
Hypergraph k-Cut in Randomized Polynomial Time∗

Karthekeyan Chandrasekaran† Chao Xu† Xilin Yu†

Abstract

In the hypergraph k-cut problem, the input is a hypergraph,

and the goal is to find a smallest subset of hyperedges

whose removal ensures that the remaining hypergraph has

at least k connected components. This problem is known

to be at least as hard as the densest k-subgraph problem

when k is part of the input (Chekuri-Li, 2015). We

present a randomized polynomial time algorithm to solve the

hypergraph k-cut problem for constant k. Our algorithm

solves the more general hedge k-cut problem when the

subgraph induced by every hedge has a constant number

of connected components. In the hedge k-cut problem, the

input is a hedgegraph specified by a vertex set and a disjoint

set of hedges, where each hedge is a subset of edges defined

over the vertices. The goal is to find a smallest subset of

hedges whose removal ensures that the number of connected

components in the remaining underlying (multi-)graph is at

least k. Our algorithm is based on random contractions

akin to Karger’s min cut algorithm. Our main technical

contribution is a distribution over the hedges (hyperedges) so

that random contraction of hedges (hyperedges) chosen from

the distribution succeeds in returning an optimum solution

with large probability.

1 Introduction

A hypergraph is specified by a vertex set and a collection
of hyperedges, where each hyperedge is a nonempty
subset of vertices. The hypergraph k-cut problem is the
following (abbreviated Hypergraph-k-Cut): Given
a hypergraph, find a smallest subset of hyperedges
whose removal ensures that the number of connected
components in the remaining hypergraph is at least
k. Equivalently, the problem asks for a partitioning
of the vertex set into k parts with minimum number
of hyperedges crossing the partition (a hyperedge is
said to cross a partition if it intersects at least two
parts). This is an extension of the classic hypergraph
min cut problem and has several applications including
clustering in VLSI design and network reliability (e.g.,
see [16, 8, 1, 27, 25]).

∗Chao and Xilin are supported in part by NSF grants CCF-

1526799 and CCF-1319376 respectively.
†University of Illinois, Urbana-Champaign, Email:

{karthe,chaoxu3,xilinyu2}@illinois.edu.

A special case of Hypergraph-k-Cut in which
the input is in fact a graph (i.e., all hyperedges have
cardinality two) is the graph k-cut problem (abbrevi-
ated Graph-k-Cut). Graph-k-Cut has a rich his-
tory. When k is part of the input, Goldschmidt and
Hochbaum showed that the problem is NP-hard [8]
while Saran and Vazirani designed a 2-approximation
algorithm [22]. When k is a constant, Goldschmidt
and Hochbaum gave the first polynomial time algorithm
to solve Graph-k-Cut. Their algorithm runs in time
nΘ(k2), where n is the number of vertices in the input
graph [8]. Karger and Stein [13] designed a randomized
algorithm that runs in time O(n2(k−1) log3 n) which is
also the current-best run-time among randomized al-
gorithms. The deterministic algorithms have been im-
proved over a series of works [11, 12, 24] with the current
best run-time being Õ(n2k) due to Thorup [23].

The complexity of Hypergraph-k-Cut has re-
mained an intriguing open problem since the works of
Goldschmidt-Hochbaum and Saran-Vazirani. The case
of k = 2, denoted Hypergraph-2-Cut, is well-known
to admit deterministic polynomial time algorithms [16,
14, 17]. When k is part of the input, Hypergraph-
k-Cut is NP-hard as observed from Graph-k-Cut.
Chekuri and Li [3] recently showed that Hypergraph-
k-Cut is at least as hard as the densest k-subgraph
problem from the perspective of approximability. The
densest k-subgraph problem is believed to not admit an
efficient constant factor approximation assuming P 6=
NP ; it is known to not admit an efficient n1/(log logn)c -
approximation for some constant c > 0 assuming the
exponential time hypothesis [18]. Chekuri-Li’s result
already illustrates that Hypergraph-k-Cut is signifi-
cantly harder than Graph-k-Cut when k is part of the
input.

When k is a constant, several recent works have
aimed at designing polynomial time algorithms but have
fallen short because they are efficient/return an opti-
mal solution only for either restricted families of hyper-
graphs or for restricted values of the constant k. We
recall these results now. Fukunaga [6] gave a polyno-
mial time algorithm for Hypergraph-k-Cut in con-
stant rank hypergraphs (the rank of a hypergraph is
the cardinality of the largest hyperedge). A randomized
polynomial time algorithm for Hypergraph-k-Cut in

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited1426

D
o
w

n
lo

ad
ed

 0
8
/0

4
/2

2
 t

o
 1

0
6
.5

1
.2

2
6
.7

 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

constant rank hypergraphs for constant k can also be
obtained using the uniform random contraction tech-
nique of Karger and Stein [13] as illustrated by Kogan
and Krauthgamer [15]. Moving to arbitrary rank hy-
pergraphs, Xiao[25] generalized the structural results of
Goldschmidt-Hochbaum to design a polynomial time al-
gorithm for Hypergraph-3-Cut based on minimum
s − t cut computations in hypergraphs. Okumoto,
Fukunaga and Nagamochi [20] reduced Hypergraph-
k-Cut for constant k to the node-weighted k-way cut
problem in graphs 1 and thus obtained a 2(1 − 1/k)-
approximation. They further improved on this approx-
imation factor for k = 4, 5, 6. Thus, it has been open to
determine the complexity of Hypergraph-k-Cut for
constant k ≥ 4.

In this work, we present a randomized polynomial
time algorithm to solve Hypergraph-k-Cut for con-
stant k in arbitrary rank hypergraphs. To the best of
our knowledge, this is the first polynomial time algo-
rithm for Hypergraph-k-Cut for constant k.

Our algorithm addresses a more general problem
that has garnered much attention recently. We describe
this more general problem now. It is often the case
with modern networks that a collection of edges in
a graph are interdependent and consequently could
fail together—e.g., interconnected nodes in an optical
network that share/rely on a single resource. Motivated
by such scenarios, Ghaffari-Karger-Panigrahi [7] defined
the notion of a hedgegraph. A hedgegraph G = (V,E)
is specified by a vertex set V and a set E of disjoint
hedges, where each hedge is a subset of edges over the
vertices in V . We will denote the graph underlying
a hedgegraph G = (V,E) to be the multigraph whose
vertex set is V and whose edges are the union of
the edges in the hedges of G. Essentially, the graph
underlying a hedgegraph is a multigraph whose edges
have been partitioned into hedges. In the context of
modern networks, a hedgegraph is a multigraph where
each hedge corresponds to a resource and a link between
two nodes fails if all hedges containing an edge between
the two nodes fail, i.e., all resources that the link relies
upon become unavailable.

In the s− t hedge cut problem (abbreviated {s, t}-
Hedge-Cut), the input is a hedgegraph and the goal
is to find a smallest subset of hedges whose removal dis-
connects s and t in the underlying graph. In the global
variant of {s, t}-Hedge-Cut (abbreviated Hedge-2-
Cut), the input is a hedgegraph and the goal is to find a
smallest subset of hedges whose removal leads to at least

1The node-weighted k-way cut problem is the following: Given

a graph with weights on the nodes and a collection of terminal

nodes, remove a smallest weight subset of non-terminal nodes so

that the resulting graph has no path between the terminals.

two connected components in the underlying graph. It
is known that {s, t}-Hedge-Cut is NP-hard [26] while
Ghaffari et al. showed that Hedge-2-Cut admits a
randomized polynomial time approximation scheme [7].
Ghaffari et al. [7] also gave a quasi-polynomial time
algorithm to solve Hedge-2-Cut. It remains open to
design a polynomial time algorithm for Hedge-2-Cut.
We make progress towards this question by addressing
an interesting and non-trivial family of instances that
we describe next. We will later show that this family
already encompasses hypergraphs.

