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Abstract

This paper presents a project devoted to developing an open
system architecture for functionally based (implicit or more
generally F-rep) shape modeling and its applications. The
software tools are built around the shape models written in a high-
level programming language called HyperFun. A model in
HyperFun can serve as a protocol for exchanging F-rep models
between users, modeling systems, or networked computers.
HyperFun models can be collected in application-specific
libraries. We describe the basic set of system components: an
interpreter for parsing and function evaluation; F-rep system
libraries; a modeler with an extendable graphical user interface; a
multidimensional modeler with a symbolic user interface
providing means for interpreting multidimensional coordinates
and constructing scenes; applications for visualization
(polygonization, VRML generation, ray-tracing), animation,
voxelization and others; a collaborative Internet-based modeler
including a HyperFun-to-Java translator and advanced interactive
techniques based on the "empirical modeling" paradigm. These
components are intended to be public domain to stimulate
collaborative development efforts.

CR Categories and Subject Descriptors: [Computer Graphics]:
Computational Geometry and Object Modeling – Curve, Surface,
and Object Representations.

Additional Keywords: shape modeling, implicit surfaces, F-rep,
multidimensional modeling, programming language, HyperFun,
Java, empirical modeling.

1 INTRODUCTION

Most of the currently known implicit modeling systems are
oriented towards specific subsets of objects and operations such as
traditional skeletal models [12, 28], convolution surfaces [7, 21],
distance-based models [13], or Constructive Solid Geometry
(CSG) [8]. Although all these models are of the same
mathematical nature, it is still not possible to exchange models
between the systems, and therefore between the users. In this
paper, we present a project devoted to developing an open system
based on the more general function representation (F-rep) [17].

In F-rep, a complex object is defined by a single continuous
function of several variables (point coordinates in
multidimensional space). The representation can be constructed
by applying different operations to primitive objects. A primitive
is considered as a "black box" with the defining function given by
the function evaluation procedure. There is a rich set of operations
closed on the representation, i.e., resulting in a continuous real
function [17, 20, 22]: set-theoretic operations and Cartesian
product defined with R-functions, blending, offsetting, sweeping,
projection, hypertexturing, metamorphosis, and extended space
mapping, which combines space and functional transformations
(mappings). Therefore, F-rep is a more generalized model with
respect to traditional skeletal implicits, convolution surfaces,
distance-based models, CSG, sweeps, and voxel models, and can
therefore unify them.

The proposed system architecture is built around the shape
models in HyperFun, which is a high-level programming language
for specifying F-rep models. The motivation for this project stems
from considering the following issues:

•  Exchange protocol. There are several well-known
protocols for exchanging geometric data such as polygonal
file formats (Autodesk DXF, etc.), Alias/Wavefront object
files for parametric surfaces, PADL-2 for CSG [9], and
STEP for B-rep and CSG [15]. The VRML extension
proposal [27] was the first attempt to introduce a protocol
for skeletal implicit surfaces with a limited set of
operations (warping, Boolean). A more general protocol
for exchanging F-rep models is needed.
•  Multidimensionality. F-rep naturally supports
multidimensional modeling using functions of several
variables F(x1, x2, …, xn) ≥ 0, where xi  are point
coordinates in n-dimensional Euclidean space. Practical
multidimensional modeling should be supported by the
language. Further interpretation of multidimensional
models in terms of multimedia and animation should be
considered.
•  Building applications. F-rep models should be easily
available to and processed in application software. This
can be provided by a plug-in type language interpreter
intended for parsing and function evaluation. In this way,
different applications can incorporate F-rep models
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developed independently and received, for example,
through an exchange protocol.
•  Extendibility and openness. Extendibility is the core
feature of an F-rep modeling system. New primitives,
operations, and relations can be introduced by users in
different categories (end user, application software
developer, kernel modeling system developer). The system
should be extendable on the levels of symbolic (textual)
and graphical user interface. The system’s openness means
the standardized ways of including new interface,
modeling, and application components. This also supposes
open source and collaborative development.
•  Component libraries. Creation of application-specific
libraries of reusable F-rep components on different levels
(HyperFun, C, Java) provides the modeling system with
adaptability to different application domains, and
customizability to meet the needs of particular users.
•  Multimodal interface. Different types of user interfaces
should be supported including symbolic, graphical, and
haptic. Eventually, the interfaces serve to create HyperFun
models.
•  Platform-independence. All of the system components
may run on different computer platforms and to
communicate through the HyperFun based protocol.
•  Internet-based modeling. Collaborative distributed
modeling can be supported with HyperFun files stored on
an Internet server and exchanged between clients in the
same manner as other Internet resources.  Here, the

