
HyperGCN: A New Method of Training Graph

Convolutional Networks on Hypergraphs

Naganand Yadati
Indian Institute of Science, Bangalore

②✳♥❛❣❛♥❛♥❞❅❣♠❛✐❧✳❝♦♠

Madhav Nimishakavi
Indian Institute of Science, Bangalore

❝s❡✳♠❛❞❤❛✈❅❣♠❛✐❧✳❝♦♠

Prateek Yadav
Indian Institute of Science, Bangalore

✉❣♣r❛t❡❡❦❅❣♠❛✐❧✳❝♦♠

Vikram Nitin ∗

Birla Institute of Technology and Science, Pilani
✈✐❦r❛♠♥✐t✐♥✾❅❣♠❛✐❧✳❝♦♠

Anand Louis
Indian Institute of Science, Bangalore

❛♥❛♥❞❧❅✐✐s❝✳❛❝✳✐♥

Partha Talukdar
Indian Institute of Science, Bangalore

♣❛rt❤❛❅t❛❧✉❦❞❛r✳♥❡t

Abstract

In many real-world networks such as co-authorship, co-citation, etc., relationships
are complex and go beyond pairwise associations. Hypergraphs provide a flexible
and natural modeling tool to model such complex relationships. The obvious
existence of such complex relationships in many real-world networks naturally
motivates the problem of learning with hypergraphs. A popular learning paradigm
is hypergraph-based semi-supervised learning (SSL) where the goal is to assign
labels to initially unlabelled vertices in a hypergraph. Motivated by the fact that
a graph convolutional network (GCN) has been effective for graph-based SSL,
we propose HyperGCN, a novel way of training a GCN for SSL on hypergraphs
based on tools from sepctral theory of hypergraphs. We demonstrate HyperGCN’s
effectiveness through detailed experimentation on real-world hypergraphs for SSL
and combinatorial optimisation and analyse when it is going to be more effective
than state-of-the art baselines. We have made the source code available.

1 Introduction

In many real-world network datasets such as co-authorship, co-citation, email communication, etc.,
relationships are complex and go beyond pairwise associations. Hypergraphs provide a flexible and
natural modeling tool to model such complex relationships. For example, in a co-authorship network
an author (hyperedge) can be a co-author of more than two documents (vertices).

The obvious existence of such complex relationships in many real-world networks naturaly motivates
the problem of learning with hypergraphs [52, 22, 49, 17]. A popular learning paradigm is graph-
based / hypergraph-based semi-supervised learning (SSL) where the goal is to assign labels to initially
unlabelled vertices in a graph / hypergraph [10, 54, 42]. While many techniques have used explicit
Laplacian regularisation in the objective [51, 53, 11, 48], the state-of-the-art neural methods encode
the graph / hypergraph structure G = (V,E) implicitly via a neural network f(G,X)[25, 3, 17] (X
contains the initial features on the vertices for example, text attributes for documents).

∗Work done while at Indian Institute of Science, Bangalore

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

Model↓ Metric → Training time Density Training time (DBLP) Training time (Pubmed)

HGNN 170s 337 0.115s 0.019s

FastHyperGCN 143s 352 0.035s 0.016s

Table 1: average training time of an epoch (lower is better)

While explicit Laplacian regularisation assumes similarity among vertices in each edge / hyperedge,
implicit regularisation of graph convolutional networks (GCNs) [25] avoids this restriction and
enables application to a broader range of problems in combinatorial optimisation [19, 26, 38, 31],
computer vision [12, 37], natural language processing [44, 34], etc. In this work, we propose,
HyperGCN, a novel training scheme for a GCN on hypergraph and show its effectiveness not only in
SSL where hyperedges encode similarity but also in combinatorial optimisation where hyperedges do
not encode similarity. Combinatorial optimisation on hypergraphs has recently been highlighted as
crucial for real-world network analysis [2, 36].

Methodologically, HyperGCN approximates each hyperedge of the hypergraph by a set of pairwise
edges connecting the vertices of the hyperedge and treats the learning problem as a graph learning
problem on the approximation. While the state-of-the-art hypergraph neural networks (HGNN) [17]
approximates each hyperedge by a clique and hence requires sC2 (quadratic number of) edges for
each hyperedge of size s, our method, i.e. HyperGCN, requires a linear number of edges (i.e. O(s))
for each hyperedge. The advantage of this linear approximation is evident in Table 1 where a faster
variant of our method has lower training time on synthetic data (with higher density as well) for
densest k-subhypergraph and SSL on real-world hypergraphs (DBLP and Pubmed). In summary, we
make the following contributions:

• We propose HyperGCN, a new method of training a GCN on hypergraph using tools from
spectral theory of hypergraphs and introduce FastHyperGCN, its faster variant (Section 4).

• We apply our methods to the problems of SSL and combinatorial optimisation on real-
world hypergraphs. Through detailed experimentation, we demonstrate their effectiveness
compared to the state-of-the art HGNN [17] and other baselines (Sections 5, and 7).

• We thoroughly discuss when we prefer our methods to HGNN (Sections 6, and 8).

While the motivation of our methods is based on similarity of vertices in a hyperedge, we show they
can be effectively used for combinatorial optimisation where hyperedges do not encode similarity.

2 Related work
In this section, we discuss related work and then the background in the next section.

Deep learning on graphs: Geometric deep learning [5] is an umbrella phrase for emerging tech-
niques attempting to generalise (structured) deep neural network models to non-Euclidean domains
such as graphs and manifolds. Graph convolutional network (GCN) [25] defines the convolution
using a simple linear function of the graph Laplacian and is shown to be effective on semi-supervised
classification on attributed graphs. The reader is referred to a comprehensive literature review [5] and
extensive surveys [20, 4] on this topic of deep learning on graphs.