The span of a hedge is the number of connected
components in the subgraph induced by the edges in
the hedge. The span of a hedgegraph is the largest span
among its hedges. Hedge-2-Cut in hedgegraphs with
span one reduces to Hypergraph-2-Cut (by replac-
ing each hedge by a hyperedge over the set of vertices
incident to the edges in the hedge) and is hence solv-
able efficiently. The complexity of Hedge-2-Cut for
constant span hedgegraphs was raised as an open prob-
lem by Coudert et al. [5]. We generalize our techniques
for Hypergraph-k-Cut to design a polynomial-time
algorithm for Hedge-2-Cut in constant span hedge-
graphs. More generally, we consider the hedge k-cut
problem (abbreviated Hedge-k-Cut): The input is a
hedgegraph and the goal is to find a smallest subset
of hedges whose removal leads to at least k connected
components in the underlying graph. Equivalently, the
problem asks for a partitioning of the vertex set into
k parts with minimum number of hedges crossing the
partition (a hedge is said to cross a partition if it has an
edge whose two end-vertices are in different parts). We
show thatHedge-k-Cut for hedgegraphs with constant
span is tractable for constant k.

As an additional result, we illustrate that the ideas
behind the polynomial time approximation scheme for
Hedge-2-Cut by Ghaffari et al. [7] can be generalized
to obtain a polynomial time approximation scheme for
Hedge-k-Cut for constant k (for all input hedgegraphs
irrespective of their spans).

1.1 Results.

In the rest of the paper, we will assume that k ≥ 2
is a constant and avoid stating this explicitly. Our
main result is that Hedge-k-Cut in constant span
hedgegraphs admits an efficient algorithm. For a hedge
e, we use r(e) to denote the number of vertices incident
to the edges in e. Throughout, n will denote the
number of vertices in the input hedgegraph G = (V,E),
m := |E| is the number of hedges and M :=

∑

e∈E r(e)
denotes the input size.

Theorem 1.1. For every non-negative constant integer

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited1427

D
o
w

n
lo

ad
ed

 0
8
/0

4
/2

2
 t

o
 1

0
6
.5

1
.2

2
6
.7

 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

s, there exists a randomized polynomial time algorithm
to solve Hedge-k-Cut in hedgegraphs with span at
most s that runs in time O(mMnks+k−s log n) and
succeeds with probability at least 1− 1/n.

We obtain a randomized polynomial time algorithm
for Hypergraph-k-Cut as a special case of the above
result since Hypergraph-k-Cut reduces to Hedge-k-
Cut in 1-span hedgegraphs. For an input hypergraph,
let n denote the number of vertices and let M denote
the sum of the cardinality of the hyperedges.

Corollary 1.1. There exists a randomized polynomial
time algorithm to solve Hypergraph-k-Cut that runs
in time O(Mn2k−1 log n) and succeeds with probability
at least 1− 1/n.

Corollary 1.1 saves a factor of m in the run-time
in comparison to Theorem 1.1 by a careful observation
about our algorithm from Theorem 1.1 as applied to 1-
span hedgegraphs. We discuss this observation in the
proof of Corollary 1.1.

We mention that for the special case of k = 2,
namely Hypergraph-2-Cut, Ghaffari et al. gave an
algorithm based on random contractions [7]. Their
algorithm picks a hyperedge to contract according to
a distribution that requires knowledge of the value
of the optimum 2-cut. They suggest addressing this
issue by a standard technique: employ a binary search
to find the optimum 2-cut value. In contrast, our
contraction algorithm mentioned in Corollary 1.1 does
not require knowledge of the optimum cut value and
is extremely easy to implement. More importantly, it
resolves the complexity of the more general problem of
Hypergraph-k-Cut.

We recall that a set C of hyperedges in a hypergraph
G is said to be a k-cut-set if the removal of C from G
results in a hypergraph with at least k connected com-
ponents. A k-cut-set in G is an optimal k-cut-set if its
cardinality is equal to the minimum number of hyper-
edges whose removal from G results in a hypergraph
with at least k connected components. Our algorith-
mic technique also leads to the following bound on the
number of optimal k-cut-sets:

Corollary 1.2. The number of optimal k-cut-sets in
an n-vertex hypergraph is O(n2(k−1)).

We note that the bound stated in Corollary 1.2
above recovers (i) the bound on the number of optimal
k-cut-sets in graphs by Karger and Stein [13] as well as
(ii) the bound on the number of optimal 2-cut-sets in
hypergraphs [7, 4].

As a final result, we generalize the techniques
underlying the polynomial time approximation scheme
for Hedge-2-Cut by Ghaffari et al. [7] to obtain a
polynomial time approximation scheme for Hedge-k-
Cut. In contrast to Theorem 1.1, this result holds for
hedgegraphs with arbitrary span. A set C of hedges in
a hedgegraph G is said to be a hedge k-cut-set if the
removal of C leads to at least k connected components
in the underlying graph. For α > 1, a hedge k-cut-set C
is said to be an α-approximate minimum hedge k-cut-set
if |C| is at most α times the minimum number of hedges
whose removal leads to at least k connected components
in the underlying graph.

Theorem 1.2. For any given ǫ > 0, there exists a
randomized algorithm to find a (1 + ǫ)-approximate
minimum hedge k-cut-set in time MnO(log(1/ǫ)) log n
that succeeds with probability at least 1− 1/n.

Setting ǫ to be a value that is strictly smaller
than 1/λ, where λ is the value of a minimum hedge
k-cut-set in the input hedgegraph, we observe that a
(1 + ǫ)-approximate minimum hedge k-cut-set would
in fact be a minimum hedge k-cut-set. Thus, Theorem
1.2 gives a quasi-polynomial time algorithm to solve
Hedge-k-Cut (the value of λ can be found by a binary
search). We mention that the run-time dependence
on k in the algorithm mentioned in Theorem 1.2 is
in the exponent O(log(1/ǫ)) and hence the algorithm
is not a polynomial-time algorithm if k is not a constant.

Our algorithmic technique can also be used to
bound the number of optimal k-cut-sets.

Theorem 1.3. The number of distinct minimum hedge
k-cuts-set in an n-vertex hedgegraph with minimum
hedge k-cut-set value λ is nO(k+log λ).

We omit some of the proofs in this extended
abstract—in particular the proof of Corollary 1.2, the
proofs of some of the helper lemmas associated with
proving Theorem 1.2, and the proof of Theorem 1.3.
We defer these proofs to the full version of the paper.

Organization. We present the preliminaries in Section
2 and prove Theorem 1.1 and Corollary 1.1 in Section
3. We give an overview of the proof of Theorem 1.2 in
Section 4.

1.2 Related work.

For Graph-k-Cut, when k is part of the input, Saran-
Vazirani [22] designed a 2-approximation algorithm.
Recently, Manurangsi [19] showed that there is no
efficient (2 − ǫ)-approximation for any constant ǫ > 0
assuming the Small Set Expansion Hypothesis [21].

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited1428

D
o
w

n
lo

ad
ed

 0
8
/0

4
/2

2
 t

o
 1

0
6
.5

1
.2

2
6
.7

 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Approximation algorithms for Hypergraph-k-
Cut, Hypergraph-k-Partitioning, and more gen-
erally, submodular partitioning problems have been
well-studied in the literature. Hypergraph-k-
Partitioning is similar in flavor to Hypergraph-
k-Cut but it counts a different objective. In
Hypergraph-k-Partitioning, the input is a hyper-
graph and the goal is to find a partitioning of the
vertex set into k non-empty parts V1, . . . , Vk so that
∑k

i=1 |δ(Vi)| is minimum (where δ(Vi) is the set of hy-
peredges that cross the part Vi). Hypergraph-k-
Partitioning and Hypergraph-k-Cut coincide to
Graph-k-Cut when the input hypergraph is a graph.
Hypergraph-k-Partitioning is a special case of the
submodular k-partitioning problem since the hyper-
graph cut function is submodular. In the submodular
k-partitioning problem, the input is a non-negative sub-
modular set function f : 2V → R+ (given by the eval-
uation oracle) and the goal is to partition the ground
set V into k non-empty sets V1, . . . , Vk in order to min-
imize

∑k
i=1 f(Vi). Submodular k-partitioning for the

case of k = 3 is known to admit efficient algorithms [20]
while approximation algorithms have been designed for
larger constants k [28, 20]. Submodular k-partitioning
for k = 4 admits efficient algorithms if f is symmetric,
i.e., f(X) = f(V \X) for all X ⊆ V [9].

