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Section 1. Introduction
In the world of standard functions, the hyper-
geometric functions take a prominent position in
mathematics, both pure and applied, and in many
branches of science. They were introduced by Euler
as power series expansions of the form

1+ a · b
c · 1

z + a(a+ 1)b(b + 1)
c(c + 1) · 1 · 2

z2 + · · · ,

where a, b, c are rational parameters. By special-
ization of the parameters, Euler obtained the
various classical functions that were around at
that time. For example, taking b = c = 1 gives us
Newton’s binomial series for (1 − z)−a and tak-
ing a = b = 1/2, c = 3/2 gives us arcsin(

√
z)/
√
z.

Finally, taking all parameters equal to 1 recov-
ers the ordinary geometric series, which more
or less explains the name hypergeometric series
that was given by Euler to his series. Hypergeo-
metric functions also include functions that were
entirely new in Euler’s time. For example, taking
a = b = 1/2, c = 1, one obtains the function

2
π

∫ 1

0

dx√
(1− x2)(1− zx2)

,

a so-called elliptic integral of the first kind.
It is a period of the family of elliptic curves
y2 = (1− x2)(1− zx2) parameterized by z and is
one of the most often quoted functions in algebraic
geometry. Euler also found the hypergeometric
equation, which is the second-order linear differ-
ential equation that is satisfied by hypergeometric
series. It reads

z(z − 1)f ′′ + ((a+ b + 1)z − c)f ′ + abf = 0.
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This is a differential equation that occurs in a mul-
titude of branches of mathematics, mathematical
physics, and applied sciences.

Years later, Gauss studied hypergeometric func-
tions not only as values of Euler’s hypergeometric
series but also as solutions of the hypergeomet-
ric equation throughout the complex plane, an
approach that was entirely new at that time. In
this way Gauss very soon became aware of the
problem of their multivaluedness, known nowa-
days as the monodromy problem. He published
only part of his work in 1812 [11, p. 123]. A sequel
that describes the behavior in the complex plane
was found in Gauss’s Nachlass; see [11, p. 207].
Because of Gauss’s work, the functions given by
Euler’s hypergeometric series are now often called
Gauss hypergeometric functions.

The next major contribution came from Rie-
mann. In the article [19] from 1857 he gave a
complete description of the monodromy group for
Gauss’s hypergeometric function. The monodromy
group of a linear differential equation in the
complex plane characterizes the behavior of the
analytic continuation of its solutions. In this way
hypergeometric functions became an important
testing ground for Riemann’s fundamentally new
ideas on analytic continuation. Riemann’s work
was taken up by H. A. Schwarz, Felix Klein, and
others, and hypergeometric functions made their
appearance in the early days of algebraic geometry
and modular forms. In his 1893 lectures, Klein
[17] gave an extensive exposition of Riemann’s
ideas and their consequences. For a more concise
overview see [2].

Simultaneously, by the end of the nineteenth cen-
tury, people had introduced many generalizations
of Gauss hypergeometric functions by increasing
the number of parameters or the number of vari-
ables or both. With a few exceptions, the ensuing
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study of them was for a large part of a descriptive
nature, meaning: for each new class the system of
corresponding (partial) differential equations had
to be determined, a basis of solutions around vari-
ous special points was to be found, together with
their domain of convergence. In this process, the
conceptual understanding of these generalizations
lagged far behind the well-developed ideas around
Gauss’s hypergeometric function. Thus a large
part of the subject of generalized hypergeometric
functions became relegated to the domain of spe-
cial functions, which to many people means many
formulas but no mathematical depth. Fortunately,
developments by the end of the twentieth century
turned this image around somewhat, and it is
my hope that in this century the turnaround will
be complete. It is the purpose of this article to
introduce generalized hypergeometric functions in
one and several variables and hint at some simple,
almost combinatorial, structures that underlie
them. We do this by looking at hypergeometric
functions that are at the same time algebraic. The
structure of this article is as follows:

- Section 2: A number of random-looking
but relevant examples;

- Sections 3, 4, 5: Gauss hypergeometric
functions and examples of their general-
izations;

- Section 6: A-hypergeometric functions, a
unified way of looking at all the previous
examples;

- Section 7: An example of a result that holds
for general A-hypergeometric systems;

- Section 8: A short discussion on mon-
odromy.

