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Abstract

Characterizing cellular responses to different extrinsic signals is an active area of research,

and curated pathway databases describe these complex signaling reactions. Here, we

revisit a fundamental question in signaling pathway analysis: are two molecules “connected”

in a network? This question is the first step towards understanding the potential influence of

molecules in a pathway, and the answer depends on the choice of modeling framework. We

examined the connectivity of Reactome signaling pathways using four different pathway

representations. We find that Reactome is very well connected as a graph, moderately well

connected as a compound graph or bipartite graph, and poorly connected as a hypergraph

(which captures many-to-many relationships in reaction networks). We present a novel

relaxation of hypergraph connectivity that iteratively increases connectivity from a node

while preserving the hypergraph topology. This measure, B-relaxation distance, provides a

parameterized transition between hypergraph connectivity and graph connectivity. B-relaxa-

tion distance is sensitive to the presence of small molecules that participate in many func-

tionally unrelated reactions in the network. We also define a score that quantifies one

pathway’s downstream influence on another, which can be calculated as B-relaxation dis-

tance gradually relaxes the connectivity constraint in hypergraphs. Computing this score

across all pairs of 34 Reactome pathways reveals pairs of pathways with statistically signifi-

cant influence. We present two such case studies, and we describe the specific reactions

that contribute to the large influence score. Finally, we investigate the ability for connectivity

measures to capture functional relationships among proteins, and use the evidence chan-

nels in the STRING database as a benchmark dataset. STRING interactions whose proteins

are B-connected in Reactome have statistically significantly higher scores than interactions

connected in the bipartite graph representation. Our method lays the groundwork for other

generalizations of graph-theoretic concepts to hypergraphs in order to facilitate signaling

pathway analysis.
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Author summary

Signaling pathways describe how cells respond to external signals through molecular

interactions. As we gain a deeper understanding of these signaling reactions, it is impor-

tant to understand how molecules may influence downstream responses and how path-

ways may affect each other. As the amount of information in signaling pathway databases

continues to grow, we have the opportunity to analyze properties about pathway structure.

We pose an intuitive question about signaling pathways: when are two molecules “con-

nected” in a pathway? This answer varies dramatically based on the assumptions we make

about how reactions link molecules. Here, examine four approaches for modeling the

structural topology of signaling pathways, and present methods to quantify whether two

molecules are “connected” in a pathway database. We find that existing approaches are

either too permissive (molecules are connected to many others) or restrictive (molecules

are connected to a handful of others), and we present a new measure that offers a contin-

uum between these two extremes. We then expand our question to ask when an entire sig-

naling pathway is “downstream” of another pathway, and show two case studies from the

Reactome pathway database that uncovers pathway influence. Finally, we show that the

strict notion of connectivity can capture functional relationships among proteins using an

independent benchmark dataset. Our approach to quantify connectivity in pathways con-

siders a biologically-motivated definition of connectivity, laying the foundation for more

sophisticated analyses that leverage the detailed information in pathway databases.

Introduction

Amajor effort in molecular systems biology is to identify signaling pathways, the networks of

reactions that link extracellular signals to downstream cellular responses. Computational rep-

resentations of signaling pathways have increased in complexity, moving from gene sets to

pairwise interactions in the past two decades [1]. Graphs are common representations of pro-

tein networks, where nodes are proteins and edges represent pairwise interactions between

two proteins. While graph representations have been useful for pathway analysis [2–5] and dis-

ease-related applications [5–7], the limitations of graphs for representing biochemical reac-

tions are well recognized [8–12].

Many pathway databases [13–20] have adopted reaction-centric signaling pathway formats

such as the Biological Pathway Exchange (BioPAX) [21], which provides more mechanistic

information about the interactions. As reaction-centric information has become available,

many modeling frameworks have been proposed to overcome the limitations of graphs for

analyzing signaling pathway structure [8, 9, 22, 23]. Compound graphs [24, 25] and meta-

graphs [8] aim to represent protein complexes and hierarchical relationships among molecular

entities in the cell. Factor graphs [26] have been used to infer pathway activity from heteroge-

neous data types. Hypergraphs [27, 28] are generalizations of directed graphs that allow multi-

ple inputs and outputs, and their realization as a model for signaling pathways is emerging [9,

11, 29]. Other models such as Petri nets [30] and logic networks [31, 32] move away from

structural network analysis and towards discrete dynamic modeling. Many of these modeling

frameworks have an underlying bipartite graph structure.

These new representations have improved fidelity to the underlying biology of signaling

reactions but also exhibit increased mathematical and algorithmic complexity. In this light, we

examine a fundamental topological concept: when are two molecules “connected” in a signal-

ing pathway? Defining and establishing connectivity is the first step to determining
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downstream or upstream elements of a molecule, which may indicate the influence of its activ-

ity or the effect of its perturbation. Connectivity is also central to computational methods for

identifying potential off-target effects, determining pathway crosstalk, and computing portions

of pathways that may be altered in disease.

We first begin by considering existing connectivity measures on four distinct representa-

tions of the Reactome pathway database [13, 14]. We demonstrate that these measures range

from highly permissive (e.g., path-based connectivity in graphs) to very restrictive (e.g., con-

nectivity in directed hypergraphs), depending on the representation. Thus, two molecules may

be “connected” in one representation of a pathway and “disconnected” in another representa-

tion. We then introduce B-relaxation distance, a parameterized relaxation of connectivity that

offers a tradeoff between the permissive and restrictive representations. We show that this new

version of connectivity uncovers more subtle structures within the pathway topologies than

previous measures, and is sensitive to the presence of small molecules that participate in many

reactions. We then consider 34 Reactome signaling pathways and use B-relaxation distance to

capture the downstream influence of one pathway on another. B-relaxation distance allows us

to gradually relax the connectivity constraints in hypergraphs, calculating pathway influence at

each step. The directed graph representation of Reactome is too highly connected to enable the

discovery of such relationships, and while these relationships appear in the bipartite graph

representation, they only emerge further away from the upstream “source” pathway. We

describe two case studies of pathway influence that we recovered, and describe the specific

reactions that contribute to the large influence score. Finally, we use the STRING database to

benchmark proteins that are connected in Reactome as a signal of functional relationships,

and show that stricter measures of connectivity are enriched for higher-scoring functional

interactions across multiple STRING evidence channels.

Results

Connectivity analysis using established traversal algorithms

We considered four established directed representations of signaling pathway topology and

their associated measures of connectivity (Fig 1). Directed graphs describe relationships

among molecules (proteins, and small molecules), while the other models describe relation-

ships among entities that include proteins and small molecules, their modified forms, protein

complexes, and protein families. Please refer to the Methods for full details about these repre-

sentations, including how they are built.

1. Directed graphs represent molecules as nodes and interactions as pairwise edges. Interac-

tions may be directed (such as regulation) or bidirected (such as physical binding). We use

a Breadth First Search (BFS) traversal to calculate the distance of a source node to all other

nodes in the graph.

2. Compound graphs represent interactions between pairs of nodes, which may be molecules

or groups of molecules (e.g., protein complexes or protein families). We use a previously-

established algorithm that traverses the BioPAX structure as a compound graph according

to biologically meaningful rules [25]. These rules are encoded within the BioPAX file for-

mat, and are described in more detail in the Methods under “Compound graph connectiv-

ity.” The method, CommonStream, takes as input a limit on the distance from the source

node which defines a search boundary. We run CommonStream and iteratively increase

the search limit until no new entities are returned.

Hypergraph-based connectivity measures for signaling pathway topologies
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3. Bipartite graphs contain two types of nodes: entity nodes and reaction nodes. Each bio-

chemical reaction has an associated reaction node, whose incoming edges are connected to

reactants and whose outgoing edges are connected to products. We use BFS to calculate the

distance of a source node to all other nodes in the bipartite graph. Like the directed graph,

there are no biologically-inspired rules that govern which edges can be traversed.

4. Directed hypergraphs represent reactions with many-to-many relationships, where each

hyperedge e = (Te,He) has a set of entities in the tail Te and a set of entities in the headHe
(here, the tail denotes the hyperedge inputs and the head denotes the hyperedge outputs).

