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Hyperinvariant subspaces and extended
eigenvalues

Alan Lambert

Abstract. An extended eigenvalue for an operator A is a scalar λ for which
the operator equation AX = λXA has a nonzero solution. Several scenarios
are investigated where the existence of non-unimodular extended eigenvalues
leads to invariant or hyperinvariant subspaces.

For a bounded operator A on a complex Hilbert space H, the set EE(A) of
extended eigenvalues for A is defined to be the set of those complex numbers λ for
which there is an operator T �= 0 satisfying AT = λTA. T is then referred to as a λ
eigen-operator for A. The eigenvalue terminology, although not perfectly accurate,
seems useful on two levels. The first was described in [2]; briefly, if A has dense
range, then the equation

AX = φ(X)A; φ(X) ∈ L(H)

has a unital algebra as its solution set, and φ is a unital homomorphism. Our
extended eigenvalues are precisely the eigenvalues for φ. The second point of view
is that one can easily show that for an operator on a finite dimensional space, the set
of extended eigenvalues for that operator is the set of ratios of eigenvalues, with the
obvious restriction on the use of 0. This is shown explicitly in [3]. In other works
this concept of extended eigenvalue has appeared as α commuting or λ commuting,
but we choose to use a term which is parameter free.

For A ∈ L(H) (the set of bounded operators on H), a (closed, linear) subspace
of H is a nontrivial invariant subspace (n.i.s.) for A if it is neither H nor {0} and
is invariant under A. This space is hyperinvariant for A if it is invariant for every
operator in (A)′, the commutant of A. More generally, a subspace is defined to be
invariant for a set of operators if it is invariant for each member of that set.

Extended eigenvalues and invariant subspaces. For a given λ ∈ EE(A) we
define E = E(A, λ) as the set of all λ eigen-operators for A. This is a (weakly) closed
linear space of operators, and E(A, 1) is (A)′, the commutant of A; that is, the set
of all operators commuting with A. Direct multiplication leads to the next result:
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Lemma 1. E(A, α)E(A, β) ⊂ E(A, αβ). In particular, for each α,

(A)′E(A, α)(A)′ = E(A, α).

Proposition 2. Let A be an invertible operator. Then:
(a) There are positive numbers a and b, a < b, such that every extended eigenvalue

for A is contained within the annulus Ra,b with inner radius a and outer radius
b.

(b) If λ is an extended eigenvalue for A with |λ| �= 1 then there is a positive
integer N such that every product of N members of E is zero. In particular,
every operator in E is nilpotent of order no greater than N.

(c) If A has an extended eigenvalue of modulus other than 1, then it has an
extended eigenvalue for which the N in part (b) above may be taken as 2.

Proof. Choose c > 0 such that for every vector x, ‖Ax‖ ≥ c‖x‖. Let λ be an
extended eigenvalue for A and let T be a corresponding eigen-operator. It follows
that for every positive integer n,

ATn = λnTnA.

Then for each x and n,

c‖Tnx‖ ≤ ‖ATnx‖ = |λ|n‖TnAX‖ ≤ |λ|n‖Tn‖‖Ax‖.
It then follows that

c‖Tn‖ ≤ |λ|n‖Tn‖‖A‖.
From the case n = 1 we have c

‖A‖ ≤ |λ|. We may then choose a = c
‖A‖ to establish

the inner radius as required for part (a). Since A is invertible and T �= 0, λ cannot
be zero. Appropriate multiplications then show that

A−1T = (1/λ)TA−1,

and the analysis above for A and T applies equally well for A−1 and T. This
guarantees the existence of a finite outer radius for our annulus Rab.

As for part (b), suppose λ is an extended eigenvalue for A with modulus other
than 1. Then there is a smallest N such that λN /∈ Rab. Let {T1, · · · , TN} ⊂ E(A, λ).
Then AT1 · · ·TN = λNT1 · · ·TNA. Since λN is not an extended eigenvalue for A,
we must have T1 · · ·TN = 0.

Again, suppose that λ is an extended eigenvalue for A with modulus not equal
to 1, and let N be the smallest positive integer such that λN /∈ EE(A). Since
N is at least 2, we may choose a positive integer k < N for which 2k ≥ N. It
follows that there is a nonzero operator S satisfying AS = λkSA. But then we have
AS2 = λ2kS2A, forcing the conclusion that S2 = 0. �

Remark. The preceding result holds in any Banach algebra setting. The only
change would be to replace operator lower bounds as follows: If a is invertible in a
Banach algebra, then there is a constant α > 0 such that for all b, ‖ab‖ ≥ α‖b‖.

