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HYPERGEOMETRIC PERIODS FOR A TAME POLYNOMIAL

CLAUDE SABBAH

Abstract: We analyse the Gauss—Manin system of differential equations — and its
Fourier transform — attached to regular functions satisfying a tameness assumption on
a smooth affine variety over C (e.g. tame polynomials on C"*1). We give a solution to
the Birkhoff problem and prove Hodge-type results analogous to those existing for germs
of isolated hypersurface singularities.
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Introduction

Let f : C**! — C be a nonconstant polynomial function. The hypergeometric
periods associated with this polynomial are the integrals

L,(s) = /y fow

where w is an algebraic (n+1)-form and v an (n+1)-cycle with coefficients in a
suitable local system. In [44] A.N. Varchenko gave a formula for the determinant
of a period matrix made with such integrals for some specific polynomials: this de-
terminant is expressed as a product of terms of the form I'(s+ /) where (3 varies in
the spectrum of the polynomial (for these polynomials, there exists only one criti-
cal point and the spectrum is the spectrum of this singularity in the sense of [43]);
moreover, in this situation, the choice of the forms w is quite natural.

In [7], A. Douai considered a spectrum for convenient nondegenerate polyno-
mials (in terms of the Newton filtration) and conjectured that there should exist
a basis of forms w so that the same formula holds (up to periodic functions in s)
for the determinant of the period matrix. He proved this conjecture for some
special cases.

The appearance of a product of I' factors is explained by the fact that such
a determinant (whatever the choice of the forms w or the cycles v can be) is
a solution of a system of linear finite difference equations and one expects (if
it is nonzero) that it is expressed (up to a periodic function in s) as a product
of I'(s + B) where 3 is a logarithm of an eigenvalue of the monodromy of f at
infinity [13] (we assume here that the monodromy around 0 is trivial, see below).
Changing the forms will change the (’s by an integer.

The problem addressed in this paper consists in finding a natural choice of
such logarithms, called the spectrum, and in showing that there exists a family
of differential forms such that the previously aluded results still hold. We will as-
sume that the polynomial is tame (cohomologically tame will be enough, see §8),
i.e. that, for some compactification of f, no modification of the topology (or the
cohomology) of the fibres comes from infinity.

For a cohomologically tame polynomial, there are two possible ways of defining
a spectrum.

The first one uses the Jacobian quotient Clxo, ..., x|/ (0, f, .-, 0, f) as Var-
chenko does for isolated hypersurfaces singularities (referred to as the local case
below). One should moreover use a filtration which measures an asymptotic
behaviour, as in the local case. In the convenient nondegenerate case, Douai uses



HYPERGEOMETRIC PERIODS FOR A TAME POLYNOMIAL 175

the Newton filtration. It turns out that, in general, one should use the filtration
measuring the asymptotic behaviour of integrals |, s we~f where ¢ is a Lefschetz
thimble (see [26]) and w as above, when 7 — 0 (and not when 7 — oo as is usually
done in the stationary phase method).

This can be translated into more algebraic terms. Let M be the Gauss—Manin
system of the polynomial f: this is a (regular holonomic) module on the Weyl
algebra C[t](0;), which associated local system (outside the critical values of f)
is the one made by the spaces H"(f~1(t),C). The Brieskorn lattice My is a free
C[t]-module inside M defined as in the local situation (see e.g. [24]). It turns out
that J; acts in a one-to-one way on M and that My is stable under 0, ! (as in
the local case). The role of microlocalization in the local case is now played by
the Fourier—Laplace transform (see however [16] for a direct interpretation of the
microlocalization in terms of Fourier transform in the local case).

Let G be the module M when viewed as a C[7](9;)-module, with 7 = 9, and
0,=—t. This is a holonomic module on the affine line A with coordinate T,
which has singularities at 7 = 0 and 7 = co only, the former being regular, but
not the latter in general (see e.g. [18]). Consider the coordinate § = 771 = 9;!
at infinity on the affine line A'. Then My is also a free C[#]-module (with an
action of t), and we denote it G. The fibre at § = 0 of this module (i.e. Go/0Gy)
is identified with the Jacobian quotient, up to the choice of a volume form.
We are interested in asymptotic expansions of sections of Gy when 7 — 0.
More precisely we consider the Malgrange-Kashiwara filtration V,G at 7 =0
and the spectrum corresponds to the jump indices of this filtration, when induced
on the Jacobian quotient.

Once such a definition is given (it coincides with the one given by Douai in
the convenient nondegenerate case, see §12), it remains to show the existence of
good differential forms. We argue in two steps.

The hypergeometric determinant is closely related to the determinant of the
Aomoto complex [13]

0 — C(s) 2 9°1/1] ds , ... _ds

Cloe QL/f] — 0

where QF[1/f] denotes the space of rational k-forms on C"*!' with poles along
f =0and d; is the twisted differential ds = f~*-d- f*. The (n+1)th cohomology
group of this complex (which is also the only possible nonzero one, thanks to
tameness) is equal to the Mellin transform of the Gauss-Manin system M. It is
also equal to the Mellin transform of the Fourier transform of M. When 0 is not
a critical value for f, a good family of differential forms will be obtained from a
good basis of the Brieskorn lattice Gj.
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This notion of a good basis has been introduced in the local case by
M. Saito [34] in order to show the existence of primitive forms conjectured by
K. Saito. We give the straightforward adaptation to our situation, so that the
main question which remains is the existence of such a good basis. M. Saito
also gave a criterion for the existence of such a basis: the filtration induced by
G, = "Gy on the nearby cycles of G at 7 = 0 should be the Hodge filtration of
a mixed Hodge structure, the weight filtration of which should be decreased by
two under the action of the nilpotent part of the monodromy of G.

This leads to the second possible definition of the spectrum: J. Steenbrink
and S. Zucker [40] constructed a limit mixed Hodge structure on the cohomology
H"(f~1(t),C) when t — oo (this construction is also given by F. El Zein [§]
and M. Saito in [35]), and using the procedure defined by J. Steenbrink in [39],
one defines a spectrum, called the spectrum at infinity of the polynomial f.
However it has no a priori direct link with the spectrum of the Brieskorn lattice.

The main result of [29] consists in showing the existence of a natural mixed
Hodge structure on the vanishing cycles at 7 = 0 of the Fourier transform G
isomorphic to the mixed Hodge structure above. In particular both give the
same spectrum.

In part II of the present paper we show that the filtration given by the
Brieskorn lattice coincides with the Hodge filtration constructed in [29], when
the polynomial is cohomologically tame. The ideas are very similar to those of
A.N. Varchenko in the local case (see also [25], [37], [34]). In particular we show
that the spectrum at infinity and the spectrum of the Brieskorn lattice coincide
(up to a shift for the eigenvalue 1 of the monodromy), and this gives the existence
of good bases, thanks to the criterion of M. Saito.

It should be noticed, as a consequence of the existence of such bases, that the
Riemann-Hilbert-Birkhoff problem (i.e. the existence of a Birkhoff normal form)
can be solved for the Brieskorn lattice: it is possible to find a trivial bundle on
the projective line associated with A, which is contained in G, which restricts to
Gy in the chart 7 # 0 and which restricts to a logarithmic connection with pole
at 7 =0 on Al

Part I gives sufficient conditions (Propositions 5.2 and 5.6, following M. Saito)
to solve the Birkhoff problem for some germs of irregular meromorphic connec-
tions in one variable, and makes the link with Mellin transform.

Part II is concerned with applications (see §13) to the Gauss—Manin system
of a cohomologically tame polynomial on C"*!: to prove the existence of a good
basis for this meromorphic connection, we apply a criterion of M. Saito (see §6.4);
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in order to do so, we need to establish Hodge properties for this system, and for
this we use the results of [29]. In fact it should be emphasized that all the results
of part II are given for a regular function f: U — Al on an affine manifold, this
function satisfying a tameness assumption at infinity on U. The only difference
with the case U= A"*! is that 0; is not necessarily bijective on M, so one has to
distinguish between My and Gy. In particular, we solve the Birkhoff problem for
Gy and find a good basis for Gy, but this is not directly translated as properties
on M.

We refer to the appendix of [29] for the notation which is not defined in the
main course, in particular for the conventions made concerning perverse functors.

Part I

Good basis of a meromorphic connection with a lattice

1 — Spectrum of a meromorphic connection with a lattice

We shall denote Uy = Spec C[7] and Uy, = Spec C[#] the two standard charts
of P1(C), where § = 1/7 on Uy NUs. We shall denote 0 = {7 =0} and oo =
{6 = 0}.

Let G be a meromorphic connection on P!, with singularities at 0 and co only,
the singularity at 0 being regular (but not necessarily the one at infinity). Then
G is a free C[r, 7~ !]-module of finite rank p, equipped with a derivation 9, which
makes it a left C[r,771](0;)-module. In the following, we shall identify C[r,77!]
with C[0,071] by 0 = 1/7.

Lattices

A lattice of G is a free C[¢]-submodule Gy of G such that C[0, ] @¢j Go=G.
Such a lattice Go has then rank p over C[f]. We will say that the lattice Gy
has type 1 at infinity if moreover Gy is stable under the action of the operator
t:= 9289.

In this paper, all lattices considered will have type 1 at infinity, so we will
simply call them lattices. We shall denote G}, = #~*Gy, in order to obtain an
increasing filtration of G by lattices.
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Malgrange—Kashiwara filtration of G at 0

Consider the connection G on Up. It is known that it is a holonomic C[7](0)-
module. Its only singular point is 0. In order to simplify the argument, we shall
assume in the following that the monodromy of DR*'G on Uy — {0} is quasi-
unipotent. In fact, we shall only apply what follows to this situation.

We shall now use in this simple situation the properties of the Malgrange—
Kashiwara filtration (see e.g. [27, 21, 32], or [28, §6] for the one dimensional
case) that we briefly recall. Let V,C[7](0;) be the increasing filtration of C[7](0;)
defined by

V_iC[r)(8;) = T*C[r](rd;) for k>0
ViC[r)(0r) = Vi1 Cl7](10;) + 8- Vi1 C[7](10;) for k>1.

There exists a unique increasing exhaustive filtration V,G of G, indexed by the
union of a finite number of subsets a+7Z C Q, satisfying the following properties:

(1) For every «, the filtration V,,7G is good relatively to V,C[7](0;);

(2) For every € Q, 70, + (3 is nilpotent on grgG = V3G /V5G.

By assumption, each V3G is a finite type module over C[7](70:). Because
7 is invertible on G the map induced by 7

7: VgG — V31 G
is bijective. Consequently we have for every g € Q

(1.1) Clr, 771 Q[Q]VBG =G.
C[r

Let G* = C{7} ®c|;) G and VG*" be the Malgrange-Kashiwara filtration of
G*" at 0. By uniqueness it satisfies

VgG*™™ = C{r} (%} VsG .
Cir

Because G is regular at 0, there exists an isomorphism of C{7}[r~!]-connections
an
(1.2) [@ grgG] ~ G*"
BeQ

which induces identity after graduation by the corresponding filtrations V'
(see e.g. [18, Prop.I1.1.4] or also [28, Lemma 6.2.6]).
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Lemma 1.3. For every € Q, V3G is a free C[r]-module of rank p and
defines a logarithmic connection with pole at 0 on Uy.

Proof: As V3G has no C[r]-torsion, it is enough to prove that VgG has finite
type over C[r]. This follows from the following two facts.

e The localization C[r, 77 '] ®¢(; V3G has finite type over C[r,77']: this is
due to (1.1).

e The localization C[7] (0) ©c(r) VpG has finite type over (C[T](O): using faithful
flatness of C{7} over C[T](O) it is enough to consider the analytic localization, for
which the assertion follows from the remark above, because G is regular at 0 and
because it is clearly true for a V-graded module. n

The vector bundles Gz,

Let us fix 3 € Q and k € Z. The locally free sheaf G, is obtained by glueing
V3G on Up and G}, on Uy using the isomorphisms on Uy N U

Clr,7 Y @ V3G = G = C[0,07"] ® Gy, .
Clr] clo)

The following is easy to prove.

Lemma 1.4.

(1) We have 9571C & O(ﬁ) >~ 96+g7k ~ 957k+g and HO(Pl, 9ﬂ,kz) = VﬁG N Gk
where the intersection is taken in G. The isomorphism H°(P!,§ Bk)
HO(P', Sp10) is given by

oF = r7F. VﬁGﬂGk;V@q_kGﬂGo.