Section 2. Some Peculiar Examples
The solution of the general fifth-degree equation
has a notorious history, and it is known that
it cannot be achieved by the repeated use of
taking radicals. However, it does not mean that the
equation is hard to solve. It is well known that, after
some transformations involving radicals, the fifth-
degree equation can be reduced to a three-term
equation of the form

zx5 − x+ 1 = 0,

where z is a parameter and x the unknown. Such
forms are called Bring-Jerrard forms. An exercise
in Lagrange inversion shows that a solution is
given by the power series

∑

n≥0

(
5n
n

)
zn

4n+ 1
.

Lagrange inversion
Let f (x) be a power series in x with f (0) = 0,
f ′(0) 6= 0. Then Lagrange inversion tells us
that a solution to f (x) = z in x is given by the
power series

x =
∑

k≥1

zk

k!

(
d
dx

)k−1
(
x
f (x)

)k∣∣∣∣∣∣
x=0

in powers of z. Change the fifth-degree equa-
tion to z(x+1)5−x = 0 and apply the inversion
with f (x) = x/(x+ 1)5 to obtain our solution
of the fifth-degree equation.

Another exercise with a surprising answer
is when we take f (x) = xe−x.

This turns out to be a hypergeometric function.
To see this, let us introduce the symbol (x)n =
x(x+ 1) · · · (x+n− 1), the so-called Pochhammer
symbol or shifted factorial. In particular, (1)n = n!.
Note that we can rewrite the coefficients of our
fifth-degree solution as
(

5n
n

)
1

4n+ 1
= 55n

44n ×
(1/5)n(2/5)n(3/5)n(4/5)n
(1/2)n(3/4)n(5/4)nn!

.

Denote

φ(z) =
∑

n≥0

(1/5)n(2/5)n(3/5)n(4/5)n
(1/2)n(3/4)n(5/4)nn!

zn.

Then the solution to our fifth-degree equation can
be written as φ(55z/44). The function φ is an
example of a generalized hypergeometric function.

Our second example comes from a beautiful
observation by Fernando Rodriguez-Villegas [20].
In his work on estimates for the prime counting
function π(x), Chebyshev used arguments that
amount to studying prime factors of the numbers

un = (30n)!n!
(15n)!(10n)!(6n)!

.

Rodriguez-Villegas observed that the numbers
un are integers and that the generating function
u(z) = ∑

n≥0 unzn is an algebraic function in
z. This means that u(z) satisfies a nontrivial
polynomial equation with polynomials in z as
coefficients. In this example, the minimal degree of
the equation turns out to be 483840. The proof of
this observation is to rewrite u(z) as ψ(2143955z)
(see Figure 1) and then use a result of Heckman and
the author in [6] on generalized hypergeometric
functions, which implies that ψ(z) is an algebraic
function.

A third example involves two-variable functions.
Consider the polynomial

∆ = 1+ 4x+ 4y + 18xy − 27x2y2

and the algebraic function g(x, y) defined by the
cubic equation

g3 − g2 − (3xy − x− y)g − xy(x+ y + 1) = 0

January 2014 Notices of the AMS 49



ψ(z) =
∑

n≥0

(1/30)n(7/30)n(11/30)n(13/30)n(17/30)n(19/30)n(23/30)n(29/30)n
(1/5)n(1/3)n(2/5)n(1/2)n(3/5)n(2/3)n(4/5)nn!

zn,

Figure 1.

and g(0,0) = 1. Then
√
(g − 3xy)/∆ =

∑

m,n≥0

(1/2)2m−n(1/2)2n−m
m!n!

xmyn.

The two-variable series is a so-called Horn series
of type G3. Horn series have the property that
the Pochhammer symbols that occur may have
negative indices. In that case one must use the
more general definition (a)k = Γ(a+ k)/Γ(a). For
negative values of k, this amounts to (a)k =
1/(a− 1)(a− 2) · · · (a− |k|).

These three examples may have reaffirmed your
impression that we are working with special func-
tions indeed. However, the goal of this article is
to explain Theorem 5, which describes a general
combinatorial criterion to detect instances such as
the ones above. In fact, the two-variable example
was found that way. I believe that this is only
part of a much wider circle of ideas that underlie
the domain of hypergeometric functions in one
and more variables. In the next section I will
be more systematic and introduce hypergeomet-
ric functions, together with a number of their
properties.