We adopt a definition of connectivity called B-connectivity that requires all the nodes in

the tail of a hyperedge to be visited before it can be traversed [28]. This definition has a nat-

ural biological meaning in reaction networks: B-connectivity requires that all reactants of a

reaction must be present in order for any product of that reaction is reachable [11, 28].

Unlike the compound graph rules, B-connectivity describes the strictest version of connec-

tivity, and it is the only rule used to traverse hyperedges. We use an integer linear program

to compute the number of hyperedges in the shortest hyperpath between all pairs of nodes

[29, 33].

We converted the Reactome pathway database to each of the four representations in an

effort to determine if they agreed on connectivity (Table 1). The directed graph has fewer

nodes than other representations because it includes only proteins, but contains far more

edges due to large number of “in-complex-with”, “catalysis-precedes”, and “controls-state-

change-of” binary relations in the SIF file (S2 Table). The hypergraph, compound graph, and

Fig 1. Representations of two toy reactions as directed graphs, compound graphs, directed hypergraphs, and
bipartite graphs. In this work, we use “directed hypergraphs” and “hypergraphs” interchangeably.

https://doi.org/10.1371/journal.pcbi.1007384.g001
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bipartite graph, which are built from the BioPAX files, have more nodes than the graph since

they include protein complexes, families and modified forms as distinct entities. However,

since each hyperedge is a multi-way relationship, the number of hyperedges is smaller than the

number of edges in directed graphs. The compound graph and bipartite graph contain more

edges than the hypergraph since they describe relationships among entities using pairwise

edges.

The directed graph representation of Reactome is relatively well-connected, with about

80% of the node pairs in the graph connected by a path of length 5 or fewer (Fig 2A). We then

considered reachability from each node separately, and found that, nearly 90% of the nodes

reached over 80% of the network due to the large number of edges (Fig 2B). For the other rep-

resentations, we surveyed the same 19,650 entities representing proteins, small molecules,

complexes, and families. These representations are much sparser, where only 30–40% of the

node pairs in the compound graph and bipartite graph are reachable (Fig 2A). Two-thirds of

Table 1. Reactome database representations.

Directed Graph Compound Graph Bipartite Graph Hypergraph

# Nodes 12,086 19,650 30,775 19,650

# Edges/Hyperedges 444,204 38,218 45,155 11,125

https://doi.org/10.1371/journal.pcbi.1007384.t001

Fig 2. Reactome connectivity across pathway representations (directed graph BFS, compound graph traversal
[25], bipartite graph BFS, and hypergraph B-connectivity [28]). (A) The number of node pairs in each
representation that (left) are not connected by a path, (middle) are connected by a path of distance k, and (right) are
connected by a path with at most distance k. (B) Heatmaps showing the proportion of nodes that are reached with
distance k for every node surveyed.

https://doi.org/10.1371/journal.pcbi.1007384.g002
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the nodes in the compound graph representation reach 50% of the network while half the

nodes in the bipartite graph representation reach about 40% of the network (Fig 2B). In the

hypergraph representation, only five of the nodes are connected to more than 20 others in

terms of B-connectivity, and most of the nodes cannot reach any others (Fig 2A–2B). In hyper-

graphs, the B-connectivity requirement of visiting all nodes in the tail of a hyperedge before

traversal is overly strict for Reactome’s topology.

B-relaxation distance on hypergraphs

Connectivity in four different representations of Reactome largely exhibits an all-or-nothing

behavior: nodes are either connected to very few or a large fraction of all other nodes. Further,

while B-connectivity is a powerful definition of connectivity, it is too strict to be useful for

Reactome. We introduce B-relaxation distance, a parameterized relaxation of hypergraph B-

connectivity that naturally bridges the gap between B-connectivity in directed hypergraphs

and connectivity in bipartite graphs. When we consider the connectivity from a node v in the

hypergraph, nodes with a B-relaxation distance of 0 from v, denoted B0, are exactly the nodes

that are B-connected to v. Nodes with a B-relaxation distance of 1 (B1) allows one hyperedge to

be freely traversed, lifting the restriction that all nodes in the tail must be visited in order to tra-

verse the hyperedge. In general, nodes with a B-relaxation distance of k (Bk) require k hyper-

edges to be freely traversed. For shorthand, we will denote B�k to be the set of nodes with a B-

relaxation distance from a source node of at most k. A formal definition and efficient algo-

rithms for computing B-relaxation distance appear in the Methods).

We computed the B-relaxation distance from every node in the hypergraph to every other

node and plotted |B�k| for different values of k (Fig 3A). The first column (k = 0) is the number

of B-connected nodes for each source, a histogram of which is shown in Fig 2B. The last col-

umn (k = 49) corresponds to the other extreme: for each source node, we display the number

of nodes that are B-connected to the source while requiring that only one node in the tail of a

hyperedge needs to be connected to the source for us to determine that every node in the head

of the hyperedge is reachable from the source. The nodes reached for such a large value of k for

each source are exactly the nodes that are connected to the source in the bipartite graph

Fig 3. B-relaxation distance survey from each node in the hypergraph.Heatmaps show the number of nodes |B�k| in the Bk-
connected set from each source node (rows) for values of k (columns) in the hypergraph. (A) B-relaxation distance for full
hypergraph, (B) B-relaxation distance for hypergraph with blacklisted nodes removed [19], and (C) B-relaxation distance for
hypergraph with small molecules and three highly-connected entities (cytosolic Ubiquitin, nuclear Ubiquitin, and the Nuclear Pore
Complex) removed.

https://doi.org/10.1371/journal.pcbi.1007384.g003
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representation (Fig 2B). Again, we observe the nodes are divided into two sets: the top blue

half are nodes that are connected to very few others and the bottom yellow half are the nodes

that are connected to about 40% of the bipartite graph (Fig 3A and S1A Fig).

The nodes in the bottom half of Fig 3A exhibited a transition from reaching very few nodes

(blue) to reaching many nodes (yellow). The rapidity of this transition suggested that a small

number of nodes may be responsible for it. We hypothesized that these nodes may be small

molecules, e.g., ATP, water, sodium and potassium ions, that participate in a vast number of

reactions that are functionally unrelated. PathwayCommons reports ubiquitous molecules in

their database (“blacklisted nodes” [19]), and 155 of these appear in the hypergraph. Removing

these molecules from the hypergraph reduces the number nodes that are connected to many

others (Fig 3B). However, we found that small molecules remained even after removing these

“blacklisted” nodes. Instead of using the PathwayCommons list, we pruned the hypergraph by

removing the 2,778 nodes labeled as small molecules by Reactome, as well as three other

highly-connected entities (cytosolic Ubiquitin, nuclear Ubiquitin, and the Nuclear Pore Com-

plex). In total, we altered 5,180 hyperedges by removing these 2,781 entities, resulting in a fil-

tered hypergraph with 15,440 nodes and 8,773 hyperedges. In this hypergraph, even fewer

nodes are connected to many others, and the transition from low-to-high connectivity is more

gradual across different source nodes (Fig 3C). In contrast, removing PathwayCommons

“blacklisted” nodes and small molecules from the directed graph representation changed the

distribution very little, suggesting that small molecules played only a minor role in the the high

level of connectivity in directed graphs (S1 Fig).

From these results, we concluded that we had a promising definition of parameterized dis-

tance that allowed us to relax the strict assumptions posed by B-connectivity, and a hypergraph

where reachability was not affected by ubiquitous molecules that participate in many reactions.

For the remainder of this study, we use the hypergraph with all small molecules removed (Fig

3C).

Pathway influence across Reactome

While the entire Reactome pathway database appears to be poorly connected in the hyper-

graph representation, this determination comes from treating individual nodes as sources.