Learning on hypergraphs: The clique expansion of a hypergraph was introduced in a seminal work
[52] and has become a popular approach for learning on hypergraph-structured data [39, 16, 50, 43].
Hypergraph neural networks [17] and their variants [23, 24] use the clique expansion to extend GCNs
for hypergraphs. Powerset convolutional networks [47] utilise tools from signal processing to define
convolution on set functions. Another line of work uses mathematically appealing tensor methods
[40, 6], but they are limited to uniform hypergraphs.

Spectral Theory of Hypergraphs: The clique expansion of a hypergraph essentially models it as
a graph by converting each hyperedge to a clique subgraph [1]. It has been well established that
this approximation causes distortion, fails to utilise higher-order relationships in the data and leads
to unreliable learning performance for clustering, SSL, active learning, etc. [28, 13]. A simple yet
effective way to overcome the limitations is to introduce hyperedge-dependent vertex weights [14].

Researchers have fully utilised the hypergraph structure also through non-linear Laplacian operators
[22, 32, 8]. It has been shown that these operators enable Cheeger-type inequality for hypergraphs,

2

relating the second smallest eigenvalue of the operator to hypergraph expansion [32, 8]. One such
Laplacian is derived from the notion of total variation on hypergraphs (Lovasz extension of the
hypergraph cut) which considers the maximally disparate vertices in each hyperedge [22]. Recent
developements have extended these non-linear operators to several different settings:

• directed hypergraphs (idea is to consider supremum in tail, infimum in head) [49, 9].

• submodular hypergraphs (different submodular weights for different hyperedge cuts) [30]
and submodular function minimisation (generalises hypergraph SSL objective) [27, 29].

• Laplacian that considers all vertices in each hyperedge (includes the vertices other than the
maximally disparate ones in each hyperedge) [7].

Graph-based SSL: Researchers have shown that using unlabelled data in training can improve
learning accuracy significantly. This topic is so popular that it has influential books [10, 54, 42].

Graph neural networks for combinatorial optimisation: Graph-based deep models have recently
been shown to be effective as learning-based approaches for NP-hard problems such as maximal
independent set, minimum vertex cover, etc. [31], the decision version of the traveling salesman
problem [38], graph colouring [26], and clique optimisation [19].

3 Background: Graph convolutional network

Let G = (V, E), with N = |V|, be a simple undirected graph with adjacency A ∈ R
N×N , and data

matrix X ∈ R
N×p. which has p-dimensional real-valued vector representations for each node v ∈ V .

The basic formulation of graph convolution [25] stems from the convolution theorem [33] and it can
be shown that the convolution C of a real-valued graph signal S ∈ R

N and a filter signal F ∈ R
N is

approximately C ≈ (w0 + w1L̃)S where w0 and w1 are learned weights, and L̃ = 2L
λN

− I is the

scaled graph Laplacian, λN is the largest eigenvalue of the symmetrically-normalised graph Laplacian

L = I − D− 1

2AD− 1

2 where D = diag(d1, · · · , dN) is the diagonal degree matrix with elements

di =
∑N

j=1,j 6=i Aji. The filter F depends on the structure of the graph (the graph Laplacian L). The

detailed derivation from the convolution theorem uses existing tools from graph signal processing
[41, 21, 5] and is provided in the supplementary material. The key point here is that the convolution
of two graph signals is a linear function of the graph Laplacian L.

Table 2: Summary of symbols used in the paper.

Symbol Description Symbol Description

G = (V, E) an undirected simple graph H = (V,E) an undirected hypergraph
V set of nodes V set of hypernodes
E set of edges E set of hyperedges
N = |V| number of nodes n = |V | number of hypernodes
L graph Laplacian L hypergraph Laplacian
A graph adjacency matrix H hypergraph incidence matrix

The graph convolution for p different graph signals contained in the data matrix X ∈ R
N×p

with learned weights Θ ∈ R
p×r with r hidden units is ĀXΘ , Ā = D̃− 1

2 ÃD̃− 1

2 , Ã = A +

I, and D̃ii =
∑N

j=1 Ãij . The proof involves a renormalisation trick [25] and is in the supplementary.

GCN [25] The forward model for a simple two-layer GCN takes the following simple form:

Z = fGCN (X,A) = softmax

(

Ā ReLU

(

ĀXΘ(1)

)

Θ(2)

)

, (1)

where Θ(1) ∈ R
p×h is an input-to-hidden weight matrix for a hidden layer with h hidden units and

Θ(2) ∈ R
h×r is a hidden-to-output weight matrix. The softmax activation function is defined as

softmax(xi) =
exp(xi)∑
j

exp(xj)
and applied row-wise.

3

Figure 1: Graph convolution on a hypernode v using HyperGCN.

GCN training for SSL: For multi-class, classification with q classes, we minimise cross-entropy,

L = −
∑

i∈VL

q
∑

j=1

Yij lnZij , (2)

over the set of labelled examples VL. Weights Θ(1) and Θ(2) are trained using gradient descent.

A summary of the notations used throughout our work is shown in Table 2.

4 HyperGCN: Hypergraph Convolutional Network

We consider semi-supervised hypernode classification on an undirected hypergraph H = (V,E) with
|V | = n, |E| = m and a small set VL of labelled hypernodes. Each hypernode v ∈ V = {1, · · · , n}
is also associated with a feature vector xv ∈ R

p of dimension p given by X ∈ R
n×p. The task is to

predict the labels of all the unlabelled hypernodes, that is, all the hypernodes in the set V \ VL.

