SHORTER NOTES

The purpose of this department is to publish very short papers of an unusually elegant and polished character, for which there is no other outlet.

HYPERINVARIANT SUBSPACES FOR APPROXIMATELY IDEMPOTENT OPERATORS¹

JOHN DAUGHTRY

ABSTRACT. Operators which are "approximately idempotent" have hyperinvariant subspaces.

Let $\mathfrak X$ be a Banach space. $\mathcal B(\mathfrak X)$ denotes the set of all bounded linear operators on $\mathfrak X$. A closed subspace $\mathbb M$ of $\mathfrak X$ is "hyperinvariant" for $E \in B(X)$ if $\mathbb M$ is invariant for every operator commuting with E.

Theorem 1. Suppose E belongs to $\mathfrak{B}(X)$, $|E| > \frac{1}{2}$, $|I - E| > \frac{1}{2}$, and $|E^2 - E| \le \frac{1}{4}$. Then the norm-closed algebra generated by E and I contains an operator X with nontrivial kernel. In addition, $|X - (I - E)| \le \frac{1}{2}$. (The kernel of X is then a hyperinvariant subspace for E.)

We say that an operator E has "pinched spectrum" if its spectrum may be translated and dilated to fit into $\{z \mid |z^2-z| \leq \frac{1}{4}\}$ without being disjoint from $\{z \mid \text{Re } z > \frac{1}{4}\}$ or $\{z \mid \text{Re } z < \frac{1}{4}\}$. If the spectral radius of $E^2 - E(r(E^2 - E))$ is equal to its norm and the spectrum of E is pinched, then E satisfies the hypotheses of Theorem 1. It follows that if $r(E^2 - E) = |T^{-1}(E^2 - E)T|$ for some $T \in \mathcal{B}(X)$ and E has pinched spectrum, then E has a hyperinvariant subspace.

Theorem 1 is a consequence (with B = I - E, C = -E) of the apparently more general

Theorem 2. Suppose B and C belong to $\Re(X)$, BC = CB, and A = B - C is invertible. If

a.
$$|A^{-1}| |A^{-1}CB| < \frac{1}{4}$$

b.
$$|C||A^{-1}| > \frac{1}{2}$$
, and

c.
$$|B||A^{-1}| > \frac{1}{2}$$
,

Received by the editors March 22, 1974.

AMS (MOS) subject classifications (1970). Primary 47A15, 47A50.

Key words and phrases. Hyperinvariant subspace, pinched spectrum, quadratic operator equation, Kantorovich's theorem.

¹ These results are part of the author's Ph.D. dissertation written at the Uni-License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use versity of Virginia under the guidance of Professor Marvin Rosenblum.

then the norm-closed algebra \mathfrak{A} generated by I, B, C, and A^{-1} contains an operator X with nontrivial kernel and $|X - B| \leq \frac{1}{2}|A^{-1}|$.

The proof of Theorem 2 is a straightforward application of Kantorovich's theorem on the convergence of Newton's method [1] to the equation $X^2 - BX - CX = 0$ in \mathfrak{A} . Starting the iteration at B, we conclude that there exists a solution $X \neq 0$ or B + C with $|X - B| \leq \frac{1}{2}|A^{-1}|$. But (X - (B + C))X = 0 then implies that the kernel of X is not $\{0\}$.

REFERENCE

1. R. A. Tapia, The Kantorovich theorem for Newton's method, Amer. Math. Monthly 78 (1971), 389-392.

DEPARTMENT OF MATHEMATICS, SWEET BRIAR COLLEGE, SWEET BRIAR, VIRGINIA 24595