Section 3. Gauss Hypergeometric Function
Choose three parameters a, b, c, usually rational
numbers, and consider the power series

2F1(a, b, c|z) =
∑

n≥0

(a)n(b)n
(c)nn!

zn

in the complex variable z. It is well defined as long
as c is not an integer ≤ 0. This is Euler’s series
from the introduction of this article. It is a simple
exercise to show that its radius of convergence is
equal to 1 whenever a, b 6∈ Z≤0. In the case when
a or b is in Z≤0, the infinite series becomes a
polynomial.

Let us abbreviate the notation 2F1(a, b, c|z) by
f (z) for the moment, and let θ be the differential
operator z ddz . A simple calculation using the
factorial structure of the coefficients of f (z) shows
that

z(θ + a)(θ + b)f = θ(θ + c − 1)f .

After replacing θ by z ddz again and an expansion,
we find the second-order differential equation

z(z − 1)f ′′ + ((a+ b + 1)z − c)f ′ + abf = 0,

known as the hypergeometric differential equation.
A second solution around z = 0, when c 6∈ Z, is
given by the series expansion

z1−c
2F1(a+ 1− c, b + 1− c,2− c|z).

Together with the above series they form a basis of
the vector space of solutions of the hypergeometric
equation around the origin of the complex plane.

Beginning with Gauss, mathematicians such as
Kummer and Goursat discovered many relations
that exist between hypergeometric functions with
their argument z replaced by certain rational
functions in z. An example is

2F1(a, b, a+ b + 1/2|4z − 4z2)
= 2F1(2a,2b, a+ b + 1/2|z),

and for an account I refer to my overview [2]. It was
through Riemann’s work that many such identities
found a conceptual basis with proofs that are only
a few lines long.

As an application of Riemann’s work on analytic
continuation in geometrical form, H. A. Schwarz
in 1873 gave a classification of all hypergeometric
functions which are at the same time algebraic; see
[21]. This resulted in the famous Schwarz list. For
example, it turns out that 2F1(19/60,49/60,4/5|z)
is an algebraic function of degree 720. Its Galois
group—and at the same time monodromy group—
G has the property that G modulo its center is
the alternating group A5. For the full list I refer to
Schwarz’s original paper and, for a more recent
account, [7] or [2]. In these lists one has to realize
that only irreducible hypergeometric equations
are considered, i.e., equations whose differential
operator does not factor in the ring C(z)[d/dz] of
differential operators. Here is a simple criterion.

Theorem 1. The hypergeometric equation is irre-
ducible if and only if the sets {a, b} and {0, c} are
disjoint when considered modulo Z.

From now on we will be interested only in
irreducible (systems of) differential equations.

Section 4. Higher-Order Hypergeometric
Functions
There is a generalization of the hypergeometric
equation to higher-order equations for which one
could also compute the analytic continuation, albeit
in a preliminary way. This was realized notably
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through the work of Clausen and later in the article
[26] by J. Thomae from 1870.

Let k ∈ Z≥2 and take two sets of parameters
a = {a1, . . . , ak} and b = {b1, . . . , bk}, where we
takebk = 1 by default. The hypergeometric function
of order k is defined by

kFk−1(a,b|z) =
∑

n≥0

(a1)n · · · (ak)n
(b1)n · · · (bk−1)nn!

zn.

Sometimes it is also referred to as the Clausen-
Thomae function. Again, the radius of convergence
is 1, and it satisfies a differential equation of order
k given by

z(θ + a1) · · · (θ + ak)f
= (θ + b1 − 1) · · · (θ + bk−1 − 1)θf .

The derivation goes along in the same way as in
the Gauss case. This time it is better to leave it in
this form. Again, the equation is irreducible if and
only if the sets a and b are disjoint modulo Z.

In 1989 Heckman and I [6] succeeded in
extending Schwarz’s list of algebraic Gauss hyper-
geometric functions to the case of higher-order
hypergeometric functions. As a byproduct of [6]
there is a simple criterion to decide whether or
not a given hypergeometric function is algebraic. It
is called the interlacing criterion. We say that two
sets of k real numbers {a1, . . . , ak} and {b1, . . . , bk}
in the interval [0,1) interlac if they are disjoint
and their elements occur alternately in increasing
order. For example, the white set and black set
pictured below are interlacing.

