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HYPERGRAPH DOMINATION AND STRONG

INDEPENDENCE

Bibin K. Jose, Zsolt Tuza1

We solve several conjectures and open problems from a recent paper by
Acharya [2]. Some of our results are relatives of the Nordhaus–Gaddum the-
orem, concerning the sum of domination parameters in hypergraphs and their
complements. (A dominating set in H is a vertex set D ⊆ X such that, for
every vertex x ∈ X\D there exists an edge E ∈ E with x ∈ E and E∩D 6= ∅.)
As an example, it is shown that the tight bound γγ(H)+γγ(H) ≤ n+2 holds
in hypergraphs H = (X, E) of order n ≥ 6, where H is defined as H = (X, E)
with E = {X \ E | E ∈ E}, and γγ is the minimum total cardinality of
two disjoint dominating sets. We also present some simple constructions of
balanced hypergraphs, disproving conjectures of the aforementioned paper
concerning strongly independent sets. (Hypergraph H is balanced if every
odd cycle in H has an edge containing three vertices of the cycle; and a set
S ⊆ X is strongly independent if |S ∩ E| ≤ 1 for all E ∈ E .)

1. INTRODUCTION

In graphs, the theory of dominating sets is extensively studied, with well over
1000 publications, see e.g. the book [6] and the recent papers [3, 7]. On the other
hand, hypergraph domination is a very recent issue, introduced in [1] and further
studied in [2, 5]. The goal of our present note is to solve several open problems
and conjectures posed in [2].

Hypergraphs. Unless otherwise stated, we use the terminology of Berge [4]. Given
a set X , a hypergraph H is a pair H = (X, E) where E is a collection of subsets
of X . The elements of X and of E are called vertices and edges, respectively.
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Traditionally, E 6= ∅ is required for all E ∈ E , and we shall also assume that X
itself is not an edge; that is, 1 ≤ |E| ≤ |X | − 1 for every edge E.

Having fixed H = (X, E), two vertices v and w are adjacent if there exists an
edge E ∈ E that contains both v and w, and non-adjacent otherwise. In graphs,
it is equivalent to assume that a set does not contain any edge, or any two of its
vertices are non-adjacent. In hypergraphs, however, the former condition is weaker
than the latter. Here we shall be interested in strongly independent sets. By that
we mean sets S ⊆ X in which no two vertices in S are adjacent; or, equivalently,
|S ∩ E| ≤ 1 for all E ∈ E .

A pendent vertex is a vertex incident with exactly one edge of H. Given an
integer k > 0, the k-section of H is defined as the hypergraph H(k) = (X, E(k))
with edge set

E(k) = {F | F ⊂ X, 1 ≤ |F | ≤ k, F ⊂ E for some E ∈ E}

So, the 2-section H(2) of H is a graph with the same vertices as H, and with a loop
attached to each vertex. We denote by [H]2 the graph obtained from this 2-section
by omitting loops (loop = 1-element edge).

For a set Y ⊆ X , we say that (Y,F) is an induced subhypergraph of H, or
the subhypergraph induced by Y in H, if F = {E ∈ E | E ⊆ Y }. We shall use the
notation 〈Y 〉 for the induced subhypergraph (Y,F) if H is understood.

Dominating sets. Let H = (X, E) be a hypergraph. A set D ⊆ X is a dominating

set if, for every x ∈ X \D, there exists a y ∈ D such that x and y are adjacent; or,
equivalently, if for every vertex x /∈ D there exists an edge E ∈ E such that x ∈ E
and E ∩ D 6= ∅. The minimum cardinality of a dominating set of H is called the
domination number of H, denoted γ(H). We denote by Do(H) and Dm(H) the set
of all minimum dominating sets (of cardinality γ(H)) and set of all (inclusion-wise)
minimal dominating sets, respectively.

Let D ∈ Do(H). An inverse dominating set with respect to D is any domi-
nating set D′ of H such that D′ ⊆ X \D. The inverse domination number of H is
defined as

γ−1(H)= min{|D′|
∣

∣D∈Do(H), D′ is an inverse dominating set with respect to D}.