(2) Forevery f € Q and k € Z, V3GNGy, is a finite dimensional vector space.
For a fixed 3 and for k < 0 we have VgG' N G}, = 0 and for k > 0 we
have G, = VgG NG+ Gg_1.n

In the following we will denote Gg := 9@0.

The spectral polynomial and the spectrum

For g € Q, let

vg = dingGﬂGo/ (VgﬂG,1 +V<gﬂG0).
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The set of pairs {8,v3} for which vg # 0 is called the spectrum of (G,Gy).
The spectral polynomial of (G, Gy) is

SPy(G,Go; ) = [ (S+8)” .
BeQ

If we put 63 = dim V3G N Gy, we have

(1.5) vg = (0 — dp-1) — (6<p — 0<p-1) -

In fact V3G induces a filtration on Go/G—1, namely
Va(Go/G-1) = VgG NGy /VeGNG_q,

the dimension of which is 63 — dg—1, and v is the dimension of the 3th graded
piece. Hence the datum of the dg’s is equivalent to the datum of the vg’s.

Lemma 1.6. The degree of the spectral polynomial is equal to p.

Proof: Because we know that dim Go/G_1 = p, it is enough to show that

0 for K0

V3(Go/G-1) = {GO/G—l for 3> 0

which follows from Lemma 1.4. n

Because G is regular at 0, the characteristic polynomial of the monodromy Ty
of the local system DR*G on Uy is [ 1¢(,1{(T—exp 2ima)"> with po=dimg gr’ G
(this follows from [18, Prop.I1.1.4]). Grading by G, we hence get

Proposition 1.7. Let Hﬁ(S + [3)¥8 be the spectral polynomial of (G, Gy).
Then the polynomial [] ﬂ(T —exp 2iwf3)"? is the characteristic polynomial of the
monodromy Ty of Y, DR*'G.

2 — How to obtain a lattice by Fourier transform
Let M be a regular holonomic C[t](9;)-module (regularity at infinity is also

assumed and, in fact, only regularity at infinity will be useful in Prop.2.1) and
put M[9; '] := C[dy,d; 1] ®¢po) M- It is also regular holonomic and moreover the
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(left) action of 9; on M[9; '] is bijective, i.e. one can “integrate in a unique way”
all elements of M[9;!].

We denote M the Fourier transform of M: it is equal to M as a C-vector
space, and is equipped with a left action of C[7](0;), where 7 acts like 0; and
0r as —t (see e.g. [18]).

Let G be the Fourier transform of M[9;']. Then G = ]\7[7*1] satisfies the
assumptions made at the beginning of Section 1. We will put as above § = 7! =
97! and will view G as a C[f, #~-module with an action of ¢ = 620y.

We shall now show how to construct a lattice starting with a C[t]-module
inside M. This will give a Fourier correspondence at the level of lattices.

Proposition 2.1. Let M be a regular holonomic C[t](0;)-module (regularity
at infinity would be enough) and let My be a finite type Clt]-submodule of M.
Let M}, be the image of My in M[0; '] by the natural morphism M — M[9;'].
Let Go := ;5 Oy M}y = C[0] - M}, be the C[]-module generated by M. Then
(1) Gy has finite type over C[6];

o —

(2) if My generates M over C[t](;), then Gy is a lattice in G = M[9; ).

Proof: Let us begin with (1). First, consider the case M = C[t](d;)/(P)
where P = E(ii:o dia;(t), with a; € Clt], ag#0 and (regularity at infinity)
deg a; < degag for i < d. The image g of 1 in M[9; '] thus satisfies QfdP -g=0,
which can be written, putting § = 9; !, o br(0)tF - g = 0, where p = degay,
and with b; € C[f] and b, is a nonzero constant (the leading coefficient of ag).
Hence the property is true for the C[t]-module M, generated by 1.

Next, remark that if the property is true for some My generating M, it is true
for any Mj: one uses the fact that

ClO] - (M) + M) = Go+07'Gy = 071Gy .

Hence, (1) is true for M as above. Any M comes in an exact sequence of C[t](0;)-
modules

0 — K — C[t)(6)/(P) — M — 0

with P as above and K a C[t]-torsion module: indeed, any holonomic M is cyclic,
so isomorphic to C[t](9;)/I, for some left ideal I; take for P an element of I which
has minimal degree with respect to 0;. The result being easy for torsion modules,
it is then true for any M.
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(2) is proved using the formula

ClO]- (M) + -+ M) = 07"Gy . m

Remark 2.2. Notice that, if M = M[9; '], the dimension of C(t) ®cpy M
is equal to the rank of G as a C[r, 77 !]-module: the rank of G is equal to the sum
of dimensions of vanishing cycles of PDR* M (see e.g. [5, Cor. 8.3]); this is equal
to the generic rank of PDR* M thanks to the fact that H’ (A, PDR*(M)) = 0
for all j (this follows from the fact that d;: M — M is an isomorphism and from
the comparison theorem for M, which is regular holonomic). o

Fourier transform and formal microlocalization

We will adapt below the results of [16, §5] to any regular holonomic C[t](0;)-
module M. In loc. cit. they are proved in the case where M has only one singular
point in A, and this one is even not assumed to be regular (but the one at
infinity is so); moreover the result is proved in a Gevrey context, not only in the
formal one below, which will be enough for our purpose. Proposition 2.3 below is
certainly “well known to specialists”, but does not seem to exist in such a form
in the literature.

Denote as above § = 9; " and let K = C [0] [#~!] be the ring of formal Laurent
series in 0. Put t = 620y and identify K Dy C[t](0;) with K(0p).

Let &£,.. be the sheaf of formal microdifferential operators on T*Alan \
zero section. We will consider it as a sheaf on A" by restricting it to the section
image(dt). A local section of £,, is a formal Laurent series ) -, a;(t)9" where
a; are holomorphic functions defined on a fixed open set. We denote as usual
&,1an (0) the subring of sections of &,,., with no pole at 6 = 0.

Let M be a C[t](d;)-module and put G = M[9; '] viewed as a C[r](d;)-
module, or as C[f](Jp)-module. Put also M = O ., B¢ M and let M=

Eptan @p ) M be its formal microlocalization. As a sheaf on A*", it is sup-
Aan

ported on the singular set of M, since M" =0 when M is O an-locally free.
At a singular point ¢, the action of ¢ on the germ M. can be written as
e/?(t — c)e=/? if &, is viewed as a subring of C{t — ¢} [6].

Let My be a finite type Clt]-submodule of M generating M over C[t](9;) and
put Mo = O an B¢y Mpy. Then M, := image [5(0) ®p Mo — M”] is a lattice
in M". From the preparation theorem for £(0)-modules (see e.g. loc. cit.) follows
that the germ My, at each singular point ¢ of My is a free C [f]-module and
that M, = K Do Mg,c is a finite K-vector space with an action of Jp.



HYPERGEOMETRIC PERIODS FOR A TAME POLYNOMIAL 183

On the other hand, let Gy be as above and denote Gy = C [d] B¢pg Go-
As GS is stable by t = 620y, it follows from the method of the Turrittin theo-
rem on the splitting of formal connections (see e.g. [18, Chap.III]) that the pair
(G, GB) splits as a direct sum indexed by the singular points of M:

(G.Gy) ~ P (G e, Gy, @e )

C

where each GZ is a regular K-connection and Ga’c is a lattice in it; moreover,
®e~¢/? denotes the twist of the dy (or the 20y) action.

Proposition 2.3. The composed C [0]-linear map

G =Ko M — F(Ala“,K® M) — T (A, MY)
Clo—1 Clox]

is an isomorphism compatible with the action of t, which identifies GB with
F( Alan’ MS)

Proof: Remark first that

Ko M=K ® ((C[e,e*l] ® M) —K ® G=C[I] ®G .
clo-1] C[0,0-1] clo-1] Co,0-1] o)

It is known that G~ and T (Alan, /\/l“) are K-vector spaces of the same dimension,
namely the sum of dimensions of vanishing cycles of DR*(M) at its singularities
(see Remark 2.2 above). Moreover, the map is clearly compatible with the action
of t. Last, the map clearly sends Ga into T'(Al*" Mg). As there is no nonzero
morphism compatible with the ¢ action between G; ® e~ and MZ, for ¢ #
it is enough to show that for each ¢ the map GB — M&C is onto, or, equivalently,
due to Nakayama’s Lemma, that G, — MS’C/QM&C is onto.

Remark that, since M, .= O, ey My, there exists my,...,m, € My such
that any m € /\/107C can be written Y ¢;m; with ¢; € O.. There exists d € N and
aq(t) € C[t] such that dfay(t) - m; € Zi:l O My for all i = 1,...,p. If n is the
order of vanishing of ag4 at ¢, we conclude that (t—c)"1 ®@ m; € 9/\/1870 for all 1.
As we have m = m/ + (t—¢)" > ¢ym; with m’ € My and ¢; € O, we conclude
that 1@ m =1®m' mod M, in M. u
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3 — Spectrum and duality

The free module G* := Homcy, ,-1)(G, C[r,771]) is naturally equipped with
a structure of a meromorphic connection: put, for ¢ € G*,

(3'1) (a’r )(g) = 87'(80(9)) - (P(a’r ) :

Lemma 3.2. For 3 € Q, we have V3(G*) = Homg((V<_g41G, C[7]).

Proof: Put VgG* = Homcy(V<_p4+1G, C[7r]). This is a free C[r]-module of
rank p naturally contained in G* and stable under the action of 70,. Moreover
we have T8V3G* = V5_1,G*. Let N such that for all §, (70, + 0)NVs;G C VsG.
Let ¢ € V3G*. We will now show that (79+8)Vp € V_sG*=Homc(Vg41G, C[7]).
Remark that for g € V_g1G we have

(70, + B)p](9) = d-p(Tg) — ¢((T0-—B+1)g)

and 0r¢(7g) € C[r] since 7g € V_gG C V._g41G. By induction we see that

[(r0-+ B)Ne](9) = h+ ()N o((r0,—B+1)"g)

with h € C[r]. The assertion follows from the fact that (10,—+1)Ng € Vo _511G.

Let us verify that the filtration V,G* is good relatively to V,C[r](0;).
We have to verify that for each 8 we have Vﬁ+kG*: 8TVﬁ+k_1G* + \75+k_1G*
for all k£ > ky. This is equivalent to

V,B—i—k—lG* = TaTVﬂ+k_1G* + Vﬁ—l—k—QG*

and is true as soon as f+k—1 > 0 as a consequence of the previous result.
Now V,G* satisfies all the characteristic properties of the Malgrange—
Kashiwara filtration V,G*, hence is equal to it. m

If Gy is a lattice in G, then G := Homg(g (Go, C[f]) can be identified with the
set of ¢ € G* verifying p(Go) C C[f] or also ¢(G) C 6~*C[0] C C[A,0~!] for all
k € Z. 1t follows easily from (3.1) that G§ is a lattice in G*. From the previous
lemma we conclude that 9; is equal to the locally free sheaf dual to G_g41.

Proposition 3.3. If Hﬁe@(s + ()8 is the spectral polynomial of (G, G)),
then the polynomial [[zc.q(S — B)" is the one of (G*,Gf); in other words we
have v3(G*, Gj) = v_4(G, Go).
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Proof: Let us keep notation as above. Serre duality and the fact that

WP, Gcqi1) = RO(PY, G5 ) and  AY(P, Goqya) = RO(B, G2, o) -

Conclude by considering the exact sequences

0 — H'P,5.) — H'(P',5_,) — ¥, G —
- Hl(P179<—7) - Hl(Plag—v) — 0

for v =+ 1,8 and the fact that dim gr‘_/ﬁ G = dim gr‘_/ﬁ_lG. n

Corollary 3.4. If there exists an isomorphism G* —- G inducing G}, ~ G,
for some w € Z, then the spectrum of (G,Gp) is symmetric relatively to w/2,
ie.vg=uvy_gforall B € Q. n

Remark 3.5. Consider the involution C[7](d,) — C[7](8,) given by 7+ —7,
0r — —0- and denote G the module G where the action of operators is composed
with this involution. Because the action of 70, is unchanged, we have V,G =
V,G. Moreover, if Gy is a lattice in G, then Gy, which is equal to Gy on which
6 acts as —0 and t as —t, is also a lattice in G. In particular the spectrum of (G,Go)
is equal to the one of (G, Gy). If we have an isomorphism (G*,G}) — (G, Gy),
we can apply Corollary 3.4. o

Remark 3.6. Proposition 3.3 can also be obtained in the following
more concrete way. From Lemma 3.2 we deduce that the natural pairing
VeG*™xV_5. G — Clr, 77! has image in 77!C[7] and the pairing with values in C
obtained by composing the previous one with the residue at 7 =0 induces a
perfect pairing grgG* X grYﬁHG — C.