0 1

More generally, two sets of real numbers
{a1, . . . , ak} and {b1, . . . , bk} are said to inter-
lace modulo Z if the sets {a1 −ba1c, . . . , ak −bakc}
and {b1 − bb1c, . . . , bk − bbkc} interlace on [0,1).
The interlacing criterion reads as follows.

Theorem 2 (Beukers, Heckman (1989)). Let
a1, . . . , ak, b1, . . . , bk ∈ Q be the parameters of
an irreducible generalized equation (we have
bk = 1 by default). Let D be their common denom-
inator. Then the solutions of the hypergeometric
equation are algebraic functions in z if and only if
the sets

{ra1, . . . , rak} and {rb1, . . . , rbk}
interlace modulo Z for all integers r with gcd(r ,D) =
1 and 1 ≤ r < D.

As an application recall the function ψ(z) from
the introduction. We recognize it as a generalized
hypergeometric function with parameters

a=(1/30,7/30,11/30,13/30,17/30,19/30,23/30,29/30)

and

b = (1/5,1/3,2/5,1/2,3/5,2/3,4/5,1).
Notice that these two sets interlace modulo Z. The
interlacing criterion tells us that we should also
look at the sets ra and rb for all integers r relatively
prime to 120. However, the numerators of the
elements of a form a complete set of numbers
between 1 and 30 that are relatively prime to 30.
Consequently, ra ≡ a(mod Z) for all r relatively
prime to 30. Similarly, rb ≡ b(mod Z) for all r
relatively prime to 30. Therefore, interlacing ra and
rb modulo Z is equivalent to interlacing of a and b,
which we have already verified. The conclusion is
that ψ(z) is an algebraic function. Unfortunately
the interlacing criterion gives no information about
the degree of this function over the field C(z). For
this we must invoke the other parts of [6], which
tell us that the Galois group in this case is W(E8),
the Weyl group of the root system E8. This group
has order 696729600, and a careful analysis shows
that the degree of ψ(z) is 483840, a divisor of
|W(E8)|.

Section 5. Several Variables
By the end of the nineteenth century several
authors had introduced several-variable versions
of hypergeometric functions. The best known
are the Appell functions F1, F2, F3, F4. Their basic
properties are described at length in the book [1]
by Appell and Kampé de Fériet from 1926. We will
not go into these functions extensively, but recall
the definition of Appell’s F1:

F1(a, b, b′, c|x, y) =
∑

m,n≥0

(a)m+n(b)m(b′)n
(c)m+nm!n!

xmyn.

Of course a, b, b′, c are parameters. The other
Appell functions are variations on this type of
series. They all satisfy systems of partial differential
equations of order 2. Since these equations look
rather unappealing, I will not quote them here.
Another example is the Horn G3 function, alluded
to in the beginning:

G3(a, b|x, y) =
∑

m,n≥0

(a)2m−n(b)2n−m
m!n!

xmyn.

HornG3 is one among a list of fourteen Horn series,
which includes Appell’s series. They arise from
the philosophy that a two-variable power series∑
m,n≥0A(m,n)xmyn can be considered hypergeo-

metric if the ratios P(m,n) = A(m,n)/A(m,n−1)
and Q(m,n) = A(m,n)/A(m − 1, n) are ratio-
nal functions in m,n, together with the com-
patibility conditions P(m,n)Q(m − 1, n) = P(m,
n−1)Q(m,n). If, in addition, one assumes that the
numerator and denominator of P,Q have degree
2, one arrives at the ten Horn series and the four
Appell series. The degree 2 condition corresponds
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to the requirement that the partial differential
equations for these functions have order 2.

Of course one can increase the number of vari-
ables. We then get the so-called Lauricella functions
FA, FB , FC , FD . We give the series expansion for the
three-variable version of Lauricella FD introduced
by G. Lauricella in 1893 [18]:

FD(a, b, b′, b′′, γ|x, y, z)

=
∑

m,n,p≥0

(a)m+n+p(b)m(b′)n(b′′)p
(c)m+n+pm!n!p!

xmynzp.