Furthermore,

γγ(H) = min{|S1| + |S2|
∣

∣S1, S2 ∈ Dm(H), S1 ∩ S2 = φ}

is called the disjoint domination number of H. Finally, the least cardinality of a
strongly independent dominating set is called the independent domination number

and is denoted by γi(H).

A slight restriction. We assume throughout this paper that

(1) every vertex of H is incident with some edge of cardinality at least 2.
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Equivalently, H has no isolated vertices and every loop, if present in H, is contained
in a non-loop edge of H.

The complement of H is defined as H = (X, E), where E = {X \ E | E ∈ E}.
Condition (1), when required for H, implies the following consequence for H :

(1′) for every vertex x of H there is an edge of cardinality at most |X |−2 avoiding
x.

Throughout this paper we restrict our attention to hypergraphs satisfying both
conditions (1) and (1′), and also |X | ≥ 4, in order to avoid the need to discuss
trivial anomalies. For instance, if a vertex violates (1), then all dominating sets
contain it, therefore inverse domination number and disjoint domination number
cannot be defined in this case.

Results on domination. Acharya raised the problem of finding attainable lower
and upper bounds for γγ(H) + γγ(H) [2, Problem 3(iv)]. We solve this problem in
Section 2, and for the upper bound we prove even a stronger statement. Namely, we
shall prove that γ(H)+γ−1(H)+γ(H)+γ−1(H) ≤ max{8, n+2} holds, which is tight
for all n ≥ 4 also for γγ(H)+γγ(H). (It follows by definition that γγ(H) ≤ γ(H)+
γ−1(H), cf. [2].) Moreover, min{γγ(H), γγ(H)} = min{γ(H) + γ−1(H), γ(H) +
γ−1(H)} ≤ 4.

On the other hand, we disprove Conjecture 3.8 of [2] (which stated that
γ(H) = γi(H) implies γγ(H) = γ(H) + γ−1(H) for every connected H) by giving
an infinite family of counterexamples.

Balanced hypergraphs. A cycle of length q in H is a sequence (x1, E1, x2, E2,
. . . , xq, Eq, xq+1) such that

– x1, x2, . . . , xq are all distinct vertices of H.

– E1, E2, . . . , Eq are all distinct edges of H.

– xk, xk+1 ∈ Ek for k = 1, 2, . . . , q.

– q > 1 and xq+1 = x1.

If q is odd, then the cycle is called an odd cycle. A hypergraph is said to be balanced

if every odd cycle in H has an edge containing three vertices of the cycle.

In Section 3 we give counterexamples to Conjecture 3.17 of [2], which stated
that every balanced hypergraph has two disjoint maximal strongly independent
sets. Moreover, we observe that Problem 2 of [2], about the characterization of
hypergraphs having two disjoint maximal strongly independent sets, is reducible to
the same problem on graphs.

2. DISJOINT AND INVERSE DOMINATION NUMBERS

In this section we prove results concerning disjoint domination and inverse
domination, the first theorem solving (and extending) Problem 3(iv) posed by
Acharya [2] concerning γγ(H) + γγ(H), in the spirit of the famous Nordhaus–
Gaddum theorem.
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In proving upper bounds, the following simple assertion will be very useful.

Lemma 2.1. Every non-adjacent pair of H dominates H.

Proof. Let x, x′ be non-adjacent in H, and let z /∈ {x, x′} be any vertex. By (1′)
there exists E ∈ E such that z /∈ E. Since x and x′ are non-adjacent, E contains
at most one of x and x′. Hence, the complementary edge E = X \ E ∈ E contains
z and at least one of x and x′. Consequently, every z is dominated by {x, x′}. �

Theorem 2.2. For every integer n ≥ 4,

4 ≤ γγ(H) + γγ(H) ≤ γ(H) + γ−1(H) + γ(H) + γ−1(H) ≤ max{8, n + 2}

and the bounds are tight.

Proof. First we show that the bounds are tight.

For the lower bound, construct the hypergraph H = (X, E) with n vertices
as follows. Partition the vertex set into four nonempty sets, X = X1 ∪ · · · ∪ X4.
Set E = {Xi ∪ Xj | 1 ≤ i < j ≤ 4}. It is clear that H and H are isomorphic
hypergraphs, and all the vertices are adjacent to each other in both H and H.
Hence, γγ(H) = γγ(H) = 2, therefore the lower bound is attainable for all n ≥ 4.