If for any k € Z we denote G}, = TG}, we get in the same way an isomorphism

grg*gr};G* ~ Homc (grgkf1 grYﬁHG, C)

which implies 3.3. We will have to use this isomorphism for 5 = « € ]0, 1], so that
—a+1is also in ]0,1[; for = 0 we will use the composition of this isomorphism
by multiplication by 7 to get

grfl gry G* ~ Homc (gr(jk gry G, C).o
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Behaviour with respect to tensor product

The following property is useful in order to prove a Thom-Sebastiani type
theorem for the spectrum. Let (G', Gf)) and (G”, G{j) be as in Section 1 and put
G=0G ®eppo-1] G". Then G is regular at 7 = 0 and Gy := G, Dcio) Gy is a lattice
in it.

Proposition 3.7. Assume that we are given isomorphisms
(G, G"%) — (G',G.)) and (G"*,G"§) — (G",G1))
for some w',w"” € Z. Then the spectrum of (G, Gy) is given by

vs(G,Go) = > vp(G, G ven(G",GF) .
B+8"=p

Proof: The proof follows the one of [43] or [37]. Remark first that we have
an isomorphism (G*,G}) — (G,Gy) with w = w’ + w” by taking the tensor
product of the one for G’ and the one for G”, as G/ , @ G, = Gy. As G',G",G
are regular at 7 = 0 we have (by first twisting with C{7} and using the structure
of regular connections)

grgG = GB (gr[‘;, G’%) gr‘ﬁcﬂ/ G”) )
B'€l0,1]

Consider on the LHS the filtration induced by 7%Gy and on the RHS the tensor

product of the corresponding filtrations on grg/ G’ and grgfﬁ, G". The former
contains the latter, so in particular we have

: 1%
D vpr=dmGogrsG > 3, > > v ivhip -
k>0 BE0,1[ k>0 i+j=k
Put (V'xv")g =35, p1—p Vp Vgn. Then we conclude that » ;- ,vs , >

doso(W * V)5 and thus >0 v, =50 s/ xv"), for any 8. As both
terms are equal for 3 < 0 or 3>> 0 and as v and v/xv/” are both symmetric with
respect to w/2, we conclude that v =1v/xv". u

A microdifferential criterion for the symmetry of the spectrum

We keep notation of §2: the module M is C[t](0)-holonomic and regular
even at infinity and we assume that M comes equipped with a C[t]-module M
of finite type generating M.
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Let DM be the C[t](d;)-module dual to M, i.e. the left module associated
with the right module

We also denote D(M") the dual of the microdifferential system attached to M,
which is identified with (DM)". As M" is endowed with a good filtration M, =
E(s) - My, the dual D(M") is equipped with a natural filtration D(M"), defined
using any strictly filtered resolution of (M", M.) by free (£, &(s))-modules.

Assume that we are given a morphism DM — M such that the kernel and
the cokernel are free C[t]-modules of finite rank. Taking Fourier transforms and
localizing with respect to 7 one gets an isomorphism DM [771] = M [T~ = G.
But we have the following relation between duality and Fourier transform (see
[18, lemme V.3.6]):

DM = DM

where D denotes the duality as C[t](9;) or C[r](0:)-module. We will identify
below (DM )[r~!] with G* defined above. Hence we get an isomorphism G* — G.

Lemma 3.8 ([34, §2.7]). We have a canonical isomorphism

G* = (DG)[r Y = (DM)[r7].

Proof: The second equality is clear as the kernel and cokernel of M—G
are supported at 7 = 0. We have

Cfr.7] 8, DG = Bl g, (G 710071
C[r ’ T

where N9 means the left module associated with the right module N; consider
then the following resolution of G as a left C[r, 771](d,)-module:

0 — Clr,7 0,) ® G 0r@1-180, Clr, 7 0,) ® G — G —0
Clr,m—1] Clr,71]

with C[r,771(9;) ® ) G = C(0;) %G, and identify
Clr,7—1]

Homg, , 115, (C{0n) € G, Clr. v 11(0,))” = ("2 C(0,))" = C(o,) @ 6"

to get the assertion. m
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On the other hand, the morphism DM — M induces an isomorphism
D(./\/l“) — M". When the microdifferential property below holds, the spectrum
of (G, Gyp) is symmetric with respect to w/2.

Proposition 3.9. In the previous situation, assume moreover that there
exists w € Z such that this isomorphism sends D(M")g onto 0~¥ My = M,,.
Then the isomorphism G* — G sends G, onto G,,.

Proof: As the image of G is contained in some Gj and coincides with G
after localizing with respect to 7, it is enough to show that C[0] @, Gy is
sent onto C [0] Dcio) G. According to Proposition 2.3, the problem is reduced
to identifying, for each singular point c, (HomK(Mz, K),Hom(c[[e]] (./\/IS’C(C [[(9]]))
with (D(M;), D(M_)o). This follows also from [34, §2.7): recall that M, is a
finite dimensional K-vector space, so one has a resolution of MZ as an £.-module

(t—c)®1-1® (t—c)

0 — &M, EAM, — M., — 0
K K

which induces a resolution

t—c)®1-1® (t—
0 — &(0) ® My, (o) ® (t=¢) £.(0) ® My, — My, — 0.
Clop Clop ’

In fact it is easier to show first that the corresponding sequences are exact when
e, E.(0) are replaced with K (0y), C[0] (6?0p), and then to use flatness of the
former rings over the latter ones respectively. n

4 — The Riemann—Hilbert—Birkhoff problem

We keep notation of the previous Section. In order to simplify notation,
it will be convenient to write a basis as a column vector; the matrices considered
below are the transposed matrices of the usual matrices.

Proposition 4.1. The following properties are equivalent:
(1) there exists a basis g of Gy over C[f] for which the matrix of t = %0y is
equal to Ag + 0A; where Ay and A, are constant matrices;

(2) there exists a free C[r]-module H° C G stable under the action of 70,
generating G over C[r,7'] and such that (H° N Gg) ® G_1 = Gg;
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(3) there exists a free Opi-module Gy inside (the Opi-module associated
with) G such that the restriction of Gy on Uy, is equal to Gg and the
restriction to Uy is a logarithmic connection with pole at 0.

Remarks.

(1) If such a basis exists, then Ag is the transposed matrix of the action of
t on Go/G_1 and —A; is the transposed matrix of the residue at 7 =0
of the logarithmic connection HY; moreover the trace of A; does not
depend on the choice of such a basis: in fact, given two bases g and =,
one can assume that they induce the same basis on Go/G_1 up to a
constant base change on «, so the matrices Ag are the same; there exists
P € GL,(C[#]) such that

Ao+ 0A) = 620p(P)-P™1 + P(Ag +0A) P

as det P is a nonzero constant, this implies tr A} = tr A;.

(2) In general, one knows the existence of such a basis in the following cases:
e the monodromy matrix of G (around 0 or oo) has u distinct eigenvalues
(see for instance [17]);

e () is semi-simple as a C[f]-module equipped with the action of ¢
(cf. [2]). o

Proof: (1) = (2): ome puts H’ = C[r]-g. Then H" is stable under the
action of 70, and the matrix of 70, in the basis g is —(7Ap+A1). In particular 4;

is the residue of the logarithmic connection on H®. One has C[r,7 !|®@ H* = G
and H'NGyp=C-g.

(2) = (3): because of the isomorphisms H°[r7!] = G = Go[#~!], one may
construct a locally free Opi-module Gy such that Gy, = H O and Yo, = Go-
We have T'(P!,Gy) = H° NGy and the assumption means that the restriction
morphism T'(P!, Gy) — i%,Gp is an isomorphism. From the Birkhoff-Grothendieck
theorem one deduces easily that Gy is trivial.

(3)==(1): let g be a basis of Gy. Because Gy is stable under the action of ¢,
the matrix of ¢ in this basis has elements in C[f]. Because H° := Gy, is stable
under the action of 70, = —00y, one concludes that this matrix has degree at
most one in 0. n

Assume that (G, Go) is obtained from (M, Mp) as in §2, where M = M[9; ]
is regular holonomic, generated by My, and My is C[t]-free and stable under 0, L



190 C. SABBAH

The partial Riemann—Hilbert problem for My consists in finding a C[t]-basis
of My for which the connection matrix has at most a logarithmic pole at infinity.

Corollary 4.2. Assume that M = M[0; '] is regular even at infinity, that
My has finite type over C[t], is stable under ('9;1 and generates M. Then, if the
R-H-B problem has a solution for Gy with Ay + k1d invertible for all k € N, the
C[t]-module My is free and the partial Riemann-Hilbert problem has a solution
for M.

Proof: Indeed, let g be a C[f]-basis of Gy satisfying property (1) of Propo-
sition 4.1. Then we have, for all k& > 1,

k—1

g =[] [(A1+ 01d)"! (t1d —AO)} g,
=0

hence g generates M as a C[t]-module. Moreover, the relation tg=(Ap+ 0A41)g
can also be written 9;g = (tId —Ag) ' (A; —1d)g. Iterating the process shows that
M= C[dy,0; g c C(t) ®cpy Mo, hence C(t) @c Mo = C(t) ®cf M. The surjec-
tive morphism ([t]#— My is onto, hence an isomorphism, as dim¢ ) Qt) @cyy M= p
(see Remark 2.2). Therefore, My is C[t]-free and g is a C[t]-basis of M.
Now and the connection matrix in this basis has rational coefficients with a pole
of order at most one at infinity. =

5 — Good bases
The content of this Section is an adaptation of [34, §3].

Definition 5.1. We shall say that a basis g of Gq is a good basis if

(1) the matrix of t = 629y in this basis is Ag+ A1, where Ay and A; are
constant p X pu matrices;

(2) the spectrum of A; is equal to the spectrum of (G, Gp).

If moreover Ay is semisimple, we shall say that g is a very good basis. o

Proposition 5.2. Assume that for every a € [0, 1] there exists a decreasing
filtration (HF).ez of gr¥ G by subspaces satisfying the following properties:

(1) for every a € [0,1[ and every k € Z, the subspace HE is stable under the
action of the nilpotent endomorphism N of gr¥ G induced by 70, + a;
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(2) (transversality condition) the decreasing filtration HJ, is opposite to the
increasing filtration on gr¥ G induced by (G})iez, i.e.

gr%a grkG ngG =0 for kK#L.

Then one can construct a good basis of Gg. Moreover, this basis is very good
if and only if for every o € [0, 1] the filtration H, satisfies NH* ¢ HF! for all
keZ.

Proof: Let E = ViG/VpG. This is a rank p vector space equipped with an
action of 70,. Moreover E = @ae[og[Ea with E, = J,, Ker(70, + )" and by
construction, the filtration induced by VoG on E, namely V,G/V,G for a € [0, 1],
is equal to Dy <o Lar- We shall denote it Vo, E. We have also grl B =grVG
for av € [0, 1].

The filtration Gy, induces a filtration Gy E = GxyNV1G / Gy NVpG in the same
way. The filtration GyE induces on gry E = gr¥G the filtration Gy grl G :=
G N VaG/Gk NV.oG.

Lemma 5.3. Under the assumption of proposition (5.2), there exists a de-
creasing filtration (L¥)ez of E which satisfies

(1) L* is stable under the action of 70,
(2) L* is opposite to G,.

Proof: We shall show (by induction on the number of « such that E, # 0)
that LF=@D  HE satisfies the desired properties. Put ap=max{a€[0,1[| F,#0},
E'= @ocaca, Pa and B = E/E" = gry, G. We have to show that for every
k € 7Z we have

LFNGy1E=0 and L*+G,E=F.