We wished to leverage Reactome’s pathway annotations to understand how pathways

are connected in the hypergraph according to B-relaxation distance. We identified 34 signal-

ing pathways in Reactome (see “Data formats and representations” in the Methods section

and S1 Table) and considered the relationship between pairs of pathways within the hyper-

graph. When we computed the overlap of the members within each pair of pathways, we

found that some pathway pairs already shared nearly all their members (Fig 4A). For exam-

ple, the normalized overlap between DAG/IP3 signaling and GPCR signaling is 0.9; DAG

and IP3 are second messengers in the phosphoinositol pathway, which is activated by

GPCRs. The next largest scores are 0.62 and 0.73 between Insulin Receptor signaling and

Insulin-like Growth Factor 1 Receptor (IGF1R) signaling. Other growth factor pathways

have moderate overlap (e.g., the overlaps among EGFR, ERBB2, and ERBB range from 0.24

to 0.32).

Our aim is to quantify how well a source pathway S can reach a target pathway T by finding

pathway pairs where T is “downstream” of S. Since we wish to find a directed relationship

between pathways, we should ignore the initial overlap between their member sets PS and PT.

Thus, we developed a score that measures how many additional members of Tmay be reached

when computing the B-relaxation distance from S, after accounting for the initial overlap and

the total of number of elements that are reached from S.

Hypergraph-based connectivity measures for signaling pathway topologies
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Fig 4. Overlap and influence of 34 Reactome signaling pathways. Rows indicate the source pathway PS and columns
indicate the target pathway PT. (A)Node overlap of pathway members (normalized by the size of PS). (B) Influence
scores for s3. Circle size denotes the number of permutations that have scores equal to or greater than the observed
influence score.

https://doi.org/10.1371/journal.pcbi.1007384.g004
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We define the influence score sk(S, T) of the source pathway S with members PS on target

pathway T with members PT for B-relaxation distance up to k (denoted B�k) as follows:

skðS;TÞ ¼
jðB�kðPSÞ \ PTÞnðPS \ PTÞj

jB�kðPSÞnðPS \ PTÞj
: ð1Þ

This score makes use of the pathway overlap between S and T (PS \ PT). The numerator

counts the number of nodes in T that are reached in the set B�k(PS) that are not already in PS.

The denominator counts the total number of nodes that are reached in B�k(PS) that are not in

the pathway overlap. Pathway pairs with a large initial overlap are penalized in this score,

allowing more subtle patterns to emerge. Moreover, this score penalizes a pathway PS that

reaches many nodes indiscriminately.

We assessed the significance of the influence score for each pathway pair by conducting a

permutation test. The permutation test shuffles the node memberships of the pathways while

fixing the initial pathway overlap shown in Fig 4A. This is accomplished by using a degree-pre-

serving edge swap on a bipartite graph that represents all possible overlapping sets among the

34 pathway pairs; see S2 Fig for more details. We computed sk for every pair of Reactome sig-

naling pathways for every value of k (S3 Fig and S1 File). We say a pathway pair’s influence

score is significant if there are no permutation tests (out of 1,000) with a score greater than or

equal to the observed score. There are three significant pairs that exhibit a large influence

score for k = 3 (large, dark circles in Fig 4B): (a) the Mst1 pathway’s influence on MET signal-

ing (s3 = 0.79), (b) the Activin pathway’s influence on TGFβ signaling (s3 = 0.54), and (c) the

BMP pathway’s influence on TGFβ signaling (s3 = 0.48). These pathway pairs have significant

influence scores (large circles) for k = 3 in the graph and bipartite graph representations (S4

and S5 Figs); however the score is not as large in the graph representation (Table 2). While the

influence scores in the bipartite graph mirror those in the hypergraph, they are achieved at a

much larger k. This is because the the bipartite graph distance (via BFS) conveys a different

notion of distance than B-relaxation distance, which counts the number of relaxations

required to reach entities. We discuss these pathway pairs in two case studies: Mst1 and MET

signaling followed by Activin/BMP, and TGFβ signaling.

Mst1 pathway influence on MET signaling. Using Macrophage-stimulating Protein 1

(Mst1) as the source pathway S, we computed the overlap of the other 33 pathways with B�k as

k increases (Fig 5A). The largest influence score that we observed across all pathway pairs was

0.79 at k = 3 for Mst1 to MET signaling, which indicates that almost all the nodes downstream

of Mst1 for k = 3 are MET pathway members. For k = 10, the set B�k contains many ERK1/

ERK2 or PI3K/AKT pathway members; however, they comprise a relatively small portion of

the total number of nodes in B�k. The same figure for the bipartite graph representation shows

that about the same nodes are recovered at the largest influence score, but this comes at k = 12

(S6 Fig).

Fig 5A suggested that the Mst1 pathway may influence the MET pathway. An inspection of

the literature and the topology of the nodes in B�k from the Mst1 pathway as the source lent

Table 2. Largest influence scores across all B-relaxation distance values for three pathway pairs in Reactome. The sk values in bold are the largest influence scores for
all pathway pairs for all values of k.

Source & Target Pathways Directed Graph Bipartite Graph Hypergraph

Signaling by Mst1! Signaling by MET s2 = 0.33 s12 = 0.78 s3 = 0.79

Signaling by Activin! Signaling by TGFβ s2 = 0.36 s4 = 0.60 s2 = 0.59

Signaling by BMP! Signaling by TGFβ s2 = 0.28 s10 = 0.47 s3 = 0.48

https://doi.org/10.1371/journal.pcbi.1007384.t002
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support to this hypothesis. Mst1 is produced in the liver and is involved in organ size regula-

tion [34, 35]. Mst1 acts like a hepatocyte growth factor and has been established as a tumor

suppressor gene for heptacellular carcinoma [35]. MET, also known as hepatocyte growth fac-

tor (HGF) receptor, is a receptor tyrosine kinase that promotes tissue growth in developmen-

tal, wound-healing, and cancer metastasis [36]. Mst1, on the other hand, binds to Mst1R (also

known as RON), which is a member of the MET family. Both MET and Mst1R have been

shown to have similar downstream effects and can trans-phosphorylate when active [37].

Upon inspection of the reactions that involved the nodes B�3, we found that Hepsin (HPN)

was involved in forming both the Mst1 dimer and HGF dimer (Fig 6). This protease is known

to cleave both pro-Mst1 and pro-HGF into active Mst1 and HGF [38]. The hypergraph also

emphasizes the fact that the nodes that are in B�k but are not in the MET pathway involve

STAT regulation in different cellular compartments. The computed pathway influence

(observed as an enrichment of stars in Fig 6 in the regions named B0, B1, B2, and B3) is due to

HPN’s role in activating the ligands responsible for both Mst1 signaling and MET signaling.

Fig 6 also displays the nodes in B4. The high prevalence of nodes that are not in the Met path-

way (circles) in this region reinforces the fact that the influence of the Mst1 pathway on the

Met pathway is the largest for k = 3.

Activin and BMP influence on TGFβ signaling

Following the influence score for Mst1 and MET pathways, the next three largest scores across

all pathway pairs and all values of k were for the Activin pathway on TGFβ signaling and the

Bone Morphogenic Protein (BMP) pathway on TGFβ signaling (Table 2). The pattern of sk val-

ues for Activin and TGFβ were strikingly similar to the trends for BMP and TGFβ pathways;

for both Activin and BMP, TGFβ was the only target pathway that received a large influence

(Fig 5B and 5C). Even though Activin, BMP, and TGFβ are all known ligands of the TGFβ
superfamily, our analysis demonstrates that the Activin and BMP pathways are upstream of

the TGFβ pathway. The TGFβ superfamily regulates processes involved in proliferation,

growth, and differentiation through both SMAD-dependent and SMAD-independent signal-

ing [39]. TGFβ, Activin, and BMP phosphorylate different SMAD proteins by forming dimers

and binding to receptor serine/threonine kinases. TGFβ binds to TGFβ Receptor II (TGFBR2),

which forms a homodimer with TGFBR1 and activates SMAD2 and SMAD3. Activin also

phosphorylates SMAD2 and SMAD2 through binding and activation of the Activin A receptor

Fig 5. A single pathway’s influence on downstream pathways using B-connectivity. Shown are the influence of (A) signaling by Mst1, (B) signaling
by BMP, and (C) signaling by Activin. The dashed black line indicates the number of nodes in the source pathway’s B�k for different values of k. There
is one line for each of the 33 other target pathways denoting the number of members that appear in B�k, with selected pathways highlighted in bold.

https://doi.org/10.1371/journal.pcbi.1007384.g005
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(ACVR). BMP, on the other hand, phosphorylates SMAD1, SMAD5, and SMAD8 through

BMP receptor activation. The hypergraph that shows the nodes in B�3 from Activin consists of

different components and many cycles that denote reuse of SMADs (S6 Fig). The hypergraph

suggests that the influence of Activin on TGFβ does not begin at the ligand, but rather at the

activation of SMAD proteins.