To see tightness of the upper bound, if 4 ≤ n ≤ 6, we can again take a 4-
partition X = X1 ∪ · · · ∪ X4 and set E = {X1 ∪ X2, X2 ∪ X3, X3 ∪ X4}. Then the
edge set of H is {X1 ∪ X2, X1 ∪ X4, X3 ∪ X4}, and we have γγ(H) = γγ(H) = 4.
For n larger, we can make H a tree graph as follows. Take two adjacent vertices
x, x′ and join half of X \ {x, x′} — say, the set Y — to x, the other half — say
Y ′ = X \ (Y ∪ {x, x′} — to x′. There are exactly four minimal dominating sets,
forming two disjoint pairs and yielding γγ(H) = n. This completes the proof of
tightness.

Next, we prove the validity of the inequalities. The lower bound is clear
by definition, since every dominating set is nonempty, therefore γγ(H) ≥ 2, and
γγ(H)+γγ(H) ≥ 4 always holds. Also, the middle inequality is a direct consequence
of the definitions, as observed in [2].

Since max{8, n + 2} = n + 2 for all n ≥ 6, the value ‘8’ is relevant for
n = 4, 5 only, and the case n = 4 is trivial because any two disjoint (dominating)
sets together can have at most n vertices. So, the assertion for ‘8’ boils down to
the claim that if a hypergraph H of order 5 satisfying the restrictions (1), (1′) has
γ(H) + γ−1(H) = 5, then γ(H) + γ−1(H) ≤ 3. This is not hard to show, but needs
a little argument.

Let n = 5, γ(H)+γ−1(H) = 5, γ(H)+γ−1(H) ≥ 4. Note that the domination
number is at most bn/2c = 2, because of (1). To simplify explanation, below we do
not distinguish between cases which can be obtained from each other by re-naming
vertices or other objects; e.g., the role of H and H is symmetric.

Suppose first that there is a dominating vertex x in H; i.e., γ(H) = 1. We
should then have γ−1(H) = 4, what would imply in particular that no edge of H is
disjoint from x, leading to the contradiction that (1′) is violated.
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Suppose next that γ(H) = γ(H) = 2. We need to prove γ−1(H) = 2. Let
D = {x, x′} ∈ Do(H) be a minimum dominating set in H, and let Y = {y, y′, y′′} =
X \ D. Consider the graph GY obtained from the 2-section graph of hypergraph
(Y, {E ∩ Y | E ∈ E}) by removing the loops. If GY has no isolated vertices, then
any two vertices of Y dominating {x, x′} form an inverse dominating set in H.
(Select one neighbor of x, and one of x′ non-adjacent to x). On the other hand, if
y is an isolated vertex of GY , we may suppose that x and y are adjacent, and also
that {x′, y′} are adjacent, since x is not a dominating vertex. Then {y, y′} is an
inverse dominating set, because both pairs {y, y′′}, {y′, y′′} cannot be non-adjacent
(for otherwise {x, y} and {x′, y′} would be disjoint 2-element edges, and y′′ would
dominate H). This completes the proof for n ≤ 5.

From now on, suppose n ≥ 6. Let us denote by GN and GN the graph of
non-adjacent pairs in H and in H, respectively. (These are the complementary
graphs of [H]2 and [H ]2.) Due to (1), the vertex degrees are at most n− 2 in both
of them. By direct inspection and applying Lemma 2.1, we further have:

• If GN has at least two isolated vertices, then γ(H) + γ−1(H) = 2.

• If GN has two disjoint edges, then γ(H) + γ−1(H) ≤ 4.

Analogous consequences are derived from GN by switching H with H.

Hence, if two isolated vertices occur in at least one of GN and GN , then we
have nothing to do; moreover, two disjoint edges in both GN and GN yield the
upper bound ‘8’, and the proof is done also in this case.

Hence, from now on we assume that any two edges of GN share a vertex, and
GN has at most one isolated vertex. This reduces to the unique possibility

• GN
∼= K1,n−2

Indeed, intersecting edges mean triangle or star, but a star with n− 1 edges would
violate (1), whereas a star with fewer than n − 2 edges would yield two isolated
vertices in GN . Moreover, a triangle would imply n − 3 > 1 isolated vertices.