First, the induction hypothesis implies that L* NGj_1 ENE’ = 0. Hence the map
L¥* N Gy E — E" is injective. But its image is contained in HX N Gy_1 gr G,
which is equal to 0 by transversality assumption. The other equality is proved in
the same way. u

In order to obtain information on G from information on F, we shall introduce
the Rees module of G associated with the filtration VG. So let u be a new variable
and consider

RyGo = ) (ViGN Goyu* ¢ GO%C[U,MW :
keZ
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Denote w the action of fu on G ®¢ Clu,u!]. Then Ry Gy is naturally a Clu, w]-
module because multiplication by 6 induces an isomorphism

V.G NGy = ViriGNG_y C Vi1 NGy .

Put 0, = v 19y and w29, = ub29y. Then, because 620, acts as —0, on V;G,
it induces a map

6209: ViGN Gy — Vi1GN Gy
and one deduces an action of w29, on Ry Gy.

Lemma 5.4. Ry Gy is a free Clu, w]-module of rank p. Its restriction at
u = ug # 0 (with action of w?0,,) is isomorphic to Go (with the action of 6%0y)
and its restriction at u = 0 is equal to @ Go(VrG/Vi_1G).
k

Proof: The last two assertions are standard for Rees modules associated
with a good filtration. Let us prove first that Ry Gg has finite type over Clu, w].
By Lemma 1.4 we know that V;GNGy =0 for k< 0. It is then enough to
prove that Ry Gy is generated over Clu, w] by @y, (ViGN Go)u" for a suitable
choice of ky. But by the same lemma we know that there exists kg such that
ViGNGy =V 1GNGy+ ViGN G_q for all k > ky. Hence for all such k, any
element myu® € (V4G N Go)uF can be written

miu® = u - (mk,lukfl) +w - (nk,lukfl)

with mp_1,np_1 € Vi_1G N Gg. The result is obtained by an easy decreasing
induction on k.

Once we know that Ry Gy has finite type, we can argue as follows to obtain
the freeness. Because Clu,u™!, w] ® Ry Gy is isomorphic to Golu,u™!], it is free

of rank 1 over Clu, u™?

,w]. Moreover this also implies that Ry Gy is torsion free
over Clu,w], because its torsion must be supported on {u = 0} by this property,
and this is not possible since Ry Gy is contained in Go[u,u~1]. Last, the fibers of
Ry Gy at each point of {u = 0} have dimension p: by homogeneity, it is enough
to check this at v = w = 0, where the fiber is @, Vi(Go/G-1) / Vi—1(Go/G-1)
and has dimension p because of Lemma 1.4. We conclude that Ry Gy is a finite

type projective Clu, w]-module, so is free of rank p by Quillen—Souslin. m
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End of the proof of Proposition 5.2

Consider the Rees module Ry G := @5 ViG - uF. Tt defines a meromorphic
connection on P! x C relative to the projection on C, with poles along {0} x C and
{00} xC: it is a free C[u, w, w™!]-module equipped with a compatible action of 9,
(here, oo = {w=0}). Inside of it RyGy is a relative lattice. The restriction
"Ry G to {u =0} is equal to sp”' G := ©y(VxG/Vi_1G). This is a connection
on P! with regular singularities at 0 and oo, and containing the lattice sp” Gy =
i*RyGo. We shall first construct a complementary lattice for sp¥ G in sp” G and
we shall then extend it as a relative complementary lattice for Ry Gy in Ry G.
Restricting this lattice to u =1 will give a complementary lattice for Gy in G.
We shall then apply Proposition 4.1 to obtain the good basis.

First we define H lg for every 6 € Q in the following way: let 8 = o — £ with
a € [0,1] and ¢ € Z; denote by v the action of 7 on sp”'G. Put H’g = v HE
This space is contained in v* grf G = grgG and is isomorphic to H*~¢. We shall
view grgG as a subspace of V_;11G/V_yG by the same arguments that we used
for E at the beginning of the proof.

For a fixed 8 € Q, we have Hg =0 for k£ > 0 and H”BC = grgG for k < 0:
it is enough to prove this for 8 = «a € [0, 1[; this follows from the transversal-
ity condition and the fact that the analogue is true for the increasing filtration
Grgr/G. Tt is easily seen that for every 3 € Q, the decreasing filtration H 5 of
gr‘B/G is opposite to G, grgG. Put

H* = (P H .

BeQ

One can see that H? is a C[v]-module of finite type. It is clearly stable under
the action of vd, which is the action induced by 70, on sp¥ G because the HX
are so. It is free because it has no torsion, being contained in sp¥' G. Moreover,
H* = v*HO. We have

H/vH" = (P H}/H}
BeQ

= P el (ers G)
BeQ

(5.5) = @ arl (grgG) (transversality) .
BeQ

This shows that H has rank p and that C[r, 7~ '] ®¢[) H® = G.
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Hence H° and sp¥' Gy can be glued together in a locally free sheaf on P! and
because of the transversality assumption, they satisfy property (2) of Proposition
4.1. Consequently, this locally free sheaf is indeed free.

Before going further on in the proof, let us remark that equality (5.5) shows
that the characteristic polynomial of the residue of the connection on HY is equal
to the spectral polynomial of (G, Gy). This residue is semisimple if and only if
70r + 0 acts by 0 on Hg /H é for all 8 € Q, which is equivalent to the fact that
NHE c H¥! for all a € [0,1] and all k € Z.

Let us now come back to the proof. We shall extend the free sheaf that we have
obtained above as a locally free sheaf on P' x D, where D is a small neighbourhood
of u = 0in C, in such a way that its restriction to U, X D is equal to the restriction
of Ry Gy to this neighbourhood. This sheaf will be equipped with an action of
v0, when restricted to Uyx D, so is a relative logarithmic connection with pole
along {0}xD on this open set. By restriction to u = ug € D—{0} and using
homogeneity in u, we shall obtain a locally free sheaf on P! extending Gy and
with a logarithmic connection with pole at {0} on Uy. This sheaf is free, being
a deformation of a free sheaf on P'. We will also make the deformation in such
a way that the residue at 0 is constant in the deformation. So we shall obtain a
good basis using Proposition 4.1 and the previous remark.

Using the isomorphism (1.2), we can extend H°™" as a relative logarithmic
connection H° in Ry G|axp, where A is a small neighbourhood of v = 0 in P
Indeed, the isomorphism (1.2) gives a trivialization Ry Gjaxp ~ 7° SpVG| As
where 7 : P!xD — P! denotes the projection. The glueing of H*™" and sp¥ Gy
on A — {0} can also be extended to a glueing of H° and Ry Gy on (A —{0}) x D,
restricting D if necessary: it is enough for this to extend bases of H%*" and sp¥ Gy
to the deformation. The last thing to verify in order that the program we have
announced to be completed is that the residue of the relative connection on H°
is constant: this is due to the fact that for all § € Q the graded deformation
gr‘ﬁ/(’l—lo) is constant. m

Behaviour with respect to duality
Assume that we are given an isomorphism
(G",Gp) or (G*,Gp) — (G,Gu) -
It defines a non degenerate bilinear (or sesquilinear) pairing

S: Gy ® Go — 0" Cl0]
Clo]
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of C[f]-modules which is compatible with the action of dy. We also get a duality
(see Remark 3.6)

gry' G or grl G - Home(grY,,1G,C) (o €]0,1])
gry G or gry G = Homc(gry G,C) .
A good (or very good) basis € of G is said to be adapted to S if
S(ei,ej) € C-0Y  forall 4,5 .

Proposition 5.6. If the decreasing filtrations H?, of gr! G (o € [0, 1]) satisfy
conditions 1 and 2 of Proposition 5.2 and moreover

(3) HM =H"* (a€]0,1]) and H*+ = HY *+!

then the good basis given by this proposition is adapted to S.

Sketch of proof: As in Proposition 4.1, one shows that the basis € is
adapted to S if and only if S extends to a nondegnerate pairing

S: Go® G0 — Oplul
Pl

compatible with connections, where Op, [w] denotes the trivial rank one bundle

equipped with the connection d + w—. Condition 3 means that this is true for

spy Go and for the form spy, S (see the proof of 5.2 for the notation). Now Ry S
defines RyS with maybe poles along {v =0} xD. Since RV8|u:O = spy S has
no poles at v = 0, it follows that RyS has no poles along v = 0, and specializing
tou=1gives S. n

6 — Examples when there exists a good basis

We first obtain from Proposition 5.2:

Corollary 6.1. Let (G,Go) be such that no two distinct elements of the
spectrum differ by an integer. Then Gy has a good basis.

Proof: In fact the assumption means that for every a € [0, 1] there exists a
unique k € Z (that we shall denote ko) such that gr$ gr’/ G # 0, i.e. Gy, grl G =
gr’G and Gy, 1 gry G = 0. So we can choose HY = gr¥' G for k < ko and HX =0
for k > k. in order to apply Proposition 5.2. =
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Remark. In fact, the H fl that we have constructed above is the only possible
choice when the assumption of the corollary is satisfied. In particular the good
basis that we obtain is very good if and only if 70, + a acts by 0 on gry G
for every a € [0, 1[, which means that the monodromy of G is semisimple. o

Let ¢ be a complex number and G ® e°” be the C[r, 7~ !]-module G where
the action of 0; is translated by ¢: 0-(g ® ") = [(0-+ ¢)g] ® €“". In the same
way the action of t = 620y is translated by —c. We shall denote Gy ® €™ the
corresponding lattice.

Proposition 6.2. If (G,Gy) admits a good basis g then g ® e" is a good
basis for (G ® €7, Gy ® e°") and the matrix A is the same for both.

Proof: The matrix of ¢ in the basis g ® e is equal to Ag+ cId+6A;.
In order to verify that g ® e“” is a good basis, it is enough to verify that the
spectrum of (G ® e“7, Gy ® €“7) is equal to the one of (G, Gy) (the latter being
equal to the spectrum of A; by assumption). It is then enough to verify that
V(G®eT) = (VG)®e“. This is clear because 70, acts on G ® €™ as 70, + ¢T
on G and cr acts by 0 on each grl G. m

It follows from Proposition 3.7 that

Proposition 6.3. If (G',Gj) and (G”, G{y) satisfy the assumptions of Corol-
lary 3.4 and have good (or very good) bases, then the tensor product of these
bases is a good (or very good) basis of (G' @ G", G, @ G{}). n

6.4. M. Saito’s criterion

M. Saito gives the following criterion for the existence of a very good basis
(cf. [34, prop.3.7)): If for every a € [0,1] and all j > 0 the map N’: gr/ G —
gr! G strictly shifts the filtration induced by G, by j, then all the conditions of
Proposition 5.2 are satisfied and hence Gy admits a very good basis.

This criterion is fulfilled in particular if Gaae[o,l[G- gr’G is the Hodge fil-
tration of a mixed Hodge structure for which the weight filtration M, satisfies
NM, C M, _,.

Assume moreover that we have an isomorphism (G*,Gf) — (G,Gy).
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This isomorphism hence induces a perfect pairing of mixed Hodge structures

D e G ® P g6 — Cl-w)
a€0,1] a€]0,1]

gry G @ gry G — C(—w+ 1)

where C(k) is the pure Hodge of weight —2k on C. Then M. Saito (see [34,
Lemma 2.8]) gives a canonical choice for the filtrations H? (satisfying 5.2-1,2),
and this choice satisfies property 3 in Proposition 5.6.

7 — Good basis for the Mellin transform

Good basis and irregularity

Let G be as in Section 1. Assume that G admits a basis g over C[f, 0] for
which the matrix of t = 629y is Ag+6A;, where Ay and A; are constant matrices.
By assumption, G is regular at 7 = 0. Let iroo(G) be the Malgrange-Komatsu
irregularity number (see e.g. [14]) of G at 7 = oo (i.e. # = 0) and let u = rk G.
From the classical results of Turrittin and Katz on irregular singularities (see e.g.
[18] or [41]) on gets:

Proposition 7.1. The matrix Ay is invertible if and only if ireo(G) = . n

Mellin transform of G

Put o = —00p and identify the ring C[0,07'](0y) with the ring of finite
difference operators C[c](f,0~!), where we have the relation 0o = (o+1)0.
The (rational) Mellin transform & of G is the C(o)-vector space C(0) ®cs) G,
equipped with a structure of a left C(o)(f,6 1)-module. It is known to be
a finite dimensional C(o)-vector space. More precisely, for G as in Section 1,
we have

Proposition 7.2. dimg(,) ® = ire(G).

