
Hyperion—Next-Generation

Battlespace Information Services

ROBERT GHANEA-HERCOCK1,*, E. GELENBE2, NICHOLAS R. JENNINGS3, OLIVER SMITH4, DAVID N. ALLSOPP5,
ALEX HEALING1, HAKAN DUMAN1, SIMON SPARKS5, NISHAN C. KARUNATILLAKE3 AND

PERUKRISHNEN VYTELINGUM3

1Pervasive ICT Research Centre, BT, Ipswich, UK
2Intelligent Systems and Networks Group, Department of Electrical and Electronic Engineering, Imperial

College, London SW7 2BT, UK
3School of Electronics and Computer Science, University of Southampton, Southampton SO1 7 1BJ, UK

4General Dynamics UK Ltd, East Sussex, UK
5QinetiQ, Malvern Technology Centre, St Andrews Road, Malvern, Worcestershire WR14 3PS, UK

*Corresponding author: robert.ghanea-hercock@bt.com

The future digital battlespace will be a fast-paced and frenetic environment that stresses information

communication technology systems to the limit. The challenges are most acute in the tactical and oper-

ational domains where bandwidth is severely limited, security of information is paramount, the

network is under physical and cyber attack and administrative support is minimal. Hyperion is a

cluster of research projects designed to provide an automated and adaptive information management

capability embedded in defence networks. The overall system architecture is designed to improve the

situational awareness of field commanders by providing the ability to fuse and compose information

services in real time. The key technologies adopted to enable this include: autonomous software

agents, self-organizing middleware, a smart data filtering system and a 3-D battlespace simulation

environment. This paper reviews some of the specific techniques under development within the

Hyperion sub-projects and the results achieved to date.

Keywords: agents; autonomous systems; middleware; data visualization

Received 14 May 2007; revised 14 May 2007

1. INTRODUCTION

Future military forces require a high degree of agility to

overcome unpredictable and rapidly changing threats: (as

envisaged in the 3 Block War scenario). This will require

intelligent and real-time reconfiguration of information com-

munication technology (ICT) services to meet the user’s

needs within the constraints of the network hardware and

overall capacity, to realize the future state of the UK’s

network-enabled capability (NEC) [1]. However, defence net-

works and ICT systems are severely constrained by the

extreme nature of the operating environment, and the need

for resilience, security and stealth capability. As a result,

current tactical communication links are inflexible and have

limited and fixed capacity, typically measured in kilobytes

per second. The challenge to the network is compounded by

the growing demand for high quality and timely information,

to be made available to a wide spectrum of defence users. This

information may be supplied by high-bandwidth sensors or

unmanned aerial vehicles (UAVs) that produce volumes of

data that could easily overwhelm the communications

available.

In order to address these issues, the Hyperion technical

objective is to create an adaptive agent-based architecture

capable of significantly enhancing the functionality and resili-

ence of information fusion processes. Specifically, this will

be achieved by providing an adaptive and reconfigurable

capability for battlespace communication and information

services. The project also has a set of scientific objectives,

which includes the investigation of novel algorithms for

self-organizing network infrastructures in support of military

requirements. The domains for research are: resilient

service-oriented peer-to-peer (P2P) architectures, information

retrieval and integration, policy management and control,

agent negotiation protocols and data visualization methods

for distributed service-oriented computing in battlespace

environments.

THE COMPUTER JOURNAL, Vol. 50 No. 6, 2007

The Author 2007. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved.
For Permissions, please email: journals.permissions@oxfordjournals.org

Advance Access publication on September 12, 2007 doi:10.1093/comjnl/bxm063

1.1. Approach

Our approach to this problem is to utilize a set of distributed

software agents, embedded within the NEC environment.

The agents manage the applications via goal-driven service

workflows, adaptive quality-of-service (QoS) metrics and bro-

kering to optimize the availability of the information

resources. The Hyperion agents are designed to respond to

policy level statements that specify preferred configurations

and prioritization requirements for each information service

or communication channel. The goal is to allow new policy

requests to be hot loaded at any time to dynamically reconfi-

gure the agents’ behaviours. A command-oriented interface

system is being developed to enable high-level management

of the system and re-tasking of network resources. The tar-

geted organizational benefit is an agile tactical communi-

cations network that is able to support a high tempo of

operations by providing information services that are dynami-

cally configurable in accordance with commanders’ changing

priorities. Furthermore, it should deliver an order-of-magnitude

reduction in ICT support requirements for command and

control (C2) processes, through a reduction in administrative

manpower and time to reconfigure ICT services.

1.2. Project organization and cluster integration

The following organizations are partners in the Hyperion

cluster, each providing the component capabilities.

(i) BT is working on the P2P and agent-based middleware

for service-oriented/network-centric information inte-

gration and fusion.

(ii) Southampton University is investigating and develop-

ing the basic mechanisms that enable collectives of

software agents to self-organize, self-repair and self-

optimize in response to dynamic NEC environments.

(iii) Imperial College is implementing a security mechan-

ism for protection from distributed denial of service

(DoS) attacks of the Hyperion resources, in order

to assure specified bandwidth, latency and user

prioritization.

(iv) QinetiQ is responsible for a front-end command inter-

face tool for Hyperion. This enables re-tasking of the

system with mission policy and requirements.

(v) Finally, general dynamics is working on the under-

lying military NEC scenarios and scenario visuali-

zation via a 3-D battlespace virtual reality system.

Hyperion is designed to be a disruptive technology as it

addresses the most challenging aspect of NEC, i.e. the inte-

gration of heterogeneous networks and systems. It aims to

demonstrate the type of adaptive functionality required to

weld such large-scale ICT networks and services together.

This approach is of high value, as MoD moves to adopt a

service-oriented architecture (SOA) [3] philosophy for future

ICT platforms. The need for this dynamic and proactive distri-

bution of information is illustrated by the following quote

from a senior British defence source:

In Iraq, British forces rely on coalition assets to provide

much of the ISTAR information required. . . However,

there was no means to exchange ISTAR information

across the coalition in a timely and effective manner.

Brigadier David Capewell, Assistant Chief of Staff (Oper-

ations) at the UK’s Permanent Joint Headquarters (PJHQ),

Shephard ‘Vision’ conference in London on 8th November

2005.