Benchmarking functional relationships using STRING evidence channels

Under any definition of connectivity, two connected proteins may have a functional relation-

ship rather than a physical one. Thus, we sought to benchmark pairs of proteins deemed to be

Fig 6. Hyperedges traversed to compute B0, B1, . . ., B4 from source pathwayMst1.Node colors represent B-relaxation distance from k = 0 (B0, blue)
to B4 (bright green). Gray nodes are entities that are not in Bk but are involved in traversed hyperedges. Star-shaped nodes are members of the MET
pathway. This network is available on GraphSpace at http://graphspace.org/graphs/26755?user_layout=6707.

https://doi.org/10.1371/journal.pcbi.1007384.g006
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connected in Reactome against a database of functional interactions. STRING [40–42] is a

quality-controlled network of protein-protein associations from a diverse set of information,

which aims to capture both physical interactions as well as functional relatedness. An interac-

tion in STRING is assigned a confidence score based on seven evidence channels that range

from experiment-based (“experiments” and “coexpression”) to literature-based (“database”

and “textmining”) to genome-based channels (“neighborhood”,“fusion”, and “co-occur-

rence”). Channel scores are converted to a single “combined score” for each interaction in

STRING. This score and the individual channels provide a good benchmark dataset to evaluate

whether scores are enriched for associations confirmed by Reactome (which may depend on

the connectivity measure).

We ignored STRING channels that used transferred evidence via homology and the “data-

base” channel, since Reactome was used as a source of evidence for this channel [42]. While

the “combined score” channel includes information from Reactome, only 6% of the edges

from this set have evidence from the “database” channel. For the remaining six channels and

the “combined score” channel, we restricted our attention to the interactions where both pro-

teins appear in the Reactome hypergraph representation. We then counted the number of

interactions where both proteins appear in the same Reactome pathway (we considered a

larger annotated set of 140 non-redundant Reactome pathways, see “Data formats and repre-

sentations” in the Methods section). These interactions would typically be used when using a

set-based approach for determining positive interactions. We then counted the number of

interactions (u, v) where u was connected to v in the bipartite graph representation. In the

combined score channel, 23% of the 1.4 million interactions appear in the same pathway and

14% interactions are connected in the bipartite graph (Fig 7A). However, 52% of the interac-

tions in the same pathway were not connected and 19% of the connected interactions were not

annotated to the same pathway, revealing that these two Reactome-based measures are not

necessarily consistent. Venn diagrams for all channels exhibited a similar pattern (Fig 7, S8

and S9 Figs). Thus, a substantial number of STRING interactions contain nodes that are not

annotated to the same pathway but are connected in the bipartite graph.

We sought to examine how the enrichment of interaction scores from STRING channels

varied as we changed the B-relaxation distance between proteins, starting with the two

extremes of bipartite graph connectivity and hypergraph B-connectivity. The distribution of

interaction scores in different Reactome sets are dramatically different in the combined score

channel (Fig 7A). The median score increases from 245 for all 1.4 million interactions to 541

for interactions within the same Reactome pathway. While the median score of connected

nodes is relatively similar (at 624), these distributions are statistically different (p< 0.01 by the

Kruskal-Wallis test). Strikingly, interactions where the nodes are B-connected within the

hypergraph have a very large median score of 941; these are likely direct interactions within

Reactome since B-connectivity is such a strict measure. As before, B-relaxation distance pro-

vides a smooth transition from B-connectivity to connectivity in the bipartite graph; selected

thresholds are shown in the bottom panel of Fig 7A. B-connectivity preferentially connects the

functionally-interacting pairs of proteins with the highest composite scores in STRING. We

maintain this property up to a B-relaxation distance of 25, with a nearly three-fold increase in

the number of interactions (67,751 to 180,373).

The “experimental” channel, which is comprised of IMEx interaction data [44], shows a

similar pattern of statistically significant score enrichment with the more restrictive connectiv-

ity measures (Fig 7B). In this channel, B-relaxation distance preserves the enrichment of high-

scoring interactions until a distance of about seven (S8 Fig). The “textmining” channel, which

weights interactions based on protein co-mention in abstracts and other text collections [41],

was also significantly enriched (Fig 7C). While the scores for the “textmining” channel remain
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relatively low (the median hovers around 200 for pairs in any pathway), there are textmining

scores for over 1.2 million interactions, and nearly 50,000 of these interactions are B-con-

nected. The distribution of scores for other channels are shown in S9 Fig. Notably, the “coex-

pression” channel, which records correlation across gene expression datasets, is also improved

slightly but significantly when considering stricter measures of connectivity. The genome-

based “co-occurrence” and “fusion” channels did not have significant score enrichment across

Fig 7. STRING interactions within Reactome for (A) “combined score” interactions, (B) “experimental”
interactions, and (C) “textmining” interactions. The Venn diagram shows the overlap of interactions where the
nodes appear in any Reactome pathway, appear in the same Reactome pathway, or are connected in the bipartite
graph. The violin plot shows the distributions of interaction scores (which range from 1 to 1000) for different sets of
interactions (median, percentiles, and Kruskal-Wallis p-values shown, where p< 2.2e − 16 is below the detection limit
[43]). In Panel (A), the bottom violin plot shows the distributions of interaction scores for selected B-relaxation
distance thresholds.

https://doi.org/10.1371/journal.pcbi.1007384.g007
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the sets (p� 0.01). This was not surprising, since the genome-based channels are typically

appropriate for Bacteria and Archea [41].

Discussion

Connectivity is a foundational concept in cellular reaction networks, since it lies at the heart of

determining the effect of one molecule upon another. The formal definition of connectivity is

familiar and straightforward in directed graphs, the most common mathematical representa-

tion of reaction networks. However, precisely capturing this concept is challenging in more

sophisticated and biologically accurate representations such as compound graphs, bipartite

graphs, and directed hypergraphs. In recent years, scientists have developed these definitions

independently for each of these representations.

This work is the first to systematically compare the relevant formulations of connectivity in

four different models of reactions in signaling pathways. We study their impact on the Reac-

tome database. We find that the directed graph representation of Reactome is very highly con-

nected (90% of the nodes reach over 80% of the graph), the compound and bipartite graph

versions are somewhat less connected (fewer than half the nodes reach less than half of the net-

work), whereas the directed hypergraph model exhibits very poor connectivity (only five

nodes are connected to more than 20 nodes). We attribute this trend to multiple, related fac-

tors. The SIF format for Reactome, from which we construct the directed graph, does not dis-

tinguish between modified forms of a protein and represents complexes as cliques. Compound

graphs, bipartite graphs, and directed hypergraphs create a node for each form of a protein

and for each protein complex. However, compound and bipartite graphs are much more con-

nected than hypergraphs since they record multi-way reactions using multiple, independent

edges. Directed hypergraphs accurately represent reactions, but their biologically-meaningful

definition of connectivity (B-connectivity) is very restrictive in practice.

Motivated by these findings, we have provided a relaxed version of hypergraph connectiv-

ity, B-relaxation distance, that is tailored for the analysis of signaling pathways. B-relaxation

distance takes the intuitive mechanical significance of B-connectivity and grants it the leeway

necessary to deal with the challenges presented by the topologies of biomolecular hypergraphs.

We show that B-relaxation distance elegantly bridges the gap between bipartite graphs and

hypergraphs. Our algorithm for B-relaxation distance runs in polynomial time, and is efficient

in practice. However, using directed hypergraphs to solve other computational problems can

come with additional algorithmic challenges. For example, the shortest path problem on

graphs is widely known to be solvable in polynomial time, while the analogous problem on

directed hypergraphs is NP-complete [11, 28], even when bounding the number of nodes in

the tail and head sets [29].