It extends Appell’s F1 to three variables, and it is
probably not hard for the reader to figure out what
the n-variable version is. I mention this class in
particular, since the structure of its monodromy
group has been the subject of an extensive study
that started with E. Picard in the nineteenth century
and was completed by Deligne and Mostow around
1980; see [9]. In this paper Deligne and Mostow
study discrete and arithmetic symmetry groups
of the complex hyperbolic ball. Using Lauricella
FD functions, they discovered a number of groups
that were hitherto unknown.

Apart from increasing the number of variables,
one could also increase the order of the partial
differential equations that define these functions.
For example, in the book by Appell and Kampé
de Fériet [1, Part I, Ch. IX], we find a section
on two-variable functions that are the analogue
of the one-variable higher-order hypergeometric
functions. Then one is again obliged to study
the dimension of the solution space, systems of
differential equations, etc. This is what I refer to
as a descriptive activity, and one might wonder
where the end is.

Section 6. A-hypergeometric Functions
Fortunately there is a way to treat all previously
mentioned examples of hypergeometric functions
in a unified way. It was discovered by Gel’fand,
Kapranov, and Zelevinsky by the end of the 1980s in
a series of papers [12], [13], [14], [15] and is known
under the name of A-hypergeometric functions. In
honor of their discoverers, they are also referred to
as GKZ-hypergeometric functions. My preference
is the name A-hypergeometric function. Around
the same time, B. Dwork developed a general
theory of hypergeometric functions that has many
parallels with A-hypergeometric functions and that
culminated in his book [10]. Unfortunately, the book
is hard to read because of its cumbersome notation
and the interference of p-adic considerations in
which Dwork was mostly interested.

In what follows I give a crash course on A-
hypergeometric functions, concentrating only on
those aspects that are immediately required for
this article. Many other important issues will not

be touched upon. For a more complete account,
one might consult the overviews [25], [3], or the
book [22], which is very computationally flavored.

The A-hypergeometric approach starts with a
finite set A (hence the name) of N lattice points
a1, . . . ,aN in Zr such that the rth coordinate of
each point is 1 and the Z-span of the ai equals Zr .
The r ×N-matrix with a1, . . . ,aN as columns will
also be denoted by A. We call it the A-matrix. There
is also a vector α ∈ Qr of parameters. The data
A,α are the combinatorial data that determine a
system of hypergeometric differential equations.
We arrive at them in the following way. Let L ∈ ZN
be the lattice of relations,

(l1, . . . , lN) ∈ L ⇐⇒ l1a1 + · · · + lNaN = 0.

Its rank equals d := N − r . Choose a basis of L and
let B be the d ×N matrix with these basis vectors
as rows. We call B a B-matrix. In the literature the
transpose of B is usually introduced under the
name of Gale dual. Notice that A.Bt = O, the r × d
zero matrix. Denote the columns of B by b1, . . . ,bN .
Our differential equations and their solutions live in
a space of N complex variables v1, . . . , vN . Choose
γ = (γ1, . . . , γN) such that γ1a1 + · · · + γNaN = α
and consider the formal Laurent series

Ψ(B,γ|v) =
∑

m∈Zd

N∏

j=1

vbj ·m+γj
j

Γ(bj ·m+ γj + 1)

in the variables v1, . . . , vN . Note that, givenA and α,
it is independent of the particular choice of B, but
it does depend on the choice of γ. The system of A-
hypergeometric functions is the system of all partial
differential equations in the derivations ∂/∂vi and
coefficients in C(v1, . . . , vN) that annihilate this
formal series. There is a very standard way to write
down these operators, but I refrain from writing
them here. It turns out that we hardly need them.
What is important is that there is a freedom of
choice in the solutions γ to γ1a1+· · ·+γNaN = α
up till shifts in the vector space generated by L.
However, the system of differential equations is in
general independent of this choice. We denote the
system of A-hypergeometric equations by HA(α).