Overview: The crucial working principle here is that the hypernodes in the same hyperedge are
similar and hence are likely to share the same label [49]. Suppose we use {hv : v ∈ V } to denote
some representation of the hypernodes in V , then, for any e ∈ E, the function maxi,j∈e ||hi − hj ||

2

will be “small” only if vectors corresponding to the hypernodes in e are “close” to each other.
Therefore,

∑

e∈E maxi,j∈e ||hi − hj ||
2 as a regulariser is likely to achieve the objective of the

hypernodes in the same hyperedge having similar representations. However, instead of using it as
an explicit regulariser, we can achieve the same goal by using GCN over an appropriately defined
Laplacian of the hypergraph. In other words, we use the notion of hypergraph Laplacian as an
implicit regulariser which achieves this objective.

A hypergraph Laplacian with the same underlying motivation as stated above was proposed in prior
works [8, 32]. We present this Laplacian first. Then we run GCN over the simple graph associated
with this hypergraph Laplacian. We call the resulting method 1-HyperGCN (as each hyperedge is
approximated by exactly one pairwise edge). One epoch of 1-HyperGCN is shown in figure 1

4.1 Hypergraph Laplacian

As explained before, the key element for a GCN is the graph Laplacian of the given graph G. Thus,
in order to develop a GCN-based SSL method for hypergraphs, we first need to define a Laplacian for
hypergraphs. One such way [8] (see also [32]) is a non-linear function L : Rn → R

n (the Laplacian
matrix for graphs can be viewed as a linear function L : Rn → R

n).

Definition 1 (Hypergraph Laplacian [8, 32]2) Given a real-valued signal S ∈ R
n defined on the

hypernodes, L(S) is computed as follows.

1. For each hyperedge e ∈ E, let (ie, je) := argmaxi,j∈e|Si − Sj |, breaking ties randomly2.

2The problem of breaking ties in choosing ie (resp. je) is a non-trivial problem as shown in [8]. Breaking
ties randomly was proposed in [32], but [8] showed that this might not work for all applications (see [8] for more
details). [8] gave a way to break ties, and gave a proof of correctness for their tie-breaking rule for the problems
they studied. We chose to break ties randomly because of its simplicity and its efficiency.

4

Figure 2: Hypergraph Laplacian [8] vs. the generalised hypergraph Laplacian with mediators [7].
Our approach requires at most a linear number of edges (1 and 2|e| − 3 respectively) while HGNN
[17] requires a quadratic number of edges for each hyperedge.

2. A weighted graph GS on the vertex set V is constructed by adding edges {{ie, je} : e ∈ E}
with weights w({ie, je}) := w(e) to GS , where w(e) is the weight of the hyperedge e. Let
AS denote the weighted adjacency matrix of the graph GS .

3. The symmetrically normalised hypergraph Laplacian is L(S) := (I −D− 1

2ASD
− 1

2)S

4.2 1-HyperGCN

By following the Laplacian construction steps outlined in Section 4.1, we end up with the simple
graph GS with normalized adjacency matrix ĀS . We now perform GCN over this simple graph GS .
The graph convolution operation in Equation (1), when applied to a hypernode v ∈ V in GS , in

the neural message-passing framework [18] is h
(τ+1)
v = σ

(

(Θ(τ))T
∑

u∈N (v)([Ā
(τ)
S]v,u · h

(τ)
u)

)

.

Here, τ is epoch number, h
(τ+1)
v is the new hidden layer representation of node v, σ is a non-linear

activation function, Θ is a matrix of learned weights, N (u) is the set of neighbours of v, [Ā
(τ)
S]v,u is

the weight on the edge {v, u} after normalisation, and h
(τ)
u is the previous hidden layer representation

of the neighbour u. We note that along with the embeddings of the hypernodes, the adjacency matrix
is also re-estimated in each epoch.

Figure 1 shows a hypernode v with five hyperedges incident on it. We consider exactly one
representative simple edge for each hyperedge e ∈ E given by (ie, je) where (ie, je) =

argmaxi,j∈e ||(Θ
(τ))T (h

(τ)
i − h

(τ)
j)||2 for epoch τ . Because of this consideration, the hypern-

ode v may not be a part of all representative simple edges (only three shown in figure). We then use
traditional Graph Convolution Operation on v considering only the simple edges incident on it. Note
that we apply the operation on each hypernode v ∈ V in each epoch τ of training until convergence.

Connection to total variation on hypergraphs: Our 1-HyperGCN model can be seen as performing
implicit regularisation based on the total variation on hypergraphs [22]. In that prior work, explicit
regularisation and only the hypergraph structure is used for hypernode classification in the SSL
setting. HyperGCN, on the other hand, can use both the hypergraph structure and also exploit any
available features on the hypernodes, e.g., text attributes for documents.

4.3 HyperGCN: Enhancing 1-HyperGCN with mediators

One peculiar aspect of the hypergraph Laplacian discussed is that each hyperedge e is represented
by a single pairwise simple edge {ie, je} (with this simple edge potentially changing from epoch to
epoch). This hypergraph Laplacian ignores the hypernodes in Ke := {k ∈ e : k 6= ie, k 6= je} in
the given epoch. Recently, it has been shown that a generalised hypergraph Laplacian in which the
hypernodes in Ke act as “mediators" [7] satisfies all the properties satisfied by the above Laplacian
given by [8]. The two Laplacians are pictorially compared in Figure 2. Note that if the hyperedge
is of size 2, we connect ie and je with an edge. We also run a GCN on the simple graph associated
with the hypergraph Laplacian with mediators [7] (right in Figure 2). It has been suggested that the

5

Table 3: Real-world hypergraph datasets used in our work. Distribution of hyperedge sizes is not
symmetric either side of the mean and has a strong positive skewness.