We use B-relaxation distance to identify downstream influence between annotated path-

ways in Reactome, defining an influence score sk that suggests how much a target pathway T

might be influenced by the downstream effects of a source pathway S. After performing an all-

vs-all comparison across 34 Reactome pathways, we demonstrate the ability of B-relaxation

distance to capture points of influence in two case studies: (a) the effect of the Mst1 pathway

on MET signaling and (b) the role of Activin and BMP pathways on TGFβ signaling. These

relationships are not recovered in the directed graph representation of Reactome. While the

relationships are recovered for bipartite graphs, the value of k is much larger than the best

influence score based on B-relaxation distance. This reinforces the idea that B-relaxation dis-

tance is designed to quantify the amount of relaxation in the B-connectivity constraints, not

necessarily the number of reactions that connect two molecules. Visualizing the hypergraph

that contains nodes with small B-relaxation distance can pinpoint the exact reaction or
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reactions responsible for the influence of one pathway on another. While our findings are not

biologically novel, they demonstrate how researchers may explore Reactome in a systematic,

unbiased manner to identify possible points of influence among pathways.

Our definitions of connectivity in Reactome may also identify functional relatedness of pro-

teins, in addition to physical interactions. We used the STRING database as a benchmark data-

set to evaluate the enrichment of scored interactions that are connected in Reactome. We

found that many interactions are connected in Reactome but are not annotated to the same

Reactome pathway, thus these potential downstream effects may be missed from gene-set-like

enrichment approaches. Further, connectivity depends on the topology of Reactome and not

the pathway annotations, so our approach may capture relationships that have not yet been

co-annotated in Reactome. B-connectivity contains high-scoring interactions compared to

bipartite connectivity for many evidence channels, and is most pronounced for the combined

score that includes all channels. Thresholding by B-relaxation distance enables the addition of

more interactions while still maintaining the score enrichment.

Computable representations of signaling pathways have been growing, and now Reac-

tome and other databases contain details about reactions that are mined from the literature.

However, even the state-of-the-art representations may fail to capture the full complexity

of what we know about signaling, and there are certainly missing relationships among path-

way molecules that have yet to be explored. B-relaxation distance and similar topology-

based definitions are timely given the current state of pathway representations—they are

more rigorous than graph-based or gene set-based measures, however they are not yet

equipped to capture the intricacies of cellular signaling. For example, some descriptions of

directed hypergraphs for signaling pathways represent complexes as hypernodes (node sets)

[11], but this additional information is hard to reason about in terms of connectivity without

manually-determined rules such as the CommonStream algorithm [25]. Appropriately

modeling protein complexes will be essential to develop a method that is closer to capturing

the “true” connectivity of a pathway. B-relaxation distance is an important first step in this

direction.

As pathway databases such as Reactome continue to expand, B-relaxation distance will

become a useful measure for systematically characterizing connectivity and relationships

among annotated pathways. These reaction-centric databases also invite the generalization of

other classic graph algorithms that have been used in biological applications to directed hyper-

graphs; in fact, random walks [45] and spectral clustering [46] have already been developed for

directed hypergraphs with applications to other fields. Further, B-relaxation distance will allow

us to re-examine potential correlations from experimental data (e.g. protein or gene expres-

sion), especially from perturbation experiments, using the topology provided by Reactome

and other pathway databases.

Methods

Connectivity measures

Given a pathway and two entities, we wish to ask a very fundamental connectivity question: “is

a downstream of b”? The answer to this question in directed graphs can be efficiently com-

puted using a traversal algorithm such as breadth first search. Established connectivity mea-

sures on compound graphs [25] and hypergraphs [28] generalize breadth-first traversal. We

begin with hypergraph connectivity and then describe our proposed relaxation to this mea-

sure, which is the main computational contribution in this work. We then describe another

version of connectivity for compound graphs, which lies conceptually between graph connec-

tivity and hypergraph connectivity.

Hypergraph-based connectivity measures for signaling pathway topologies

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1007384 October 25, 2019 15 / 26

https://doi.org/10.1371/journal.pcbi.1007384


Hypergraph connectivity. A directed hypergraphH ¼ ðV; EÞ contains a set V of nodes

and a set E of hyperedges, where a hyperedge e ¼ ðTe;HeÞ 2 E consists of a tail set Te� V and

a head setHe� V of nodes [28]. The cardinality of hyperedge e is the sum of the nodes in the

tail and head, i.e., |Te| + |He|. Note that directed graphs are a special case of directed hyper-

graphs where |Te| = |He| = 1 for each hyperedge e. In a directed graph, the set of nodes con-

nected to some source s is simply all nodes that are reachable via a path from s. The equivalent

notion in a directed hypergraph is B-connectivity. Given a set of nodes S� V, B-connectivity

ensures the property that traversing a hyperedge 2 E requires that all the nodes in Te are con-

nected to S. The following definition is adapted from Gallo et al. [28]:

Definition 1. Given a directed hypergraphH ¼ ðV; EÞ and a source set S� V, a node u 2

V is B-connected to S if either (a) u 2 S or (b) there exists a hyperedge e = (Te,He) where u 2

He and each element in Te is B-connected to S. We use BðH; SÞ to denote the set of nodes that

are B-connected to S inH.

We can compute BðH; SÞ using a hypergraph traversal [28]. This traversal works by finding

hyperedges that have tails whose nodes are all B-connected to S, augmenting the set of B-con-

nected nodes with the nodes in the heads of these hyperedges, and repeating this process until

it does not discover any new nodes. The running time of this algorithm is linear in the size of

H.

Parameterized hypergraph connectivity. While B-connectivity is a biologically useful

notion of connectivity, it is overly restrictive for the purpose of assessing the connectivity of

pathway databases. We establish a relaxation of B-connectivity which works around such

restrictions. Before we formally define B-relaxation distance, we distinguish different sets of

hyperedges based on their association with the source set S (Fig 8).

1. Given a hypergraphH ¼ ðV; EÞ and a source set S� V, a hyperedge e = (Te,He) is reach-

able from S if at least one element of Te is B-connected to S.

2. Given a hypergraphH ¼ ðV; EÞ and a source set S� V, a hyperedge e = (Te,He) is travers-

able from S if all elements of Te are B-connected to S.

Fig 8. Reachable, traversable and restrictive hyperedges. This hypergraph has eight reachable hyperedges with
respect to S: five traversable hyperedges (blue) and three restrictive hyperedges (red).

https://doi.org/10.1371/journal.pcbi.1007384.g008

Hypergraph-based connectivity measures for signaling pathway topologies

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1007384 October 25, 2019 16 / 26

https://doi.org/10.1371/journal.pcbi.1007384.g008
https://doi.org/10.1371/journal.pcbi.1007384


3. Given a hypergraphH ¼ ðV; EÞ and a source set S� V, a hyperedge e is restrictive (with

respect to S) if it is reachable but not traversable from S. We use RðH; SÞ to denote the set of

restrictive hyperedges.

We modify the b_visit() algorithm from [28] to return the B-connected set BðH; SÞ

and the restrictive hyperedges RðH; SÞ (Algorithm 1). The main difference between this tra-

versal and a typical BFS is that a hyperedge is traversed only when all the nodes in the head

have been visited. We also return the set of traversed hyperedges to avoid redundant computa-

tion in the relaxation algorithm that we describe later.