HyperFun language can serve as the basis for a lightweight
transmission protocol for the collaborative exchange of
geometric models.
•  Advanced interactivity. The user would like to
experiment with models by specifying shape re-
definitions, and observing their behavior on the fly. In this
case, functional dependencies between objects have to be
maintained by the system with a mechanism similar to an
electronic spreadsheet.
•  Education. A system providing means for the easy
specification and operation with implicit surfaces would
be very useful in teaching a number of courses such as
analytical geometry, computer graphics, animation, or
visualization.

In this paper, we present the state-of-the-art HyperFun project
contributed to by the University of Aizu (Japan), the University of
Warwick (UK), and the Moscow Engineering Physics Institute
(Russia). The paper is structured as follows. Section 2 outlines the
general scheme of the proposed system. The HyperFun language
and its interpreter are described in Section 3. Sections 4-6 present
modelers of different types. Applications are briefly characterized
in Section 7. Conclusions and future directions described in
Section 8.
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2 SYSTEM ARCHITECTURE

The proposed system architecture is shown in Fig. 1. It consists of
the following basic groups of components: HyperFun models, F-
rep library, modelers, interpreters/compilers, and applications.
HyperFun models are text files that can be stored and transmitted
over a network. The F-rep library contains definitions of
primitives, operations, and relations used in HyperFun models.
This library is currently implemented in C, Java, and HyperFun.
The selection of the library depends on the application area and
computing environment. While system libraries are written in C

and Java, libraries in HyperFun are created by end users and are
usually oriented to a specific application area. The modelers are
interactive tools for building F-rep models and exporting them as
HyperFun files. The HyperFun interpreter provides program
parsing and function evaluation at the given point, and can be
plugged into applications to process HyperFun models. The
special Internet-based modeler accesses HyperFun models
through the HyperFun-to-Java translator and supports
collaborative model development using definitive scripts. The
above mentioned components are described in the following
sections.

Figure 2:  Sample HyperFun model and its polygonized surface



3 HYPERFUN LANGUAGE AND
INTERPRETER

3.1  Language Overview

HyperFun is a modeling language designed to be a high-level tool
suitable for specifying functionally based models. The language
was intentionally kept as simple as possible to provide for ease of
mastery. While being minimalist, it should not limit the user in
creating quite complex geometric models. It supports all main
notions in F-rep, particularly "geometric objects" and "geometric
operations".

A model in HyperFun can contain the specification of several
geometric objects. Each object is defined by a function
parametrized by input arrays of point coordinates and free
numerical parameters. The number of coordinate variables can be
greater than three to allow definition of higher dimensional
objects. The function can be quite complex: it is represented with
the help of assignment statements (using auxiliary local variables
and arrays, if necessary); conditional selection (’if-then-else’), and
iterative (’while-loop’). Functional expressions are built using
conventional arithmetic and relational operators. It is possible to
use standard mathematical functions (’exp’, ’log’, ’sqrt’, ’sin’, etc.).
Fundamental set-theoretic operations are supported by special
built-in operators with reserved symbols ("|" - union, "&" -
intersection, "\" - subtraction, "~" - negation, "@" - Cartesian
product).

The languages principle feature is the ability to use the system
F-rep library that contains functions representing geometric
primitives and transformations. The library is extendible, and its
composition can be changed depending on a particular domain.
The library version in general use contains the most common
primitives (’Sphere’, ’Torus’, ’Ellipsoid’, ’Cylinder’, ’Blobby object’,
’Metaball object’, etc.) and transformations (’Blending
union/intersection’, ’Rotation’, ’Scaling’, ’Twisting’, etc).
Functional expressions can also include references to previously
defined geometric objects. The user can create his/her own library
of objects for later reuse.

A sample of a HyperFun model can be found in Fig. 2. The
on-line manual for the HyperFun language, containing a
description of the current version of F-rep library as well as
numerous examples of programs in HyperFun, can be found at the
devoted Web-site [14].

3.2  Interpreter of the Language

The HyperFun interpreter is implemented as a suite of functions
in ANSI C. The interpreter provides parsing with syntax and
semantic analysis for a program in HyperFun. We will now
describe the two most important functions that correspondingly
build an internal representation and perform the function
evaluation at the given point for the given  parameters.