2. METHODOLOGY

The Hyperion project is a cluster of five sub-projects, which in

combination aim to build an integrated solution to the NEC

problem space outlined in Section 1. Each of the sub-projects

is briefly discussed in the following section with a summary of

their implementations and results to date.

2.1. Nexus II: adaptive P2P NEC service middleware

The first phase of the Nexus project [2] demonstrated the value

of an agent-based P2P middleware for the discovery and

fusion of NEC services. The Nexus middleware is based on

three key paradigms: P2P computing, autonomous agents

and SOA [3]; all of which have been identified as key com-

ponents of future NEC network architectures.

Existing implementations of SOA, as applied in the civil

domain, suffer from several issues that make them unsuitable

for volatile environments. These include centralized service

discovery and process orchestration, and fixed manually speci-

fied workflows. These factors lead to fragile, non-adaptive and

difficult-to-maintain network applications.

The aim is to develop a hardened, agent-based SOA

implementation that meets the strict reliability requirements

of the NEC domain and accommodates the needs of network-

centric information fusion applications. More specifically, the

following capabilities are being developed either as a direct

part of Nexus II middleware or by integrating technologies

from other projects within the Hyperion cluster:

(i) Seamless and reliable service delivery in volatile

environments.

(ii) Request prioritization and load balancing.

(iii) Resilience to volatility of the underlying network

infrastructure: by adopting a P2P architecture Nexus

maintains its operability even if a large subset of ser-

vices or the network itself becomes unavailable.

(iv) Decentralized service discovery whereby networked

resources are discovered based on their advertized

properties and real-time information regarding their

HYPERION—NEXT-GENERATION BATTLESPACE INFORMATION SERVICES 633

THE COMPUTER JOURNAL, Vol. 50 No. 6, 2007

dynamic attributes without reliance on a centralized

repository.

(v) Semantic and adaptive service selection based on

dynamically maintained QoS profiles.

(vi) Proactive monitoring and automated service substi-

tution: the state of services is actively monitored and

should a failure occur the failed resource is rapidly

substituted with the closest alternative, preserving

the overall capability.

(vii) Filtering of information services based on their

semantic relevance to the user as well as imposing

some structure at the messaging layer of the middle-

ware allowing bandwidth to be conserved.

2.1.2. Implementation

In order to offer the necessary resilience Nexus adopts an

entirely decentralized approach. At the lowest level, a P2P

overlay is constructed connecting, either directly or indirectly,

each of the nodes in the network running Nexus with each

other. Similar to [4, 5], the overlay network is then coupled

with component-model technologies which in our case offer

a publish/subscribe (Pub/Sub) structured messaging layer

from which higher level management of the network can be

constructed.

Each Nexus node can host a number of services and these

are made available through the middleware by means of

advertizing their associated metadata on the messaging

layer. Users of Nexus are required to connect to only a

single node from where the middleware allows them to dis-

cover resources throughout the network and manage their

view and usage of the information services according to

their requirements.

Above the middleware we adopt an autonomic computing

[6] paradigm which introduces self-* capabilities to allow

Nexus to intelligently and autonomously handle the dynamic

environment for which it is intended; including, changing

requirements of users, unreliable service availability or a

failure of the underlying physical network.

Nexus is entirely implemented in the Java programming

language and relies on several open-source third party

libraries. In particular, the current embodiment of Nexus

builds on an open-source P2P implementation of Java

message service (JMS) [7] to provide the majority of the func-

tionality of the bottom two layers shown in Fig. 1. IP multicast

is used to discover other Nexus peers and construct the

overlay. JMS topics provide Pub/Sub functionality for the

message-oriented component of Nexus and allow for infor-

mation service advertisements to be structured in their trans-

mission across the network. Each peer acts as a message

broker and routes messages to peers that are subscribed to

the topic on which the message was published. The topics

can be structured into a hierarchy, allowing one to subscribe

to only messages concerning a specific subset of services.

To some degree, the semantics relating to the service descrip-

tions in the resource layer can be exposed to the messaging

structure in the layer below. The routing of messages through-

out the overlay can therefore be linked to the semantic rel-

evance of the resources that the messages describe to each

peer.

There are numerous aspects of the architecture to which

autonomic computing principles may be applied. For example,

the driving of the aforementioned messaging structure by

the service metadata may be an autonomous process. At the

lowest level, the overlay network is self-organizing in that

the changes to the topology are dealt with seamlessly allowing

for new peers joining the network to be discovered by others as

well as the overlay to adapt their routing when peers are

removed from the network.

The focus of the autonomic capability, however, is at the

upper levels of the system model. Agent-based approaches

to service orchestration have been investigated as well as

methods to enable self-healing to fulfil a certain user service

requirement in the case of a service failure. These two

aspects are related and both rely on the system understanding,

to some degree, (i) what the user requirements are, (ii) what

services are available and how they relate, (iii) the expected

QoS services can deliver in a certain context. The following

FIGURE 1. Nexus architecture.

634 R. GHANEA-HERCOCK et al.

THE COMPUTER JOURNAL, Vol. 50 No. 6, 2007

section discusses one particular framework that has been

developed as part of Nexus which addresses point (iii) and

uses a multi-agent learning approach to model service

quality and allows Nexus to autonomically select services to

fulfil a certain requirement with the maximal QoS.

2.1.3. Autonomic computing case study—Mercury

adaptive service selection

The Mercury framework [8] is designed for application within

an SOA and as such assumes a network of interconnected

devices, each capable of hosting a number of processes. The

processes may adopt at least one of two roles: service provider

or consumer. Service providers offer capabilities that other

devices (consumers) can access and use. Mercury-based

service selection takes place on the consumer side and

assumes that for every device where there is a service consu-

mer, a selector agent is hosted. Thus in Nexus, we envisage

embedding a selector agent at each Nexus node.

Mercury relies on there being some service discovery mech-

anisms in the SOA in order to gain a list of functionally

capable service providers for a particular task. This functional

discovery is based on those attributes that the service providers

advertise in their description and can be provided by other

components of Nexus. The Mercury selector agents then use

the list of capable services as a basis for further finer-grained,

non-functional selection. This is achieved by aggregating QoS

data for each of the providers through the consumer’s experi-

ence of them and ranking them accordingly. The result is a

model of selection learnt over time, which distinguishes

those services that are best at performing the task in terms

of the QoS they are expected to deliver.

