition 2.8 Suppose that S is a nonsingular surface, and that s ∈
H0(L⊗−2) defines a curve C which has only isolated singularities with the
local analytic equation of Theorem 2.2.

Then the finite double cover X = Z provided by Corollary 2.6 has only
Du Val singularities, viz.

(i) x2 + y2 + zn+1 = 0 An
(ii) x2 + y2z + zn−1 = 0 Dn

(iii) x2 + y3 + z4 = 0 E6

x2 + y3 + yz3 = 0 E7

x2 + y3 + z5 = 0 E8

and X admits a desingularisation f : X → X for which the adjunction for-
mula of Proposition 2.7 holds, that is

KX = (fπ)∗(KS ⊗ L−1).

Proof It is well known (indeed, this is Du Val’s characterisation) that
these singularities have the property that they are isolated double points,
and that the surface obtained by blowing them up has also only isolated
double points; X thus has a desingularisation

XN → XN−1 → · · · → X1 → X,

the nth step of which consists of blowing up an isolated double point of
Xn−1. X is given as a divisor on a nonsingular 3-fold F , say, and so we can

2More generally, if S is Gorenstein, and s is arbitrary, then Z will also be Gorenstein,
with KZ given by the same formula.
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set KX = (KF ⊗OF (X)) ⊗OX , and call this the “canonical line bundle”3

of the singular surface X. Proposition 2.8 follows at once from the easy
lemma:

Lemma 2.9 Let P ∈ X be an isolated double point, and let f : X1 → X be
the blowing up of P in X. Then KX1 = f∗KX .

Proof X is embedded in a nonsingular 3-fold, and the blowing up of X
can also be embedded in a diagram of the form

X1
f−→ X⋂ ⋂

F1
g−→ F,

with g the blowing up of P in F ; letting e = g−1P be the exceptional locus
of the blowing up, we get

KF1 = g∗KF ⊗OF1(2e); OF1(X1) = g∗OF (X)⊗OF1(−2e),

and the lemma follows. This argument actually only uses the fact that X
can be locally embedded in a nonsingular 3-fold, and is identical to Du Val’s
original argument [6].

3 A description of the surfaces arising

Let X be a K3 surface, and let |L| be a linear system on X without fixed
components and with L2 > 0. The following easy result can be found in [2]:

Proposition 3.1 |L| is hyperelliptic if and only if one of the following holds:

(i) either L2 = 2 or L′ = 1
2L ∈ PicX, and L′2 = 2;

(ii) there is an elliptic pence |E| on X with E · L = 2.
3Note that this is nothing by Grothendieck’s dualising sheaf ωX .
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Proof If (ii) holds then it is obvious that every nonsingular curve D ∈ |L|
is hyperelliptic. If L2 = 2 then φL : X → P

2 is a double covering, and if
L = 2L′ with L′2 = 2 then φL is the composite of φL′ with the Veronese
embedding of P2 in P5.

Conversely, if |L| is hyperelliptic then φL factors through a double cover-
ing X → F (with F = P

2 or one of the Fn), and a morphism F → P
g which

can be (i) the identity P2 → P
2 or the Veronese map P2 → P

5, or (ii) one
of the φn;r. In the second case the ruling |A| on F gives rise to an elliptic
pencil |E| on X with E · L = 2.

Denote Fn (resp. P2) the quotient of the open set of |−2KFn | consisting
of curves with only the “reasonable” singularities of Theorem 2.2 by the
natural action of AutF . This quotient is a coarse moduli space [5] for K3
surfaces double covering Fn (resp. P2). Its points are denoted by the same
letter X as the corresponding surface.

Theorem 3.2 A K3 surface X ∈ P2 has an irreducible linear system |M |
with M2 = 2; conversely, given a K3 surface X and |M | irreducible with
M2 = 2, then |M | and |2M | are hyperelliptic.

A K3 surface X ∈ Fn (for n = 0, 1, 2, 3 or 4) has the following divisors:
an irreducible elliptic pencil |E|, together with a positive divisor D such that

(i) H0(OX(D − E)) = 0;

(ii) D · E = 2;

(iii) D2 = −2n;

and every component θ of D moves in |D + nE| so that in particular

(iv) θ · (D + nE) ≥ 0.