Let us see how this works in the case of the
Gauss hypergeometric function. Consider

fGauss =
∑

n≥0

Γ(n+ a)Γ(n+ b)
Γ(n+ c)Γ(n+ 1)

zn,

which equals the Gauss hypergeometric series up
to a constant factor. We use the Γ -function identity
Γ(z)Γ(1 − z) = π/ sin(πz) to rewrite this as a
series proportional to
∑

n≥0

zn

Γ(−n− a+ 1)Γ(−n− b + 1)Γ(n+ c)Γ(n+ 1)
.

This is beginning to look like our series Ψ . First
we note that we might as well sum over all n ∈ Z,
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simply because 1/Γ(n + 1) is zero whenever n is
a negative integer. As a last step, replace zn by
v−n−a1 v−n−b2 vn+c−1

3 vn4 to get

fA=
∑

n∈Z

v−n−a1 v−n−b2 vn+c−1
3 vn4

Γ(−n−a+1)Γ(−n−b+1)Γ(n+c)Γ(n+1)
,

which has the shape of Ψ defined above with
B = (−1,−1,1,1) and γ = (−a,−b, c − 1,0). The
interpretation is that fA is a series in four variables
vi whose restriction to v1 = v2 = v3 = 1, v4 = z
reproduces the Gauss hypergeometric series. Sim-
ilarly, the restriction of the A-hypergeometric
equations to this line recovers the classical hy-
pergeometric equation. One of the innovations
of this approach is that in Ψ we have freedom
of choice in the parameter γ. We can shift it
by rational multiples of (−1,−1,1,1) and still
have a formal series satisfying the same differen-
tial equations. As an exercise one can consider
γ′ = (c − a − 1, c − b − 1,0,1 − c), which equals
γ+(1−c)(−1,−1,1,1). Then write the correspond-
ing Ψ(B,γ′|v), set v1 = v2 = v3 = 1, v4 = z, and
carry out the above procedure in reverse direction.
We get the second series solution

z1−c
2F1(a− c + 1, b − c + 1,2− c|z)

of the Gauss hypergeometric equation. Similarly,
shifting γ such that the first or second component
becomes zero reproduces the two basic solutions
of the Gauss hypergeometric equation around
z = ∞.

Thus we can identify the Gauss hypergeometric
equation with an A-hypergeometric system with pa-
rametersN = 4, d = 1 and a B-matrix (−1,−1,1,1).
Clearly, r = N − d = 3, and an r × N A-matrix
which has B as a kernel can be given by

A =



1 0 0 1
0 1 0 1
1 1 1 1


 .

The columns are vectors in R3 but with the last
coordinate x3 = 1. The corresponding points,
together with their convex hull, can be pictured as

2F1

in the plane given by x3 = 1.
The same point of view works for every classical

hypergeometric series we have seen so far. As
an example take the series expansion of Appell’s
F1 given earlier. There one easily sees that d = 2

(the number of variables), N = 6 (the number of
Γ -factors), and the B-matrix is(

−1 −1 0 1 1 0
−1 0 −1 1 0 1

)
.

From r = N − d = 4 and this B-matrix one deduces
the following possible A-matrix:

A =




1 0 0 0 1 1
0 1 0 0 1 0
1 0 0 1 1 0
1 1 1 1 1 1


 .

Here is a picture of the corresponding points in
the hyperplane x4 = 1:

F1

By playing with the parameters γ in the cor-
responding formal series Ψ(B,γ|v), one easily
obtains all the local series expansions for solutions
of the Appell F1-system, which are obtained with
far more effort in the classical literature.

We now present some of the striking results
on A-hypergeometric equations. Given the set
A ⊂ Zr , we can construct its convex hull, which we
denote by Q(A). This is a polytope of dimension
r − 1 which lies in the affine hyperplane xr = 1.
We also introduce the positive cone C(A), which
is the R≥0-span of the vectors from A. We say
that the A-hypergeometric system is resonant if
α+Zr and the boundary of C(A) have a nontrivial
intersection. We say that the system is nonresonant
if the intersection is empty.

Theorem 3 (GKZ). A nonresonant A-hypergeo-
metric system is irreducible.

The converse of the statement is almost true;
see for example [24] or [4]. This irreducibility
result, together with its converse, implies all the
irreducibility statements that have been compiled
over the years for individual systems of hypergeo-
metric equations. Another striking theorem is the
following.