We also mention that approximation algorithms are
known for the fixed-terminal variant [28, 2]. In sub-
modular k-way partitioning, the input is a non-negative
submodular set function f : 2V → R+ (given by the
evaluation oracle) and distinct elements v1, . . . , vk ∈ V ,
and the goal is to find a partitioning of the ground set
V into k non-empty sets V1, . . . , Vk such that vi ∈ Vi

∀ i ∈ {1, . . . , k} in order to minimize
∑k

i=1 f(Vi). This
generalizes hypergraph k-way cut (where the goal is to
delete the smallest number of hyperedges in order to dis-
connect a given collection of k nodes). The current-best
known approximation for submodular k-way partition-
ing is 2 for general submodular functions and 3/2− 1/k
for symmetric submodular functions.

The main motivation behind the definition of hedge-
graphs is to understand the connectivity properties of
modern networks in which the reliability of links have
certain dependencies. In particular, the links could de-
pend on a common resource. Two natural models have
been considered depending on whether a link fails if ei-
ther all or at least one of the resources that the link
depends upon fails [5]. In this work, our definition of
hedgegraphs considers the former model where a link
fails only if all resources that the link depends upon
fail. The term hedgegraph for this model was given by
Ghaffari et al. [7] who also showed that Hedge-2-Cut
has a polynomial time approximation scheme.

2 Preliminaries

For positive integers a and b with a < b, we will follow
the convention that the inverse binomial expression
(

a
b

)−1
is 1. The set of positive integers less than or equal

to ℓ is denoted as [ℓ]. Let G = (V,E) be a hedgegraph.
We will denote an edge between two vertices a and b
by an unordered tuple {a, b} and a hedge as a set of
edges. We emphasize that the hedges in a hedgegraph
are disjoint—if an edge appears in ℓ different hedges,
then it contributes ℓ edges to the underlying graph. For
a hedge e ∈ E, let G[e] denote the subgraph induced
by the edges in e. We emphasize that there are no
isolated vertices in G[e]. Let V (e) denote the vertices in
G[e]. We recall that r(e) = |V (e)|. Let s(e) denote the
number of connected components in G[e], i.e., the span
of e. Let s := max{s(e) : e ∈ E}, i.e., s denotes the
span of the hedgegraph G. The hedgegraphs of interest
in this work satisfy s ≥ 1.

Our algorithm is based on repeated contractions.
Our notion of the contraction operation is identical to
the well-known notion that appears in the literature.
We define this operation formally for the sake of com-
pleteness. Let U ⊂ V be a subset of vertices in G. We
define G contract U , denoted G/U , to be a graph on
vertex set V ′ := (V − U) ∪ {u}, where u is a newly
introduced vertex, and on hedge set E′, where E′ is ob-
tained as follows: for each hedge e ∈ E, we define the
hedge e′ to be

e′ :={({a, b} − U) ∪ {u} : |{a, b} ∩ U | = 1, {a, b} ∈ e}

∪{{a, b} : {a, b} ∩ U = ∅, {a, b} ∈ e}

and obtain E′ := {e′ : e′ 6= ∅, e ∈ E}. For a
hedge e ∈ E, let C1, . . . , Cs denote the vertex sets
of connected components in G[e]. The hedgegraph
obtained by contracting the hedge e, denoted G/e, is
the hedgegraph obtained by contracting the vertex set
of each component in G[e] individually, i.e., G/e :=
G/C1/C2/ . . . /Cs. We observe that contracting a hedge
does not increase the span.

We need the following technical lemma.

Lemma 2.1. (Majorization inequality) (see The-
orem 108 in [10]) Let y1, . . . , yℓ and x1, . . . , xℓ be two
finite non-increasing sequence of real numbers in [a, b]
with the same sum. Let f : [a, b]→ R be a convex func-

tion. If
∑j

i=1 yi ≤
∑j

i=1 xi for all 1 ≤ j ≤ ℓ, then

ℓ
∑

i=1

f(yi) ≤
ℓ
∑

i=1

f(xi).

3 Hedge k-Cut in Constant Span Graphs

In this section, we design an algorithm to solve Hedge-
k-Cut in constant span hedgegraphs. For ease of

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited1429

D
o
w

n
lo

ad
ed

 0
8
/0

4
/2

2
 t

o
 1

0
6
.5

1
.2

2
6
.7

 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

description and analysis, we will focus on the minimum
cardinality variant. We will specify how to adapt it to
solve the minimum cost variant at the end of the section.

Overview. We recall Karger’s random contraction
algorithm for graphs (more generally, multigraphs):
pick an edge uniformly at random, contract it and
repeat until there are 2 vertices left at which point
output the edges between the two vertices. In order
to analyze the correctness, one can fix a min-cut C
and argue that most of the edges will not be in C.
Indeed, suppose the value of the min-cut is λ, then
every isolating cut (i.e., a cut induced by a single
vertex) has value at least λ, and hence the number of
edges is at least nλ/2. Consequently, the probability of
picking an edge in C is at most 2/n. If we use the same
algorithm as above to solve Hypergraph-2-Cut, then
it is unclear how to analyze the resulting algorithm.
This is due to the existence of n-vertex hypergraphs for
which a hyperedge from a min-cut could be chosen with
probability as large as a constant and not at most 2/n.
We avoid this issue by choosing a hyperedge (or hedge)
to contract from a different probability distribution
that is not uniform.

The contraction algorithm. We will present an
algorithm that outputs a particular minimum hedge
k-cut-set with inverse polynomial probability. Hence,
returning a hedge k-cut-set with minimum value among
the ones output by polynomially many executions of the
contraction algorithm will indeed find a minimum hedge
k-cut-set with constant probability. For the purposes
of Hypergraph-k-Cut, we recommend the reader to
consider s = 1 in the following algorithm and analysis
(with the standard notion of hyperedge contraction).

Let n be the number of vertices in the input
hedgegraph G = (V,E). For a hedge e ∈ E, we recall
that r(e) is the number of vertices incident to the edges
in e and define

δe :=

{

(

n−r(e)
k−1

)

/
(

n
k−1

)

if n− r(e) ≥ k − 1, and

0 if n− r(e) < k − 1.

Our contraction algorithm will pick a hedge e with
probability proportional to δe, contract it, update the
values of δe based on the new number of vertices and
r(e) for every e ∈ E and repeat until the number of
vertices is small. When the number of vertices is at most
a constant, we do a brute-force search. We emphasize
that our brute-force search outputs all minimum hedge
k-cut-sets in the hedgegraph with constant number of
vertices. We do this for the purposes of convenience in
the correctness analysis.

We note that a hedge e is present in every hedge

k-cut-set of G if and only if |V (G/e)| < k. We recall
that |V (G/e)| = n − r(e) + s(e). Hence, if a hedge e
is present in every hedge k-cut-set, then n− r(e) + 1 ≤
n− r(e)+ s(e) < k and consequently, δe = 0. Thus, our
algorithm will never contract hedges that are present
in every hedge k-cut-set. The algorithm is described in
Figure 1.

We now analyze the correctness probability of the
contraction algorithm. The following lemma shows a
lower bound on the number of hedges in G as a function
of the minimum hedge k-cut-set value.

Lemma 3.1. Let G = (V,E) be a hedgegraph with m :=
|E| and λ being the minimum hedge k-cut-set value.
Then,

m− λ ≥
∑

e∈E

δe.

Proof. We will prove the lemma by exhibiting an upper
bound on λ by the probabilistic method. Let W be
a subset of k − 1 vertices chosen uniformly at random
among all subset of vertices of size k− 1. Now consider
the k-partition of the vertex set given by P := {{v}|v ∈
W}∪{V \W}. We claim that the expected value of the
hedge k-cut-set given by P is m −

∑

e∈E δe and hence
λ ≤ m−

∑

e∈E δe.
We now prove the claim. Let e be a hedge in G. The

probability that e does not cross P is
(

n−r(e)
k−1

)

/
(

n
k−1

)

=
δe. Thus, the probability that e contributes to the hedge
k-cut-set P is 1 − δe. The claim follows by linearity of
expectation.