Let x be the center of the star, and y be the isolated vertex of GN . We are
going to prove that

γ(H) + γ−1(H) ≤ 3 and γ(H) + γ−1(H) ≤ 4

hold in this case, much better than the desired total upper bound n + 2.

Since y is not incident with any non-adjacent pair, we have γ(H) = 1, with
{y} as the unique minimum dominating set. Further, γ−1(H) = 2 and the minimal
inverse dominating sets are precisely the edges of GN , because x has to be in each
of them, and any other vertex dominates the entire set X \ {x}.

Turning to H, every edge of GN dominates H by Lemma 2.1, hence γ(H) ≤ 2.
We will also find a dominating set D with |D| ≤ 2 and x /∈ D. Restriction (1′)
implies that there is an edge E ∈ E with |E| ≤ n − 2 and x /∈ E. Moreover, the
adjacent pair E′ = {x, y} is the unique edge incident with x in H. Consider the
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edges E = X \ E and E′ = X \ {x, y} in H. If E ∩ E′ 6= ∅, then F = {y, z}
dominates H for any z ∈ E ∩E′. And if E ∩E′ = ∅, then F = {y, z} dominates H
for any z ∈ E.

Now, three situations can occur. If x dominates H, then γ(H) = 1 and F
is an inverse dominating set, hence γ−1(H) ≤ 2. If some w ∈ X \ {x} dominates
H, then again γ(H) = 1 and any edge of GN not incident with w is an inverse
dominating set (there are n − 3 > 0 of them), so γ−1(H) ≤ 2. Finally, if none of
these cases occur, then γ(H) = γ−1(H) = 2 because F dominates H and any edge
of GN disjoint from F is an inverse dominating set. �

Remark 2.3. Tightness of the bounds has already been verified in the proof above, but

many further examples of hypergraphs H attaining the equality γγ(H) + γγ(H) = n + 2

can be given. For instance, for n even, consider the graph mP2 with m = n/2. Now, form

hypergraph H by adding one edge E such that E contains exactly one vertex from each

P2. It is easy to verify that γγ(H) = n. The general principle for such constructions is

to specify a minimum dominating set (in the present case it is E) and create at least one

pendent vertex attached at each of its vertices.

With the method in the proof of Theorem 2.2, a further upper bound can be
obtained.

Theorem 2.4. For every n ≥ 4 and every hypergraph H of order n,

min{γ(H) + γ−1(H), γ(H) + γ−1(H)} ≤ 4

and the bound is tight.

Proof. Tightness follows from the construction attaining ‘8’ in the previous the-
orem, hence we only have to prove the upper bound for n ≥ 5. We refer to the
main part of the previous proof, denoting by GN and GN the graph of non-adjacent
pairs in H and in H, respectively. The proof is done by Lemma 2.1 if any of GN

and GN has two disjoint edges or two isolated vertices. Otherwise, since n ≥ 5, we
have GN

∼= GN
∼= K1,n−2, and the argument above yields that γ(H) + γ−1(H) or

γ(H) + γ−1(H) is at most 3. �

The following result disproves Conjecture 3.8 of [2] by displaying infinitely
many counterexamples to “ γγ(H) = γ(H) + γ−1(H) ”.

Proposition 2.5. For every integer n ≥ 7, there exists a hypergraph H of order n
with γ(H) = γi(H) but γγ(H) 6= γ(H) + γ−1(H).

Proof. Let P5 = (a, b, c, d, e) be a path graph on five vertices. Construct a new
hypergraph H = (X, E) from P5 by adding vertices b1, b2, . . . , bs, d1, d2, . . . , dt (s ≥
1, t ≥ 1, s+ t = n− 5) and two new hyperedges E1, E2 in the following way, shown
in Figure 1: X = V (P5) ∪ {b1, b2, . . . , bs, d1, d2, . . . , dt} and E = E(P5) ∪ {E1, E2},
where E1 = {b, b1, b2, . . . , bs} and E2 = {d, d1, d2, . . . , dt}.