The QoS data of providers are stored in a model local to

each selector agent and is parameterized by the task, as well

as the context. Context is defined as the set of attributes that

are external to the task requirements but nevertheless may

influence the performance of providers (e.g. performing differ-

ently at different times of day). A particular service selector

therefore builds up a model of how suited each provider is

at fulfilling each particular task in each context.

The main contribution is the design of an efficient distribu-

ted service selection framework and (collaborative) algor-

ithms for its construction and real-time adaptation.

Specifically, a decision function is employed (Fig. 2) to

ensure that the probability of exploration (selection of services

for which there is little or no prior data in the model) is linked

to the relative improvement expected when exploration is

pursued over exploitation (selection of those for which there

is a large amount of data). An adaptive momentum mechanism

for updating the model has been developed so that the incor-

poration of new data into the model is dependant on the

amount and recency of the information already stored. The

methods used allow a system of multiple agents to be adaptive

to changes in the service environment improving the overall

QoS of the system, and may be made more effective through

introducing collaborative strategies.

Two collaborative gossiping strategies have been investi-

gated, which vary in the degree to which the selector agents

share information. The first strategy, anonymous gossiping,

involves only partial sharing of information and allows selec-

tor agents to gain a better estimation of the distribution of QoS

attainable in the network on which the exploration–exploitation

control is based. The second collaborative strategy, full gos-

siping, involves sharing detailed information about providers

between selectors to speed up learning through exploration.

The agents, although cooperative may, however, choose to

be selective with the information about providers which they

share with others so as not to create unfavourable competition

on a subset of service providers, and hence undermine their

own performance—secretive full gossiping.

The task processing cycle is illustrated in Fig. 3 whereby a

task is dispatched to the selector agent and based on both the

FIGURE 2. Exploration–exploitation decision.

FIGURE 3. Task process cycle.

HYPERION—NEXT-GENERATION BATTLESPACE INFORMATION SERVICES 635

THE COMPUTER JOURNAL, Vol. 50 No. 6, 2007

results of functional service discovery and the selection model

built up so far, a service is selected to process the task. The

QoS with relation to the task is calculated and used to either

augment the model if the chosen service was not experienced

in the past, or adapt the model in the case that there was past

experience.

The selection model consists of registers, which represent

clusters of experience for services used for particular tasks

and contexts and are used to simplify the problem space. An

important autonomous decision that the selector agents must

make is whether to exploit their existing (usually incomplete)

model and choose the service which they expect will act best

or explore the service landscape further and either select a

service for which there is a sub-optimal expectation of QoS

or for which there is no prior experience. In Mercury, the cal-

culation of the expected gain from exploration is distributed

by making the agents collaboratively share their expected out-

comes. This ensures that agents have a reliable understanding

of the distribution of QoS achievable throughout the network

of services, improving their decision-making ability of

whether to explore or not. Further details of the Mercury frame-

work including the structure of the model and algorithms

involved with its construction and adaptation are discussed

in depth in [8].

In order to quantitatively compare the main features of the

Mercury framework, a simulation environment has been devel-

oped which can be populated with n providers of a single

service and m service selector agents. We abstract away from

the notion of consumers in this case and assume that both the

task and the context parameters of the problem stay constant.

We were particularly interested in investigating the effec-

tiveness of the system in the case where QoS of a particular

service degrades depending on how many simultaneous con-

nections there are to it at any one time. In this sense, there is

competition for resources and in order to reach an optimal con-

figuration of service selection, it is necessary for the selector

agents to both be able to form relationships with certain provi-

ders while remaining adaptive to changes. In the simulation,

the environment is dynamic in the sense that resultant QoS

is non-deterministic from an individual selector’s point of

view due to competition and the distribution of QoS capability

can be parameterized.

For all of our experiments, the simulation was set up with 30

service providers and five selector agents and consumers. The

QoS capability distribution was set to uniformly increase such

that the first provider had the minimum capability and the 30th

provider had the maximum (zero and one, respectively). At

each time step in the simulation, each selector agent chooses

a provider to be invoked and receives the measure of QoS

from the provider as a result. The internal selection model is

built up through subsequent time steps and at the end of

each time step, each selector agent may gossip with other

selector agents, depending on their gossiping strategy. The

results are averaged over 10 runs.

The first set of experiments was used to compare the differ-

ent selector agent collaboration strategies on the resultant

system (global) QoS attained (Fig. 4). It is clear that gossiping

enables the QoS to be increased faster and rather unsurpris-

ingly full gossiping produces the fastest rate of QoS increase

through the initial stages. The full gossiping approach would

be highly effective if at some point the service landscapes

were to change dramatically. With little or no provider

churn, though, full gossiping actually results in a lower QoS

than if there was no communication. This demonstrates how,

by sharing information about the ‘best’ provider with other

agents results in unfavourable competition whereby relation-

ships between a selector S1 and a particular provider P

becomes infected by another selector S2, which has gained

information about P from S1 and so believes that such a

relationship is best for it too. In this case, the global QoS actu-

ally decreases. Secretive full gossiping aims to counteract this

effect by not sharing the ‘best’ providers between selector

agents. Indeed, Fig. 4 indicates that the resultant QoS is

highest when using the secretive full gossiping strategy. A

slight lag compared to the full gossiping curve can be seen

and this represents the trade-off of not sharing with other

agents the top provider. The secretive full gossiping strategy

also clearly performs best in the aggregate performance com-

parison (Table 1), which takes into account both the resulting

level of QoS and the speed with which it is achieved.

FIGURE 4. Effect of different selector agent collaboration strategies

on resultant system QoS.

TABLE 1. Average aggregate effect of different selector agent

collaboration strategies on resultant system QoS derived by

averaging each of the 25-cycle sequences in Fig. 7.

Collaboration strategy Aggregate performance

No communication 0.65

Anonymous gossiping 0.69

Full gossiping 0.65

Secretive full gossiping 0.71

636 R. GHANEA-HERCOCK et al.

THE COMPUTER JOURNAL, Vol. 50 No. 6, 2007

The anonymous gossiping strategy clearly also proved to be

very good but elicits slower convergence which demonstrates

that there is a case for sharing direct references to providers

such as in the full and secretive strategies. Nevertheless, its

effectiveness highlights the importance of collaborating to

improve the data on which the exploration/exploitation

decision is based.

The second set of experiments set out how the adaptive

exploration probability mechanism employed by Mercury

compared to a fixed strategy. For all the experiments, the

secretive full gossiping strategy was used although the other

strategies produced similar results when tested.