DBLP Pubmed Cora Cora Citeseer
(co-authorship) (co-citation) (co-authorship) (co-citation) (co-citation)

hypernodes, |V | 43413 19717 2708 2708 3312
hyperedges, |E| 22535 7963 1072 1579 1079
avg. hyperedge size 4.7± 6.1 4.3± 5.7 4.2± 4.1 3.0± 1.1 3.2± 2.0
features, d 1425 500 1433 1433 3703
classes, q 6 3 7 7 6
label rate, |VL|/|V | 0.040 0.008 0.052 0.052 0.042

weights on the edges for each hyperedge in the hypergraph Laplacian (with mediators) sum to 1 [7].
We chose each weight to be 1

2|e|−3 as there are 2|e| − 3 edges for a hyperedge e.

4.4 FastHyperGCN

We use just the initial features X (without the weights) to construct the hypergraph Laplacian matrix
(with mediators) and we call this method FastHyperGCN. Because the matrix is computed only once
before training (and not in each epoch), the training time of FastHyperGCN is much less than that of
other methods. Please see the supplementrary for all the algorithms.

5 Experiments for semi-supervised learning

We conducted experiments not only on real-world datasets but also on categorical data (results in
supplementary) which are a standard practice in hypergraph-based learning [52, 22, 49, 30, 29, 27].

5.1 Baselines

We compared HyperGCN, 1-HyperGCN and FastHyperGCN against the following baselines:

• Hypergraph neural networks (HGNN) [17] uses the clique expansion [52, 1] to approxi-
mate the hypergraph. Each hyperedge of size s is approximated by an s-clique.

• Multi-layer perceptron (MLP) treats each instance (hypernode) as an independent and
identically distributed (i.i.d) instance. In other words, A = I in equation 1. We note that
this baseline does not use the hypergraph structure to make predictions.

• Multi-layer perceptron + explicit hypergraph Laplacian regularisation (MLP + HLR):
regularises the MLP by training it with the loss given by L = L0 + λLreg and uses the
hypergraph Laplacian with mediators for explicit Laplacian regularisation Lreg. We used
10% of the test set used for all the above models for this baseline to get an optimal λ.

• Confidence Interval-based method (CI) [49] uses a subgradient-based method [49]. We
note that this method has consistently been shown to be superior to the primal dual hybrid
gradient (PDHG) of [22] and also [52]. Hence, we did not use these other previous methods
as baselines, and directly compared HyperGCN against CI.

The task for each dataset is to predict the topic to which a document belongs (multi-class classification).
Statistics are summarised in Table 3. For more details about datasets, please refer to the supplementary.
We trained all methods for 200 epochs and used the same hyperparameters of a prior work [25]. We
report the mean test error and standard deviation over 100 different train-test splits. We sampled sets
of same sizes of labelled hypernodes from each class to have a balanced train split.

6 Analysis of results

The results on real-world datasets are shown in Table 4. Firstly we note that HyperGCN is superior
to 1-HyperGCN. This is expected as all the vertices in a hyperedge participate in the hypergraph
Laplacian in HyperGCN while only two in 1-HyperGCN. Interestingly, we note that FastHyperGCN
is superior to 1-HyperGCN. This, we believe is because of the large hyperedges (size more than 4)

6

Table 4: Results of SSL experiments. We report mean test error ± standard deviation (lower is better)
over 100 train-test splits. Please refer to section 5 for details.

Data Method DBLP Pubmed Cora Cora Citeseer
co-authorship co-citation co-authorship co-citation co-citation

H CI 54.81± 0.9 52.96± 0.8 55.45± 0.6 64.40± 0.8 70.37± 0.3
X MLP 37.77± 2.0 30.70± 1.6 41.25± 1.9 42.14± 1.8 41.12± 1.7

H,X MLP + HLR 30.42± 2.1 30.18± 1.5 34.87± 1.8 36.98± 1.8 37.75± 1.6
H,X HGNN 25.65± 2.1 29.41± 1.5 31.90± 1.9 32.41± 1.8 37.40± 1.6

H,X 1-HyperGCN 33.87± 2.4 30.08± 1.5 36.22± 2.2 34.45± 2.1 38.87± 1.9
H,X FastHyperGCN 27.34± 2.1 29.48± 1.6 32.54± 1.8 32.43± 1.8 37.42± 1.7
H,X HyperGCN 24.09± 2.0 25.56± 1.6 30.08± 1.8 32.37± 1.7 37.35± 1.6

Table 5: Results (lower is better) on sythetic data and a subset of DBLP showing that our methods
are more effective for noisy hyperedges. η is no. of hypernodes of one class divided by that of the
other in noisy hyperedges. Best result is in bold and second best is underlined. Please see Section 6.

Method η = 0.75 η = 0.70 η = 0.65 η = 0.60 η = 0.55 η = 0.50 sDBLP

HGNN 15.92± 2.4 24.89± 2.2 31.32± 1.9 39.13± 1.78 42.23± 1.9 44.25± 1.8 45.27± 2.4
FastHyperGCN 28.86± 2.6 31.56± 2.7 33.78± 2.1 33.89± 2.0 34.56± 2.2 35.65± 2.1 41.79± 2.8
HyperGCN 22.44± 2.0 29.33± 2.2 33.41± 1.9 33.67± 1.9 35.05± 2.0 37.89± 1.9 41.64± 2.6

present in all the datasets. FastHyperGCN uses all the mediators while 1-HyperGCN uses only two
vertices. We now attempt to explain them.