�

We need the following combinatorial statement.

Lemma 3.2. Suppose n > 2(k − 1)(s + 1). Then, for
every hedge e with r(e) ∈ {2, . . . , n− k + 1}, we have

δe

(

n− r(e) + s(e)

(k − 1)(s+ 1)

)−1

≥

(

n

(k − 1)(s+ 1)

)−1

.

Proof. If n − r(e) + s(e) < (k − 1)(s + 1), then
(

n−r(e)+s(e)
(k−1)(s+1)

)−1
= 1 using the convention fixed at the

beginning of Section 2. Since r(e) ≤ n− k+ 1, we have
(

n−r(e)
k−1

)

≥ 1. Thus,

δe =

(

n− r(e)

k − 1

)(

n

k − 1

)−1

≥

(

n

k − 1

)−1

≥

(

n

(k − 1)(s+ 1)

)−1

since n > 2(k − 1)(s+ 1) and s ≥ 1.

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited1430

D
o
w

n
lo

ad
ed

 0
8
/0

4
/2

2
 t

o
 1

0
6
.5

1
.2

2
6
.7

 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Hedge-k-Cut(G)

Input: Hedgegraph G = (V,E) with n := |V | and span s

1. Initialize a list of hedge k-cut-set candidates with E as an initial candidate.

2. Repeat:

(a) If n ≤ 2(k − 1)(s + 1), then compute all minimum hedge k-cut-sets in G by a brute-force search, add
them to the list of candidates and go to Step 3.

(b) For every e ∈ E such that δe = 0 and |V (G/e)| ≥ k:

i. compute all minimum hedge k-cut-sets in G/e by a brute-force search and add them to the list of
candidates.

(c) If
∑

e∈E δe = 0 go to Step 3.

(d) Choose a hedge e in G with probability proportional to δe.

(e) Contract and update: G ← G/e, n ← |V (G)| and update δe for every hedge e in the contracted graph
G.

3. Output all hedge k-cut-sets with minimum value among the candidates.

Figure 1: Contraction algorithm for constant span hedgegraphs.

For the rest of the proof, we will assume that
n − r(e) + s(e) ≥ (k − 1)(s + 1). We now note
that the binomial in the LHS of the lemma is well-
defined and non-zero. For notational convenience, let
t = (k − 1)(s+ 1). Then we need to show that

(3.1) δe

(

n− r(e) + s(e)

t

)−1

≥

(

n

t

)−1

.

We distinguish two cases based on whether s+1 ≤ r(e)
or r(e) ≤ s.

Case 1: Suppose s + 1 ≤ r(e). We recall that s ≥ 1.
Since s(e) ≤ s, we have

δe

(

n− r(e) + s(e)

t

)−1

≥ δe

(

n− r(e) + s

t

)−1

.

Let x = r(e). Then it suffices to show that

(3.2)

(

n− x

k − 1

)(

n

k − 1

)−1(
n− x+ s

t

)−1

≥

(

n

t

)−1

.

Consider the LHS of (3.2) as a function of x. There
exists a constant Cn,k,s (that depends on n, k and s)
using which the LHS can be written as

LHS(x)

= Cn,k,s
(n− x)!(n− x+ s− t)!

(n− x− k + 1)!(n− x+ s)!

= Cn,k,s
(n− x+ s− t)!

(n− x− k + 1)!
∏s

i=1(n− x+ i)

= Cn,k,s

(

1
∏t−s−1

i=k−1(n− x− i)

)

(

1
∏s

i=1(n− x+ i)

)

.

The last equation follows since t = (k − 1)(s + 1), and
hence k−1 ≤ t−s. From the above expression, we have
that LHS(x) is an increasing function of x. Thus we only
need to show inequality (3.2) when x is the minimum
value in the domain of interest, i.e., x = r(e) = s + 1.
Hence, it suffices to show that

(3.3)

(

n− s− 1

k − 1

)(

n

k − 1

)−1(
n− 1

t

)−1(
n

t

)

≥ 1.

To show the above, we write out the LHS of (3.3):

LHS of (3.3) =
(n− s− 1)!(n− k + 1)!

(n− s− k)!(n− 1)!(n− t)

=

∏s+k−1
i=s+1 (n− i)

(n− t)
∏k−2

i=1 (n− i)
.

In order to show that LHS of (3.3) ≥ 1, we need to show
that the denominator is no greater than the numerator.
Taking negative logarithm of both the denominator and
the numerator, we only need to show that
(3.4)
s+k−1
∑

i=s+1

(− log(n− i)) ≤
k−2
∑

i=1

(− log(n− i))− log(n− t).

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited1431

D
o
w

n
lo

ad
ed

 0
8
/0

4
/2

2
 t

o
 1

0
6
.5

1
.2

2
6
.7

 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

We recall that t = (k − 1)(s + 1). We know

that
∑s+k−1

i=s+1 (n − i) = (2n − 2s − k)(k − 1)/2 =

(n − t) +
∑k−2

i=1 (n − i) and
∑s+j

i=s+1(n − i) <
∑j

i=1(n − i) ∀j ∈ [k − 2]. Since negative loga-
rithm is a convex function, inequality (3.4) follows
by applying Lemma 2.1 using the choice ℓ := k − 1,
yi := n − s − i, xi := n − i for every i ∈ [k − 2] and
yk−1 := n− s− (k − 1), xk−1 := n− t.

Case 2: Suppose r(e) ≤ s. By the assumptions of
the lemma, we have r(e) ≥ 2 and hence s ≥ 2. We
recall that r(e) is the number of vertices incident to
the edges in e while s(e) is the number of connected
components in the subgraph induced by the edges in e.
Hence, r(e)− s(e) ≥ r(e)/2. Consequently, we have

δe

(

n− r(e) + s(e)

t

)−1

≥ δe

(

n− r(e)/2

t

)−1

.

Let x = r(e). Then it suffices to show that

(3.5)

(

n− x

k − 1

)(

n

k − 1

)−1(
n− x/2

t

)−1

≥

(

n

t

)−1

.

Proceeding similarly to the analysis in Case 1 above, we
can show that the LHS of (3.5) is an increasing function
of x. Then we only need to show inequality (3.5) for
x = 2, i.e., we need to show that

(3.6)

(

n− 2

k − 1

)(

n

k − 1

)−1(
n− 1

t

)−1(
n

t

)

≥ 1.

Inequality (3.6) is a special case of inequality (3.3),
which we have already proven in Case 1. This concludes
our proof for the combinatorial statement. �

We now show a lower bound on the success proba-
bility of the algorithm.

Theorem 3.1. For an n-vertex m-hedge input hedge-
graph with span s, the contraction algorithm given above
outputs any fixed minimum hedge k-cut-set with proba-
bility at least

(

n

(k − 1)(s+ 1)

)−1

.

Moreover, for constant k and s, it can be implemented
to run in time O(nmM).

Proof. For a hedgegraph H, let O(H) denote the set
of optimal k-cut-sets in H. For C ∈ O(H), let q(H,C)
denote the probability that the algorithm executed onH
outputs C. Let Gn,s be the set of n-vertex hedgegraphs
with span at most s. We define

qn := inf
H∈Gn,s

min
C∈O(H)

q(H,C).

We will prove by induction on n that qn ≥
(

n
(k−1)(s+1)

)−1
. Let G = (V,E) ∈ Gn,s with C ∈ O(G).

Let us define m := |E| and λ := |C|.
We first note that the algorithm will terminate in

finite time. This is because either the number of vertices
is strictly decreasing in each iteration and the algorithm
reaches the base case in Step 2(a) or the condition is met
in Step 2(c). If C is in the list of candidates, it will be
part of the output because it is a minimum hedge k-cut-
set. Therefore we just have to prove that C is in the list
of candidates.

To base the induction, we consider n ≤ 2(k−1)(s+
1). For such n, we have q(G,C) = 1 since the algorithm
solves such instances exactly by a brute-force search and
returns all minimum hedge k-cut-sets, hence qn = 1.