Figure 5 shows the results from this second experiment set

and shows that the adaptive exploration mechanism is particu-

larly useful in the initial stages where little is known about the

services available. It also results in a level of QoS almost as

good as the best fixed level of exploration found (0.2). Its

main use, though, is the adaptivity, which it gives the

system, allowing the selector agents to choose the appropriate

amount of exploration given the conditions in the network and

the accuracy of their selection models, rather than performing

‘blindly’ following a fixed probability of exploration or

perhaps a pre-defined exploration–exploitation scheduling

function.

The Mercury framework is a concrete illustration of how

emergent properties can be leveraged to improve global

system behaviour in SOAs, and particularly in P2P cases

such as Nexus. The combination of local decision-making

(exploration/exploitation strategy) with diffusion of QoS

information (gossiping) allows a population of selectors with

variable needs to collectively identify and converge towards

a configuration that meets the requirements of a majority of

participants. Moreover, this distributed problem-solving is

largely implicit: the establishment of preferential relationships

between selectors and providers incorporates any bias associ-

ated with initial conditions and/or the influence of the early

history of the system. For instance, in the case that there is

competition between two or more selectors for a contended

resource, the progressive gain of momentum will ensure that

random fluctuations are amplified to the point where only an

adequate subset of all competing selectors keep their affilia-

tion with the service. By forcing the ‘losers’ to identify an

alternative provider, this process usually leads to improve

global QoS, without any need for central planning or explicit

negotiations between selectors. Furthermore, since QoS is

constantly re-evaluated, Mercury is capable of detecting and

adapting to change the circumstances, whether they affect

the service consumer (e.g. new requirements), the provider

(e.g. change of context) or the relationship between them

(e.g. bandwidth shortage). This effectively means that a

stable configuration may spontaneously become unstable

when the existing web of selector–provider relationships is

no longer adequate, allowing the system to self-organize

into a new stable state reflecting the changing conditions.

Depending on the severity of the perturbation and/or on the

presence of strong coupling (e.g. intense competition for ser-

vices), the process can lead to a cascading reorganization or,

on the contrary, be confined to a small region of the system.

Most critically though, this global plasticity is achieved

without any modification to the selector agents’ behavioural

repertoire (there is no explicit ‘emergency response mode’).

So, by any practical definition, the spontaneous adjustment

to changing conditions is an emergent property of the whole

system, mediated exclusively by local decision-making.

2.2. Self-organizing multi-agent systems

The primary aim of the project CASSANI (Complex Adaptive

Self-organising Societies in Agents Network Infrastructures;

Southampton branch of the Hyperion cluster project) is to

investigate and develop the basic autonomic mechanisms

needed to enable the Hyperion agents to self-organize, self-

repair and self-optimize in response to dynamic environments.

Such autonomic behaviour is required to ensure that agents

are able to best achieve both their individual and collective

objectives [6].

In battlespace-networked systems, the resources available

(communication and computation) to the agents are severely

constrained. In such cases, it is impossible for the a priori

system design to continue to be maximally effective because

many of its operational assumptions and parameters are chan-

ging. To this end, our aim in this project is to devise mechan-

isms and algorithms to formulate autonomic behaviour within

such battlespace systems.

2.2.1. Self-organization

Self-organization refers to the process by which a system

changes its internal organization in order to adapt to changes

in its goals and environment without explicit external

control. In particular, a self-organizing system functions
FIGURE 5. Comparison of fixed versus Mercury adaptive explo-

ration probability mechanisms.

HYPERION—NEXT-GENERATION BATTLESPACE INFORMATION SERVICES 637

THE COMPUTER JOURNAL, Vol. 50 No. 6, 2007

through contextual local interactions. Without central control,

these components within the system attempt to individually

achieve simple tasks. The particularity of self-organized

systems is their capacity to spontaneously (without external

control) produce a new organization in case of environmental

changes. These systems are particularly robust, because they

adapt to these changes, and are able to ensure their own survi-

vability. In some cases, self-organization is coupled with

emergent behaviour, in the sense that although individual

components carry out a simple task, as a whole they are able

to carry out complex tasks emerging in a coherent way

through the local interactions of the various components.

Self-organization can, in certain instances, result in emer-

gent behaviour that may or may not be desirable. Therefore,

one of the major challenges in devising novel techniques to

formulate such self-organizing systems is to design mechan-

isms that encourage patterns of individual behaviour and inter-

actions that do indeed enhance the performance of the system

rather than degrade it. To achieve such desirable global emer-

gent behaviour, local agent behaviours and interactions should

comply with some behavioural framework dictated by a suit-

able theory of emergence. We can find inspiration for such the-

ories within various disciplines. For instance, the theory of

social science, nature (i.e. eco-systems, behaviour of social

insects), biology, organization theory and economics provide

a diverse array of examples of self-organization and emer-

gence in everyday life [9–11].

2.2.2. Self-optimization

Rather than managing their dynamic behaviour through cen-

tralized control, there is a trend to design systems to self-

organize and self-manage themselves to be autonomic. To

improve their efficiency, these systems are further expected

to self-optimize by allocating resources or services in an

optimal manner. In this part of our work, we will investigate

how we can self-optimize systems for autonomic behaviours.

Self-optimization can be achieved as an emergent beha-

viour of agents interacting cooperatively or competitively in

the system. One disadvantage of a cooperative approach is

that information must be shared for the best performance.

However, in these large complex multi-agent systems,

agents (which could be companies or computer nodes) have

their own goals and when dealing with a highly uncertain

context, assuming self-interest is the safest alternative (such

that they keep their information/preferences about the

resources or services they contribute or consume private).

Thus, we advocate a competitive approach. In particular, we

believe agents strategically compete in such systems to maxi-

mize their individual utility, and it is from this complex stra-

tegic behaviour that a self-optimized behaviour will emerge.

Thus, we intend to investigate the different decentralized

approaches for self-optimization in systems where we

assume that agents have their own aims. Indeed, we will

study such techniques to evaluate their effectiveness within

static and dynamic environments. Self-optimization is typi-

cally achieved by the efficient decentralized resource/service

allocation, a subject that has long been studied in economics

[12]. Thus, our study will be specifically concerned with

using economic metaphors and tools to achieve self-

optimization. Broadly speaking, such work can be non-priced

based (employing a mechanism that does not involve price

or payment for resources) or price based (using price as an

economic motivator). The former is usually based on game-

theoretic models (with selfish agents that seek to maximize

their individual return) or techniques based on decentralized

algorithms (with non-selfish agents that cooperate and have

the individual aim of maximizing social welfare). The latter

is a market-based approach with the ability to facilitate

resource allocation based on very little (price) information.