Proposition 1: Given a hypergraph H = (V,E) with E ⊆ 2V − ∪v∈V {v} and signals on the

vertices S : V → Rd, let, for each hyperedge e ∈ E, (ie, je) := argmaxi,j∈e ||Si − Sj ||2 and

Ke := {v ∈ e : v 6= ie, v 6= je}. Define

• Ec :=
⋃

e∈E

{

{u, v} : u ∈ e, v ∈ e, u 6= v
}

• wc

(

{u, v}
)

:=
∑

e∈E

✶{u,v}∈Ec
· ✶u∈e · ✶v∈e

(

2
|e|·(|e|−1)

)

,

• Em(S) :=
⋃

e∈E

{ie, je}
⋃ ⋃

e∈E,|e|≥3

{

{u, v} : u ∈ {ie, je}, v ∈ Ke

}

}

• wm

(

S, {u, v}
)

:=
∑

e∈E

✶{u,v}∈Em(S) · ✶u∈e · ✶v∈e

(

1
2|e|−3

)

,

so that Gc = (V,Ec, wc) and Gm(S) = (V,Em(S), wm(S)) are the normalised clique expansion,
i.e., graph of HGNN and mediator expansion, i.e., graph of HyperGCN/FastHyperGCN respectively.
A sufficient condition for Gc = Gm(S), ∀S is max

e∈E
|e| = 3.

Proof: Observe that we consider hypergraphs in which the size of each hyperedge is at least 2. It

follows from definitions that |Ec| =
∑

e∈E
|e|C2 and |Em| =

∑

e∈E

(

2|e| − 3
)

. Clealy, a sufficient

condition is when each hyperedge is approximated by the same subgraph in both the expansions. In

other words the condition is
|e|·(|e|−1)

2 = 2|e| − 3 for each e ∈ E. Solving the resulting quadratic

eqution x2 − 5x+ 6 = 0 gives us (x− 2)(x− 3) = 0. Hence, |e| = 2 or |e| = 3 for each e ∈ E. �

Comparable performance on Cora and Citeseer co-citation
We note that HGNN is the most competitive baseline. Also S = X for FastHyperGCN and S = HΘ

7

for HyperGCN. The proposition states that the graphs of HGNN, FastHyperGCN, and HyperGCN
are the same irrespective of the signal values whenever the maximum size of a hyperedge is 3.

This explains why the three methods have comparable accuracies for Cora co-citaion and Citeseer co-
citiation hypergraphs. The mean hyperedge sizes are close to 3 (with comparitively lower deviations)
as shown in Table 3. Hence the graphs of the three methods are more or less the same.

Superior performance on Pubmed, DBLP, and Cora co-authorship
We see that HyperGCN performs statistically significantly (p-value of Welch t-test is less than 0.0001)
compared to HGNN on the other three datasets. We believe this is due to large noisy hyperedges in
real-world hypergraphs. An author can write papers from different topics in a co-authorship network
or a paper typically cites papers of different topics in co-citation networks.

Average sizes in Table 3 show the presence of large hyperedges (note the large standard deviations).
Clique expansion has edges on all pairs and hence potentially a larger number of hypernode pairs of
different labels than the mediator graph of Figure 2, thus accumulating more noise.

Preference of HyperGCN and FastHyperGCN over HGNN
To further illustrate superiority over HGNN on noisy hyperedges, we conducted experiments on
synthetic hypergraphs each consisting of 1000 hypernodes, randomly sampled 500 hyperedges, and 2
classes with 500 hypernodes in each class. For each synthetic hypergraph, 100 hyperedges (each of
size 5) were “pure", i.e., all hypernodes were from the same class while the other 400 hyperedges
(each of size 20) contained hypernodes from both classes. The ratio, η, of hypernodes of one class to
the other was varied from 0.75 (less noisy) to 0.50 (most noisy) in steps of 0.05.

Table 5 shows the results on synthetic data. We initialise features to random Gaussian of d = 256. We
report mean error and deviation over 10 different synthetically generated hypergraphs. We see that
for hyperedges with η = 0.75, 0.7 (mostly pure), HGNN is the superior model because it connects
more similar vertices. However, as η (noise) increases, our methods begin to outperform HGNN.
Interestingly, for η = 0.50, FastHyperGCN even seems to outperform HyperGCN.

Subset of DBLP: We also trained all three models on a subset of DBLP (we call it sDBLP) by
removing all hyperedges of size 2 and 3. The resulting hypergraph has around 8000 hyperedges with
an average size of 8.5± 8.8. We report mean error over 10 different train-test splits in Table 5.

Conclusion: From the above analysis, we conclude that our proposed methods (HyperGCN and
FastHyperGCN) should be preferred to HGNN for hypergraphs with large noisy hyperedges. This is
also the case on experiments in combinatorial optimisation (Table 6) which we discuss next.

7 HyperGCN for combinatorial optimisation

Inspired by the recent sucesses of deep graph models as learning-based approaches for NP-hard
problems [31, 38, 26, 19], we have used HyperGCN as a learning-based approach for the densest
k-subhypergraph problem [15]. NP-hard problems on hypergraphs have recently been highlighted as
crucial for real-world network analysis [2, 36]. Our problem is, given a hypergraph (V,E), to find a
subset W ⊆ V of k hypernodes so as to maximise the number of hyperedges contained in V , i.e., we
wish to maximise the density given by |e ∈ E : e ⊆ W |.