First, we prove that γ(H) = γi(H). Since no vertex of H is adjacent to all
vertices, we have γ(H) 6= 1. On the other hand, the set D = {b, d} dominates H
and hence γ(H) = 2. Moreover, since the vertices b and d are not adjacent in H,
the independent domination number γi(H) is also 2. Hence, γ(H) = γi(H) = 2.
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Now we prove that γγ(H) 6= γ(H) + γ−1(H). Since γ(H) = 2 and D = {b, d}
is the unique minimum dominating set, we need to find an inverse dominating set
D′ of H inside X −D. Since b and d are
the only vertices dominating the vertices
a, c and e, we must select a, c, e into D′.
Also, since {a, c, e} does not dominate
the vertices b1, b2, . . . , bs, d1, d2, . . . , dt,
two vertices bi, dj for some i and j must
be in D′. Hence, all minimal inverse
dominating sets are of the form D′ =
{a, c, e, bi, dj}.

Consequently, γ−1 (H) = 5 and
γ(H)+γ−1(H) = 7. On the other hand,
consider the sets S1 = {a, bi, d} and
S2 = {b, dj, e} for some i and j. Clearly,
S1 ∩ S2 = ∅, and both S1 and S2 are

Figure 1. Inverse vs. disjoint domination

dominating sets of H. Hence, γγ(H) ≤ |S1| + |S2| = 6 < 7 = γ(H) + γ−1(H). (In
fact, γγ(H) = 6.) Thus, γγ(H) 6= γ(H) + γ−1(H), as claimed. �

In a disconnected hypergraph H, the difference between γ(H) + γ−1(H) and
γγ(H) is equal to the sum of differences in its connected components, so that it
can be arbitrarily large. But this unboundedness remains valid even if we restrict
ourselves to connected hypergraphs.

Theorem 2.6. For every integer k ≥ 1 there exists a connected hypergraph H such

that γ(H) + γ−1(H) − γγ(H) = k.

Proof. The construction is a generalization of that in the proof of Proposition
2.5. We start from a path with vertices v1, v2, . . . , v5k and edges {vi, vi+1} (i =
1, . . . , 5k − 1). Moreover, we attach mutually disjoint edges Ej to the vertices vj

for j ≡ 2, 4 (mod 5). The case k = 1 exactly means the hypergraph exhibited in
Figure 1.

We first prove that γ(H) = 2k holds, and that D0 := {vi | i ≡ 2, 4 (mod 5)}
is the unique dominating set of minimum size in H. The lower bound γ(H) ≥ 2k is
easily seen since the vertices in any Ej \ {vj} are dominated by the vertices of Ej

only. To prove uniqueness, let D be any minimal dominating set of H. It suffices to
show that if D 6= D0 then D contains at least one vertex outside

⋃

j ≡ 2,4 (mod5) Ej .

Assuming D 6= D0 there must occur a vertex y ∈ Ei \ {vi} for some subscript i. It
means vi /∈ S, therefore D has to contain vertices from both pairs {vi−2, vi−1} and
{vi+1, vi+2} (to dominate vi−1 and vi+1, respectively; for i = 2 or i = 5k = 1 we
view v0 or v5k+1 as a dummy vertex). Since one of those pairs is disjoint from all
Ej (independently of the actual value of i), the assertion follows.

Next, let D′ be an inverse dominating set. Since D0 is the unique dominating
set of minimum cardinality, D′ ∩ D0 = ∅ holds. Consequently, D′ has to contain a
vertex from each of the following sets:
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• {vi}, i ≡ 3 (mod 5) — k vertices in D′,

• Ej \ {vj}, j ≡ 2, 4 (mod 5) — 2k vertices in D′,

• {vi, vi+1}, i ≡ 0 (mod 5) — k + 1 vertices in D′.

Thus, γ−1(H) = 4k + 1 and γ(H) + γ−1(H) = 6k + 1.

The proof of the theorem will be completed if we show that γγ(H) = 5k + 1.
To prove γγ(H) ≤ 5k + 1, we specify one vertex yj ∈ Ej \ {vj} for each j ≡
2, 4 (mod 5), and consider the following two sets:

S1 = {vi | i ≡ 4, 7, 10 (mod 10)} ∪ {yj | j ≡ 2, 9 (mod 10)} ∪ {v1},

S2 = {vi | i ≡ 2, 5, 9 (mod 10)} ∪ {yj | j ≡ 4, 7 (mod 10)}.