Indeed, the market minimizes the dimensionality of messages

required to determine Pareto optimal allocations [13]. Further-

more, the market-based approach is more flexible than a

non-price-based approach through its distributed nature and

its reliance on local decision-making and is more dynamic

through its ability to be robust and resilient in changing

environments (by reacting effectively to changes). For these

reasons, we believe a market-based approach is more appro-

priate to provide the self-optimizing behaviour required for

an autonomic system.

2.3. Adaptive NEC network infrastructure

The aim of SHIELD (Imperial branch of the Hyperion cluster

project) is to design an adaptive network architecture with

enhanced functionality and resilience, for networks for battle-

space communication and information services. Network

security is of primary concern for such communication net-

works. In the future, cyberwars will constitute a significant

part of warfare, and DoS attacks with the purpose of prevent-

ing legitimate users from using a specific network resource are

already common. Our aim is (i) to evaluate overall infrastruc-

ture resilience and adaptability in the presence of dynamically

varying service requests and possible network failures and

threats, (ii) to develop detection schemes that monitor traffic

continuously so as to respond to develope failures and

attacks with a minimum number of false alarms and missed

detections, (iii) to design and evaluate a comprehensive DoS

response scheme.

Various commercial, governmental and organizational sites

have been subject to major DoS attacks in the last decade,

causing significant financial loss and halt of services. Since

many services that are vital for the welfare of the public are

becoming more and more dependent on network communi-

cations, the necessity of defence against DoS is becoming a

fundamental issue in network security. The first step of any

protection scheme against DoS is fast detection before

destructive traffic build-up.

638 R. GHANEA-HERCOCK et al.

THE COMPUTER JOURNAL, Vol. 50 No. 6, 2007

In our current research, we propose a detection scheme for

DoS attacks using Bayesian classifiers and random neural net-

works (RNN). In the first step, the features to be used in the

detectors are selected. Then using normal and attack traffic

patterns, estimates of probability density functions for these

features are determined off-line and likelihood ratios are com-

puted. These likelihood ratios and normal and attack patterns

are also used for the training of the RNN to discriminate

between two types of traffic. In the detection phase, a likeli-

hood value describing the possibility of an attack, for each

feature of the incoming traffic is evaluated, then likelihood

values for various features are combined with two different

methods: (i) fusion of likelihoods with the mathematical aver-

aging operation; (ii) fusion by the use of RNNs. Thus, a

decision is given about the category of the incoming traffic,

whether it is attack or normal traffic.

2.3.1. Selecting the input features

The selection of useful and information bearing input features is

vital for successful detection of DoS. We have used six features

in our scheme, namely: bitrate, change in bitrate (acceleration),

entropy for bitrate, Hurst parameter, delay and delay rate.

(i) Bitrate: Observation of high-bitrate values is the most

conspicuous property in flooding DoS attacks. A sus-

tained high bitrate would be an important indicator

of DoS, if not absolute proof, since flashcrowds may

also create a similar effect in the traffic.

(ii) Increase in bitrate: Gradual or sudden increase of

bitrate could be the sign of a flooding attack. In

pulsing DoS attacks, bitrate would undergo increasing

and decreasing periods consecutively.

(iii) Entropy of bitrate: Entropy is a measure of random-

ness or uncertainty of information. It has been reported

in technical literature that the entropy of normal Inter-

net traffic and traffic under DoS attack differ signifi-

cantly and hence there have been some studies where

it is used in discriminating between attack and non-

attack traffic [14].

(iv) Hurst parameter: Self-similarity properties of normal

and attack traffic are different. Hurst parameter is com-

puted as an indicator of the self-similarity of the related

process and has previously been suggested to be used

in DoS detection [15]. We have used the (R/S) analysis

to evaluate the Hurst parameter for the bitrate [15, 16].

(v) Delay: During a DoS attack, packet delay into the

nodes is increased as congestion builds up. We have

measured the round trip time (RTT) values of the

victim nodes and observed a conspicuous increase,

so we utilized RTT in our detection scheme.

(vi) Delay rate: In flooding or pulsing DoS attacks, high-

delay rates are observed especially at the initial

phases of the attack. So, we included delay rate as an

input feature to provide additional information.

2.3.2. Statistical information gathering

For each input feature mentioned above, estimates of prob-

ability density functions for both normal and attack traffic

are obtained. Thus, we computed ffeature(xjWN) and ffeature

(xjWA) where ‘feature’ can be bitrate, bit acceleration,

entropy, Hurst parameter, delay and delay rate, x the measured

value of the feature from the available traffic data, WN the

normal traffic and WA is attack traffic. We have used the his-

togram method in calculating the estimates of the probability

density functions [17]. After obtaining the probability density

function estimates for each input for both traffic types, we cal-

culated likelihood ratios for each feature by

ffeatureðxjWAÞ

ffeature xjWNð Þ
:

2.3.3. Decision taking

Decision is taken in two consecutive steps. In the first level

decision-taking step, the value of the each input feature is

measured/calculated from the incoming traffic and the com-

puted likelihood functions of the features are re-sorted to

give a decision for each feature. Although the individual

decisions taken for each feature by Bayesian classifiers

would be optimal, false alarms and missed detections are

inevitable, due to any imperfections in the data set used

in information gathering and possibility of unconformity

between the data set and actual traffic. Hence, a second level

decision is obtained by the fusion of all first level decisions.

We expect to provide a compensation for any possible errors

and reinforcement of correct decisions, so that a low level of

false alarms and missed detections are observed at the final

decision. We have used two different methods for the fusion

of information obtained from different features for second

level decision taking; mathematical averaging of all six likeli-

hood ratios and feedforward RNNs.

2.3.3.1. Averaging method. In order to fuse the individual

first-order decisions, we have calculated the mathematical

average of the six input features, to give a final decision,

lfinal, about the nature of the incoming traffic to the victim

node (Normal traffic or DoS attack). lfinal is a number

between 0 and 1 and gives the likelihood of a DoS attack in

the incoming traffic to the node.