The ’Parse’ function performs syntax analysis in accordance
with the language grammar and semantic rules. For each object
described in the HyperFun program, the function generates an
internal representation. Another possible result is a list of
messages about any errors together with their locations and
specifics. As to the form of the object’s internal representation, it
is supposed to be optimal for the subsequent function evaluation
(we need to evaluate the function at given points in the modeling
space, and the number of them can be very large). Accordingly,

the internal representation can be considered as a tree structure
ready to effectively evaluate all expressions defining the complete
function.

The 'Calc' function performs the function evaluation for the
given object at the given point and for the given external
parameters. The object’s internal representation serves as an input
parameter for the function that returns the value of the evaluated
function at the given point; if a certain error appears, the function
generates the corresponding message about the error and its
location.

The formal specification of the internal representation and the
function evaluation procedure was given in [19]. On the whole,
the interpreter provides an effective procedure for building an
internal representation and for function evaluation. It should be
emphasized that the 'Parse' module is invoked just once while
processing the Hyperfun model; the internal representation it
creates can be treated as Java-like “byte-code” (note that it is
platform-independent) and can in principle serve as a protocol for
data exchange between system components. In fact, these two
procedures form an application programming interface (API) in
contrast to traditional geometric APIs consisting of large number
of modules.

4 MULTIDIMENSIONAL MODELER WITH
SYMBOLIC USER INTERFACE
Obviously, modern geometric modeling systems should provide a
GUI enabling the user to specify the model using direct
manipulation and other conventional interactive techniques.
However, we see the principal drawbacks of a GUI, in particular
its limited design vocabulary and problems it has dealing with
multidimensional models. It is very useful to have a modeler with
a "symbolic" user interface (SUI) based on a high-level geometric
language (HyperFun in our case). The following benefits of a SUI
can be mentioned:

•  more rich functionality provided by direct textual input
of equations for primitives and operations of arbitrary
complexity;
•  dealing with multidimensional models with further
interpretation of them;
•  support for advanced users, who are especially inclined
to use the SUI;
•  using a SUI in education lets students understand and
master the underlying laws of geometric modeling;
•  possibility for generating symbolic definitions using
genetic programming techniques.

We have implemented a multidimensional modeler with SUI
that allows the user to:

•  Specify a functionally-based model in HyperFun using
the built-in editor and interpreter;
•  Use the standard 'F-rep library' of geometric objects and
transformations as well as the user's own library of
geometric objects written in HyperFun;
•  Define mappings of geometric space to multimedia
space by assigning multimedia types to geometric
coordinates [1];
•  Compose scenes consisting of a few objects, each
defined in its own modeling space;Generate images of
polygonized or ray-traced elementary shapes, animation
sequences, 1D and 2D spreadsheets in accordance with
assigned multimedia types.



Figure 3: Screenshot of the multidimensional modeler with a symbolic user interface.

Figure 4: Frame of an animated spreadsheet



Fig. 3 demonstrates a screenshot of the system in the process
of modeling. The current version of the modeler called "HyperFun
for Windows" is implemented on the PC platform using Windows
NT.

We will now describe in more detail how the user can deal
with multidimensional models. The concept of multimedia types is
exploited here. It is possible to define geometric objects in
HyperFun using the coordinate variables x[1], x[2], …, x[n].
There is a special dialogue window that lets the user associate
each geometric coordinate variable with a certain multimedia
type. These types establish the conventions governing coordinate
variables' semantics by giving a concrete interpretation of x[i]. In
the current prototype system implementation, the following
multimedia types can be assigned to x[i]:

•  "x", "y" and "z" types correspond to world coordinates
of "real life" geometry. These can be Cartesian,
cylindrical, or other coordinates. The selection of these
types defines the "elementary" image or 2D/3D shape
within the bounding box in the selected geometric space.
An "elementary" shape (i.e., curve, surface, isosurface) is
the projection of a cross-section of the initial
multidimensional shape.
•  "t" corresponds to dynamic coordinates representing
continuous values that can be linearly or non-linearly
mapped onto physical time. The interval of such a
coordinate can mean the life time of the multimedia
object. This type can be assigned to one or several
geometric coordinate variables. The user can actually give
a path in the space of variables with "t" type by filling out
a table with their discrete values. Each row of the table
corresponds to certain time value. Then, the frames of the
animation sequence in the form of the model's cross-
sections can be produced. This is the basis for
implementing such operations as metamorphosis.
•  "u" and "v" types correspond to 2D spreadsheet
coordinates that take discrete values in the given bounding
box. This type allows for spreadsheet-like spatial
organization of elementary images or shapes in the
regularly placed cells.
•  "c" corresponds to a photometric coordinate, namely the
color. Color is interpreted differently depending on the
selected type of the elementary image or shape. For
example, if the elementary shape is a 3D surface, color can
be assigned to a light source in the scene. In fact, color is a
vector of three real values (R,G,B) defining red, green, and
blue components of RGB color model. Therefore, the
mapping should be provided from a geometric coordinate
onto all (R,G,B) components.