We now show the induction step. We begin by
addressing two easy cases: (i) Suppose δe = 0 for
some hedge e ∈ E \ C. Since e ∈ E \ C, we know
that contracting e does not destroy C, so C is still a
minimum hedge k-cut-set in G/e. We also know that
|V (G/e)| ≥ k. This is because contracting any hedge f
with |V (G/f)| < k would destroy all hedge k-cut-sets
but C survives the contraction of e. Since δe = 0 and
|V (G/e)| ≥ k, Step 2(b)i will add all minimum hedge k-
cut-sets in G/e including C to the list of candidates, so
q(G,C) = 1. (ii) Suppose C = E. Then, all hedges are
present in every hedge k-cut-set. Therefore, δe = 0 for
every hedge e ∈ E. So the algorithm executes only one
iteration of Step 2 and will go to Step 3 after executing
Step 2(c). Since all hedges are present in every hedge
k-cut-set, contracting any hedge e ∈ E will destroy
all hedge k-cut-sets. Consequently, Step 2(b) of the
algorithm will not find any candidate and Step 3 will
correctly return all hedges in G since the initialized list
contains E as a candidate. Hence, q(G,C) = 1.

Thus, we may assume that (i) n > 2(k − 1)(s+ 1),
(ii) δe > 0 for all e ∈ E \ C, and (iii) E \ C 6= ∅.
In particular, (ii) and (iii) imply that

∑

e∈E δe > 0.
Let pe := δe/

∑

e∈E δe for every e ∈ E. We note that
(pe)e∈E is a probability distribution supported on the
hedges because pe ≥ 0 ∀e ∈ E and

∑

e∈E pe = 1. The
algorithm picks a hedge e to contract according to the
distribution defined by (pe)e∈E . We note that since
∑

e∈E δe > 0, we have δe > 0 for some e ∈ E and
thus we will contract some hedge.

The algorithm executed on G outputs C if the
hedge e that it contracts is not in C and the algorithm
executed on the contracted hedgegraph G/e outputs C.
Let e ∈ E\C. The hedgegraph G/e has n−r(e)+s(e) <
n vertices and moreover, the span of G/e is at most s
and hence G/e ∈ Gn−r(e)+s(e),s. Furthermore, the k-
cut-set C is still a minimum hedge k-cut-set in G/e and
hence C ∈ O(G/e). Thus, q(G/e,C) ≥ qn−r(e)+s(e) by

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited1432

D
o
w

n
lo

ad
ed

 0
8
/0

4
/2

2
 t

o
 1

0
6
.5

1
.2

2
6
.7

 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

definition. Thus, we have

q(G,C) ≥
∑

e∈E\C

pe · q(G/e,C)

≥
∑

e∈E\C

pe · qn−r(e)+s(e)

=
1

∑

e∈E δe

∑

e∈E\C

δe · qn−r(e)+s(e)

(since pe = δe/
∑

e∈E

δe)

≥
1

∑

e∈E δe

∑

e∈E\C

δe ·

(

n− r(e) + s(e)

(k − 1)(s+ 1)

)−1

.

(by induction hypothesis)

For every e ∈ E \C, we know that δe > 0, which implies
that n− r(e) ≥ k − 1 by definition of δe. Moreover, by
the assumption on G, we have that n > 2(k− 1)(s+1).
Hence, by Lemma 3.2, for every hedge e ∈ E \ C, we
have

δe ·

(

n− r(e) + s(e)

(k − 1)(s+ 1)

)−1

≥

(

n

(k − 1)(s+ 1)

)−1

.

Substituting this in the previously derived lower bound
for q(G,C), we have

q(G,C) ≥
1

∑

e∈E δe

∑

e∈E\C

(

n

(k − 1)(s+ 1)

)−1

=
m− λ
∑

e∈E δe

(

n

(k − 1)(s+ 1)

)−1

(since |C| = λ and |E| = m)

≥

(

n

(k − 1)(s+ 1)

)−1

.

(by Lemma 3.1)

In all cases, we have shown that q(G,C) ≥
(

n
(k−1)(s+1)

)−1
for an arbitrary G ∈ Gn,s and an arbi-

trary C ∈ O(G). Therefore, we have

qn = inf
H∈Gn,s

min
C∈O(H)

q(H,C) ≥

(

n

(k − 1)(s+ 1)

)−1

.

This concludes our proof of the correctness probability
by induction.

We now analyze the running time of the contraction
algorithm. A hedge contraction operation takes O(M)
time: To contract a hedge e, we construct a hash
table of the vertices in the hedge, which also stores
which component each vertex is in. The second step is

contraction. We process every hedge and mark a vertex
if it needs to be contracted. If so, we also mark which
vertex it contracts to. Marking vertices takes O(1) time
per vertex encountered in a hedge as we only need to
check if it is in the hash table that we constructed.
Therefore, marking vertices in all hedges takes O(M)
time in total. Then, we replace all the marked vertices
with the new vertices and update the hedges accordingly
in O(M) time. Hence the contraction operation can be
implemented to run in O(M) time.

We analyze the run-time for one iteration of Step
2. The brute-force operation in Step 2(a) takes
O(Mk2(k−1)(s+1)) time. The for-loop in Step 2(b) ap-
plies at most O(m) contractions. Each contraction takes
O(M) time and each brute-force search for minimum
hedge-k-cut-set takes O(Mkk+s) time. Hence Step 2(b)
runs in time O(mM). Step 2(c) verifies if

∑

e∈E δe = 0
which can be done in O(m) time. Step 2(d) picks a
random hedge given a probability distribution on the
hedges which again takes O(m) time. Step 2(e) con-
tracts and updates the δe values. Contraction takes
O(M) time. In order to update the δe values, we can
precompute

(

a
k−1

)

for all k − 1 ≤ a ≤ n in O(n(k − 1))
arithmetic operations. After every contraction, we can
thus update δe for each e in constant time using the ta-
ble. Now, we can compute

∑

e∈E δe in O(|E|) = O(m)
time. With these values, the probability pe for all e ∈ E
can be found in O(m) time. Hence, the total run-time
of one iteration of Step 2 is O(mM).

Since the number of vertices strictly decreases after
each contraction, the total number of iterations of Step
2 is at most n. By the above discussion, the contraction
algorithm can be implemented to run in O(nmM) time.
We mention that the bottleneck of the algorithm is Step
2(b)i. If Step 2(b)i is never executed, then the running
time is O(nM).

�

The contraction algorithm can be adapted to solve
the min-weight variant, where each hedge e has weight
w(e), and the goal is to find a subset of hedges of
minimum total weight to remove so that the underlying
graph has at least k connected components. In this case,
we set δe := w(e)

(

n−r(e)
k−1

)

/
(

n
k−1

)

if n− r(e) ≥ k − 1 and
δe := 0 if n−r(e) < k−1, and run the same contraction
algorithm as above. The correctness and run-time
arguments are analogous to the one in Theorem 3.1 and
we avoid repeating in the interests of brevity.

Theorem 1.1 follows from Theorem 3.1 by executing
the contraction algorithm

(

n
(k−1)(s+1)

)

log n times and

outputting a hedge k-cut-set with the minimum value
among all executions. We next focus on the special
case of Hypergraph-k-Cut. We restate and prove

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited1433

D
o
w

n
lo

ad
ed

 0
8
/0

4
/2

2
 t

o
 1

0
6
.5

1
.2

2
6
.7

 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Corollary 1.1.

Corollary 1.1. There exists a randomized polynomial
time algorithm to solve Hypergraph-k-Cut that runs
in time O(Mn2k−1 log n) and succeeds with probability
at least 1− 1/n.

Proof. We will show that a hypergraph can be trans-
formed to a hedgegraph with span one without chang-
ing the value of any k-cut-set. By Theorem 1.1, such a
transformation immediately gives a randomized polyno-
mial time algorithm to solve Hypergraph-k-Cut that
runs in time O(nmMn2(k−1) log n) and succeeds with
probability at least 1 − 1/n. We discuss the run-time
improvement after showing the transformation.