2.3.3.2. RNN method. RNNs are computationally efficient

structures and they represent a better approximation of the

true functioning of a biophysical neural network, where the

signals travel as spikes rather than analogue signals. They

can be used in both feedforward and recurrent architectures.

In our work, we have used a feedforward RNN, with six

input neurons, one hidden layer with 12 neurons and two

output neurons.

HYPERION—NEXT-GENERATION BATTLESPACE INFORMATION SERVICES 639

THE COMPUTER JOURNAL, Vol. 50 No. 6, 2007

2.3.4. Experimental results

We have carried out experiments to evaluate the performance

of our detection scheme in our networking testbed. The

testbed consists of 46 nodes connected with 100 MB links.

We tested our scheme with four different traffic data sets,

normal and attack traffic we have designed and two different

attack traces (pulsing and increasing-rate attacks) extracted

from an on-line repository of traces [18]. We have superposed

the attack traffic onto normal traffic from t ¼ 50 to 100 s. For

each type of traffic, we calculated lfinal and used the RNN

with the individual likelihoods as inputs. To implement the

RNN, we have utilized [19]. In all the experiments, we used

the ratio of the output neurons of the RNN as the RNN

output. Results smaller than 1 indicate normal traffic whereas

a ratio greater than 1 can be interpreted as a signal of attack.

Some representative results are shown in Figs 6 and 7.

For all of the data sets, we observed that the averaged like-

lihood detected the attack correctly and also the RNN output

was calculated as greater than 1 throughout the duration of

the attack, signalling the attack accurately.

In the next step of our research, we are going to design an

integrated defence mechanism against DoS attacks, incorpor-

ating the Bayesian classifier-based detection mechanism with

response approaches of prioritization and rate-limiting. We are

also going to investigate failure mechanisms in networks by

simulating intermittent failures in our testbed as a first step

to understanding the nature of network resilience.

2.4. Decision Desktop II: agile interfaces for
agile services

Decision makers, particularly in the military, are faced with a

world that is uncertain and dynamic, where events and courses

of action unfold at ‘run-time’ and do not follow predetermined

or predictable courses. However, the majority of the tools we

use to influence and control this world are frozen at the initial

‘design-time’ stages of their development.

Such approaches, that assume a fixed threat, and provide a

fixed defence, are out of touch with reality. Whatever fixed

zone our systems are designed for (and limited to), an intelli-

gent adversary will seek to push us out of that zone [20].

To address these challenges, the information systems

that support decision makers need to be agile and flexible—

reconfigurable at run-time, and with minimal built-in assump-

tions. Rather than specialized systems optimized for efficiency

in one narrow problem space, we require more generalist

systems providing greater effectiveness by keeping our

option space as open and large as possible.

The goal of this work is thus to demonstrate that agility can

be improved by shifting efforts from design time ‘optimiz-

ation’ towards run-time reconfiguration, placing the tools for

agility into the hands of military users in theatre, rather than

service providers at home. This could actually reduce work-

load since the tools are malleable to suit the task at hand,

rather than being designed for tasks envisaged some years pre-

viously. For example, decision makers would have control

over the types of information they wish to see, the level of

detail and the attributes of interest. The project is creating a

flexible framework that facilitates the rapid integration of

new functionality and new information types and sources,

and minimizes the effort required for a developer to add

these new capabilities. This also facilitates automated feeds

of information between applications, rather than disjointed

‘swivel-chair’ interfaces requiring manual re-keying of infor-

mation, as is often the case at present.

In the first phase of the Decision Desktop project, we devel-

oped a proof-of-concept agile information tool that can be

used to acquire, visualize and manipulate diverse and

dynamic battlespace information, then create flexible visual-

izations according to the immediate military imperative. It

thus enables decision makers to obtain the information they

want, when they want it, in a form that makes sense for the

task at hand. This tool was initially conceived in the

DARPA Coalition Agents Experiment [21], which used agent-

based computing approaches to address run-time interoper-

ability of heterogeneous systems.

Our design philosophy was to minimize design-time

assumptions in order to maximize the run-time flexibility of

FIGURE 6. Detection results for trace1 attack traffic obtained by

average likelihood.

FIGURE 7. Detection results for trace1 attack traffic obtained

by RNN.

640 R. GHANEA-HERCOCK et al.

THE COMPUTER JOURNAL, Vol. 50 No. 6, 2007

the system. In practical terms, we needed to avoid placing

arbitrary limitations on, for example:

(i) where information comes from;

(ii) what information is required;

(iii) how the information will be displayed.

The system is based upon an architecture that seeks to

provide extensibility at all stages of the system life cycle

(design time, assemble time and run time [22]). We adopted

a technical approach with four strands: flexible visualizations,

‘plug-and-play’ components, ontologies and software agents

and services. These elements are described further below,

and illustrated in Fig. 8.

Flexible, generic visualizations: Visualizations (such as

geographical maps or Gantt charts) need to be able to usefully

display diverse types of object, in a variety of ways. They need

to be able to show multiple possible values (where information

is conflicting or changing), and show objects at different levels

of detail or granularity. Objects displayed in views do not form

a static ‘picture’ presented to a passive user as a finished arte-

fact, but are interactive; the user can ‘drill down’ to further

information about an object, or transfer it to another view to

gain different perspectives on it (Fig. 9).

Plug-and-play components: To enable a system to be recon-

figured over short timescales, and to evolve over longer time-

scales, it should be assembled at run-time from a ‘toolbox’ of

components that can be plugged together to select and visual-

ize the desired data. The majority of the system’s functionality

is provided by plugging components into a minimal core frame-

work. The design allows new components to be plugged in

on-the-fly while the system is running, and also provides for

the addition of entirely new classes of component with

negligible effort. This allows new, unanticipated information

sources or visualizations to be connected to the system

without affecting existing components. For example, a

plug-in has been created to enable Decision Desktop to dis-

cover, and communicate with, nodes on the Nexus middleware

(discussed earlier). Components are loosely coupled, with

minimal interdependencie, and communicate by event

passing. They can discover one another via a registry

mechanism.

Ontologies: In many software tools, the domain models

are usually implicit and hidden, hard-coded within the soft-

ware and thus very hard to change. Adapting such systems

to new situations can be almost impossible without completely

re-writing them. Ontologies enable explicit, portable

and interchangeable domain models that are easier to change

and verify for new situations, and facilitate the merging of

diverse information from multiple, unanticipated sources.

