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Abstract. Based on the WZ method, some series acceleration formulas are given. These formulas allow us

to write down an infinite family of parametrized identities from any given identity of WZ type. Further, this
family, in the case of the Zeta function, gives rise to many accelerated expressions for ζ(3).
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We recall [Z] that a discrete function A(n,k) is called Hypergeometric (or Closed Form (CF)) in two
variables when the ratios A(n + 1, k)/A(n, k) and A(n, k + 1)/A(n, k) are both rational functions. A
discrete 1-form ω = F (n, k)δk + G(n, k)δn is a WZ 1-form if the pair (F,G) of CF functions satisfies
F (n+ 1, k)− F (n, k) = G(n, k + 1)−G(n, k).

We use: N and K for the forward shift operators on n and k, respectively. ∆n := N−1, ∆k := K−1.
Consider the WZ 1-form ω = F (n, k)δk+G(n, k)δn. Then, we define the sequence ωs, s = 1, 2, 3, . . .

of new WZ 1-forms: ωs := Fsδk +Gsδn; where

Fs(n, k) = F (sn, k) and Gs(n, k) =
s−1∑
i=0

G(sn+ i, k).

Proposition: ωs is WZ, for all s.
Proof: (a) ωs is closed:

∆nFs = F (s(n+ 1), k)− F (sn, k)

=
s−1∑
i=0

(
F (sn + i+ 1, k)− F (sn+ i, k)

)

=
s−1∑
i=0

(
G(sn+ i, k + 1)−G(sn + i, k)

)

=
s−1∑
i=0

G(sn+ i, k + 1)−
s−1∑
i=0

G(sn+ i, k)

= ∆kGs.
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Note that since ω is a WZ, it has the form ([Z], p.590):

(∗) ω = f(n, k)
(
P (n, k)δk +Q(n, k)δn

)
for some CF f and some polynomials P and Q.

(b) ωs has the form (∗):
Indeed, ωs can be rewritten as:

ωs = f(sn, k)
(
P (sn, k)δk +

s−1∑
i=0

f(sn + i, k)
f(sn, k)

Q(sn+ i, k)δn
)

= f(sn, k)
(
P (sn, k)δk +R(n, k)δn

)
;

where R(n,k) is a rational function and f(sn,k) is still CF. Hence after pulling out a common denomi-
nator, we see that ωs too has the form (∗). This proves the Proposition. �

Theorem 1: ([Z], Theorem 7, p.596) For any WZ pair (F,G)

∞∑
n=0

G(n, 0) =
∞∑
n=1

(F (n,n− 1) +G(n− 1, n− 1))− lim
n→∞

n−1∑
k=0

F (n, k),

whenever both side converge.

Formula 1:

(1)
∞∑
n=0

G(n, 0) =
∞∑
n=0

(
F (s(n + 1), n) +

s−1∑
i=0

G(sn + i, n)
)
− lim
n→∞

n−1∑
k=0

F (sn, k).

Proof: Apply Theorem 1 above on ωs. Alternatively, integrate ω along the boundary contour ∂Ωs
of the region Ωs = {(n, k) : sn ≥ k}. �

Formula 2: We also have that

(2)
∞∑
k=0

F (0, k)− lim
n→∞

n∑
k=0

F (n, k) =
∞∑
n=0

G(n, 0)− lim
k→∞

k∑
n=0

G(n, k),

whenever both side converge.

Proof: Integrate ω along the boundary contour ∂Ω0 of the region Ω0 = {(n, k) : n ≥ 0, k ≥ 0}. �
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Remark: By shear symmetry, a formulation similar to (2) can be given in ‘k’. And a combination
leads to:

Formula 3: For ωs,t = Fs,tδk +Gs,tδn; where

Fs,t(n, k) =
t−1∑
j=0

F (sn, tk + j) and Gs,t(n, k) =
s−1∑
i=0

G(sn+ i, tk), we have

(3)
∞∑
n=0

G(n, 0) =
∞∑
n=0

(t−1∑
j=0

F (s(n+ 1), tn+ j) +
s−1∑
i=0

G(sn + i, tn)
)
− lim
n→∞

n−1∑
k=0

Fs,t(n, k).

Analogous statements hold in several variables. To wit:
for the WZ 1-form in 3 variables, ωs,t,r := Fs,t,rδk +Gs,t,rδn+Hs,t,rδa; where

Fs,t,r(n, k, a) =
t−1∑
j=0

F (sn, tk + j, ra), Gs,t,r(n, k, a) =
s−1∑
i=0

G(sn + i, tk, ra) and

Hs,t,r(n, k, a) =
r−1∑
u=0

H(sn, tk, ra+ u),

Formula 4:
∞∑
n=0

H(0, 0, n) =
∞∑
n=0

(r−1∑
u=0

H(s(n+1), t(n+1), rn+u)+
t−1∑
j=0

F (s(n+1), tn+j, rn)+
s−1∑
i=0

G(sn+i, tn, rn)
)

− lim
a→∞

a+1∑
k=0

Fs,t,r(a+ 1, k, a)− lim
a→∞

a+1∑
n=0

Gs,t,r(n, a+ 1, a).

In [A], formula (1) was used to give a list of series acceleration for ζ(3) (where F (n, k) is given
and its companion G(n,k) is produced by the amazing Maple Package EKHAD accompanying [PWZ]). A
small Maple Package accel applying (3) is available at http://www.math.temple.edu/~[tewodros,
zeilberg].

For example: with F (n, k) = (−1)k n!6(2n−k−1)!k!3

2(n+k+1)!2(2n)!3 , s=1 and t=1 accel produces the following pretty
formula:

(∗∗) ζ(3) =
∞∑
n=0

(−1)n
n!10(205n2 + 250n+ 77)

64(2n+ 1)!5
.

Greg Fee and Simon Plouffe used (∗∗) in their evaluation of ζ(3) to 520,000 digits (available at
http://www.cecm.sfu.ca/projects/ISC/records.html).
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