To define a cross-section of the multidimensional model the
user can assign a constant numerical value to the corresponding
x[i]. By assigning one or several constant values to the function
x[n+1], the user can select a contour map or a set of isosurfaces as
an elementary shape.
Let us give an example of assigning multimedia types for the
model shown in Fig. 3. The object is defined by a function of six
variables. The following types are assigned to the geometric
coordinates:

x[1] → x
x[2] → y
x[3] → z
x[4] → t
x[5] → u
x[6] → v

Assigning a zero value to the function itself defines an
isosurface as an elementary shape in the cells of the spreadsheet.
The elementary shape illustrates function dependence on three
variables x[1], x[2], and x[3]. Changes of isosurfaces along rows
and columns of the spreadsheet illustrate function dependence on
x[5] and x[6]. Changes of the entire spreadsheet in time show how
the function depends on x[4]. The image in Fig. 4 is a frame of the
animation corresponding to t = 2. It can be thought as an image of
a 5D shape since x[4] has constant value.

Assigning multimedia types to geometric coordinates and the
subsequent generation of images and animations allows for:

•  interpretation of the multidimensional shape involving
more human senses;
•  uniform treatment of all kinds of multimedia
coordinates (Cartesian coordinates of "real life" 2D and 3D
geometry, time, color, sound, etc.).
•  new visual representations of multidimensional shapes
such as animated spreadsheets of images or 3D objects;
•  non-traditional behavior descriptions for animation;
•  the emergence of new multimedia applications such as
synthesis of music, color, and dynamic 3D shapes based
on strict mathematical definitions.

5 MODELER WITH AN EXTENDABLE
GRAPHICAL USER INTERFACE

We present a HyperFun modeler with a high-level graphical
user interface that will allow users to model 3D shapes using
HyperFun primitives and operations. The user creates models
using simplified polygonal meshes that represent the underlying
F-rep primitives.  3D widgets and other visual cues are displayed
to allow the user to interact with and understand HyperFun
operations used during the modeling process. At any time during
the modeling process, the user can polygonize the current model
state to get a more accurate estimation of the actual underlying
shape. The fundamental output of the modeler is a text file of the
model in HyperFun.  This text can then be read by the various
applications available for the HyperFun language.

A model consists of an ordered set of objects.  Each object is
represented as a separate n-ary tree that is built out of nodes (see
Fig. 5).  Each node is of a certain type, and this type information
is held in the node library. When a node is put on a tree, the type
information initializes another structure that holds the values of
the parameters of the node. Leaves on the tree correspond to F-rep
library primitives, previously created objects in the model, inline
HyperFun primitives, or user defined HyperFun primitives.
Other nodes in the tree represent F-rep library operations, inline
HyperFun operations, or user defined HyperFun operations. Inline
primitives and operations allow the user to specify on the fly a



textual definition for the node on the tree. The fundamental
difference between a primitive and an operation is that operations
must be the roots of sub-trees in the object, and primitives can
have no such sub-tree. A tree that has an operation without a sub-
tree is incomplete, and therefore meaningless until complete.
Nodes can be divided into two types: space mappings and
functional mappings (see [22]).