They enable the software to be developed in a domain-

independent manner, increasing its adaptability. Decision

Desktop employs the resource description framework (RDF)

and web ontology language semantic web specifications.

Software agents and services: Rather than accessing a

static, predetermined structure of databases and servers, flex-

ible tools should be able to dynamically access information

providers as required by current operations [21, 23, 24].

With appropriate support, Decision Desktop can dynami-

cally discover services and agents on a network in order

to access diverse and unexpected information sources and

functionality.

Recent work has focussed on improving the architecture

and implementation via the introduction of simple, flexible

event-based communication between components (including

FIGURE 8. Outline of Decision Desktop architecture. Information sources feed into a knowledge base of interlinked, semantically marked-up

information, from which plug-in components extract information, and map it to visual elements that are rendered in the user interface by further

components.

HYPERION—NEXT-GENERATION BATTLESPACE INFORMATION SERVICES 641

THE COMPUTER JOURNAL, Vol. 50 No. 6, 2007

core components). The event model is richer and more flexible

than standard Java events, yet requires less ‘boilerplate’ code

for keeping track of event subscribers. Subscriptions can be

explicitly created between components, or can be implicitly

and automatically set up when a component is created.

Recent standards such as the SPARQL query language for

RDF have enabled a standardized and concise approach for

flexibly subscribing to information. Future work will need to

provide user-friendly mechanisms for constructing queries,

but the underlying mechanism avoids the need to laboriously

construct each new type of query programmatically.

2.4.1. Results

Earlier work has been demonstrated within the DARPA

Coalition Agents Experiment [21] and the Shared Tactical

Ground Picture coalition programme. In the former,

unexpected data from an underwater sensor grid (provided

by a new coalition partner) were integrated in a matter of

hours. The data could then be visualized in a number of

ways as outlined in Fig. 10. In the latter, information using a

new coordinate format was integrated via the addition of a

simple plug-in created in one day.

More recent work has demonstrated basic interoperability

with the Nexus middleware discussed earlier, enabling

Decision Desktop to discover and display the services avail-

able on the network.

The work to date has shown that it is possible to construct a

system that provides agile information visualization, avoiding

hard-coded domain assumptions. The core architecture and

implementation enable components (plug-ins) to be loaded

and configured dynamically. These components can interact

in order to collect, process and present diverse information.

The improvements over previous versions of Decision

Desktop are expected to enable significantly easier and

richer integration with the other Hyperion partners.

Future work will need to extend the architecture and

implementation for tasking the underlying layers of the

system, as developed by the other project partners (pushing

out information and instructions as well as pulling in infor-

mation). Another area for future investigation is the manage-

ment of groups of information objects, to support the

organization and aggregation of information.

2.5. NEC scenario and BLaDE integration

General dynamics UK’s contribution to Hyperion includes the

provision of a relevant military context and a scenario within

which the capabilities of the Hyperion projects could be

demonstrated. An initial set of military vignettes have been

drafted as the focus for engagement with the Hyperion

research teams to establish their detailed research require-

ments. The vignettes are:

† Collaborative planning: A brigade commander wants an

ad hoc teleconference and collaborative planning session

FIGURE 9. A Decision Desktop user interface. The tree-view (‘overview panel’) on the left shows the available information sources and the

components loaded into the system, whereas the central area contains a number of views onto the information, such as maps, timelines (Gantt

charts) and images.

642 R. GHANEA-HERCOCK et al.

THE COMPUTER JOURNAL, Vol. 50 No. 6, 2007

with deployed subordinate commanders and key staff at

brigade HQ.

† Capability resilience: Emergency change of control for a

battle group HQ that has come under attack.

† ISTAR support: Provision of UAV imagery (via a remote

viewing terminal at brigade HQ) to a deployed battle

group commander to support a key decision.

† Network attack: DoS attack.

FIGURE 10. Given a single set of data, a user can switch in seconds between a number of different interpretations of that data (or maintain

different interpretations in separate views). (a) Several sets of submarine detection points, colour coded by confidence values. (b) The average

of each set. (c) The bounding box of each set. (d) Tracks generated from the sets by sorting them into time order. (e) The points joined up

into lines. (f) Points filtered by confidence value. (g) Bounding boxes of filtered points. (h) Tracks generated from filtered points. A user can

change between these interpretations in seconds.

FIGURE 11. Computer-generated imagery of a bomb-damaged bridge.

HYPERION—NEXT-GENERATION BATTLESPACE INFORMATION SERVICES 643

THE COMPUTER JOURNAL, Vol. 50 No. 6, 2007

† Agile grouping: The brigade commander needs to create

an unplanned force grouping around a specialist

reinforcement unit.

Immediate work is focusing on vignette 3—ISTAR

Support—and using it to prototype an interface between

general dynamics UK’s BLaDE synthetic environment and

BT’s Nexus middleware.

Vignette 3 addresses the agile provision of support from a

UAV across the tactical communications network. The

advance of a battle group is impeded by the explosion of a

car bomb on a bridge on the convoy’s designated route. The

battle group commander, stuck further back in the convoy,

needs to remotely survey the situation, consult with his engin-

eering officer and his superiors and make a decision on how to

proceed. A UAV is tasked to fly over the bridge and the resul-

tant imagery is to be made available to the battle group

(Fig. 11).

A computer-generated forces simulation suite will be used

to create synthetic sensor reports about the status of vehicles

in the convoy and the UAV. A detailed 3-D model will then

be used to generate computer imagery to use in ISTAR

reports from the UAV. Extensible messaging and presence

protocol (XMPP) has been chosen as the method of dissemi-

nating these synthetic sensor reports to the Nexus middleware,

as it can be easily extended to carry custom XML payloads,

and it has the ability to easily cross network boundaries so

research partners can work together from their own networks

with minimal network reconfiguration.

Future work will include developing the Hyperion protocol

on top of XMPP [25] to integrate more tightly with the Nexus

architecture and allow more interaction between Nexus nodes

and the synthetic environment. A crucial part of the develop-

ment of the synthetic environment will be the modelling of

data links and background network traffic to accurately and

realistically emulate the stresses on the tactical communi-

cations network infrastructure. Agents hosted on the Nexus

middleware can then be supplied with real-time communi-

cations metrics, giving them the situational awareness they

will need to be able to adapt to changes in the network

environment. The vignettes will be developed further and

eventually integrated into a single consistent story that can

be represented in a complete, end-to-end demonstration of

Hyperion’s capabilities.