Let G = (V,E) be an input hypergraph. We
construct a hedgegraph H = (V,E′), where E′ is
obtained as follows: for every hyperedge e ∈ E, fix an
arbitrary vertex v ∈ e and introduce a hedge e′ ∈ E′

consisting of edges {v, u} for all u ∈ e − {v}. Thus,
the subgraph induced by the edges in e′, i.e., G[e′], is
a star centered at v that is adjacent to all the vertices
in e and hence has span one. We emphasize that the
constructed hedges are disjoint, i.e., if an edge appears
in ℓ constructed hedges, then the underlying graph has
ℓ copies of the edge with each copy being present in one
of the hedges.

We now show that the value of any k-cut-set is pre-
served by this transformation. Let {V1, . . . , Vk} denote
a partitioning of the vertex set V into k non-empty
parts. We claim that a hyperedge e crosses the partition
{V1, . . . , Vk} in the hypergraph G if and only if the cor-
responding hedge e′ crosses the partition {V1, . . . , Vk}
in the hedgegraph H. Suppose e′ crosses the parti-
tion {V1, . . . , Vk} in the hedgegraph H. Consider the
center vertex v of e′. Without loss of generality, let
v ∈ V1. Then there exists a vertex u ∈ e′ ∩ Vj for
some j ∈ [k] \ {1}. Now u, v ∈ e, and hence e crosses
{V1, . . . , Vk} in the hypergraph G. On the other hand,
suppose e crosses the partition {V1, . . . , Vk} in the hy-
pergraphG. Consider the center vertex v of the star cor-
responding to e′. Without loss of generality, let v ∈ V1

and suppose e intersects V1 and Vj for some j ∈ [k]\{1}.
Let u ∈ Vj ∩ e. Then v ∈ V1 while u ∈ Vj and hence e′

crosses {V1, . . . , Vk} in the hedgegraph H.
We now argue that the algorithm will never execute

Step 2(b)i for hedgegraphs with span one. For every
hedge e with δe = 0, we have that n− r(e) < k− 1 and
consequently |V (G/e)| = n−r(e)+s(e) = n−r(e)+1 <
k. Hence, we would have no hedges e in the hedgegraph
with δe = 0 and |V (G/e)| ≥ k.

This observation shows that the running time is
O(nM) as analyzed in the proof of Theorem 3.1. Now,
the corollary follows by running the modified contrac-

tion algorithm
(

n
2(k−1)

)

log n times and returning the

hedge k-cut-set with minimum value among all execu-
tions.

�

4 PTAS for Hedge-k-Cut

In this section, we provide a polynomial time approxi-
mation scheme and a quasi-polynomial time exact algo-
rithm for Hedge-k-Cut for constant k. We generalize
the contraction approach for Hedge-2-Cut given by
Ghaffari et al. [7]. In their contraction algorithm, Ghaf-
fari et al. distinguish large and small hedgegraphs based
on the existence of small, medium, and large hedges. We
generalize these definitions for the purposes of Hedge-
k-Cut and handle the cases similarly.

Let G = (V,E) be a hedgegraph with n := |V |.
We define a hedge e to be small if r(e) < n/(4(k − 1)),
moderate if n/(4(k − 1)) ≤ r(e) < n/(2(k − 1)), and
large if r(e) ≥ n/(2(k− 1)). We define a hedgegraph to
be large if it contains at least one large hedge, and to
be small otherwise. We use the algorithm in Figure 2.

We next give an overview of the analysis of the
correctness probability of the algorithm. We omit some
of the proofs here and defer them to the full version of
the paper. The following lemma bounds the number of
branching steps performed by the algorithm.

Lemma 4.1. The total number of branching steps in
one execution of the contraction algorithm on an n-
vertex hedgegraph is at most

log 8(k−1)
8(k−1)−1

n.

The next two lemmas will be used to lower bound
the success probability of the algorithm in returning a
(1+ǫ)-approximate minimum hedge k-cut-set. We recall
that for a hedge e, the number of vertices incident to
the edges in e is denoted by r(e).

Lemma 4.2. If G = (V,E) is an n-vertex small hedge-
graph with C being a minimum hedge k-cut-set in G
with value λ, then

(i)
∑

e∈E\C r(e) ≥ nλ/(2(k − 1)) and

(ii) m ≥ 2λ.

Lemma 4.3. For every x ∈ (0, 1/2) and c ≥ 4, we have
(1− x) · (1− x/c)−3c/2 ≥ 1.

We now lower bound the success probability of the
algorithm.

Lemma 4.4. For an n-vertex input hedgegraph, the
contraction algorithm given above returns a (1 + ǫ)-
approximate minimum hedge k-cut-set with probability

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited1434

D
o
w

n
lo

ad
ed

 0
8
/0

4
/2

2
 t

o
 1

0
6
.5

1
.2

2
6
.7

 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Input: Hedgegraph G = (V,E)

Contract(G):

1. If G has k vertices, then return F = E.

2. Else if the graph underlying G has at least k components, then return F = ∅.

3. Else, remove all hedges e such that n− r(e) + s(e) ≤ k − 1 from G and add them to F .

4. If G is a small hedgegraph, then contract a hedge e chosen uniformly at random from E. Let the resulting
hedgegraph be H and return F ∪Contract(H).

5. Else, let L be the set of large and moderate hedges in G. Perform a branching step: go to one of the two
following branches with equal probability.

(a) Remove all large and moderate hedges from G to obtain a hedgegraph H1 and return F ∪ L ∪
Contract(H1).

(b) Contract a hedge e chosen uniformly at random from L to obtain a hedgegraph H2 and return
F ∪Contract(H2).

Figure 2: Contraction algorithm for arbitrary span hedgegraphs

n−O(log(1/ǫ)). Moreover, it can be implemented to run
in time O(Mn).

Proof. We first note that any hedge e with n − r(e) +
s(e) ≤ k − 1 must be in every hedge k-cut-set. By
deleting such hedges from the input hedgegraph and
adding them to the output set F , the algorithm ensures
that it never contracts hedges such that the resulting
hedgegraph has at most k − 1 components (vertices).
So, the algorithm always outputs a hedge k-cut-set. In
the rest of the proof, we will lower bound the probability
that the output is a (1+ǫ)-approximate minimum hedge
k-cut-set for a fixed ǫ > 0.

Let H(n, ℓ) be the family of hedgegraphs on n
vertices for which the contraction algorithm will always
terminate using at most ℓ branchings. We say that
the algorithm succeeds on an input hedgegraph H if it
outputs a (1 + ǫ)-approximate minimum hedge k-cut-
set of H. Let q(H) denote the probability that the
algorithm succeeds on H. We define

qn,ℓ := inf
H∈H(n,ℓ)

q(H).

For notational simplicity, let γ := ǫ/(1 + ǫ). We will
prove by induction on n that

qn,ℓ ≥ n−6(k−1) ·
(γ

2

)ℓ

∀ n ≥ k.

Let G ∈ H(n, ℓ), with vertex set V = [n] and hedge set
E.

To base the induction, we consider n = k. For such
n, the algorithm returns the only hedge k-cut-set of G,
so q(G) = 1 and hence qn,ℓ = 1.

We next show the induction step. If G has at least
k components, the algorithm returns the only minimum
hedge k-cut-set, which is the empty set, and hence
q(G) = 1. Thus, we may assume that n > k and
the graph underlying G has fewer than k components.
Let us fix a minimum hedge k-cut-set C of G and
suppose that its value is λ. We will first show that
q(G) ≥ n−6(k−1) · (γ/2)ℓ for all G ∈ H(n, l). We
distinguish three cases and handle them differently.

1. Suppose G is small. The algorithm succeeds if
it contracts a hedge e that is not in C and the
algorithm succeeds on the resulting hedgegraph
G/e which has n − r(e) + s(e) vertices. Hence,
q(G) ≥ 1/m ·

∑

e∈E\C q(G/e). We note that G/e ∈

H(n − r(e) + s(e), ℓ) and that n − r(e) + s(e) ≤
n− r(e)/2 for any hedge e. Therefore,

q(G)

≥
1

m

∑

e∈E\C

q(G/e)

≥
1

m

∑

e∈E\C

qn−r(e)+s(e),ℓ

(by definition of qn,l)

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited1435

D
o
w

n
lo

ad
ed

 0
8
/0

4
/2

2
 t

o
 1

0
6
.5

1
.2

2
6
.7

 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

≥
1

m

∑

e∈E\C

(n− r(e) + s(e))
−6(k−1) ·

(γ

2

)ℓ

(by inductive hypothesis)

≥
1

m

∑

e∈E\C

(

n−
r(e)

2

)−6(k−1)

·
(γ

2

)ℓ

(by n− r(e) + s(e) ≤ n− r(e)/2)

=
m− λ

m

(γ

2

)ℓ 1

m− λ

∑

e∈E\C

(

n−
r(e)

2

)−6(k−1)

.