Modeling is accomplished by adding, deleting, or moving
nodes on the tree, and by changing the parameters associated with
each node. These parameters are mapped onto their graphical and
semantical meaning in the modeler by the node definitions
contained in the node library. Due to this mapping, the user is
given the ability to interactively change these parameters either
graphically or symbolically.  Symbolically, the user can directly
type in the values for the parameter, or pick an object argument
that will be assigned to it. Graphically, the user can use the mouse
to manipulate a widget that has been associated with the
parameter.  Changing parameter values in either way results in
changes to the onscreen display. The graphical subsystem that
creates the display is based on OpenGL. A multi-platform
software toolkit (MAM/VRS) is being used for the OpenGL
interface.  This toolkit has a Tcl/Tk binding, and so we use Tcl/Tk
for creating the GUI.  The use of these toolkits in combination
allows the software to be compiled on various machines.  The
same source code is compiled on a Windows based workstation,
or a Silicon Graphics workstation. The HyperFun textual output is
created simply by sequentially traversing each tree (object) in the
forest (model).  Text is added to the file stream during both
downward and upward traversal of the tree.  The output during
downward traversal consists of HyperFun text related to space
mapping nodes.  On the other hand, functional mapping
information is output during upward traversal.

One of the essential features of this modeler is its
extendibility.  The core code of the modeler does not contain
definitions of the nodes used in the modeler.  These node
definitions exist in external data files that specify the type and
function of the node, as well as semantic and graphical
information that gives the node meaning in the modeler.  Upon
initialization, the program reads these data files and fills the node

library with the data contained therein.  In this way, the user is
given the ability to extend the modeler’s node library to include
any new primitive or operation that they may define in the
HyperFun language.  In the same way, this library may be
extended to include future additions to the system F-rep library
itself.  For more complicated additions to the F-rep library, a
different type of interface may be needed.  In this case, the
modeler may be extended with a new interface that would be used
when working with the new function.  One example of such an
extension is the included interface that allows modeling using
Bezier patches and volumes [23].

6 INTERNET-BASED EMPIRICAL
MODELER

6.1  HyperFun to Java translator

The HyperFun to Java translator has two main purposes. The first
is to provide an alternative method for fast and effective
realization of HyperFun shapes, from those already discussed, that
is platform independent and appropriate for easy distribution via
the Internet (see Section 6.2).  The second is for building algebras
of shape that can be used in spreadsheet-like applications for
geometric modeling and shared between many agents in
collaborative and concurrent interaction with, and incremental
development of, shape models (see Section 6.3).  The second
approach is based on Empirical Modeling principles [4, 5] that
allow for the description of realistic behavior of shape models that
are situated in multi-agent environments, providing animation
through open-ended exploration and experimentation with models.

The translator started life as an undergraduate assignment for a
course teaching parsing techniques at the University of Warwick.
The students were asked to write a lexical analyzer and parser
generator [2] for the HyperFun notation.  The final part of the
assignment asked the students to add semantic actions to their
parser that write out Java code corresponding to a HyperFun
model presented as input.  To support the students work, they
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Figure 5:  HyperFun model tree structure.  The tree on the left is a representation of the model shown in Figure 2 with the soft object
represented as a single primitive.



were provided with the standard HyperFun library of shapes hand
translated into Java and a simple polygonalisation algorithm
(similar to Bloomenthal’s tetrahedral decomposition [6]) for the
realization of HyperFun models as VRML files [26].  Successful
students and the author of the model solution could then take a
HyperFun model (see Fig. 6), translate it into new Java code (A),
compile this Java code using the standard Java compiler (B), and
execute this code to generate a VRML realisation of the
HyperFun model (C).  The shape can be viewed and explored in a
VRML browser (D) such as CosmoPlayer from Cosmo Software
(see http://cosmosoftware.com/).

The advantage of this technique is that the HyperFun code,
which may be executed thousands of times over to produce one
realization of a shape, is compiled into a bytecode format by an
optimizing compiler.  When executed, the Java just-in-time
compiler converts the bytecode into native machine code that can
be executed efficiently.  Informal benchmark testing shows that
Java can achieve similar and sometimes improved performance
for repeated mathematical calculations in comparison to
equivalent code in the C programming language.

The current implementation status of the translator is as
described above and requires the user to type a sequence of
commands at a shell prompt.  Initial tests on a modest Pentium PC
shows that the generation of a VRML model using a cell
decomposition of 30 by 30 by 30 from a HyperFun file of 50 lines
could be generated in under 10 seconds.  The obvious next step in
implementation is to integrate the translation, compilation and
realisation phases into one combined tool with the replacement of
VRML by the recently released Java 3D library [24].