It can be checked that the sets S1 and S2 are disjoint, and each of them dominates
H. Moreover, if k is even, then |S1| = 5k/2 + 1 and |S2| = 5k/2; and if k is odd,
then |S1| = |S2| = (5k + 1)/2. Thus, in either case, γγ(H) ≤ |S1| + |S2| = 5k + 1.

Conversely, to prove γγ(H) ≥ 5k+1, let S1 and S2 be two disjoint dominating
sets of H, such that |S1| + |S2| = γγ(H). Denoting S = S1 ∪ S2, we observe:

• |S ∩ Ej | ≥ 2 for all j ≡ 2, 4 (mod 5), because both S1 and S2 dominate Ej ,

• S ∩ {v5i, v5i+1} 6= ∅ for all 1 ≤ i ≤ k − 1, because if v` /∈ S (` = 5i, 5i + 1)
then the two neighbors of v` must occur in S, and hence at most one vertex
of each pair can be missing,

• v1 ∈ S and v5k ∈ S, because each of v1 and v5k has just one neighbor.

Summing up, we obtain γγ(H) = |S| ≥ 4k + (k − 1) + 2 = 5k + 1. �

3. DISJOINT STRONGLY INDEPENDENT SETS

To simplify some statements in the sequel, let us say that two sets S1, S2 ⊆
X in hypergraph H = (X, E) form a strongly independent disjoint pair — called
an SID-pair, for short — if S1 ∩ S2 = ∅, moreover both of the Si are strongly
independent and maximal under inclusion; i.e., each x ∈ X \Si is adjacent to some
vertex of Si. Due to the condition of maximality, not every H has an SID-pair. The
study of hypergraphs having at least one SID-pair was initiated by Acharya [2],
where a couple of conjectures were proposed. In this section we put some related
remarks.

Problem 2 of [2] asks for a characterization of hypergraphs having SID-pairs.
The next observation shows that this question is in fact a problem in graph theory,
since we can reduce it from hypergraphs to simple graphs.

Proposition 3.1. A hypergraph H has an SID-pair if and only if so does its

loopless 2-section [H]2.
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Proof. Two vertices are adjacent in H if and only if they are adjacent in [H]2.
Hence, the strongly independent sets maximal under inclusion, and also the SID-
pairs, are exactly the same in H and in [H]2. �

Hence, the problem reduces to characterizing graphs in which there exist two
disjoint independent sets maximal under inclusion.

On the other hand, despite that SID-pairs occur in either both or none of H
and [H]2, in some classes of hypergraphs there can be more structure than in their
2-sections. In this direction it was proposed in Conjecture 3.17 of [2] that perhaps
all balanced hypergraphs have SID-pairs. We give counterexamples to this.

As a preliminary observation towards counterexamples, it is clear by definition
that every vertex of a cycle in a hypergraph is contained in at least two edges.
Hence, the following property is immediate.

(∗) Pendent vertices do not belong to any cycle in any hypergraph.

Proposition 3.2. For every integer n ≥ 6, there exists a balanced hypergraph of

order n, which does not have any SID-pair.

Proof. We first describe an example on six vertices. Let H = (X, E) with X =
{a, b, c, d, e, f} and E = {E1, E2, . . . , E6}, where E1 = {a, b}, E2 = {b, c}, E3 =
{a, b, c}, E4 = {a, d}, E5 = {b, e}, E6 = {c, f} (see Figure 2).

It is clear that the only cycle in H
is C = (a, E1, b, E2, c, E3, a). Although
it is of odd length, edge E3 contains
three vertices of C, hence H is a bal-
anced hypergraph.

On the other hand, strongly inde-
pendent sets S of H can have at most
one vertex in E3, and by the assumption
of maximality, specifying S ∩ E3 there
is a unique choice of S for each of the
four possibilities. Namely, the maximal
strongly independent sets are
{a, e, f}, {b, d, f}, {c, d, e}, {d, e, f}.

Figure 2. Balanced hypergraph

Each of them has at least two vertices in {d, e, f}, therefore no two of them are
disjoint.