Since k ≥ 2, and n − r(e)/2 ≥ 1 for all hedges
e, the function f(r(e)) := (n − r(e)/2)−6(k−1) is
convex as a function of r(e) for every hedge e ∈ E.
By Jensen’s inequality, we obtain

1

m− λ

∑

e∈E\C

(

n−
r(e)

2

)−6(k−1)

≥

(

n−

∑

e∈E\C r(e)

2(m− λ)

)−6(k−1)

.

Therefore, we have

q(G)

≥
m− λ

m
·
(γ

2

)ℓ

·

(

n−

∑

e∈E\C r(e)

2(m− λ)

)−6(k−1)

≥
m− λ

m
·
(γ

2

)ℓ

·

(

n−
nλ/(2(k − 1))

2m

)−6(k−1)

(by Lemma 4.2)

=(1−
λ

m
)
(γ

2

)ℓ

n−6(k−1)

(

1−
λ

4(k − 1)m

)−6(k−1)

=
(γ

2

)ℓ

n−6(k−1) · (1− x)

(

1−
x

4(k − 1)

)−6(k−1)

.

(for x := λ/m ∈ (0, 1/2))

The last equality follows by setting x := λ/m.
We have x ∈ (0, 1/2) since m ≥ 2λ by Lemma
4.2. We recall that we would like to prove that
q(G) ≥ n−6(k−1) · (γ/2)ℓ, so we only need to

prove that (1 − x) (1− x/(4(k − 1)))
−6(k−1) ≥ 1

for x ∈ (0, 1/2). Let c = 4(k − 1), then

(1 − x) (1− x/(4(k − 1)))
−6(k−1)

= (1 − x)(1 −
x/c)−3c/2. Since k ≥ 2, we have c ≥ 4. Therefore,
by Lemma 4.3, we have (1 − x)(1 − x/c)−3c/2 ≥ 1
for x ∈ (0, 1/2). This concludes our proof that

q(G) ≥ n−6(k−1) · (γ/2)ℓ in case 1.

2. Suppose G is large and |L\C| ≥ γ · |L|. The algo-
rithm succeeds if it goes to branch (b), contracts a

hedge e ∈ L\C, and succeeds on the resulting graph
H2 = G/e. By the condition that |L\C| ≥ γ · |L|,
the probability of picking a hedge e ∈ L \ C is γ.
Hence, q(G) ≥ 1/2 · γ · q(H2). The algorithm con-
tracts either a moderate or a large hedge e for which
r(e) ≥ n/(4(k− 1)) and H2 has n− r(e)+ s(e) ver-
tices where n − r(e) + s(e) ≤ n − r(e)/2. Hence,
H2 has at most n − r(e)/2 ≤ n − n/(8(k − 1)) =
((8(k− 1)− 1)/(8(k− 1)) ·n vertices. We also note
that H2 ∈ H(|V (H2)|, ℓ− 1). Therefore,

q(G) ≥
1

2
· γ · q(H2)

≥
1

2
· γ · q|V (H2)|,ℓ−1

(by definition of qn,l)

≥
1

2
· γ · (|V (H2)|)

−6(k−1) ·
(γ

2

)ℓ−1

(by inductive hypothesis)

≥
1

2
· γ ·

(

(8(k − 1)− 1)

8(k − 1)
· n

)−6(k−1)
(γ

2

)ℓ−1

(by |V (H2)| ≤
(8(k − 1)− 1)

8(k − 1)
· n)

=

(

(8(k − 1)− 1)

8(k − 1)
· n

)−6(k−1)
(γ

2

)ℓ

≥n−6(k−1) ·
(γ

2

)ℓ

.

3. Suppose G is large and |L\C| < γ · |L|. Since
|L\C| < γ ·|L|, we have that |L∩C| = |L|−|L\C| >
(1 − γ) · |L|. We will show that the algorithm
succeeds if it goes to branch (a), and succeeds on
the resulting graph H1 = G− L.

Suppose the algorithm follows branch (a). The
value of a minimum hedge k-cut-set in H1 is at
most |C − L| = |C| − |L ∩ C| < |C| − (1 − γ)|L|.
If the algorithm returns a (1 + ǫ)-approximate
minimum hedge k-cut-set ofH1, then the algorithm
would return a set of size at most (1 + ǫ)(|C| −
|L|(1 − γ)) = |C|(1 + ǫ) − |L|. Consequently, the
algorithm returns a hedge k-cut-set of size at most
(|C|(1+ǫ)−|L|)+|L| = |C|(1+ǫ) for G. This shows
that if the algorithm returns a (1+ ǫ)-approximate
minimum hedge k-cut-set in the hedgegraph H1

obtained in branch (a), then the algorithm returns
a (1 + ǫ)-approximate minimum hedge k-cut-set
in the hedgegraph G. Also, by definition, H1 ∈
H(n, ℓ− 1). Therefore,

q(G) ≥
1

2
· q(H1) ≥

1

2
· qn,ℓ−1.

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited1436

D
o
w

n
lo

ad
ed

 0
8
/0

4
/2

2
 t

o
 1

0
6
.5

1
.2

2
6
.7

 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

We will now prove that q(G) ≥ n−6(k−1) · (γ/2)ℓ by
induction on ℓ. The following claim shows the base
case of the statement, i.e., for ℓ = 0:

Claim 4.1. q(G) ≥ n−6(k−1) for all n ≥ k and
G ∈ H(n, 0).

Proof. We prove by induction on n. For the base
case where n = k, we have q(G) = 1 ≥ n−6(k−1) for
all G ∈ H(n, 0). For the inductive step, consider
G ∈ H(n, 0) to be a hedgegraph on n > k vertices
and m hedges with a fixed minimum hedge k-
cut-set C in G. We note that G is small since
G ∈ H(n, 0), therefore we are in case 1. Hence,
we have

q(G) ≥ n−6(k−1) ·
(γ

2

)ℓ

= n−6(k−1).

by the same proof as that of case 1. �

By Claim 4.1, we have the base case q(G) ≥
n−6(k−1) for all G ∈ H(n, 0). For the induction
step, we use the lower bound and the inductive
hypothesis to obtain

q(G) ≥
1

2
· qn,ℓ−1

≥
1

2
·
(γ

2

)ℓ−1

· n−6(k−1)

≥
(γ

2

)ℓ

· n−6(k−1).

In all cases, we have shown that q(G) ≥ (γ/2)ℓ ·
n−6(k−1) for an arbitrary G ∈ H(n, ℓ). Therefore, for
all n ≥ k, we have

qn,ℓ = inf
H∈H(n,ℓ)

q(H) ≥ n−6(k−1) ·
(γ

2

)ℓ

.

We know that γ < 1. Substituting the upper bound
on ℓ from Lemma 4.1, we obtain that

qn,ℓ ≥ n−6(k−1)
(γ

2

)ℓ

≥ n−6(k−1)
(γ

2

)log 8(k−1)
8(k−1)−1

n

.

If ǫ ≥ 1, then γ ≥ 1/2, so qn,ℓ is at least inverse
polynomial in n. If ǫ < 1, then γ = ǫ/(1 + ǫ) > ǫ/2. So
the success probability is at least

n−6(k−1)
(ǫ

4

)log 8(k−1)
8(k−1)−1

n

= n−O(log 1
ǫ
).