6.2  Internet-based realization

One unique feature of Java is the ability to dynamically load
classes at runtime.  This means that is possible to build an
application that generates Java bytecode and executes that code
without the need to stop the execution to re-link the applications
code.  In more conventional approaches, it would be necessary to
implement a runtime interpreter and this cannot benefit from the
performance advantage provided by the just-in-time compiler and
native code.  So by utilising this dynamic feature of Java, it is
possible to build an open-ended application that allows HyperFun
shape files to be read, edited, compiled, and visualized.  Such an
application should include a choice of rendering algorithms that
offer the user a choice between speed, quality of rendering, and
style of interaction with models, with comparable speed to a
conventional closed (at compilation) application.

Moreover, it is possible to use an Internet browser that
supports Java (such as Netscape Navigator) to provide the same
functionality as the application mentioned above.  In addition,
HyperFun files and their bytecode representation can be stored on
an Internet web server and exchanged between any number of
clients in the same manner as other Internet-based resources.  The
clients can communicate through a server that acts as a broker for
HyperFun files and related information, providing services such

as version control, password protection and persistent storage for
models. In this way, the HyperFun notation is being used to
provide a lightweight transmission protocol for the collaborative
exchange of geometric shape.

Figure 7. Screenshot of Empirical Worlds in use.

6.3  Algebra and empirical modelling

The Empirical Worlds proof-of-concept application [11]
demonstrates how an algebra of shape, including a large family of
primitive shape types and operators on those primitives defined
using F-rep techniques, can be used as the underlying algebra of a
definitive notation [3].  A screenshot of Empirical Worlds in use is
given in Fig. 7. In Empirical Worlds, it is possible to create an
instance of a shape type and assign it a name.  Defining
parameters used to create a specific instance of a shape data type
are given to the application using syntax similar to that of VRML.
As an example, the following two lines of scripts (each
assignment is known as a definition) create an instance of a solid
box and a solid cylinder shape:

body = Box { size 2 2 2 }
hole = Cylinder { height 3 radius 0.3 }

Using the operator cut, it is possible to create a new piece of
geometry that is the set theoretical subtraction of the cylinder
(hole) from the box (body).
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Figure 6. VRML generation using HyperFun to Java translator



cutBody = cut(body, hole)

This definition establishes a dependency between the body,
hole and cutBody.  Whatever values are subsequently defined for
body or hole, cutBox is automatically maintained consistent with
its definition.  For example, if the body is redefined to be a sphere
of radius 2, then cutBody is updated to become the set-theoretical
subtraction of a cylinder from a sphere.  An Empirical Worlds
script is similar to a spreadsheet for geometric shape, where
identity via grid location has been substituted for by identity using
assignment operators and identifiers in a programming notation.

In the current version of Empirical Worlds, the algebra is
fixed and a specialist programmer is required to create new
primitives.  The implementation is currently in Java and the
HyperFun to Java translator could allow for new shape data types
and operators to be created or edited on-the-fly.  These can then
be used in Empirical Worlds scripts with the new shape data types
having fast and effective realisation through the use of compiled
native code.  To achieve this, it will be necessary to have a meta-
language for describing the mechanism for dynamically linking a
new HyperFun generic shape data type into the empirical world
notation and/or graphical user interface.

A fully integrated tool supporting all functionality described
above could be used to access large libraries of shapes defined
using HyperFun in a textual or binary format.  Each definition can
be attributed to an agent owner who can choose privileges for
other agents to reference or redefine it.  Definitions can be used as
a very lightweight way of transmitting shape models and aspects
of behavior in the models between several different agents
collaborating over the Internet.  This collaboration can be
concurrent, as is illustrated by the dtkeden tool that supports two-
dimensional line drawing [10].  Moreover, definitive scripts are
particularly suited to incremental model development or
modification in distributed environments as only the change to the
model has to be transmitted to synchronize all agents’ views.  A
dependency maintainer on each client maintains models consistent
and up-to-date with their definitions.

Definitions can also be used to represent dependencies
between the location of shape as observed in the models referent.
For a humanoid shape, it is possible to define the realistic
behaviour of a shoulder joint by introducing angular parameters
for each degree of freedom for possible movements of the top half
of the arm, with the range of parameters limited to prevent the
arm embedding itself into the chest.  Simple animations can be
created by the introduction of a parameter t, on which the location
and size of shapes can depend.  In this way, it is possible to
establish multi-agent environments for the exploration of shape
models, and their associated behaviours, in a manner that is not
preconceived and benefits from effective, distributed realisation.