Proof: Let G ® L, be the C[#,0~!]-module G on which 09y acts by 09y + o,
for a € C. Then dimg ;)& = x(PDR(G® Ly )) for a general enough, where the RHS
is the Euler characteristics of the algebraic de Rham complex of G ® L, on C*.
The local index theorem [14] and the fact that x(PDR*"(G ® L)) = 0 imply that
X(PDR(G®L,)) = iree (G® L4 ), and the equality ireo (GRLy) = ireo (G) is easy. u
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Good basis for the Mellin transform

Let G as above and assume that there exists a basis g of G in which the
matrix of t is Ag+ 0A;.

Proposition 7.3. We have dimg(,) & =1k G if and only if Ay is invertible.
If this is satisfied, then g is also a C(o)-basis of ®, and the matrix of 7 = 0~ is
— At (A1 + o 1d).

Proof: The first part is a consequence of Propositions 7.1 and 7.2. We have
—og=ApTg+A1g. If A is invertible, C(o) - g is a C(o)-subspace of & stable by 7,
the matrix of 7 being — Ay (A;+ 0 Id). Tt is also stable by 7!, and consequently
g generates ® over C(c) because by assumption it generates it over C(co) (7, 771).
Using the equality of dimensions we conclude that g is a C(o) basis of &.

Remark. If g is a good basis (Definition 5.1) for (G, Gp) and if dimgy)® =
rk G, we see that the determinant of 7 in the C(co)-basis g of & satisfies

det(r;9) = xdet(cId+A;) = *SPy(G, Go;0)

where x is a nonzero constant. o

Mellin transform and Fourier transform

Assume that G is the Fourier transform of a regular holonomic C[t](9;)-module
M on which the action of 9; is invertible (see §2). Let M[t~!] be the localized
module and M its Mellin transform: we put s = —td; and M = C(s) ®c[,) M.
This is a C(s)(¢,t~!)-module which has finite dimension over C(s). Let My C M
be a finite C[t]-module stable by ;' and generating M over C[t](d;). Tt defines
a lattice Gp of G (see Section 2). Let & be the Mellin transform of G as above.
We can identify & and 90 using the isomorphism C(s)(¢,t 1) ~C(c)(#,071) given
by s — o+1 and t — —fo = —(0+1)0. The previous results give the following:

Proposition 7.4.

(1) We have rkG' = ¢ pe(M) and dime) 9 = Y- ccx pe(M). We have
dimc(,) & =1tk G if and only if 0 is not a singular point of M.

(2) Assume that there exists a good basis g for (G, Gy). Then, if 0 is not a
singular point for M, g is a C(s)-basis for 9 and the matrix of t in this
basis is s(A1+s1d)~1Ag. Moreover the determinant of t in this basis has
poles (counted with multiplicities) on the opposite spectrum of (G, Gp)
exactly. u
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Part 11

The Gauss—Manin system of a cohomologically tame function

8 — Some properties of cohomologically tame functions on an affine
manifold

Let U be a smooth affine quasi-projective variety (over C) of dimension n + 1
and f: U— Al be a regular function. We say that f is cohomologically tame
if there exists a compactification of f given by a commutative diagram

J

where X is quasi-projective and F' is proper, such that the complex Rj.Qy
has no vanishing cycle at infinity, namely, for all ¢ € A, the vanishing cycle
complex ¢,_ . Rj.Qr is supported in at most a finite number of points, all at
finite distance, i.e. contained in U. We shall denote 3 the set of critical values of f
and p = p(f) the sum of the Milnor numbers of f at its critical points.

Examples

If f: Avt— Al is “tame” (see [4, Lemma 4.3]), i.e. if there exists ¢ > 0 and
a compact K C U such that |0f] = ¢ out of K, then f is cohomologically tame
(with respect to the standard partial compactification of the graph X C P"xA!
of f).

In fact, Parusinski has shown [23] that f: A"T! — Al is cohomologically tame
with respect to the standard partial compactification of the graph X C P*xA! of f
if and only if it satisfies a condition weaker than tameness, called the Malgrange
condition, saying that when f(z) remains bounded, there exists £ > 0 such that
||| [|0f (x)|| = € for ||z| sufficiently large.

In [22] is introduced the notion of M-tameness for such a polynomial, which
gives global Milnor fibrations in big balls in C"*!. It is not clear that any M-tame
polynomial is cohomologically tame, but the tame ones, or the ones satisfying
Malgrange condition are both cohomologically tame and M-tame.

Fix coordinates on A"T!. If f: A"*! — Al is convenient and nondegenerate
with respect to its Newton polyhedron at infinity, then f is tame [4], and this
example is considered with some details in §12.
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Consider now examples where U is different from A"*L. The first one is the case
where U is a curve, so f is a meromorphic function on the complete curve U.

Let U= (C*)"*! and let f be a Laurent polynomial. Assume that f is nonde-
generate with respect to its Newton polyhedron A (f) and is convenient [12]. Let
F: X — Al be the partial compactification of f given by considering the closure
of the graph of f in the product of A" with the toric compactification of U defined
by Aso(f). Then it follows from [6, Lemma (3.4)] that f is cohomologically tame
with respect to X.

Remark. Consider a closed embedding of F: X — Al in p: YxAl — Al
where ) is smooth and p is the second projection. Let x: X < Y xAl be the in-
clusion. Then f is cohomologically tame if and only if the constructible complex
F = R(k0j).Cy is noncharacteristic with respect to p along X—U, in other words
its characteristic variety or microsupport (see e.g. [10]) Char F C T*(YxAl) (i.e.
the one of the corresponding bounded complex of regular holonomic D-modules
on YxA') satisfies Char F N (YxT*A') C Yx A over the points of k(X —U) (see
e.g. [23, prop-def. 1.1]).

Remark also that the noncharacteristic property is satisfied by Rj.Qu (or F as
above) if and only if it is satisfied by each of its perverse cohomology sheaves. o

In the remaining of the paper we will assume for simplicity that n > 1, i.e.
dimU > 2.

The following theorem (which is essentially well known) contains the main
properties of the direct images sheaves of the constant sheaf Q7 under the map f.

Theorem 8.1. Let f: U — Al be a cohomologically tame polynomial with
n+1=dimU > 2. Then

(1) the complex Rf,FQy; (resp. RfiFQq;) has nonzero perverse cohomology in
degrees k € [—n,0] (resp. k € [0,n]) at most; for k < 0 (resp. for k > 0)
PR*f.PQy, (resp. PRFfiPQy; ) is the perverse constant sheaf of rank
dim H*"(U,Q) (resp. dim H***(U,Q)) on the affine line Al;

(2) the kernel and the cokernel (in the perverse sense) of the natural mor-
phism PRYfiRQ;; — PR’f,"Q,; are constant perverse sheaves (with the
same rank) on Al;

(3) the complex Rf.Qu has cohomology in degrees k € [0,n] at most;
for k < n, R¥f.Qu is the constant sheaf of rank dim H*(U,Q) on the
affine line A" and R"f,Qy[1] is perverse and equal to PR°f,PQy;
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(4) the complex RfiQu has cohomology in degrees k € [n,2n]| at most and
R"fiQu = H™' ("R°fi"Qu);

(5) if n > 2, one has an exact sequence
0— K — R'fQu - R'f.Quv — C — R""'fQuy — 0

where K and C are constant sheaves.

Remarks 8.2.

(1) For n =1, the last two statements have to be slightly modified.

(2) As we shall see below (cf. §13.12), the image (in the perverse sense) of the
morphism PRY#Q;; — PR’f,AQy; is isomorphic to a direct sum T@o, L[1],
where o: Al =¥ < A! denotes the open inclusion, £ is the local system
made of the cohomology spaces H"(f~1(t),Q) and T is supported on .
In other words, this image satisfies the conclusion of the decomposition
theorem. o

Let us first give some consequences of the tameness of f on the nearby and
vanishing cycle sheaves of F. Let ¢ € Al and i i) F ~1(¢) — X be the closed

inclusion. We will also denote j: f~1(¢) — F~1(c) the open inclusion induced
by j: U — X. Let also 1: X —U — X denote the closed inclusion.

Proposition 8.3. If f is cohomologically tame (with respect to X ) then
the following properties are satisfied:

(1) for each c € AL, ¢p_(71Qu) = ¢p_.(Rj«Qu), where ji is the extension
by 0 and

T op_c(7Qu) = i dp_o(RQu) = 0;

(2) foreachceAl, Yp_.(Rj.Qu)=Rj:(¢;_ Qu) and ¢p_ (71 Qu) =3 (¢;_.Qu);
(8) for each c € A, ity (Rj:Qu) = RjuQp-1(0)-

Proof: (1) It is clear that the two sheaves coincide on f~!(c). By Verdier
duality we have j"Qy = D(Rj"Qy) and %op_.(3"Qu) ~ D(*pp_ (Rj"Qr))
(see [5]). The two complexes ¢p_.(71Qu) and ¢p_.(Rj«Qr), being dual up to
a shift, have the same support, which is contained in f~!(c) by assumption of
tameness, so these two complexes coincide.
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(2) It is equivalent to show the analogous equalities using the perverse func-
tor Py and the perverse sheaf AQy;. Then the first equality is Verdier dual to the
second one. From (1) we deduce that *¢p_ (71" Q) = ji(*d;_"Qy) so the second
equality is equivalent to i}L(C) (1Qu) = 71Qf-1(¢) and it is enough to prove that

i_li;ll(c) (#Qp) = 0. But this is clear because the functors i~! and i;%l(c) com-

mute.

(3) is a direct consequence of (1) and (2). m

Corollary 8.4. For all ¢ € A,

(1) the complex ¢¢_.Qu has cohomology in degree n at most,
(2) on the sheaf Q, the functors Rf, and Rf; commute with the functors

—1 .l
wf_C’ Qbf_cy tr-1(c) and U1y

Proof: (1) We know that P9, HQy; is a perverse sheaf onf~1(c). The as-
sumption of tameness implies that its support consists of a finite number of points.
Hence it has cohomology in degree 0 at most.

(2) Let us show the result for Rf. and 1, . for instance. Let ¢ be the
coordinate on Al. We have

Vi o(RfQu) = ¢ (RF.Rj.Qu)
— RE.(¢p_(Rj.Qu)) (F is proper)
= RF, (Rj*(wf_cQU)) (Proposition 8.3)
— Rf.(v;_Qu) . m

Proof of theorem 8.1:

Lemma 8.5. If f is cohomologically tame and n > 1, then

(1) the complex Rf,Qu has cohomology in degrees m € [0,n] at most;

(2) for m € [0,n—1], the sheaf R™f,Qy is a constant sheaf on Al of rank
dim H™(U, Q).

Proof: The first point does not depend on the tameness assumption: this
is Artin theorem (see for instance [10, Prop.10.3.17]). It can be easily shown
with the tameness assumption, because, due to Proposition 8.3, restriction to
fibers causes no problem, so it is equivalent to the fact that each fiber f=1(c)
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has cohomology in degrees m € [0, n] at most, which can be proved using Morse
theory (see e.g. [10, Th.10.3.8]).

For the second point, remark that for each ¢ € Al we have an exact sequence

- — H™(i; 'Rf.Qu) — H™(b—RfQu) — H™(¢r—RfQu) — -+

and we have H™(¢y_.Rf.Qu) = ¥1—R™f.Qu because Rf,Qp has constructible
cohomology on Al. Moreover we clearly have H™(i;'Rf.Qu) =i ' R™f.Qy.
From Corollary 8.4 we deduce that H™(¢;—Rf.Qu) =0 for m # n. Hence
for m < n we have ¢;_R™f.Qy = 0, which implies that R™f,Qp is a locally
constant sheaf on Al, hence a constant sheaf.

The Leray spectral sequence with Fy'? = HI(Al, R™f,Qp) degenerates at E»,
as follows from the previous results and this gives the statement concerning the
rank of R"'f,Qy for m < n. m

Remark. At this point, one can compute the generic rank of R"f.Qu
(or R™fiQr): one uses the fact that for a constructible complex F on Al the
cohomology sheaves of which are local systems on Al — X, one has, for tg € Al—X,

XA F) = X(Fip) = > x(dy_F) -
ceEX

When applied to F = Rf.Qu (or RfiQp), this gives

rk R"f.Qu = p+h"(U,Q) — "' (U,Q) .o
Lemma 8.6. We have PRFf,2Q, = R""*f,Qu/[1] for any k € Z.