Algorithm 1 b_visit(H ¼ ðV; EÞ; S � V)
1: c[e]  0 for each hyperedge e 2 E // counter of reached nodes
in e’s tail
2: B  S // set of B-connected nodes
3: X  ; // set of traversed hyperedges
4: Q  S // queue of nodes to traverse
5: while Q is nonempty do
6: select and remove some node v 2 Q
7: for each hyperedge e 2 E where v 2 Te do
8: c[e]  c[e] + 1
9: if c[e] = |Te| then
10: Q  Q [ [He \ B] // add unvisited heads of e to queue
11: B  B [ He // add heads of e to B-connected set
12: X  X [ {e} // add e to traversed hyperedges
13: R  ; // set of restrictive hyperedges
14: for each hyperedge e 2 E do
15: if c[e] � 1 and c[e] < |Te| then
16: R  R [ {e} // hyperedge e reached but not traversed

return B, R, X
We iteratively relax the notion of B-connectivity by allowing restrictive hyperedges to

be traversed; to do so, at each iteration k we need to keep track of BkðH; SÞ, the connected

nodes, and RkðH; SÞ, the restrictive hyperedges. We initialize these sets to be the outputs of

b_visit():

B
0
ðH; SÞ ¼ BðH; SÞ ð2Þ

R
0
ðH; SÞ ¼ RðH; SÞ: ð3Þ

In the kth iteration of this relaxation process, we consider the heads of each restrictive

hyperedge e from the previous iteration. BkðH; SÞ is the set of B-connected nodes and RkðH; SÞ

is the set of restrictive hyperedges for each head set from Rk�1ðH; SÞ:

BkðH; SÞ ¼
[

e2Rk�1ðH;SÞ

BðH;HeÞ ð4Þ

RkðH; SÞ ¼
[

e2Rk�1ðH;SÞ

RðH;HeÞ: ð5Þ

Note that computing RkðH; SÞ using this definition requires jRk�1ðH; SÞj different

b_visit() calls, which is necessary to ensure that only one restrictive hyperedge is used to

establish connectivity. With these definitions in hand, we are now ready to define our relaxa-

tion of B-connectivity.
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Definition 2. Given a hypergraphH ¼ ðV; EÞ, a source set S� V, and an integer k� 0, a

node v 2 V is Bk-connected to S if v 2 BiðH; SÞ for i = 0, 1, . . ., k.

The B-relaxation distance of a node v from a source set S is the smallest value of k such that

v is Bk-connected to S inH. In the main text, we use B�k to denote the Bk-connected set. An

example of computing B-relaxation distance for all nodes in a hypergraph is shown in Fig 9.

There may be different sets of hyperedges by which a node v is Bk-connected to S (S11 Fig).

Algorithm 2 b_relaxation (H ¼ ðV; EÞ; S � V)
1: B0, R0, X  b_visit(H; S)
2: dist[v]  0 if v 2 B0 else 1 for each node v 2 V
3: seen[e]  True if e 2 X else False for each hyperedge e 2 E
4: k  1
5: while there exists some e 2 Rk−1 where seen[e] = False do
6: Bk  ;, Rk  ;
7: for e 2 Rk−1 where seen[e] = False do
8: seen[e]  True
9: B, R, X  b_visit(H;He)
10: Bk  Bk [ B
11: Rk  Rk [ R
12: for e0 in X do
13: seen[e0]  True
14: for v in Bk do
15: if dist[v] = 1 then
16: dist[v]  k
17: k  k + 1
18: return dist
We calculate the B-relaxation distance from S to every node in the hypergraph by calling

b_visit() on restrictive hyperedges for k = 0, 1, 2, . . . (Algorithm 2). Here, we declutter

notation by dropping the parameterization ofH and S from the B-connected node set and the

restrictive hyperedge set. The algorithm first calls b_visit() from S to get the B-connected

set B0, the restrictive hyperedges R0, and the traversed hyperedges X (line 1). The B-relaxation

Fig 9. Computing B-relaxation distance. Connected nodes are in blue and restrictive hyperedges are in red for each iteration k. In
this example, all nodes in gray are B3-connected to S = {a, b} and node r has B-relaxation distance of three.

https://doi.org/10.1371/journal.pcbi.1007384.g009
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distance dictionary dist is initialized to 0 for nodes in B0 and infinity otherwise, and the

seen dictionary of hyperedges set to True if they have been traversed and False otherwise.

While there are unseen restrictive hyperedges to traverse, the algorithm computes Bk and Rk
by calling b_visit() on the heads of each restrictive hyperedge from iteration k − 1 (lines

7–11). We update the seen dictionary with all traversed hyperedges from each b_visit(),
since these hyperedges may be restrictive with respect to another set of nodes and would be

recomputed at a later iteration (lines 12–13, S10 Fig). Finally, the algorithm updates the dist
dictionary for all nodes that are reached in the k-th iteration and increments k (lines 14–17).

This implementation keeps track of B0, B1, . . ., Bk and R0, R1, . . ., Rk, which may be returned

for other purposes.

Runtime analysis. The original b_visit() from Gallo et al. runs in OðsizeðHÞÞ time

where sizeðHÞ refers to the sum of the hyperedge cardinalities inH [28]. The modified

b_visit() incurs no additional asymptotic runtime cost since the timing of the additional

operations it conducts (Algorithm 1, lines 13–16) is trivially bounded by jEj, which is bounded

by sizeðHÞ.

In Algorithm 2, initializing the dist and seen dictionaries takes |V| and jEj time, respec-

tively. The while loop (line 5) contains two for loops. The first loop in line 7 iterates over all

restrictive hyperedges, performing work only when that hyperedge has not been previously

traversed. Thus, the code in the first loop will be executed at most jEj times over the full course

of the algorithm, corresponding to the case where every hyperedge inH appears in some

restrictive set. The first loop calls b_visit() in line 9 at each iteration, which runs in

OðsizeðHÞÞ time as previously mentioned. The second loop in line 14 updates the B-relaxation

distance of each node exactly once, when it is first discovered by the algorithm. It will be exe-

cuted at most |V| times over the full course of the algorithm. The running time of the first loop

(line 7) dominates those of the initialization steps and the distance update loop; thus, the run-

time of Algorithm 2 is OðjEj � sizeðHÞÞ.

Pre-processing speedup. When we ran b_relaxation() on each source node on

the Reactome hypergraph, the algorithm took an average of 31.6 seconds per node on a

Linux machine with quad Intel Core i7-4790 processors. The quadratic runtime is tractable

for a handful of calls, but calling b_relaxation() from every vertex in V (as we do

in this work) will result in a cubic runtime. We formulated an optimized version of

b_relaxation(), which we initialized by calling b_visit() onHe for each e 2 E and

recording the resulting connected nodes and restrictive hyperedges. This initialization step

incurs a cost of jEj � sizeðHÞ time, but replaces the call to b_visit() in line 9 with a con-

stant-time lookup operation. Thus the sole quadratic term in the runtime of Algorithm 2

becomes linear in the optimized version. The optimized version, when applied to each source

node on the Reactome hypergraph, gave an average running time of 0.310 seconds per node,

giving an improvement of two orders of magnitude.

Compound graph connectivity. There are multiple definitions of compound graphs [8,

25]. Here we describe compound pathway graphs CP = (G, I) that consist of two graphs [25].

The pathway graph G = (V, EG) is a mixed graph where V denotes the set of nodes and EG
denotes the interaction and regulation edges among nodes, some of which may be directed.

Edges may also denote inhibition/activation; here, we ignore this aspect of the compound

graph. The inclusion graph I = (V, EI) is on the same node set V and EI denotes the undirected

edges for defining compound structure membership (e.g., complexes and abstractions). To

traverse a compound pathway graph, we need, for each compound structure, two flags:

(a) compound: if a compound structure is reached, are all its members also reached? and

(b) member: if a member of a compound structure is reached, are all other members in the

compound structure also reached? During the traversal, once a node u is reached, the
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algorithm determines if any other nodes are “equivalent” to u based on these flags. Note that

while compound graphs handle traversals through entities such as protein complexes and fam-

ilies, the edges only connect pairs of these entities. Thus, the requirements imposed by B-con-

nectivity on hypergraphs cannot be implemented on compound graphs as they are currently

defined.

A compound path between two nodes consists of edges that are either from the pathway

graph EG or represent a link between nodes that are equivalent for traversal based on the

compound and member flags. These compound paths are used to establish the set of nodes

that are downstream of a source node. For comparison with other measures, we modify the

definition from [25] to ignore activation/inhibition effects and remove a restriction on path

lengths:

Definition 3. Given a compound pathway graph CP = (G, I) and a source set S� V, a node

u 2 V is downstream of S in CP if there exists some compound path from any node s 2 S to u

in CP.