A greedy heuristic for the problem is to select the k hypernodes of the maximum degree. We call
this “MaxDegree". Another greedy heuristic is to iteratively remove all hyperedges from the current
(residual) hypergraph consisting of a hypernode of the minimum degree. We repeat the procedure n−k
times and consider the density of the remaining k hypernodes. We call this “RemoveMinDegree".

Experiments: Table 6 shows the results. We trained all the learning-based models with a synthetically
generated dataset. More details on the approach and the synthetic data are in the supplementary. As
seen in Table 6, our proposed HyperGCN outperforms all the other approaches except for the pubmed
dataset which contains a small number of vertices with large degrees and a large number of vertices
with small degrees. The RemoveMinDegree baseline is able to recover all the hyperedges here.

Visualisation: Figure 3 shows the visualisations given by HGNN and HyperGCN on the Cora
co-authorship clique-expanded hypergraph. We used Gephi’s Force Atlas to space out the vertices.
In general, a cluster of nearby vertices has multiple hyperedges connecting them. Clusters of only
green vertices are ideal, this means the algorithm has likely included many hyperedges induced by
the clusters. The figure of HyperGCN has more dense green clusters than that of HGNN.

8

Table 6: Results on the densest k-subhypergraph problem. We report density (higher is better) of the

set of vertices obtained by each of the proposed approaches for k = 3|V |
4 . See section 7 for details.

Dataset→ Synthetic DBLP Pubmed Cora Cora Citeseer
Approach↓ test set co-authorship co-citation co-authorship co-citation co-citation

MaxDegree 174± 50 4840 1306 194 544 507
RemoveMinDegree 147± 48 7714 7963 450 1369 843
MLP 174± 56 5580 1206 238 550 534

MLP + HLR 231± 46 5821 3462 297 952 764
HGNN 337± 49 6274 7865 437 1408 969

1-HyperGCN 207± 52 5624 1761 251 563 509
FastHyperGCN 352± 45 7342 7893 452 1419 969

HyperGCN 359± 49 7720 7928 504 1431 971

hyperedges, |E| 500 22535 7963 1072 1579 1079

(a) HGNN (b) HyperGCN

Figure 3: Green / pink hypernodes denote those the algorithm labels as positive / negative respectively.

8 Comparison of training times of FastHyperGCN and HGNN
We compared the average training times in Table 1. Both were run on a GeForce GTX 1080 Ti
GPU machine. FastHyperGCN is faster because it uses a linear number of edges for each hyperedge
while HGNN uses quadratic. It is also superior in terms of performance on hypergraphs with large
noisy hyperedges (Table 5) and higly competitive on real-world data (Tables 4 and 6). Please see
supplementary for the algorithms and time complexities of all the proposed methods and HGNN.

9 Conclusion

We have proposed HyperGCN, a new method of training GCN on hypergraph using tools from
spectral theory of hypergraphs. We have shown HyperGCN’s effectiveness in SSL and combinatorial
optimisation. Approaches that assign importance to nodes [46, 35, 45] have improved results on SSL.
HyperGCN may be augmented with such approaches for even more improved performance. One
of the limitations of our approach is that the quality of the graph approximation obtained is highly
dependent on the weight initialisation. We address this issue as part of future work.

10 Acknowledgement

Anand Louis was supported in part by SERB Award ECR/2017/003296 and a Pratiksha Trust Young
Investigator Award. We acknowledge the support of Google India and NeurIPS in the form of an
International Travel Grant, which enabled Naganand Yadati to attend the conference.

References

[1] Sameer Agarwal, Kristin Branson, and Serge Belongie. Higher order learning with graphs. In
International Conference on Machine Learning (ICML), pages 17–24, 2006. 2 and 6.

[2] Ilya Amburg, Jon Kleinberg, and Austin R. Benson. Planted hitting set recovery in hypergraphs.
CoRR, arXiv:1905.05839, 2019. 2 and 8.

9

[3] James Atwood and Don Towsley. Diffusion-convolutional neural networks. In Neural Informa-
tion Processing Systems (NIPS), pages 1993–2001. Curran Associates, Inc., 2016. 1.

[4] Peter W. Battaglia, Jessica Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinícius Flo-
res Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan
Faulkner, Çaglar Gülçehre, Francis Song, Andrew Ballard, Justin Gilmer, George Dahl, Ashish
Vaswani, Kelsey Allen, Charles Nash, Victoria Langston, Chris Dyer, Nicolas Heess, Daan
Wierstra, Pushmeet Kohli, Matthew Botvinick, Oriol Vinyals, Yujia Li, and Razvan Pascanu.
Relational inductive biases, deep learning, and graph networks. arXiv:1806.01261, 2018. 2.

[5] Michael Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. Geo-
metric deep learning: Beyond euclidean data. IEEE Signal Process., 2017. 2 and 3.

[6] Samuel R. Bulò and Marcello Pelillo. A game-theoretic approach to hypergraph clustering.
In Advances in Neural Information Processing Systems (NIPS) 22, pages 1571–1579. Curran
Associates, Inc., 2009. 2.

[7] T.-H. Hubert Chan and Zhibin Liang. Generalizing the hypergraph laplacian via a diffusion
process with mediators. In Computing and Combinatorics - 24th International Conference,
(COCOON), pages 441–453, 2018. 3, 5, and 6.

[8] T.-H. Hubert Chan, Anand Louis, Zhihao Gavin Tang, and Chenzi Zhang. Spectral properties of
hypergraph laplacian and approximation algorithms. J. ACM, 65(3):15:1–15:48, 2018. 2, 3, 4, and 5.