Conversely, given a K3 surface X, and elliptic pencil |E| on X, and a
divisor D satisfying (i–iv), then define

Dr = D + (n+ r)E

(for r ≥ 0); then |Dr| is without fixed components and hyperelliptic, and

φDr : X → Fn;r ⊂ Pn+2r+1.

Remark 3.3 For the various values of n, D must be of the following form
(where there is more than one possibility, the generic case is given first):
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n = 0: |D| is an irreducible elliptic pencil;

n = 1: |D| is irreducible, or D = C +C1 + · · ·+Cn +C ′ (see Figure 1) with
n ≥ 0, or D = 2C +

∑
niCi (Figure 1′);
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Figure 1: n = 1 (general case)
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Figure 1′: n = 1 (special cases)

n = 2: D = C + C ′ (Figure 2), or D = 2C +
∑
niCi (Figure 2′);

E

C
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E
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A
A
A

A
A
A
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2

n = 2: Figure 2 Figure 2′: (special cases)

n = 3: D = 2C + C1 (see Figure 3);

E

2C

A
A
A

Figure 3: n = 3

n = 4: D = 2C, with C irreducible, C2 = −2 and E · C = 1.
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In the above figures, C,C ′ and the Ci are irreducible rational curves
with C2 = −2; the Ci have Ci ·E = 0, and so are components of a reducible
fibre of |E|; the (transversal) intersections of the various curves, and the
multiplicities (when other than 1) are as indicated.

Proof of Theorem 3.2 If f : X → Fn is the double covering, then E =
f∗A and D = f∗B clearly give us an irreducible |E| and a positive D
satisfying (i–iv). Let |E| and D be given on X satisfying (i–iii), and assume
for the moment that |D + nE|, and hence |Dr| for r ≥ 0, is without fixed
components. Then |Dr| is hyperelliptic, and to prove that φDr : X → Fn;r ⊂
P
n+2r+1 it suffices to note that |Dr − (n+ r)E| = |D| is nonempty, but that
|Dr − (n+ r + 1)E| = |D −E| is empty. The fact that (iv) implies that D0

is without fixed components follows from the following proposition, which
is a rearrangement of some results of [2]:

Proposition 3.4 Let D be a divisor on a K3 surface with D2 > 0. Then
the following three assertions are equivalent:

(i) D is 2-connected;

(ii) every component θ of D satisfies D · θ ≥ 0, and D 6= C + nE with |E|
an elliptic pencil, E · C = 1, and C2 = −2;

(iii) |D| is without fixed components.

The table of possibilities for D is obtained in either of the two following
ways: firstly, D = f∗B, where f : X → Fn is the double covering, so the
possibilities for D are determined by the various ways in which B meets the
ramification curve. For example, if n = 1, then we can have

(a) B is not contained in the ramification divisor, and has intersection
number 2 with it; in this case, according as B meets the ramification
curve in 2 distinct points, touches it at a nonsingular point, or passes
transversally through a “generalised cusp” (with local equation y2 =
zn+1), we get the possibilities of Figure 1.

(b) B is contained in the ramification locus, and has three points of in-
tersection with the rest of it – two of which are necessarily distinct,
since otherwise we do not have a “reasonable” singularity; this gives
the possibilities of Figure 1′ for D.
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Secondly, one can enumerate the possibilities for the components using
the numerical conditions (ii–iv): thus if n = 2, D · E = 2 implies that the
components of D having positive intersection with E are

(a) C and C ′ with E · C = E · C ′ = 1;

(b) 2C, with E · C = 1;

(c) C with E · C = 2.

In fact (c) is impossible, since then the remaining components Ci of D
satisfy E · Ci = 0, and hence (by (iv)) Ci ·D ≥ 0; but then D2 = −4 gives
C ·D ≤ −4, which is absurd.

A similar argument shows that in (a) we necessarily have C ·C ′ = 0, and
it easily follows that D = C + C ′.