Theorem 4 (GKZ). Around any nonsingular point
the analytic solution space of an A-hypergeometric
system has finite dimension. Moreover, if the system
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is nonresonant, the dimension equals (r − 1)! times
the Euclidean volume of Q(A).

The normalization for the volume ofQ(A) is that
which assigns volume 1 to the simplex with vertices
0,e1, . . . ,er−1 in Rr−1 (the ei are the standard basis
vectors). The dimension of the solution space is
also called the holonomic rank of the system. The
theorem, together with the pictures above, tells us
immediately that the holonomic rank of the Gauss
hypergeometric equation is 2 and, for Appell F1, it
is 3.

Another classic result of GKZ gives a one-to-one
correspondence between local series expansions
of certain bases of solutions with the regular
triangulations of A. Since we do not need it here, I
refer instead to the overviews [25], [3].

Section 7. Algebraic Solutions
In this section we extend the interlacing cri-
terion for one-variable equations to the case of
A-hypergeometric systems. We make the additional
assumption that the sets A are assumed to be
normal. That is, C(A)∩Zr is equal to the Z≥0-span
of A. All classical hypergeometric systems satisfy
this condition. We will also assume that we are in
the nonresonant situation.

Let us now consider the set K(A,α) = C(A)∩
(α + Zr ). Recall that C(A) is the positive cone
spanned by the elements of A. We shall call a point
p in this set an apex-point if p− q does not lie in
C(A) for any other q ∈ K(A,α). Loosely speaking,
a point p is an apex point if it cannot be seen from
any other point in K(A,α) in a direction in C(A).
Below is a two-dimensional sketch. The grey area
represents the cone C(A), and the dots form the
shifted lattice α+ Z2. The two white dots are the
apex points in this example.

C(A)

It is an easy lemma to show that the number of
apex points is at most the rank of the hypergeo-
metric system. We say that the set of apex points
is maximal if their number equals the rank. We are
now in a position to state the main theorem of this
article, which we call the apex point criterion.

Theorem 5 (Beukers, 2010). Consider a nonreso-
nant A-hypergeometric system HA(α) and assume
thatA is normal. Suppose the parametersα1, . . . , αr
are rational with common denominator D. Then
the solution space of the system HA(α) contains
a nontrivial algebraic function if and only if the
apex sets of C(A)∩ (rα+ Zr ) are maximal for all
integers r with 0 < r < D and gcd(r ,D) = 1.

Because of the irreducibility of HA(α), the
occurrence of one nontrivial algebraic solution is
equivalent to all solutions being algebraic. It is
a nontrivial exercise to show directly that this
condition is equivalent to the interlacing condition
we had earlier in the one-variable case.

To illustrate the apex point criterion, we go
to the Horn G3-system, which has the advantage
that A ⊂ Z2, so we can draw pictures. Recall the
series G3(a, b|x, y). A possible set A consists of
the points (0,1), (1,1), (2,1), (3,1). Below is a
picture, together with the positive cone C(A). The
darker grey area represents the location of the
apex points.

(0,0)

(0,1) (1,1) (2,1) (3,1)

A and C(A)

The set Q(A) is the line segment between (0,1)
and (3,1). It is the union of three unit intervals,
so its volume is 3, which is the rank of the
G3-system. As a fine point, I mention that in the
classical literature the rank is 4. This is because
there is a classical spurious solution xρyσ with
ρ = −(2a + b)/3, σ = −(a + 2b)/3. However, the
system in the A-hypergeometric version of G3

contains more equations and does not allow this
solution. So we get rank 3.
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The parameters a, b are represented in this
picture by the vector (−2a − b,−a − b). Let us
first take the case where a, b are rational and
a + b is an integer. Thus the second coordinate
of (−2a− b,−a− b) is an integer. All points with
integral second coordinate not on the boundary
of C(A) and in the domain of apex points are
pictured below by the dashed line. In addition, the
white dots represent an example of a shifted lattice
(−2a− b,−a− b)+ Z2.
So one easily sees that the number of apex points
is maximal in this case. Of course, the apex points
of r(−2a− b,−a− b)+ Z2 are also on this line for
any integer r . Hence the conditions of Theorem 5
are fulfilled, and we conclude that G3(a, b|x, y) is
an algebraic function in x, y if a, b are nonintegral
rationals with a + b ∈ Z. Our initial example
a = b = 1/2 is a particular case of this.