Proof: For each ¢ € Al the complex RQp-1(p = Qf_l(c) [n] is perverse and

we have an exact sequence of perverse sheaves on f~!(c)

can
(8.7) 0 — M1y — My Qu —— "y Qy — 0.

We deduce a long exact sequence, by taking direct images and perverse cohomol-
ogy, and using the fact that ) and ¢ commute with Rf, (Corollary 8.4) and
perverse cohomology:

can

- — PR™ *p(@f_l(c) - p"vz}t—chm *R@U - qut—chm *R@U -
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where Z’R’""f*p@f,l(c):Her"(f_1 (c), Q). Using the fact that H™+*(f~1(c),Q)=0
for m > 0 and (tameness) p,_ PR™fFQ;; = 0 for m # 0, we conclude that for
m # 0 PR™f,AQ are (locally) constant sheaves on Al and we obtain an exact
sequence

0 — H"(f7(c),Q) —— ", PRf.MQy — T, PRLAQy — 0
which gives surjectivity of can for PRf,AQ;.

Now, for a perverse sheaf F on A!, the fact that can is onto is equivalent to
the fact that F is an ordinary sheaf (near c¢). Since the perverse cohomology
sheaves of Rf,Qy are ordinary sheaves up to a shift by 1, we conclude that these
are also the ordinary cohomology sheaves up to a shift by 1. m

The statements of the theorem for Rf,Qy are now proved. The perverse
statements for RfiQp follow by Verdier duality and the nonperverse ones are
straightforward consequences. The last point of the theorem follows then from
the second one. Let us now prove it.

Consider the complex i~'Rj,Qy, which is the cone of 7Qy — Rj.Qp.
Proposition 8.3 shows that we have ¢ch(i*1Rj*QU) = 0 for each c e Al
This implies that the perverse cohomology groups of RF,(i"'Rj,Qy) are (lo-
cally) constant sheaves up to a shift, hence the ordinary cohomology groups also.
Consequently the (perverse) cohomology groups of the cone of RfiQy — Rf.Qu

are constant sheaves, which implies the first part of (2). u

9 — The Gauss—Manin system of a regular function

Let Op be the sheaf of regular functions on the affine manifold U and
f: U— Al be a regular function. The Gauss-Manin system of f is the complex
f+Op of Dy-modules.

Denote QF(U) the space of algebraic differential forms of degree k on U. Then

(1) HYQ'(U),d) = H*U,C),
(2) if f has only isolated critical points, the complex (Q°(U),dfA) has coho-
mology in degree n—+1 only.

The following is proved as in [15] or [24] (the statement about regularity is
well known):

Proposition 9.1. f,Oy is represented by the complex (Q*t"1(U)[,], dy),
where the differential d; is defined by dp(3", w;0}) = >, dw;0; — >, df Aw;0f .
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The cohomology modules H’(f,Oy) are naturally equipped with a structure of
a C[t](0;)-module which makes them holonomic modules, regular even at infinity.
Moreover H/(f+Op) =0 for j & [-n,0].

Remarks.

(1) We identify here algebraic Dg-modules with modules over C[t](0:).
We always have H™"(f+Oy) = CJ[t].

(2) If U= A"*! the (left) action of ; is invertible on H/(f, Oy) for
—n<73<0.0

The complex (Q*T"T1(U)[8;], df) comes equipped with an increasing filtration
M, defined by

MkQ°+n+1 (U) [at] — Qetn+l (U) [@t] It

where the filtration on the RHS is the one by the degree in 9;. This defines
a filtration on the cohomology groups of this complex.
Assume from now on that f is cohomologically tame.

Proposition 9.2.  Under this assumption, for j <0, the C[t]-module
HI(f+Op) is free of rank dim H'+"(U,C).

Proof: By the comparison theorem we have
PDR™H!(f,Op) = PRIf,PDR™Oy = PRIf,’Cy

and from Theorem 8.1 we know that for j <0 this complex is the constant sheaf
(up to a shift) of the right rank. m

Corollary 9.3. If U= A" the subcomplex (df A Q3;,d) of (Q**1,d) has
cohomology in degree 0 and n only and the relative de Rham complex (€27, /AL d)
has cohomology in degree 0 and n at most.

Proof: Let n€ Q¥(U) with 0 <k <n and w=df An such that dw =0,
ie. df Adn = 0. This implies that dyw = 0, hence w = d;§ with § € QF(U)[7].
Thanks to the de Rham Lemma, one may assume that & € Q¥(U) so that the
previous equality is equivalent to w = d¢ and df A& = 0. Put € = df An/. Then
w=d(dfA\n).

The second part of the corollary is now clear. m
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We shall denote M = H°(f+Op). It is henceforth a holonomic C[t]{;)-module
with regular singularities (even at t = 00). Let M be its Fourier transform (see

Section 2) and let G = M\[T_l] = M[9;']. Then G is a free C[r, 7~ !]-module of
finite rank pu.

Remarks 9.4.

(1) Consider on UxA! (where A' = Spec C[r]) the D, g-module O -

Then the complex (Q*T"T1(U)[r],ds), where d; is defined as in Proposi-
tion 9.1.(1), represents the direct image by p: UxA! — Al of O

In other words we have M = H0<p+OUxA1' e 7).

(2) The localized complex (Q* " (U)[r,771],dy) = P+O0, i [771]-e77f has
cohomology in degree 0 only when f has only isolated critical points, and

et

-7
Uxil € d

this cohomology is equal to G. o

10 — The Brieskorn lattice Gy and its spectrum
Let My C M be the image of Q"1 (U) in M = Q"1 (U)[0,]/d Q" (U)[0].

Theorem 10.1. Assume that f is cohomologically tame. Then M is a free
C[t]-module of finite rank generating M over C[t](0;).

From Proposition 2.1 we conclude, putting § = 77 1:

Corollary 10.2. Let Gy be the C[f]-module generated by My in G. Then
Gy is a lattice in G (see §1) and the rank of G is equal to the sum of the Milnor
numbers of f at its critical points. Moreover the fiber Go/0Go at 6 =0 (i.e.
T =00) is equal to QT (U)/df A Q™ (U).

Remarks 10.3.

(1) If U= A", we have M = M[d; '], My is stable by 9;! and, using the
identification G = M = M, Gy is identified with Mo, viewed as a C[6)]-
module and not as a C[t]-module. This lattice Gg is usually called the
Brieskorn lattice. We have Go/0Go ~ C[xy, ..., zy]/(0f /0x0, ..., 0 f | Oxy,).

(2) If U#A™ then Gy is the lattice obtained from My after saturation by 9; '
It is the image of Q"*H(U)[r~!] in Q"1 (U)[r, 7] /df (Q"TH(U)[r, 771]).
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So not all the elements of G are represented by differential forms: they
are represented by polynomials in § with coefficients in Q" 1(U).

(3) IJ[(X+3)"# denotes the spectral polynomial of (G, Gy) as defined in § 1,
it follows from Proposition 1.7 and [29, cor. 1.13] that | [ 5(T—exp 2in3)"?

is the characteristic polynomial of the monodromy at infinity of f on the
cohomology H" ™Y (U, f~1(¢); Q). o

Proof of the CJ[t| finiteness of Mj: Consider first the following situation:
Y is a smooth projective variety, I/ is a Zariski open set of ) and Z =Y — U.
Let j: UxA — YxA and k: YxAl < YxP! denote the inclusions. Let M be
a regular holonomic D, ,,-module (regularity along YxP—UxA! is included),
and let N'C M be a coherent sub-D.

U x AL
a-module. Here the differential operators

/ ,-module. The cohomology of Rj.N
admits a natural structure of a Dyx ey
are algebraic. The corresponding analytic objects are indicated with the exponent

“an” .

Proposition 10.4. Assume that the analytic de Rham complex DR*"j M
(which has constructible cohomology on YxAl) has no vanishing cycle in some
(analytic) neighbourhood of ZxA! with respect to the projection 7: Y xAl — Al
Then there exists a coherent Dy, 4 y-submodule N of M satisfying Dy s-N=M
and such that the cohomology of Rj,N is coherent over Dyx ALJAL

Lemma 10.5. Let M be a regular holonomic Dyxlpl—module and let X C

YV x Al be the set of points (y,c) such that y € Supp qbﬂ_C(DRan//\/lv). There exists
a coherent Dy ypt p1 -submodule N of M such that Dypr N =M and

N[#(Yx00)] = M[x(Yx00)] on YxP'—% |

In particular Mv[*(yxoo)] is D))XIF’l/IP’l [*(Yx00)]-coherent when restricted to
YxPl-3.

Proof: By GAGA it is enough to prove the result in the analytic category.

There exists only a finite number of critical values ¢ € P' for which
QSTF,C(DR”//\;I/) is nonzero. Hence X is contained in the union of a finite
number of fibres of m and is compact.

Let ¢ € P! and V©M be the Malgrange-Kashiwara filtration of M along
Yx{c} (see e.g. [27, 21, 32]). It is known that each step V49 M is relatively coher-
ent in an analytic neighbourhood of Y x{c} (this can be proved using resolution
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of singularities [21, th.4.12.1], see also [27, prop.5.1.5]). We put N = Vl(c)M in
this neighbourhood.

It follows from the correspondence between regular holonomic D-modules and
vanishing cycles (see e.g. [21]) that we have M= Vi IM=Nina neighbourhood
of (y,c) € X.

We hence construct N by glueing the various Vl(c)ﬂ in neighbourhoods of
critical values with M outside these critical values.

For any critical value ¢ € P!, let z be a local coordinate on P! centered at c.
We also have M[z~1] = (Vl(c)ﬁ/lv)[zfl] (see e.g. [21]). Applying this for ¢ = oo
gives the result. m

Proof of Proposition 10.4: Let M be an algebraic D,,, ,,-module which
is holonomic and regular even at infinity. If DR*"j; M has no vanishing cycle
in some neighbourhood of ZxA!, then the same is true for DR*®H?*(j, M) for
each ¢: in fact % PDR™H?’(j, M) is the (-th perverse cohomology object of
Pp._ PDR*™(j: M), and the last complex is zero if and only if all its perverse
cohomology objects are so. Consequently the set ¥ associated with j. M is
the union of the sets ¥, associated with H*(j,M). By assumption we have
YxP = (UxA) U (YxPL-%).

We will apply the lemma to M=HO J+M. We get a coherent Dy, 1, o -module
N CM and we put N=j *k* N, which is a coherent Dyn / a-module generating
M over Dux Al Moreover on Y xP!— ¥ we have

(RERjN)™ = (R(koj).(koj)*N)™

= (R(koj)u(koj) kuk* N)™

= (R(koj)s«(koj)* k‘*kz*M)an because of 10.5

= (Rk.Rj M)™

= (kpjtM)™ .
The last complex has DY p1 p [*(Yx00)]-coherent cohomology on YxP!— ¥
because of Lemma 10.5. We conclude that (Rk,Rj,N)*" is DY p1 [*(Yx00)]-

coherent on YxP! and Rk,Rj.N is Dy, p1 1 [¥(Yx00)]-coherent by GAGA.
Consequently Rj, N is Dy, 1/ j-coherent. u

Corollary 10.6. Let M be as in Proposition 10.4. Then for any coherent
DUXAI/Al -submodule N'C M and for any { the image of

H'UxA' DR, N) — H*(UxA, DR, M)
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has finite type over C[t], where DR, denotes the algebraic de Rham complex
relative to m: Ux Al — Al

Proof: It is enough to prove this for some N generating M over Dyyypa-

One uses the N given by the previous proposition. Then
R(70j)DR; N = Rn.Rj. DR, N = Rm, DR, Rj.N
has Oy-coherent cohomology and

H'UxA" DR, N) = I'(A', R'(70j), DR N) . u

End of proof of the finiteness of M

Let X DU be the quasi-projective variety associated with f (see beginning of
Section 8), let X be a projective compactification of it and ) be a smooth pro-
jective manifold containing X as a closed subset. Let Z=X—-U and U = Y —Z.
We have maps

Ut Uxal sy al 2 yxal

AR
A = A = A

where i and 7 are closed immersions. We have iy Oy = Oy[d] - §(t— f) and the
relative de Rham complex DR (i+Op) is the one given in Proposition 9.1.