7 APPLICATION EXAMPLE

Application software provides visual representation (ray-tracing,
non-photorealistic rendering), animation, conversion to other
representations (polygonization, VRML generation, voxelization),
analysis, storage, rapid prototyping, and other types of processing
of HyperFun models. An application reads the model and invokes
the interpreter to parse it and to evaluate the function at a set of
points. Although the detailed description of applications is beyond
the scope of this paper, let us discuss one example, that of using
ray-tracing to visualize a multidimensional model.

In Fig. 9 we present a ray-traced image illustrating a bi-
directional metamorphosis, which is a non-traditional operation in
computer graphics and animation. It results in a smooth
transformation (metamorphosis) between four key 3D shapes
modeled using F-rep. Algebraically, the model of the bi-
directional metamorphosis is the bilinear interpolation between
four real-valued functions by coordinates x4 and x5.
Geometrically, it is a 5D object defined by the real function as
φ(x1, x2, x3, x4, x5) ≥ 0. The selected key-shapes are, to some
extent, "cultural key signs" in Japan:

•  "Cat" (upper left) resembles the cult character of
children’s animation. Its complete model in HyperFun can
be found at [14];
•  "NiHon" (lower left) is a 3D puzzle representing the
word "Japan". First, two 3D Chinese characters "Ni" and
"Hon" are constructed independently as unions of blocks.
Then, the solids are oriented along Z and X axes
respectively and combined as NiHon = Ni ∩ Hon, where
∩ represents intersection operation. The idea of this puzzle
construction is that the resulting 3D solid looks like the
single initial 2D character "Ni" or "Hon" when projected
along the Z and X axes respectively onto a plane.
•  "Robot" (upper right) and "Rob_let" (lower right) are also
modeled using set-theoretic operations with R-functions.

Meta5D(x[5],a[1])
{
array xx[3];
xx[1] = x[1]; xx[2] = x[2]; xx[3] =
x[3];

-- (0,0): Cat
Cat = Cat3D(xx);

-- (0,1): NiHon
NiHon = NiHon3D(xx);

-- (1,0): Robot
Robot = Robot3D(xx);

-- (1,1): Rob_let
Rob_let = Rob_let3D(xx);

-- Bi-directional metamorphosis
Meta5D =
(Cat*(1.-x[4])+Robot*x[4])*(1.-x[5])
+ (NiHon*(1.-x[4])+Rob_let*x[4])*x[5];
}

Figure 8: HyperFun model of the bi-directional metamorphosis

The HyperFun model of the bi-directional metamorphosis is
shown in Fig. 8. A 2D spreadsheet presented in Fig. 9 is the most
adequate visual representation of this 5D object. The following
assignment of the multimedia types defines such spreadsheet:

x[1] → x
x[2] → y
x[3] → z
x[4] → u,p1
x[5] → v,p2



Coordinates x1, x2, x3 (types x, y, and z) continuously change
inside the 3D bounding box. Coordinates x4 and x5 (types u and v)
take five discrete values along horizontal and vertical axes
respectively. Each cell of the spreadsheet contains an elementary
shape corresponding to a specific point in the (x4, x5) plane. Each
of the key shapes is assigned a 3D texture. Four textures are also
interpolated in the (x4, x5) plane (photometric types p1 and p2).
Note that smooth shape and texture transformations can be
observed in any linear direction in the image. On the other hand,
the spreadsheet can be considered as a set of frames of animation

with two dynamic variables. It can serve as a reference for
constructing an animation sequence containing particularly
interesting shape transformations [16].

The image was rendered using POVRay 3.0 [18] (a freeware
raytracer available on various platforms) running on Intel Pentium
II Windows NT workstations.  A modified version of POVRay
with “the POV-Ray isosurface patch” [25] was used to render the
isosurfaces.

Figure 9. Spreadsheet of bi-directional metamorphosis between four shapes

8 CONCLUSIONS

We presented a project with a high-level modeling language as its
unifying core. An open system architecture was proposed and a
description of its components was given. The language is
powerful enough to completely support multidimensional F-rep
modeling including both traditional implicit models (blobby and
soft objects, metaballs and convolution surfaces) and advanced
models (sweeps, CSG, non-linear transformations, etc.). On the
other hand, our experience shows that undergraduate students can
easily master the language and the supporting tools which are
used in different courses in our universities.

The language-based protocol can serve well for exchanging
models between users, modeling systems and networked
computers. The project has also shown its potential to support
advanced interactive "empirical modeling" techniques for
collaborative work on Internet. The project itself is open for
collaboration between research groups. As the first step in this
direction, we plan to make the system components public domain.
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