Our goal is to use E(A, λ) in the establishment of invariant and perhaps hyperin-
variant subspaces (under specific hypotheses) for A. Our motivation for this comes
from the independent and virtually contemporaneous works of S. Brown ([4]), and
of H. W. Kim, R. Moore, and C. M. Pearcy ([7]). These works provided extensions
of V. Lomonosov’s classic result [8] (see also [5, pp. 181–182]). Specifically, it was
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shown that if A has a compact extended eigen- operator then A has a proper hy-
perinvariant subspace. Kim et al proved a somewhat more general result involving
the functional calculus of a compact operator.

Note that if λ is an extended eigenvalue for A and if x is any nonzero vector,
then (A)′E(A, λ)x ⊂ E(A, λ)x. We eliminate one roadblock to hyperinvarinace as
follows:

Lemma 3. Let λ ∈ EE(A) and let E = E(A, λ). Define S = {x : Ex = {0}}. Then
S is hyperinvariant for A.

Proof. Note that

S =
⋂

T∈E
ker T

so that S is a closed linear subspace of H. For x ∈ S, T ∈ E , and B ∈ (A)′, we have
TB ∈ E ; thus TBx = 0. Consequently Bx ∈ S, and so (A)′S ⊂ S. �

Note that S cannot be H since by assumption E contains at least one nonzero
operator. However it could possibly be the zero subspace.

If AT = τTA and AS = σSA, then ATS = τ ·σTSA. This seems to indicate that
EE(A) is a (unital) semigroup under multiplication. However, there is no general
reason why TS �= 0 in the equation above. Later we will present an absolutely
continuous multiplication operator illustrating this failure of multiplicative closure.
However, failure of the semigroup property gives us valuable information about the
operator.

Theorem 4. Suppose that EE(A) is not closed under multiplication. Then A has
a proper hyperinvariant subspace.

Proof. Let S ∈ E(A, σ) and T ∈ E(A, τ), and suppose that στ /∈ EE(A). Since

AST = σSAT = στSTA

and στ /∈ EE(A), we are forced to conclude that ST = 0. The symmetric argument
shows that TS = 0. Thus for each vector x, E(A, τ)x ⊂ ker S. In particular, for any
choice of x, E(A, τ)x is not dense in H. On the other hand, since T �= 0, we may
choose x so that E(A, τ)x �= {0}. But (A)′E(A, τ) = E(A, τ); ensuring a proper
hyperinvariant subspace for A. �

Corollary 5. Suppose that A is an invertible operator and λ ∈ EE(A) with |λ| �= 1.
Then A has a proper hyperinvariant subspace.

Proof. We have seen that EE(A) is contained in a true annulus, and so for any
extended eigenvalue of modulus not equal to 1, a positive integer power of it is not
an extended eigenvlaue. This means that Theorem 10 is applicable.

�

Corollary 6. Suppose that A has an extended eigenvalue λ of modulus other than
one, and A is either surjective or bounded below. Then A has a nontrivial hyperin-
variant subspace.

Proof. If A is bounded below, then it has closed range, and this range is hyper-
invariant. Either it is proper or A is invertible. In either case A has a proper
hyperinvariant subspace.
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If A is surjective, then it is either invertible or kerA is a proper hyperinvariant
subspace. �

Corollary 7. Suppose that A is a semi-Fredholm operator with an extended eigen-
value of modulus other than 1. Then A has a proper hyperinvariant subspace.

Proof. Being a semi-Fredholm operator, either A is invertible or its range or kernel
is proper. In any case, A must have a proper hyperinvariant subspace. �

For the next corollary we let π denote the canonical projection of L(H) into the
Calkin algebra. We write EEπ(a) for the set of extended eigenvalues of a member
a of the Calkin algebra.

Corollary 8. Suppose there exists λ ∈ EE(A) − EEπ(π(A)). Then A has a proper
hyperinvariant subspace.