There is another choice that satisfies the apex
point criterion. Take a = 1/2, b = 1/3 and a =
1/2, b = 2/3. The corresponding shifted lattices
are depicted by the white and grey dots.

In both cases we see that the number of apex
points is maximal, and we can conclude that
G3(1/2,1/3|x, y) and G3(1/2,2/3|x, y) are alge-
braic. Essentially, up to shifts by integers and
interchange of a, b, one can show that these are the
only possibilities for G3(a, b|x, y) to be algebraic.
An analysis such as this has been carried out by
Esther Bod in her Ph.D. thesis [7]. She extended
Schwarz’s list of algebraic hypergeometric func-
tions to all two-variable Appell and Horn functions
and the several-variable Lauricella systems. Before
her work, other authors had already made such an
extension to Appell’s functions and Lauricella FD
but with entirely different methods.

Section 8. Monodromy
I will finish this article with a few remarks on
analytic continuation and monodromy. Consider
an A-hypergeometric systemHA(α) and the vector
space of solutions around a point P ∈ CN . Take
a closed loop c beginning and ending in P and
continue the solutions analytically along c. After
returning in P , the solutions may not have returned

to their original value. Instead the solution space
underwent a linear transformation. The group
generated by these transformations is called the
monodromy group of HA(α). Of course, if all solu-
tions of the system are algebraic, the monodromy
group is finite. With a bit more effort one can show
that the converse is also true.

Unfortunately, determination of the monodromy
group for general A-hypergeometric systems is still
an open problem. In particular, Theorem 5 cannot
be proven by using monodromy calculations. Thus,
in order to prove Theorem 5, we need to resort to
other methods. Fortunately there is a key in the
form of a conjecture.

Conjecture 6 (Grothendieck). Consider a finite sys-
tem L of linear partial differential equations in the
independent variables z1, . . . , zN and with coeffi-
cients in Z[z1, . . . , zN]. Suppose that L has finite
rank R. Then the solution space of L consists of
algebraic functions if and only if, for almost all
primes p, the system L reduced modulo p hasR poly-
nomial solutions which are linearly independent
over Fp[z

p
1 , . . . , z

p
N].

Some remarks are in order. By almost all primes
we mean all primes minus a finite set of them.
The notation Fp stands for the integers modulo p,
which is a finite field. In characteristic p the partial
derivates of elements in Fp[z

p
1 , . . . , z

p
N] are zero and

hence should be considered as constants. Roughly
speaking, Grothendieck’s conjecture comes down
to saying that all solutions of a linear system of
partial differential equations are algebraic if and
only if almost every reduction mod p has a basis
consisting of polynomial solutions modulo p. It
would be great if this theorem could be proven,
but it has not—not even in the case of ordinary
(N = 1) differential equations.

However, one particular instance has been
proven. In a beautiful paper, Nick Katz [16] has
shown that the conjecture is true for systems
that are part of a Gauss-Manin system, that is, a
system of differential equations associated with
periods of a family of algebraic varieties. For
α ∈ Qr the A-hypergeometric system HA(α) can
be shown to be of the required form, and thus
Grothendieck’s conjecture is true in this case. The
proof of Theorem 5 now consists of showing
that the apex point criterion is equivalent to the
statement that the solution set of HA(α) modulo
p contains the maximal number of polynomial
solutions for almost all p.

This proof sketch may also explain why we
cannot say anything about the degrees of the
algebraic functions involved or the order of the
monodromy group. It is clear that at some point
one would like to be able to determine monodromy
for general A-hypergeometric systems. Of course,
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in many papers that deal with special instances
of several-variable hypergeometric functions, the
determination of the monodromy group does play
a crucial role. The drawback of this approach
is that, for every new set A, one must perform
a nontrivial amount of work to determine the
singular locus of the system and the fundamental
group of its complement and then find some way to
determine analytic continuation of so-called Euler
integrals defining the A-hypergeometric functions.
It is my hope that eventually one can circumvent
these intricate considerations and instead use the
conceptual simplicity of A-hypergeometric systems
to describe their monodromy, for example, through
constructions in combinatorial algebra. If this
could be possible, the turnaround announced in
the introduction of this article might be complete.
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