It is enough to prove that if N is a DUXAl/Al-submodule of 14Oy, the image of
HY(DR, N(UxA")) — H*(DR,iyOp(UxA"))

has finite type over C[t] for all £ where DR,, denotes the de Rham complex relative
to p: indeed, if we take for N the DUXAl/Al—submodule generated by Oy -d(t—f),
we see that My is contained in the image of

H" ™ (DR, N(UxA")) — H"*'(DR,i4Oy(UxA")) .

The module n4i;Op satisfies the assumption of Proposition 10.4 and since
7 is a closed relative immersion, we can apply Corollary 10.6 to N'= 7, N.



210 C. SABBAH

Proof of the C[t| freeness of My: Let ¢ be any critical value of f and

V.9 M be the Malgrange Kashiwara filtration relative to t—c. It is enough to
prove that, in a neighbourhood of ¢, we have M, C V<(61)M , because by con-

struction V<(

Malgrange-Kashiwara filtration on i1 Op.

i)M has no torsion near c. Let V(9 (i, Oy) be the corresponding

Lemma 10.7. After restriction to the complement of all critical values # c,
we have

V.M = image H"(DR(V.(i+Ov))) — H°(DRx(i+Ov))

where m: UxAl — Al denotes the projection.

Proof: As indicated in the proof of Lemma 10.5, when we restrict to the
complement W, of all critical values different from c¢, i.e. when we tensorize with
Clt, (Hc/#(t—c’))_l], each V,(i4+Op) is Dyyw, jw-coherent. If V! M denotes the

RHS in the lemma, we conclude that each VM is finite over C[t, (Hclic(t—c’))_l].
The other characteristic properties of the Malgrange—Kashiwara filtration are
clearly satisfied by V/M, so V/M =V,M on W, by uniqueness. u

In order to conclude, it is enough to prove that 6(t—f) € V<(Cl) (14+Op). This is

equivalent, by a standard argument, that the roots of the Bernstein for (f— ¢)*
are negative. It is shown in [3] (see also [20, Prop.4.2.1]) that the Bernstein poly-
nomial for (f— ¢)® is equal to the lem of the local analytic Bernstein polynomials
of f— c at the critical points of f with critical value c. The roots of each of these
local Bernstein polynomials are negative [9], so the same is true for the global
Bernstein polynomial. n

11 — Duality for the Brieskorn lattice and for the spectrum

We will adapt the construction of higher residue pairings given by K. Saito [30]
in the present algebraic situation. We will construct in this Section an isomor-
phism G"—- G which strictly shifts the filtration G, by n + 1, i.e. ég = Gag1.

We then deduce from Corollary 3.4 the following:

Corollary 11.1. The spectrum at infinity of a cohomologically tame poly-

n
nomial of n + 1 variables is symmetric with respect to . n
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Proposition 3.9 shows that it is enough to construct a morphism
DM — M

where M = H"f, Oy and D is the duality functor for C[t](9;)-modules, such that
the kernel and the cokernel are free C[t]-modules of finite type, and which strictly
shifts by n + 1 the microdifferential Brieskorn lattice /\/lg of f.

Because f Oy has cohomology in degrees —n and 0 only we see that D f. Oy
has cohomology in degrees 0 and n only. Moreover we have H'Df, Oy = DM,
and H™"f+Op and H"Df.Oy=DH " fLOp are free C[t]-modules of rank one.
Hence it is enough to construct a morphism

(112) Df+OU —_— f+OU

such that the cohomology of its cone consists only of free C[t]-modules of finite type.
Let us consider a smooth quasi-projective compactification of f, namely a
smooth quasi-projective manifold X and a commutative diagram

with f proper and j open. It will be convenient to assume that D = X —U is
a divisor in X and that X dominates the partial compactification X for which f
is cohomologically tame.

Because duality commutes with proper direct image (see e.g. [19, 33, 38]), it is
enough to construct a morphism Dj; Oy — 54+ Opy. But we have such a canonical
morphism because j7Dj, Oy = Op. One verifies that such a morphism (11.2)
does not depend on the choice of the compactification.

By the comparison theorem and the local duality theorem (see e.g. [19,
th.4.3.1]) this morphism corresponds via the functor PDR* to the canonical
morphism RfifCyy — Rf,.PCy. But we know that the cohomology of the cone of
this one has constant cohomology sheaves. Hence the cohomology of (11.2) has
Clt]-free cohomology modules. n

Relation with local duality

Let M = M® = HYf, (Ox[*D]). Let B be an open neighbourhood of the
critical points of f in U and A a neighbourhood of the critical values such that
f: B — A is the local Milnor fibration and let M’ =H°f, (O%) be the local
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Gauss—Manin system of f around its critical points. We have a natural restriction
map ./\/l‘ A — M’ of Da-modules. Moreover we have a commutative diagram of

Poincaré duality maps DM, . — s M
A |A
DM’ —— M

where the left vertical map is the adjoint of the right vertical one: this follows
from the functoriality of the Poincaré duality map as constructed in [36] for
instance.

It is known (see e.g. [34]) that the local Poincaré duality map DM'— M’
induces an isomorphism DM" — M" which sends (DM")q onto M2, | if M
denotes the formal microlocal Brieskorn lattice of f: B — A (in fact, this is true
at the level of microlocal lattices). So it remains to identify M} with M in

order to get the result, according to Proposition 3.9.

Identification of the microdifferential Brieskorn lattice

Put £ = O[+D] and choose an O-coherent submodule Ly of £ such that
Dyﬁo =L and that the image of the composed map

7. (ngl ® 50) — 1, <Q}+1 ® E> = O — M
07 OY

is equal to the one of f*QZ'H, namely My. Such an Ly exists since My is
(’)Al—coherent.

Let & be the sheaf of microdifferential operators on 7" X (formal or conver-
gent, this will not matter now) with its subsheaf £(0). Let Lh= Ex(0) ®p_Lo.
X

Lemma 11.3. The image of the natural morphism

Rf (51 ~(0) & z“) — RYf (51 @%U‘) = Epan @ HUFLL
*\ CAlan X £.(0) 0 * Aaru—xgY A +

Alan

is equal to ./\/lg.

Proof: This is a direct consequence from the fact that the natural map
f gAlan (O> 771® Q%‘F - AlanHY(O)
f OAlan

induces a quasi-isomorphism after ®5ﬁ£0 and direct image by f, as follows from
X
9, §4]. m
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Now L* is supported on D and on the critical points of f, and the part of
the direct image coming from D is zero, because f factorizes through X where
a non characteristic property is assumed along X — U. Hence Mg is indeed the
microlocal Brieskorn lattice of f: B — A. n

12 — The case of a convenient nondegenerate polynomial

Assume that f: A"T'=U — Al is nondegenerate with respect to its Newton
polyhedron at infinity and that f is convenient (see [12]). Then it is known
that f is tame (see [4]). One can define the Newton spectrum of f (see [7], but
here we shall consider an increasing Newton filtration, so the Newton spectrum
considered here is opposite to the one considered in [7]). We shall prove

Theorem 12.1. In this situation, the Newton spectrum of f is equal to the
spectrum of the Brieskorn lattice of f.

Remark. This result is analogous to the one of M. Saito [31] (see also [11])
for the case of an isolated singularity. The proof will be analogous. o

Proof: We shall use the following notation:

For a n-face o of the Newton polyhedron of f not containing the origin,
L, will denote the linear form with coefficients in Q% such that L, =1 on o.

For u(z) € Clx], we denote §%(u) = max, L,(v+1) where v € N**! is the
exponent of a monomial in u. Moreover §*(u) will denote the maximum over all
such o of 0} (u). We define §, and ¢ in the same way, replacing L,(r+1) with
Ly (v).

For a € Q we put N,Q""!'={u-dz| §*(u) < a}. This defines an increasing
filtration of Q"*!(U) by finite dimensional vector spaces with N,Q"*! =0 for
a<0.

We put N,Go = image N, Q"1 C Gy.

We define a filtration NV,G of G:

NoG = NoGo+ TNy 1 Go+ -+ TN Go + -

which is clearly stable under the action of C[r] and satisfies TAV,G C N,_,G.

Lemma 12.2. The filtration N,G is equal to the Malgrange—Kashiwara
filtration V,QG.
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Proof: Let us first show that N, G has finite type over C[r] (over C[7](70;)
would be enough). It is enough to show that, for a given «, there exists kg such
that for & > ko we have

T a+kG0 - (C[T] (NCVGO +o Tt TkONa+koG0) :

Let us fix kg such that Na+k0G0+G—l:GO7 let k>ky and let w-dx €
N w2 (U). By the division lemma [7, 2.2.1], we have

u-dr =v-dr+dfAn

with [v-dz] € N, Go and 6*(dn) < 6*(udr) — 1. So we have modulo Imdy
the equality

- de = v - de + 7% tdy
and we can argue by decreasing induction on k to get the result.

Let o be a codimension one face not containing the origin and put &, =
Ly (20). Then (& +Lo(1)) (ue™™) - dz € d (Q"(U)[r]e~"f) for u € Clz], so we
have the following relation modulo Tmd in Q"+ (U)[r]e""/:

(12.3) (70, +35(u) -ue™ ™ de = — [€, (u)~6, (w)u] e~ de + 7(f— & () ue™ de.

Moreover, for any such face ¢/ we have &% (&5 (u) — 65 (w)u) < 6% (u) and
05 ((f =& (f))u) < 6%(u)+1, and both inequalities are strict if o =o.
We conclude that

so N, G is stable under the action of 70;.

Moreover, by iterating #{o| 6} (u)=0%(u)}-times relation (12.3), one shows
that there exists No(«) with (10, + a)V(YN,Gy € N_,G and by the finiteness
result above there exists N (a) such that (79, + o)V NG c N_,G.

Because NGy = 0 for a < 0, we have N,G = 7N, G for a < 0.

Because the action of 0, on Gg is induced by the multiplication by f on
Q"*1(U) and because §(f) =1, we have 9;NoGo C NGy, hence 9-NoG C
N, 1G.  Moreover for a >0 we have N, G =N,G+ 9-N,G: indeed, if

o

ue~ ™ dz € N, Gp, we have (9,7 + )Nt Dye=7Fdg € N.q1G, so
ue " dx = 0, [Tb(70;) ue_de:L‘] +v

with v € N_, G and 7b(70; )ue "/ dx € N,G and we iterate the process on v
to get the result. m
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The spectrum of the Newton filtration is by definition the spectrum of the
filtration N, defined by

M(GO/G_l) = NaGo/(NaGO ﬂG_l) .

From the previous lemma we get N,Go C VoG N Go, hence N,(Go/G_;) C
Va(Go/G_,) for all a. In order to show that both filtrations (or spectra) coincide,
it is enough (by an argument of Varchenko, [11]) to show that both spectra are
symmetric with respect to (n+1)/2. For V, this has been shown in the previous
Section and for A this has been shown in [7, prop.7.3.3], using arguments
analogous to the ones in [11]. u

Remarks.

(1) R. Garcia pointed out that the relation between the Newton spectrum
and the characteristic polynomial of the monodromy at infinity of f that
one deduces from the identification between the Newton spectrum and

the spectrum of the Brieskorn lattice was expected in [1].

(2) The order with respect to the Newton filtration of the n+1-form dz is
minimum and is obtained only for this form. It follows from [7] that the
class of dz in Go/G_, generates the vector space V,, (Go/G_,), where

in

o, 18 the smallest spectral number. This space has thus dimension one. o

13 — Hodge theory for the Brieskorn lattice

We assume in this Section that f: U — Al is a cohomologically tame regular
function.
We will use the identification

oM = I HOFL0p) = OO Oulr ) = wla = @) en@
a€l0,1]
and it follows from [29, th. 5.3] that this space is equipped with a natural mixed
Hodge structure isomorphic by [35] to the limit of H"*1(U, f~1(t)) for t — oo
as constructed by Steenbrink and Zucker [40] up to a Tate twist.

Theorem 13.1.

(1) The weight filtration of this mixed Hodge structure is the monodromy
filtration of N centered at —n for wf};ﬁG and at —(n+1) for w;‘}fdG.

(2) The Hodge filtration is the filtration induced by G, on ¢¥™°4G.
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The proof will be given in §13.11. As a consequence of the proof we will
obtain in §13.18 the positivity of the spectrum:

Corollary 13.2. The spectral numbers of the Brieskorn lattice are contained
in the closed interval [0,n+1] and if U= A™*! in the open interval ]0,n+1].