We run the DOWNSTREAM algorithm implemented in the PaxTools software [25, 47] on

each source node in S, ignoring activation/inhibition sign and the path length limit.

Data formats and representations

We automatically generate the four Reactome representations—directed graph, compound

graph, bipartite graph, and hypergraph—using a suite of tools (Fig 10). We use PathwayCom-

mons, a unified collection of publicly-available pathway data [19], to collect BioPAX and SIF

files representing the entire Reactome database (http://www.pathwaycommons.org/archives/

PC2/v10/). The SIF files are generated by PathwayCommons by converting BioPAX relation-

ships to binary relations; more details are available at http://www.pathwaycommons.org/pc2/

formats. We convert the SIF files to a directed graph by converting each binary relation to a

directed or bidirected graph (S2 Table).

We use the PaxTools Java parser to work with BioPAX files [47]. PaxTools offers querying

algorithms such as DOWNSTREAM that operates on the compound graph representation [25].

We use PaxTools to construct hypergraphs by traversing the BioPAX files. For each biochemical

Fig 10. Building pathway representations from Reactome.

https://doi.org/10.1371/journal.pcbi.1007384.g010
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reaction in BioPAX, we construct a hyperedge with the reactants and control elements in the

tail and the products in the head. We use the algorithms provided in the Hypergraph Algo-

rithms Package (HALP, http://murali-group.github.io/halp/, GPL-3.0 license) to work with

hypergraphs. The B-relaxation distance algorithm is provided in HALP’s annabranch.
Finally, we build the bipartite graph directly from the hypergraph, converting each hyper-

edge e into a reaction node r and connecting the tails of e to r and then r to the heads of e.

Thus, the number of nodes in the bipartite graph is exactly the number of nodes plus the num-

ber of hyperedges in the hypergraph, and large B-relaxation distance corresponds to traversing

the bipartite graph.

Source code for preprocessing, connectivity survey, and experiments on hypergraph and

other representations of Reactome are available on GitHub (https://github.com/annaritz/

pathway-connectivity, GPL-3.0 license).

Reactome pathways used for influence analysis and STRING benchmarking. We con-

sider 34 Reactome pathways for assessing pathway influence across reactome. Pathways are

organized hierarchically within Reactome, and the 34 pathways were labeled as direct children

of “Signal Transduction” and “Signaling by Receptor Tyrosine Kinases” in the Reactome file

provided by PathwayCommons v10 (S1 Table).

When we benchmark functional relationships using STRING evidence channels, we expand

the set of Reactome pathways to include others not annotated to “Signal Transduction.” We

identified 140 non-redundant pathways for this analysis as follows. We first collected entities

annotated to each Reactome pathway and sub-pathway, and then removed the 26 “top-level”

pathways in the Reactome hierarchy from consideration (Cell Cycle, DNA Repair, Immune

System, etc.). These “top-level” pathways are general and are represented by more specific sub-

pathways in the list. We finally removed all sub-pathways that are completely contained in

another pathway. These redundant pathways do not add any additional pairwise relationships

to the benchmarking analysis.

Hypergraph visualization. We visualize hypergraphs using GraphSpace [48], a web-

based collaborative network visualization tool. The hypergraphs are available as interactive

networks on GraphSpace using the with the GLBio2019 tag (http://graphspace.org/graphs/?

query=tags:glbio2019).

Supporting information

S1 Fig. Heatmaps of filtered pathway representations. Heatmaps showing the effect of filter-

ing pathway representations by blacklisted nodes and small molecules. (A) The proportion of

nodes |B�k| in the Bk-connected set from each source node (rows) for values of k (columns) in

the hypergraph. (B) Directed graph connectivity, bipartite graph connectivity, and hypergraph

B-connectivity for representations with blacklisted nodes removed. (C) Directed graph con-

nectivity, bipartite graph connectivity, and hypergraph B-connectivity for representations with

small molecules and three highly-connected entities (cytosolic Ubiquitin, nuclear Ubiquitin,

and the Nuclear Pore Complex) removed.

(PDF)

S2 Fig. Permutation test for pathway membership. The example shows ten molecules

(x1, . . ., x10) that are members of three pathways (A, B and C). The initial pathway overlap, rep-

resented as a Venn diagram, results in the matrix of pairwise overlaps (left). We construct an

undirected bipartite graph (we’ll call this the permutation graph to distinguish this graph from

the bipartite graph representation). In the permutation graph, one set of nodes are the mole-

cules and the other set of nodes are all possible overlapping sets except the null set (here,

2n − 1 = 23 − 1 = 7). Edges in the permutation graph connect molecules to the overlapping set
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to which they belong. We then perform degree-preserving edge swaps by selecting pairs of

edges with different nodes and swapping them (we perform 10,000 swaps in all experiments).

We then “piece” the Venn diagram back together, which contains the same number of ele-

ments in each overlapping set (resulting in the same pairwise overlaps). With 34 pathways, one

would think that the permutation graph is too large; however, we found that there were only

255 non-empty portions of the Venn diagram for the hypergraph/bipartite graph entities (and

only 180 for the directed graph entities). The size of the permutation graph also makes the

choice of 10,000 swaps for each permutation reasonable.

(PDF)

S3 Fig. Hypergraph influence scores. Influence scores of pairs of Reactome pathways for the

hypergraph at selected values of B-relaxation distance k. Rows indicate the source pathway PS
and columns indicated the target pathway PT. Color indicates influence score and circle size

indicates significance by permutation test (larger circles are more significant). Three selected

distances are enlarged (note s3 is also in the main manuscript).

(PDF)

S4 Fig. Directed graph influence scores. Influence scores of pairs of Reactome pathways for

the directed graph at selected values of distance k. Rows indicate the source pathway PS and

columns indicated the target pathway PT. Color indicates influence score and circle size indi-

cates significance by permutation test (larger circles are more significant). Three selected dis-

tances are enlarged. Note that the entities are different for this graph than the hypergraph and

bipartite graph, resulting in different initial pathway overlaps.

(PDF)

S5 Fig. Bipartite graph influence scores. Influence scores of pairs of Reactome pathways for

the bipartite graph at selected values of distance k. Rows indicate the source pathway PS and

columns indicated the target pathway PT. Color indicates influence score and circle size indi-

cates significance by permutation test (larger circles are more significant). Three selected dis-

tances are enlarged.

(PDF)

S6 Fig. Bipartite graph pathway influence for Mst1, BMP, and Activin. The influence of (A)

signaling by Mst1, (B) signaling by BMP, and (C) signaling by Activin on the other Reactome

pathways. The dashed black line indicates the number of nodes in the source pathway’s B�k
for different values of k. There is one line for each of the 33 other target pathways denoting the

number of members that appear in B�k, with selected pathways highlighted in bold.

(PDF)

S7 Fig. Activin B-relaxation distance hypergraph.Hyperedges traversed to compute B0,

B1, . . ., B4 from source pathway Activin. Node colors represent B-relaxation distance from

k = 0 (B-connected set, blue) to k = 3 (bright green). Gray nodes are entities that are not in the

Bk-connected set but are involved in traversed hyperedges. Star-shaped nodes are members of

the TGFβ pathway. This network is available on GraphSpace at http://graphspace.org/graphs/

26756?user_layout=6713.

(PNG)

S8 Fig. STRING “experimental” channel. STRING interactions within Reactome for “experi-

mental” interactions. In addition to the components of Fig 7, the bottom violin plot shows the

distributions of interaction scores for selected B-relaxation distance thresholds.

(PDF)
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S9 Fig. Other STRING channels. STRING interactions within Reactome for the remaining

evidence channels not shown in Fig 7 or S8 Fig. The Venn diagram shows the overlap of inter-

actions where the nodes appear in any Reactome pathway, appear in the same Reactome path-

way, or are connected in the bipartite graph. The violin plot shows the distributions of

interaction scores for different sets of interactions (median and percentiles shown; Kruskal-

Wallis p-values less than 0.01 are shown with a solid line).