Attaching more than one pendent vertex to a, b, and/or c, constructions on
any number n ≥ 6 of vertices can be obtained. �

Remark 3.3. By a slight modification of the construction above, counterexamples to
Proposition 3.14, Corollary 3.15 and Proposition 3.21 of the paper [2] can be given. Those
assertions stated (or, in 3.21, assumed) that hypergraphs without cycles — and, more
generally, those without odd cycles — would contain SID-pairs. To disprove this, we
observe that removing the edges E1 and E2 from the hypergraph exhibited in Figure 2
all cycles are eliminated and still no SID-pair occurs. Actually, the edge E3 can be made
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of arbitrary size, and we only need to maintain at least three pendent vertices whose
neighbors are mutually distinct. Moreover, as a combination of the previous ideas, a path
of 2-element edges can be inserted inside the enlarged edge. All these transformations
result in balanced hypergraphs without SID-pairs.

If the goal is just to avoid containment between edges without changing their num-

ber, one can modify H of Figure 2 to a new hypergraph H1 = (X1, E1) by inserting

two further pendant vertices u and v in such a way that E1 and E2 are extended to

E′

1 = E1 ∪ {u} and to E′

2 = E2 ∪ {v}, respectively. That is, the new vertex set is

X1 = X ∪ {u, v}, the new edge set is E1 = E \ {E1, E2} ∪ {E′

1, E
′

2}, and no SID-pairs

occur.

The following assertion shows that excluding cut vertices (assuming that the
hypergraph is 2-connected) is not sufficient for an SID-pair.

Proposition 3.4. For every integer n ≥ 15, there exists a 2-connected balanced

hypergraph of order n, which does not have any SID-pair.

Proof. Let n = 3k (k ≥ 5) first. Consider the hypergraph H = (X, E) with vertex
set X = X1 ∪ X2 ∪ X3, where Xi = {xi,1, xi,2, . . . , xi,k} for i = 1, 2, 3, and with
edge set

E = {X1, X3} ∪ {{x1,j , x2,j} | 1 ≤ j ≤ k} ∪ {{x2,jx3,j} | 1 ≤ j ≤ k}

This H remains connected after the removal of any one vertex, and all cycles have
length 6 in it. Hence, H is 2-connected and balanced.

Suppose that S ⊂ X is a maximal independent set. Then, since |S ∩X1| ≤ 1
and |S ∩X3| ≤ 1, maximality implies |S ∩ X2| ≥ k − 2 > k/2 for k ≥ 5. Thus, any
two maximal independent sets share a vertex inside X2. This settles the question
for orders n which are multiples of 3.

To prove the assertion for n = 3k + 1 and n = 3k + 2, we select one or two
indices j, and for the selected x2,j we take a ‘false twin’ x′

2,j adjacent to both x1,j

and x3,j , but not to x2,j . Then the hypergraph remains balanced, because x2,j and
x′

2,j occur together in just one new 4-cycle. Moreover, 2-connectivity is preserved,
too. Finally, no SID-pair can occur, because any maximal independent set contains
either both or none of x2,j and x′

2,j . �

4. CONCLUDING REMARKS

So far there are very few papers on hypergraph domination, therefore lots of
new questions arise. Below we list some problems which are closely related to the
results presented here.

Problem 1. Characterize the hypergraphs H satisfying

(a) γγ(H) = γ(H) + γ−1(H),

(b) γγ(H′) = γ(H′) + γ−1(H′) for all induced subhypergraphs H′ ⊆ H,
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(c) γγ(H′) = γ(H′) + γ−1(H′) for all subhypergraphs H′ ⊆ H,

where condition (1) is assumed throughout.

Problem 2. For which classes H of hypergraphs is it true that

sup {γ(H) + γ−1(H) − γγ(H) | H ∈ H}

is finite?

Problem 3. Does there exist a universal upper bound on
γ(H) + γ−1(H)

γγ(H)
for all

hypergraphs H ?

Also, concerning Proposition 3.4 it remains an open problem to investigate,
what kind of additional properties make balanced hypergraphs necessarily contain
SID-pairs.

Problem 4. Does there exist an integer k such that every k-connected, balanced
hypergraph H has an SID-pair?
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