For (B), the same argument shows that the remaining components must
have E · Ci = D · Ci = 0, and it is easy to see that Figure 2′ gives all the
possibilities.

Theorem 3.5 Let X be a K3 surface, and let D be a divisor on X such
that φD : X → P

g is a double cover of X onto F2;r (resp. F3,r).
Then the pair (X,D) is a specialisation of a pair (X ′, D′), with X ′ a K3

surface, and D′ a divisor such that φD′ : X ′ → P
g is a double cover of X ′

onto F0;r+1 (resp. F1;r+1).

First proof (in the case of the complex ground field only) By the meth-
ods of Tyurina [1, Chapter IX], it is clear that for any primitive subgroup
M ⊂ PicX there exist arbitrarily small deformations X ′ of X such that
the algebraic classes in H2(X ′,Z) = H2(X,Z) are precisely the classes of
elements of M . Let D be the given divisor on X, and |E| the elliptic pencil
as in Theorem 3.2. I claim that M = 〈D,E〉 is primitive – since

det
∣∣∣∣2n 2

2 0

∣∣∣∣ = −4,

we need only check that 1
2D,

1
2E and 1

2(D + E) are not in PicX, which
is easy. Hence X has a deformation X ′ in which divisors D′ and E′ span
PicX ′. It is clear that H0(OX(D′)) = 0, but H0(OX(D′+E′)) > 0, so that
(X ′, D′) does belong to the case F0 or F1.
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Second proof (for any ground field) By Theorem 3.2, |D−rE| is a linear
system without fixed components and φD−rE maps X 2-to-1 onto F2;0 ⊂ P3

(resp. F3;0 ⊂ P4). In the first case, F2;0 is an ordinary quadric cone, and the
ramification curve is cut out on F2;0 by a quartic surface of P3. Deforming
F2;0 into a nonsingular quadric F0;1 and keeping the intersection with the
same quartic as ramification curve, we obtain the desired deformation X ′,
and linear system (D−rE)′, E′ and hence D′. The same construction works
in the second case if we take F3;0 ⊂ P

4 to be a hyperplane section of a
suitable 3-fold scroll in P5, and the ramification curve in F3;0 to be cut out
by a quartic of P5 containing two planes of the scroll. The theorem is proved.

The assertion that F0,F1 and F4 have dimension 18 follows from the
methods of [1, Chapter IX], or by direct computation of the dimensions of
|−2KFn | and AutFn.

4 Some remarks on “trigonal” linear systems

Apart from the exceptional cases with g = 2 or 5, this paper has been
concerned mainly with linear systems |D| on a K3 surface X such that

(i) |D| is without fixed components;

(ii) D · E = 2 for some elliptic pencil |E| of X.

An analogous study can be made of “trigonal” linear systems, for which
D · E = 3 for some elliptic pencil |E| of X; according to [2], these are just
the exceptions to φD(X) = X being an intersection of quadrics (for g ≥ 5,
with one exceptional case with g = 6). In this case, we get a model of X as
a divisor on a 3-fold scroll:

φD+rE : X → X ⊂ F ⊂ PN ,

with F = Proj
P1

(
O ⊕ O(m) ⊕ O(n)

)
with 0 ≤ m ≤ n; and X ∈ |−KF|.

The condition that X has only isolated singularities implies that m ≤ 2
and n − m ≤ 2 + m. We thus get finitely many families of “trigonal” K3
surfaces; these can be discussed in the spirit of Section 3, and in particular
the analogue of Theorem 3.2 can be proved.

In both the hyperelliptic and the trigonal case, one of the families is
the family of K3 surfaces with are Jacobians of elliptic fibrations; if the
elliptic pencil |E| has a section C ⊂ X then |D| = |2C + rE| (for r ≥ 4) is
hyperelliptic, and |D| = |3C+rE| (for r ≥ 6) is trigonal. In both cases these
family occupy the extreme position in the classification – corresponding to
n = 4 in the hyperelliptic case, and to (m,n) = (2, 6) in the trigonal case.
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