(PDF)

S10 Fig. Restrictive hyperedges may include ones traversed in previous iterations. The

restrictive set Rkmay include hyperedges that have been traversed in a previous iteration’s

b_visit() call. In iteration 1, the restrictive set R1 is established by considering the B-con-

nectivity from the heads of the two hyperedges in R0. The hyperedge {{e, f}, {g}} is restrictive

with respect to the heads of one hyperedge in R0 but traversable with respect to the heads of

the other hyperedge. Thus, {{e, f}, {g}} is included in R1 but also added to the seen dictionary,

saving redundant computation in Algorithm 2.

(PDF)

S11 Fig. B-relaxation distance example. Examples of connectivity from S = {a, b} to r with a

B-relaxation distance of three. Blue hyperedges denote traversals that are consistent with B-

connectivity; red hyperedges denote traversals where one, but not all, nodes in the tail are con-

nected; only hyperedges that are involved in the connectivity from S to r are highlighted for

simplicity. Note that while B-relaxation distance is three, there are different sets of hyperedges

that achieve this B-relaxation distance.

(PDF)

S1 Table. Reactome signaling pathways considered for pathway influence analysis.Mem-

bers that are not part of any hyperedge are ignored from the hypergraph. The filtered hyper-

graph has removed all small molecules, two forms of Ubiquitinase, and the Nuclear Pore

Complex from the hyperedges.

(PDF)

S2 Table. Rules for converting SIF binary relations to directed edges.We ignore the “neigh-

bor-of” binary relation.

(PDF)

S1 File. Influence score values. Pathway overlaps, influence scores, and permutation test val-

ues for different values of k.

(XLSX)
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4. Gligorijević V, Pržulj N. Methods for biological data integration: perspectives and challenges. Journal of
the Royal Society Interface. 2015; 12(112):20150571. https://doi.org/10.1098/rsif.2015.0571

5. Vidal M, Cusick ME, Barabási AL. Interactome networks and human disease. Cell. 2011; 144(6):986–
998. https://doi.org/10.1016/j.cell.2011.02.016 PMID: 21414488

6. Caldera M, Buphamalai P, Müller F, Menche J. Interactome-based approaches to human disease. Cur-
rent Opinion in Systems Biology. 2017; 3:88–94. https://doi.org/10.1016/j.coisb.2017.04.015

7. Creixell P, Reimand J, Haider S, Wu G, Shibata T, Vazquez M, et al. Pathway and network analysis of
cancer genomes. Nature methods. 2015; 12(7):615. https://doi.org/10.1038/nmeth.3440 PMID:
26125594

8. Hu Z, Mellor J, Wu J, Kanehisa M, Stuart JM, DeLisi C. Towards zoomable multidimensional maps of
the cell. Nature biotechnology. 2007; 25(5):547–554. https://doi.org/10.1038/nbt1304 PMID: 17483841

9. Klamt S, Haus UU, Theis F. Hypergraphs and cellular networks. PLoS Comput Biol. 2009 May; 5(5):
e1000385. https://doi.org/10.1371/journal.pcbi.1000385 PMID: 19478865

10. Christensen TS, Oliveira AP, Nielsen J. Reconstruction and logical modeling of glucose repression sig-
naling pathways in Saccharomyces cerevisiae. BMC Syst Biol. 2009 Jan; 3:7. https://doi.org/10.1186/
1752-0509-3-7 PMID: 19144179

11. Ritz A, Tegge AN, Kim H, Poirel CL, Murali T. Signaling hypergraphs. Trends in biotechnology. 2014;
32(7):356–362. https://doi.org/10.1016/j.tibtech.2014.04.007 PMID: 24857424

12. ZhouW, Nakhleh L. Properties of metabolic graphs: biological organization or representation artifacts?
BMC Bioinformatics. 2011 May; 12:132. https://doi.org/10.1186/1471-2105-12-132 PMID: 21542923

13. Croft D, Mundo AF, Haw R, Milacic M,Weiser J, Wu G, et al. The Reactome pathway knowledgebase.
Nucleic acids research. 2013; 42(D1):D472–D477. https://doi.org/10.1093/nar/gkt1102 PMID:
24243840

14. Fabregat A, Korninger F, Viteri G, Sidiropoulos K, Marin-Garcia P, Ping P, et al. Reactome graph data-
base: Efficient access to complex pathway data. PLoS computational biology. 2018; 14(1):e1005968.
https://doi.org/10.1371/journal.pcbi.1005968 PMID: 29377902

15. Kanehisa M, Furumichi M, TanabeM, Sato Y, Morishima K. KEGG: new perspectives on genomes,
pathways, diseases and drugs. Nucleic Acids Res. 2017 Jan; 45(D1):D353–D361. https://doi.org/10.
1093/nar/gkw1092 PMID: 27899662

16. Mi H, Thomas P. PANTHER pathway: an ontology-based pathway database coupled with data analysis
tools. In: Protein Networks and Pathway Analysis. Springer; 2009. p. 123–140.

17. Kandasamy K, Mohan SS, Raju R, Keerthikumar S, Kumar GS, Venugopal AK, et al. NetPath: a public
resource of curated signal transduction pathways. Genome Biol. 2010 Jan; 11(1):R3. https://doi.org/10.
1186/gb-2010-11-1-r3 PMID: 20067622

18. Elkon R, Vesterman R, Amit N, Ulitsky I, Zohar I, Weisz M, et al. SPIKE–a database, visualization and
analysis tool of cellular signaling pathways. BMC Bioinformatics. 2008 Feb; 9:110. https://doi.org/10.
1186/1471-2105-9-110 PMID: 18289391

Hypergraph-based connectivity measures for signaling pathway topologies

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1007384 October 25, 2019 24 / 26

https://doi.org/10.1371/journal.pcbi.1002375
https://doi.org/10.1371/journal.pcbi.1002375
http://www.ncbi.nlm.nih.gov/pubmed/22383865
https://doi.org/10.1186/1752-0509-7-90
http://www.ncbi.nlm.nih.gov/pubmed/24041013
https://doi.org/10.3389/fphys.2013.00278
https://doi.org/10.3389/fphys.2013.00278
http://www.ncbi.nlm.nih.gov/pubmed/24133454
https://doi.org/10.1098/rsif.2015.0571
https://doi.org/10.1016/j.cell.2011.02.016
http://www.ncbi.nlm.nih.gov/pubmed/21414488
https://doi.org/10.1016/j.coisb.2017.04.015
https://doi.org/10.1038/nmeth.3440
http://www.ncbi.nlm.nih.gov/pubmed/26125594
https://doi.org/10.1038/nbt1304
http://www.ncbi.nlm.nih.gov/pubmed/17483841
https://doi.org/10.1371/journal.pcbi.1000385
http://www.ncbi.nlm.nih.gov/pubmed/19478865
https://doi.org/10.1186/1752-0509-3-7
https://doi.org/10.1186/1752-0509-3-7
http://www.ncbi.nlm.nih.gov/pubmed/19144179
https://doi.org/10.1016/j.tibtech.2014.04.007
http://www.ncbi.nlm.nih.gov/pubmed/24857424
https://doi.org/10.1186/1471-2105-12-132
http://www.ncbi.nlm.nih.gov/pubmed/21542923
https://doi.org/10.1093/nar/gkt1102
http://www.ncbi.nlm.nih.gov/pubmed/24243840
https://doi.org/10.1371/journal.pcbi.1005968
http://www.ncbi.nlm.nih.gov/pubmed/29377902
https://doi.org/10.1093/nar/gkw1092
https://doi.org/10.1093/nar/gkw1092
http://www.ncbi.nlm.nih.gov/pubmed/27899662
https://doi.org/10.1186/gb-2010-11-1-r3
https://doi.org/10.1186/gb-2010-11-1-r3
http://www.ncbi.nlm.nih.gov/pubmed/20067622
https://doi.org/10.1186/1471-2105-9-110
https://doi.org/10.1186/1471-2105-9-110
http://www.ncbi.nlm.nih.gov/pubmed/18289391
https://doi.org/10.1371/journal.pcbi.1007384


19. Cerami EG, Gross BE, Demir E, Rodchenkov I, Babur Ö, Anwar N, et al. Pathway Commons, a web
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