We now argue that the contraction algorithm can
be implemented to run in O(Mn) time. In the con-
traction algorithm, finding the set of hedges e with

n − r(e) + s(e) ≤ k − 1 and finding the set of large
and moderate hedges can each be done in O(m) time.
Similar to the proof of Theorem 3.1, a contraction step
can be implemented to run in O(M) time by process-
ing hedges one by one to mark contracted vertices and
replacing them with a new vertex. Since in one execu-
tion of the contraction algorithm there can be at most
n contractions, the contraction algorithm can be imple-
mented to run in O(Mn) time. �

Theorem 1.2 follows from Lemma 4.4 by executing
the contraction algorithm nO(log 1/ǫ) log n times and
returning a hedge k-cut-set with the minimum value
among all executions.

Setting ǫ to be a value that is strictly smaller than
1/λ, where λ is the value of a minimum hedge k-cut-
set in the input hedgegraph, we observe that a (1 + ǫ)-
approximate minimum hedge k-cut-set would in fact
be a minimum hedge k-cut-set. Hence, we have the
following corollary (the value λ can be found by a binary
search).

Corollary 4.1. There exists a randomized algo-
rithm to solve Hedge-k-Cut that runs in time
MnO(log λ) log n, where λ is the value of a minimum
hedge k-cut-set in the input hedgegraph.

References

[1] C. Alpert and A. Kahng, Recent developments in netlist

partitioning: A survey, Integration: the VLSI Journal
19 (1995), no. 1-2, 1–81.

[2] C. Chekuri and A. Ene, Approximation Algorithms

for Submodular Multiway Partition, Proceedings of
the 52nd IEEE Annual Symposium on Foundations of
Computer Science, FOCS ’11, 2011, pp. 807–816.

[3] C. Chekuri and S. Li, A note on the hardness

of approximating the k-way Hypergraph Cut prob-

lem, Manuscript, http://chekuri.cs.illinois.edu/
papers/hypergraph-kcut.pdf, 2015.

[4] C. Chekuri and C. Xu, Computing minimum cuts in

hypergraphs, Proceedings of the 28th Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA ’17,
2017, pp. 1085–1100.

[5] D. Coudert, P. Datta, S. Perennes, H. Rivano, and
M.-E. Voge, Shared Risk Resource Group: Complexity

and Approximability Issues, Research Report RR-5859,
INRIA, 2006.

[6] T. Fukunaga, Computing Minimum Multiway Cuts

in Hypergraphs from Hypertree Packings, Proceedings
of the 14th International Conference on Integer Pro-
gramming and Combinatorial Optimization, IPCO ’10,
2010, pp. 15–28.

[7] M. Ghaffari, D. Karger, and D. Panigrahi, Random

Contractions and Sampling for Hypergraph and Hedge

Connectivity, Proceedings of the 28th Annual ACM-

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited1437

D
o
w

n
lo

ad
ed

 0
8
/0

4
/2

2
 t

o
 1

0
6
.5

1
.2

2
6
.7

 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

http://chekuri.cs.illinois.edu/papers/hypergraph-kcut.pdf
http://chekuri.cs.illinois.edu/papers/hypergraph-kcut.pdf

SIAM Symposium on Discrete Algorithms, SODA ’17,
2017, pp. 1101–1114.

[8] O. Goldschmidt and D. Hochbaum, A Polynomial Al-

gorithm for the k-cut Problem for Fixed k, Mathemat-
ics of Operations Research 19 (1994), no. 1, 24–37.

[9] F. Guiñez and M. Queyranne, The size-constrained

submodular k-partition problem, Manuscript,
https://docs.google.com/viewer?a=v&pid=sites&srcid
=ZGVmYXVsdGRvbWFpbnxmbGF2aW9ndWluZX
pob21lcGFnZXxneDo0NDVlMThkMDg4ZWRlOGI1,
2012.

[10] G. Hardy, J. Littlewood, and G. Pólya, Inequalities,
Cambridge University Press, 2nd ed., 1952.

[11] Y. Kamidoi, S. Wakabayashi, and N. Yoshida, A

Divide-and-Conquer Approach to the Minimum k-Way

Cut Problem, Algorithmica 32 (2002), no. 2, 262–276.
[12] Y. Kamidoi, N. Yoshida, and H. Nagamochi, A Deter-

ministic Algorithm for Finding All Minimum k-Way

Cuts, SIAM Journal on Computing 36 (2007), no. 5,
1329–1341.

[13] D. Karger and C. Stein, A new approach to the min-

imum cut problem, Journal of ACM 43 (1996), no. 4,
601–640.

[14] R. Klimmek and F. Wagner, A simple hypergraph min

cut algorithm, Internal Report B 96-02 Bericht FU
Berlin Fachbereich Mathematik und Informatik, 1995.

[15] D. Kogan and R. Krauthgamer, Sketching cuts in

graphs and hypergraphs, Proceedings of the 2015 Con-
ference on Innovations in Theoretical Computer Sci-
ence, ITCS ’15, 2015, pp. 367–376.

[16] E. Lawler, Cutsets and Partitions of Hypergraphs,
Networks 3 (1973), 275–285.

[17] W.-K. Mak and D. Wong, A fast hypergraph min-

cut algorithm for circuit partitioning, Integration: the
VLSI Journal 30 (2000), no. 1, 1–11.

[18] P. Manurangsi, Almost-polynomial Ratio ETH-

hardness of Approximating Densest k-subgraph,
Proceedings of the 49th Annual ACM Symposium on
Theory of Computing, STOC ’17, 2017, pp. 954–961.

[19] , Inapproximability of Maximum Biclique Prob-

lems, Minimum k-Cut and Densest At-Least-k-

Subgraph from the Small Set Expansion Hypothesis,
Proceedings of the 44th International Colloquium on
Automata, Languages, and Programming (ICALP
’17), ICALP ’17, 2017, pp. 79:1–79:14.

[20] K. Okumoto, T. Fukunaga, and H. Nagamochi, Divide-

and-conquer algorithms for partitioning hypergraphs

and submodular systems, Algorithmica 62 (2012),
no. 3, 787–806.

[21] P. Raghavendra and D. Steurer, Graph Expansion and

the Unique Games Conjecture, Proceedings of the 42nd
ACM Symposium on Theory of Computing, STOC ’10,
2010, pp. 755–764.

[22] H. Saran and V. Vazirani, Finding k Cuts within Twice

the Optimal, SIAM Journal on Computing 24 (1995),
no. 1, 101–108.

[23] M. Thorup, Minimum k-way Cuts via Determinis-

tic Greedy Tree Packing, Proceedings of the Fortieth

Annual ACM Symposium on Theory of Computing,
STOC ’08, 2008, pp. 159–166.

[24] M. Xiao, An Improved Divide-and-Conquer Algorithm

for Finding All Minimum k-Way Cuts, Proceedings
of 19th International Symposium on Algorithms and
Computation, ISAAC ’08, 2008, pp. 208–219.

[25] , Finding minimum 3-way cuts in hypergraphs,
Information Processing Letters (Preliminary version in
TAMC 2008) 110 (2010), no. 14, 554–558.

[26] P. Zhang, J-Y. Cai, L-Q. Tang, and W-B. Zhao, Ap-

proximation and hardness results for label cut and re-

lated problems, Journal of Combinatorial Optimization
21 (2011), no. 2, 192–208.

[27] L. Zhao, Approximation algorithms for partition and

design problems in networks, Ph.D. thesis, Graduate
School of Informatics, Kyoto University, Japan, 2002.

[28] L. Zhao, H. Nagamochi, and T. Ibaraki, Greedy split-

ting algorithms for approximating multiway partition

problems, Mathematical Programming 102 (2005),
no. 1, 167–183.

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited1438

D
o
w

n
lo

ad
ed

 0
8
/0

4
/2

2
 t

o
 1

0
6
.5

1
.2

2
6
.7

 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxmbGF2aW9ndWluZXpob21lcGFnZXxneDo0NDVlMThkMDg4ZWRlOGI1
https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxmbGF2aW9ndWluZXpob21lcGFnZXxneDo0NDVlMThkMDg4ZWRlOGI1
https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxmbGF2aW9ndWluZXpob21lcGFnZXxneDo0NDVlMThkMDg4ZWRlOGI1

	Introduction
	Results.
	Related work.

	Preliminaries
	Hedge k-Cut in Constant Span Graphs
	PTAS for Hedge-k-Cut