Proof. Let T be a nonzero operator for which AT = λTA. Then π(A)π(T ) =
λπ(T )π(A). But λ /∈ EEπ(π(A)), so π(T ) = 0; i.e., T is compact. Since T �= 0 and
AT = λTA, [4] and [7] show that A has a proper hyperinvariant subspace. �

We are able to make some general remarks about the nature of extended eigen-
operators for invertible operators:

Lemma 9. Suppose that A is invertible and T ∈ E(A, λ), and λ is not a root of
unity. Then the spectrum of T must be circularly symmetric.

Proof. If |λ| �= 1 then T is nilpotent and so its spectrum is {0}. If |λ| = 1 but no
positive power of λ is 1, then {λn : n = 1, 2, . . . } is dense in the unit circle.

Now for each positive integer n, AnT = λnTAn, so that

T = A−nλnTAn; n = 1, 2, . . . .

But similar operators have identical spectra. Thus if σ is any member of the
spectrum of T, then this spectrum contains the set {σ · λn : n = 1, 2, . . . }. Since
{λn : n = 1, 2, . . . } is dense in the unit circle,and spectra are closed, this shows
that the spectrum of T is circularly symmetric about the origin. �

Examples. (i) Let H= L2(1, 2) (with respect to Lebesgue measure). For nota-
tional convenience, we consider members of H as being defined on the entire
real line, but vanishing off (1, 2). Let A be the operator on H of multiplication
by the variable x. Let λ be a member of the interval (1

2 , 2). Let T be defined
on H by Tf(x) = f(x/λ). We then have

ATf(x) = xf(x/λ) and TAf(x) = χ(1,2)(x/λ)f(x/λ).

Thus AT = λTA. The choice of λ insures that T �= 0; showing that (1
2 , 2) ⊂

EE(A). In fact, it follows from a considerably more general result in [3] that
these sets are equal, but in this specific context we can exhibit the operator
T explicitly. Note that if λ �= 1 then the corresponding operator T is indeed
nilpotent.

(ii) This example illustrates the fact that EE(A)−EEπ(π(A)) can be nonempty.
We first note that in any C∗ algebra, if ua = λau for a unitary element u and
nonzero element a, then |λ| = 1. This is not the case for isometries. Indeed,
if U is the unilateral shift and |λ| ≥ 1, then the diagonal operator T with nth
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diagonal entry λ−n satisfies UT = λTU. Since π(U) is a unitary member of
the Calkin algebra, we have our desired example.

Unfortunately, invertibility does not guarantee the existence of extended eigen-
values. The following proposition seems particularly curious as it was shown in [2]
that the set of extended eigenvalues for the Volterra operator is the open half line
(0,∞). In this case and in what follows, we are dealing with the classical Volterra
operator

V f(x) =
∫ x

0

f(t)dt ; f ∈ L2(0, 1).

The following result uses a generalized form of a technique employed in [2].

Theorem 10. Let γ be a nonzero scalar. Then EE(γ + V ) = {1}.
Proof. Suppose (γ + V )T = λT (γ + V ). Then

V T = T ((λ − 1)γI + λV ).

Since (λ− 1)γ �= 0, and V is quasinilpotent, the operator (λ− 1)γI + λV is invert-
ible. Call this operator W−1. Letting D = V −1 be the (unbounded) differentiation
operator, we see that TW = DT. Now, the spectrum of W−1 consists of the single-
ton {(λ − 1)γ} and the spectrum of W is

{
1

(λ−1)γ

}
. Thus for all z of sufficiently

large real part (say, 	 z > r) , we have

(z − D)−1T = T (z − W )−1.

Indeed the left side of this equation is an operator valued entire function (see, e.g.,
[1, Chapter IV, Section 3]). Let x and y be arbitrary members of H, and define the
continuous functions f and g on (0,∞) by

f(t) = 〈StTx, y〉 and g(t) = 〈TetW x, y〉
where {St} is the translation semigroup

Sth(x) = h(x − t); h ∈ L2(0, 1).

Note that for t ≥ 1, St = 0. Using the Laplace transform formula for resolvents
(see [6]), for 	 z > r, ∫ 1

0

e−ztf(t)dt =
∫ ∞

0

e−ztg(t)dt.

But the Laplace transform is injective, so f = g. As these functions are continuous,
this is a true pointwise equality. In particular, g(1) = f(1) = 0. Thus for all vectors
x and y, TeW x ⊥ y. But eW is invertible, and so T = 0. �
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