[9] T.-H. Hubert Chan, Zhihao Gavin Tang, Xiaowei Wu, and Chenzi Zhang. Diffusion operator
and spectral analysis for directed hypergraph laplacian. Theor. Comput. Sci., 2019. 3.

[10] Olivier Chapelle, Bernhard Scholkopf, and Alexander Zien. Semi-Supervised Learning. The
MIT Press, 2010. 1 and 3.

[11] Olivier Chapelle, Jason Weston, and Bernhard Schölkopf. Cluster kernels for semi-supervised
learning. In Neural Information Processing Systems (NIPS), pages 601–608. MIT, 2003. 1.

[12] Zhao-Min Chen, Xiu-Shen Wei, Peng Wang, and Yanwen Guo. Multi-label image recognition
with graph convolutional networks. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2019. 2.

[13] I (Eli) Chien, Huozhi Zhou, and Pan Li. hs2: Active learning over hypergraphs with pointwise
and pairwise queries. In International Conference on Artificial Intelligence and Statistics
(AISTATS), pages 2466–2475, 2019. 2.

[14] Uthsav Chitra and Benjamin J Raphael. Random walks on hypergraphs with edge-dependent
vertex weights. In Proceedings of the 36th International Conference on Machine Learning
(ICML), 2019. 2.

[15] Eden Chlamtác, Michael Dinitz, Christian Konrad, Guy Kortsarz, and George Rabanca. The
densest k-subhypergraph problem. SIAM J. Discrete Math., pages 1458–1477, 2018. 8.

[16] Fuli Feng, Xiangnan He, Yiqun Liu, Liqiang Nie, and Tat-Seng Chua. Learning on partial-
order hypergraphs. In Proceedings of the 2018 World Wide Web Conference (WWW), pages
1523–1532, 2018. 2.

[17] Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji, and Yue Gao. Hypergraph neural
networks. In Proceedings of the Thirty-Third Conference on Association for the Advancement
of Artificial Intelligence (AAAI), 2019. 1, 2, 5, and 6.

[18] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl.
Neural message passing for quantum chemistry. In Proceedings of the 34th International
Conference on Machine Learning (ICML), pages 1263–1272, 2017. 5.

[19] Yu Gong, Yu Zhu, Lu Duan, Qingwen Liu, Ziyu Guan, Fei Sun, Wenwu Ou, and Kenny Q. Zhu.
Exact-k recommendation via maximal clique optimization. In KDD, 2019. 2, 3, and 8.

[20] William L. Hamilton, Rex Ying, and Jure Leskovec. Representation learning on graphs: Methods
and applications. IEEE Data Eng. Bull., 40(3):52–74, 2017. 2.

10

[21] David K. Hammond, Pierre Vandergheynst, and Rémi Gribonval. Wavelets on graphs via
spectral graph theory. Applied and Computational Harmonic Analysis, 2011. 3.

[22] Matthias Hein, Simon Setzer, Leonardo Jost, and Syama Sundar Rangapuram. The total
variation on hypergraphs - learning on hypergraphs revisited. In Advances in Neural Information
Processing Systems (NIPS) 26, pages 2427–2435. Curran Associates, Inc., 2013. 1, 2, 3, 5, and 6.

[23] Jianwen Jiang, Yuxuan Wei, Yifan Feng, Jingxuan Cao, and Yue Gao. Dynamic hypergraph
neural networks. In Proceedings of the Twenty-Eighth International Joint Conference on
Artificial Intelligence (IJCAI), pages 2635–2641, 2019. 2.

[24] Taisong Jin, Liujuan Cao, Baochang Zhang, Xiaoshuai Sun, Cheng Deng, and Rongrong Ji.
Hypergraph induced convolutional manifold networks. In Proceedings of the Twenty-Eighth
International Joint Conference on Artificial Intelligence (IJCAI), pages 2670–2676, 2019. 2.

[25] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations (ICLR), 2017. 1, 2, 3, and 6.

[26] Henrique Lemos, Marcelo Prates, Pedro Avelar, and Luis Lamb. Graph colouring meets deep
learning: Effective graph neural network models for combinatorial problems. In Proceedings of
the 28th International Joint Conference on Artificial Intelligence, (IJCAI), 2019. 2, 3, and 8.

[27] Pan Li, Niao He, and Olgica Milenkovic. Quadratic decomposable submodular function
minimization. In Advances in Neural Information Processing Systems (NeurIPS) 31, pages
1054–1064. Curran Associates, Inc., 2018. 3 and 6.

[28] Pan Li and Olgica Milenkovic. Inhomogeneous hypergraph clustering with applications. In
Advances in Neural Information Processing Systems (NIPS) 30, pages 2308–2318. Curran
Associates, Inc., 2017. 2.

[29] Pan Li and Olgica Milenkovic. Revisiting decomposable submodular function minimization
with incidence relations. In Advances in Neural Information Processing Systems (NeurIPS) 31,
pages 2237–2247. Curran Associates, Inc., 2018. 3 and 6.

[30] Pan Li and Olgica Milenkovic. Submodular hypergraphs: p-laplacians, Cheeger inequalities and
spectral clustering. In Proceedings of the 35th International Conference on Machine Learning
(ICML), pages 3014–3023, 2018. 3 and 6.

[31] Zhuwen Li, Qifeng Chen, and Vladlen Koltun. Combinatorial optimization with graph convolu-
tional networks and guided tree search. In Advances in Neural Information Processing Systems
(NIPS) 31, pages 537–546. Curran Associates, Inc., 2018. 2, 3, and 8.