Remark. If U# A" it may happen that 0 belongs to the spectrum,
as shown by the following example: take U= (C*)"*!, f is a Laurent polynomial
which Newton polyhedron has dimension n+1 and contains 0 in its interior
(i.e. f is convenient) and which is nondegenerate with respect to its Newton

d d
polyhedron. Then the class of the form 820\ AZER s contained in GonWG. o
Zo In

From standard results in Hodge theory we have

Corollary 13.3. The morphism N: ¢y™°4G — 4@ strictly shifts by one
the filtration induced by G,. n

As a consequence we get from M. Saito’s criterion 6.4

Corollary 13.4. The Brieskorn lattice of a cohomologically tame function
has a very good basis € which satisfies S(g;,¢;) € C-0™"1 if S denotes the non-
degenerate sesquilinear form G Dco.0-1] G — Cl0,07] of §11.n

One deduces from Proposition 4.1

Corollary 13.5. The Riemann—Hilbert—Birkhoff problem has a solution for
the Brieskorn lattice of a cohomologically tame function. m

Let V be any smooth quasi-projective manifold of pure dimension dim V' and
let F'5,H*(V,C) be the (decreasing) Hodge Deligne filtration on the cohomology
spaces of V. For ¢ € N, let

xpa(Vig) = (=)@ Y (-1)* dimgr, HY(V.C)
k

= Y (-1)'dimgr}, H™V(V,C),

i

e (V3 8) = [ (S + dimV— g)xoaVia)

q
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Remark that if we put xf(V;q) = >, (1) dimgrf, HI™VH(V,C) we have
Xoe (V@) = Xpey (Vi dim V — g). For instance, if V.= A", we have (p,(V;S) =
(S+n+1)0

Corollary 13.6. If f is cohomologically tame on U, we have

SPy(G,Go; S) = SPy (P y(RFfFCy); S) - (pa(U; S) -

Proof: As f is cohomologically tame we know that H’(fOp) are free C[t]-
modules for j#0, so that H’(f,Op) are supported at 7=0 for j#0, and if
we put M = H°(f1Op) we have

mod(F70p) = 4 (HO(f,0p)) = YoM = ypodG

Consequently we have SP,(G,Go; S) = SPM%TR%U; S), according to the
second part of Theorem 13.1.
On the other hand, we get from [29, cor.5.4] that the RHS in 13.6 is equal to

SPy (%, RF.FCu: S) - (pa(Us S)
and we are reduced to showing
SPy ("1 REICy; S) = SPy (% REICU: ) - Goa(Us S) -
This follows from the exact sequence in [29, th.4.3]. =

From now on, we will assume that f: A"t — Al is a cohomologically tame
polynomial.

From the positivity statement 13.2 it follows that for a very good basis the
matrix Aj+ k1d is invertible for all kK € N. From Corollary 4.2 we conclude

Corollary 13.7. The partial Riemann—Hilbert problem for the Brieskorn
lattice of f has a solution. m

Concerning the Aomoto complex considered in the introduction, the following
corollary solves conjecture 7.4 in [7]. However, the problem of explicit compu-
tation of such a basis remains open in general, even in the case of a convenient
nondegenerate polynomial.
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Corollary 13.8. If 0 is not a critical value for f: A"™' — Al there exists
a family of u algebraic differential forms on A"*! such that the determinant of
the Aomoto complex computed in this basis is equal to

c- (s+1)" | SPy(G,Go; s+1)

with ¢ € C*.

The constant ¢ is equal to the product [], f(2(?)" where 2(*) are the critical
points of f and p; the corresponding Milnor numbers (see [13]).

Proof: We may replace the differential d of the complex (Q*T"[1/f][0,], d)
d
with d’fw = dw— ]{ Aw-0yt, hence this complex isomorphic to (Q*TT1[1/f][s], ds)

with s = —0it and ds = f7%-d- f°. This defines an isomorphism of the Mellin
transform of M[t~!] with H°(Q**"*+1[1/£](s),ds) over the automorphism

C(s)(t,t™1) — C(s)(t,t71)
o(s,t) — @(s+1,t) .

The result is then a consequence of Proposition 7.4. u

We can restate cor. 13.6:

Corollary 13.9. If U= A"! and f is a cohomologically tame polynomial,
we have
SP¢(1/11/tR”f*(CU;S) = SPy(G,Go; S) .

Proof: We have
SP(1 1 Rf.Cu; S) = SPy(vy ), R"f.Cu; 8) - SPy 4y, f<Cu3 §) "

and the computation made in [29, rem.5.5] shows that SPg(¢, ,f.Cy;S) =
S+n+1. We may then apply Corollary 13.6. n

Consider now the operator of multiplication by f on Go/0Go = Q"+ /df AQ™.
It sends V3(Go/0Go) in Vj,1(Go/0Go) for each 3 € Q, hence defines a nilpotent
endomorphism

[f]: D er(Go/6Go) — Y erfy1(Go/0Go)
B B
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(remark however that the multiplication by f is not nilpotent on G¢/0Gg in
general). Let T, be the monodromy of f along a positively oriented circle of
big radius.

Corollary 13.10. The nilpotent part of T, ;' and [f] have the same Jordan
structure.

Proof: One may replace 2! with Ty (see [29, th.1.10]). The result is then
proved as in [42] (see also [37, §7]). m

Remark. We do not get here a precise relation between the nilpotent part
of the monodromy at infinity and the operator of multiplication by f, as in the
case of an isolated singularity. o

13.11. Proof of Theorem 13.1

We take notation of [29, §§4,5]: let X be a smooth compactification of U such
that X—U is a divisor with normal crossings and f: U — Al extends as F: X — P*.
According to [29, th.5.3], the first point would follow from the fact that

0 if k<0

WP, HO 2 Oy = .
KT O {%THOJ;OU it k>0,
We know that Wkpr’Hom :pr(Wkﬁof\JrOU) where W, HOf, Oy is the
image of

HFy (WijrOv) — HOFy (j1+Ou)

where j: U — F~(A!) denotes the inclusion (see [29, §§2.4.4 and 5]). It is then
enough to show that the Fourier transform of HC(f,Oy)/WoH’(f+Op) is sup-
ported at 7 = 0.

It follows from [35] that (j4+Opy, W[dim U],) underlies a mixed Hodge module
as well as (HO(f+Op), W[dimU],) (if the Hodge filtration of Op is such that
grf’ Oy =0 for k# —dimU). Hence H°(f+Oy) has weights > dim U.

As a mixed Hodge module we have DOy = Opy(dimU), hence 5 Op =
(Dj+Op) (—dimU) so 5Oy has weights < dimU as well as H°f,Op.

Consequently the morphism HO(fiOy) — H°(f+Op) factorizes through
W(dim U] ;. = WoH"(f+Ou) and as the cokernel of this map is isomorphic to
a power of C[t] (tameness of f), the same is true for HO(f Oy)/WoH’(f+Oy). n
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Remark 13.12. This argument can be used to show Remark 8.2-(2):
the image of HY(fiOy) — H°(f+Op) is a pure Hodge module. o

For the second point, recall that M = HOp, (ke E77F) (see loc. cit.). Let
G.k4+ €771 be the filtration defined and used in [29, §4]. Tt defines a filtration
G.py (k  E77T) of the complex p (k E77F), hence a filtration

G.M = G'H', (ke €71) = image [HO(G.@L(HJFS*”C)) — H0p+(,€+gﬂf)} .

It also defines a filtration G,1)™°k, £~/ using the V-filtration (see loc. cit.),
and as above it defines a filtration

GIH D (s £771) = image [HY(Gup (0" £771) — HOp (s €771

As we have HOpy (podk £77F) = ypmodHOp, (k, £77T) = Yiod M = yinodg,
we get two filtrations on ¥™°4G: the filtration G7¢M°4G is the one used in
[29, th.5.3] and the filtration G/,¢™°4G which is naturally induced from G.M.
Last, we denote (G, the filtration obtained from the Brieskorn lattice Gy
and G,¢™ 4G the filtration it induces naturally, related to the spectrum of the
Brieskorn lattice.
We want to show that G”y™°4G = G,¢™°4G, in order to apply [29, th.5.3].

Lemma 13.13. We have an inclusion G.™°4G C G,m°4G.

Proof: We can filter the complex (Q3" ! [«(DUF~1(c0))]®c C[r],d — Tdf)
either by the filtration counting the total pole order plus the degree in 7, and
after taking the global sections on X one obtains G’.]\/J\ , or by the filtration by the
degree in 7 only and one obtains the filtration of M by the My = Z?:o 73 M.
Clearly the inclusion is true at the level of complexes, so it remains true at the
cohomology level, hence G’.]/W\ C M, and G’.w?"d]\/i C M.Q[)?Od]\//f )

On the other hand consider G = M [771].  Then Gj is defined as
> 050 7! (imageMy), so the isomorphism ™0 — ¢modG sends M,ypmd D]
in G,™4G. u

Lemma 13.14. We have G"y™4G c GymedG.

Proof: We will use the following
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Proposition 13.15 ([21,th.4.8.1]). Let M be a holonomic Dy |[7](0,)-module
and let V,M be the Malgrange—Kashiwara filtration of M relative to T = 0.
Then for all i and all « we have a commutative diagram:

Hiﬁ+VaM — VaHiﬁJrM
Hipygra M = grg H'py M

where all the maps are onto. n

Then on the one hand we have
Glery G = image HOG.py gry, (v €77) — HOpy gry (v €777)
and we will show below that
(13.16) HOGp Va(ki &) — HOGpygr¥ (6. 6777)  is onto
SO
Glerg G = image H'Gups Va (ks €771) — HOpy gy (4 €777) .

But on the other hand the image of H°G,p V(K E77F) in HOp,y (k E77T)
is contained in GLHpy (ke &N N VaH Dy (k1 E7TF), hence we eventually get
G"'arVG c GLgrY G for all a € [0,1].

Let us show (13.16). The computation of (gr¥ x4 €7/, G,) made in [29, §4]
shows that for o < 1, the isomorphism 7: gr¥ x, 77/ — grV Ky E —7f sends G,
onto G, ;. From the Hodge property the complex G,p+ gr¥ (ky £77F) is strict
for any « € [0,1], hence, using this isomorphism, it is strict for any a < 1.
In particular we get that for any a < 1,

(13.17) HG Ly grt (k&) =0 for k>0.

On the other hand, (13.16) would follow from the fact that H'G,p, Vi E7/) =0
for any o < 1, and using (13.17) it is enough to verify this for o < 0. So let us fix
p € Z and consider H'Gpp 4 Va(k1E77F). For a fixed k, we have Gi(k+E77F) N
Vo (k4 E77T) = 0 for a sufficiently small (see the definition of these filtrations in
loc. cit.), so for a fixed p we have Gpp; Vo (k4 E77/) =0 for a < 0.n

We hence have G, gr/ G O G” grY G and it is enough to prove that equality
holds in order to get the second part of the theorem. This is done as in [37, §6]



222 C. SABBAH

using the symmetry of the spectrum of (G, Gp) on the one hand and the Hodge
symmetry and the fact that the weight filtration is the one computed above on
the other hand. m

13.18. Proof of Corollary 13.2

By definition, the filtration G,k €77 satisfies G, = 0 for k < 0. It follows
that the filtration G744 (k, €777 considered above satisfies the same property
and that the filtration that it induces on PDR* ™4 (5, £~7/) by the formula
(5.2) of [29] also. Hence GJ1™°4G =0 for k <0, so by the previous theorem
we have GG =0 for k < 0. This implies in particular that Voo =0 for
a€[0,1] and k£ <0, so v3 =0 for § < 0. Using the symmetry of the spectrum
11.1 one obtains the result.

If U = A", then G = M and Go = My. Lemmas 13.13 and 13.14 also hold
for gb‘TnOd]\//f and we can conclude that 1, , =0 for a € [0,1] and k£ < 0, so vg =0
for 6 <0.n
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Note added, August 2005

This article was achieved in 1997. The results have been announced in the
Compte-rendu Note [49]. Since then, new results in the domain have appeared.
Notice first that the main part of Part I has been explained with more details in
the book [50]. Some generalizations to functions having singularities at infinity
have been obtained by A. Dimca and M. Saito [45]. Let us also mention work of
A. Douai [46], A. Douai and the author [47, 48].
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