3. CONCLUSION

The application of autonomic computing and agent technol-

ogy has significant potential to resolve a number of emerging

requirements for UK defence networks. In particular, it

addresses the need for agility, responsiveness and resilience.

For example, the use of agents as service brokers and negotia-

tors for C2 systems will support the flexible interaction of mul-

tiple commanders to achieve shared situational awareness.

As illustrated in the results of the work to date, automation,

agents and SOA can make a significant contribution to the

requirements for resilience, adaptability and ease of adminis-

tration in future defence ICT systems. A pivotal issue however

is the question of what bandwidth will be available in battle-

space networks by 2015. If it remains constricted then the

focus of research now needs to be on bandwidth optimization

and pre-processing of data at source. If a richer network

capacity will exist then more effort can be concentrated on

knowledge extraction and visualization. In this work, we

have assumed that the former will be the case, but we have

also developed demonstration capabilities that adapt to situ-

ations where greater bandwidth is available.

REFERENCES

[1] Alston, A. (2003) Network-enabled capability—the concept.

J. Def. Sci., 8, 108–116.

[2] Kaveh, N. and Ghanea-Hercock, R. (2004) NEXUS: resilient

intelligent middleware. BT Technol. J., 22, 209–215.

[3] Huhns, M.N. and Singh, M.P. (2005) Service-oriented

computing: key concepts and principles. IEEE Internet

Comput., 9, 75–81.

[4] Van Roy, P. et al. (2005) Self-management of large-scale

distributed systems by combining peer-to-peer networks and

components. CoreGRID Technical Report TR-0018.

[5] Mondejar, R. et al. (2006) Enabling Wide-Area Service

Oriented Architecture through the p2pWeb Model. Proc.

Workshops on Enabling Technologies: Infrastructure for

Collaborative Enterprises (WETICE), 89–94.

[6] Kephart, J.O. and Chess, D.M. (2003) The vision of autonomic

computing. IEEE Comput., 36, 41–50.

[7] Mantaray. http://www.mantamq.org.

[8] Jakob, M., Healing, A. and Saffre, F. (2007) Mercury:

multi-agent adaptive service selection based on non-functional

attributes. Proc. 2nd Int. Workshop on Engineering Emergence

in Decentralised Autonomic Systems (EEDAS), 22–31.

[9] Serugendo, G.D.M., Gleizes, M.-P. and Karageorgos, A. (2005)

Self-organisation in MAS. Knowl. Eng. Rev., 20, 165–189.

[10] Mano, J.-P., Bourjot, C., Lopardo, G. and Glize, P. (2006)

Bio-inspired mechanisms for artificial self-organised systems.

Informatica, 30, 55–62.

[11] Hassas, S., Serugendo, G.D.M., Karageorgos, A.

and Castelfranchi, C. (2006) Self-organising mechanisms from

social and business/economics approaches. Informatica, 30,

55–62.

[12] Mas-Collel, A., Whinston, W. and Green, J. (1995)

Microeconomic Theory. Oxford University Press.

[13] Jordan, J.S. (1982) The competitive allocation process is

informationally efficient uniquely. J. Econ. Theory, 28, 1–18.

[14] Feinstein, L., Schnackenberg, D., Balupari, R. and Kindred, D.

(2003) Statistical approaches to DDoS attack detection and

response. Proc. DARPA Information Survivability Conference

and Exposition (DISCEX), 303–314.

644 R. GHANEA-HERCOCK et al.

THE COMPUTER JOURNAL, Vol. 50 No. 6, 2007

[15] Xiang, Y., Lin, Y., Lei, W.L. and Huang, S.J. (2004) Detecting

DDOS attack based on network self-similarity. IEE Proc.

Commun., 151, 292–295.

[16] Cajueiro, D.O. and Tabak, B.M. (2004) The Hurst exponenet

over time: testing the assertion that emerging markets are

becoming more efficient. Physica A, 336, 521–537.

[17] Duda, R.O., Hart, P.E. and Stork, D.G. (2001) Pattern

Classification. John-Wiley and Sons.

[18] UCLA CSD packet traces: http://www.lasr.cs.ucla.edu/ddos/

traces/public/usc/trace1/exp2/udp/

[19] Abdelbaki, M. (2007) Matlab simulator for the RNN, http://

www/cs/ucf.edu/~ahossam/rnnsim

[20] Allsopp, D.N. (2006) Mechanisms for agility. Eleventh Int.

Command and Control Research and Technology Symp.,

Cambridge, UK, September 26–28.

[21] Allsopp, D.N., Beautement, P., Bradshaw, J.M., Durfee, E.H.,

Kirton, M., Knoblock, C.A., Suri, N., Tate, A. and Thompson,

C.W. (2002) Coalition agents experiment: multiagent cooperation

in international coalitions. IEEE Intell. Syst., 17, 26–35.

[22] Beautement, P. (2006) Agile and adaptive coalition

operations—leveraging the power of complex environments.

Eleventh Int. Command and Control Research and

Technology Symp., Cambridge, UK, September 26–28.

[23] Beautement, P., Allsopp, D.N., Greaves, M., Goldsmith, S.,

Spires, S., Thompson, S.G. and Janicke, H. (2006)

Autonomous Agents and Multi-Agent Systems (AAMAS) for

the Military—Issues and Challenges. In: Thompson, S.G.

and Ghanea-Hercock, R. (eds), Defence Applications of

Multi-Agent Systems 2005. Lecture Notes on Artificial

Intelligence, vol. 3890, 1–13. Springer-Verlag (ISBN

3-540-32832-7).

[24] Allsopp, D.N. Armed Services: Challenges for Military

Distributed Systems, In Thompson, S.G. and

Ghanea-Hercock, R. (eds), Defence Applications of

Multi-Agent Systems 2005. Lecture Notes on Artificial

Intelligence, vol. 3890, 1–13. Springer-Verlag (ISBN

3-540-32832-7).

[25] XMPP: www.xmpp.org

HYPERION—NEXT-GENERATION BATTLESPACE INFORMATION SERVICES 645

THE COMPUTER JOURNAL, Vol. 50 No. 6, 2007