[32] Anand Louis. Hypergraph markov operators, eigenvalues and approximation algorithms. In
Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, (STOC),
pages 713–722, 2015. 2, 3, and 4.

[33] Stphane Mallat. A Wavelet Tour of Signal Processing. Academic Press, 1999. 3.

[34] Diego Marcheggiani and Ivan Titov. Encoding sentences with graph convolutional networks
for semantic role labeling. In Proceedings of the 2017 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 1506–1515, 2017. 2.

[35] Federico Monti, Oleksandr Shchur, Aleksandar Bojchevski, Or Litany, Stephan Günnemann,
and Michael Bronstein. Dual-primal graph convolutional networks. abs/1806.00770, 2018. 9.

[36] Hung Nguyen, Phuc Thai, My Thai, Tam Vu, and Thang Dinh. Approximate k-cover in
hypergraphs: Efficient algorithms, and applications. CoRR, arXiv:1901.07928, 2019. 2 and 8.

[37] Will Norcliffe-Brown, Efstathios Vafeias, and Sarah Parisot. Learning conditioned graph
structures for interpretable visual question answering. In Advances in Neural Information
Processing Systems (NeurIPS) 31, pages 8344–8353. Curran Associates, Inc., 2018. 2.

11

[38] Marcelo O. R. Prates, Pedro H. C. Avelar, Henrique Lemos, Luis Lamb, and Moshe Vardi.
Learning to solve np-complete problems - a graph neural network for the decision tsp. In
Proceedings of the Thirty-Third Conference on Association for the Advancement of Artificial
Intelligence (AAAI), 2019. 2, 3, and 8.

[39] Sai Nageswar Satchidanand, Harini Ananthapadmanaban, and Balaraman Ravindran. Extended
discriminative random walk: A hypergraph approach to multi-view multi-relational transductive
learning. In IJCAI, pages 3791–3797, 2015. 2.

[40] Amnon Shashua, Ron Zass, and Tamir Hazan. Multi-way clustering using super-symmetric
non-negative tensor factorization. In Proceedings of the 9th European Conference on Computer
Vision (ECCV), pages 595–608, 2006. 2.

[41] David I. Shuman, Sunil K. Narang, Pascal Frossard, Antonio Ortega, and Pierre Vandergheynst.
The emerging field of signal processing on graphs: Extending high-dimensional data analysis to
networks and other irregular domains. IEEE Signal Process. Mag., 30(3), 2013. 3.

[42] Amarnag Subramanya and Partha Pratim Talukdar. Graph-Based Semi-Supervised Learning.
Morgan & Claypool Publishers, 2014. 1 and 3.

[43] Ke Tu, Peng Cui, Xiao Wang, Fei Wang, and Wenwu Zhu. Structural deep embedding for hyper-
networks. In Proceedings of the Thirty-Second Conference on Association for the Advancement
of Artificial Intelligence (AAAI), 2018. 2.

[44] Shikhar Vashishth, Manik Bhandari, Prateek Yadav, Piyush Rai, Chiranjib Bhattacharyya, and
Partha Talukdar. Incorporating syntactic and semantic information in word embeddings using
graph convolutional networks. In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics (ACL), 2019. 2.

[45] Shikhar Vashishth, Prateek Yadav, Manik Bhandari, and Partha Talukdar. Confidence-based
graph convolutional networks for semi-supervised learning. In International Conference on
Artificial Intelligence and Statistics (AISTATS), 2019. 9.

[46] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In ICLR, 2018. 9.

[47] Chris Wendler, Dan Alistarh, and Markus Püschel. Powerset convolutional neural networks.
In Advances in Neural Information Processing Systems (NeurIPS) 32. Curran Associates, Inc.,
2019. 2.

[48] Jason Weston, Frédéric Ratle, and Ronan Collobert. Deep learning via semi-supervised embed-
ding. In Proceedings of the 25th International Conference on Machine Learning (ICML), pages
1168–1175, 2008. 1.

[49] Chenzi Zhang, Shuguang Hu, Zhihao Gavin Tang, and T-H. Hubert Chan. Re-revisiting
learning on hypergraphs: Confidence interval and subgradient method. In Proceedings of 34th
International Conference on Machine Learning (ICML), pages 4026–4034, 2017. 1, 3, 4, and 6.

[50] Muhan Zhang, Zhicheng Cui, Shali Jiang, and Yixin Chen. Beyond link prediction: Predicting
hyperlinks in adjacency space. In Proceedings of the Thirty-Second Conference on Association
for the Advancement of Artificial Intelligence (AAAI), 2018. 2.

[51] Dengyong Zhou, Olivier Bousquet, Thomas Navin Lal, Jason Weston, and Bernhard Schölkopf.
Learning with local and global consistency. In NIPS, 2003. 1.

[52] Denny Zhou, Jiayuan Huang, and Bernhard Schölkopf. Learning with hypergraphs: Clustering,
classification, and embedding. In Advances in Neural Information Processing Systems (NIPS)
19, pages 1601–1608. MIT Press, 2007. 1, 2, and 6.

[53] Xiaojin Zhu, Zoubin Ghahramani, and John Lafferty. Semi-supervised learning using gaussian
fields and harmonic functions. In ICML, 2003. 1.

[54] Xiaojin Zhu, Andrew B. Goldberg, Ronald Brachman, and Thomas Dietterich. Introduction to
Semi-Supervised Learning. Morgan and Claypool Publishers, 2009. 1 and 3.

12

