
HYPERLOCK: In-Memory Hyperdimensional
Encryption in Memristor Crossbar Array

Jack Cai1, Amirali Amirsoleimani2, and Roman Genov1

1Department of Electrical and Computer Engineering, University of Toronto, Toronto, Canada
2Department of Electrical Engineering and Compute Science, York University, Toronto ON M3J 1P3, Canada

Email: 1jack.cai@mail.utoronto.ca, 2amirsol@yorku.ca, 3roman@eecg.utoronto.ca

Abstract—We present a novel cryptography architecture based
on memristor crossbar array, binary hypervectors, and neural
network. Utilizing the stochastic and unclonable nature of mem-
ristor crossbar and error tolerance of binary hypervectors and
neural network, implementation of the algorithm on memristor
crossbar simulation is made possible. We demonstrate that with
an increasing dimension of the binary hypervectors, the non-
idealities in the memristor circuit can be effectively controlled. At
the fine level of controlled crossbar non-ideality, noise from mem-
ristor circuit can be used to encrypt data while being sufficiently
interpretable by neural network for decryption. We applied our
algorithm on image cryptography for proof of concept, and to text
en/decryption with 100% decryption accuracy despite crossbar
noises. Our work shows the potential and feasibility of using
memristor crossbars as an unclonable stochastic encoder unit of
cryptography on top of their existing functionality as a vector-
matrix multiplication acceleration device.

Index Terms—Memristor Crossbar, Cryptography, Neural Net-
work, Hyperdimensional Encryption

I. INTRODUCTION

Memristors are non-volatile, configurable memory devices
[1], [2]. Their ability to permanently store variable conduc-
tance information makes them good candidates to build analog
vector matrix multiplications (VMM) crossbar accelerators.
The crossbar performs VMM in O(1) and overcomes the
von Neumann bottleneck with in-memory computing [3],
which enables many edge computing applications in machine
learning such as CNN [4], LSTM [5], and neuromorphic
computing [6]. However, despite their high efficiency, low
footprint, and low power consumption [7]–[9], memristor
crossbar suffer non-ideality issues such as sneak path current,
device variability, stuck conductance, and cycle-to-cycle vari-
ability [10]–[13]. In some literature, non-ideality and behaviors
of memristors are studied and their stochasticity is exploited
for hardware security applications [13] such as physical un-
clonable functions (PUFs) [14]–[16] and chaotic circuits [17],
[18]. Despite algorithms proposed in these studies covering
from generating stochastic sequences for hardware verification
to public and private key cryptography, none of which have
touched on using memristor crossbar’s VMM operation to
encrypt the data directly.

In in-memory hyperdimensional encryption, we investigate
the feasibility of using the memristor crossbar’s stochastic
VMM operation for data encryption. Encrypting data directly
with a memristor crossbar poses a challenge for decryption
because the cycle to cycle variability can result in inconsistent

G1,1 G1,2 G1,N

G2,1 G2,2 G2,N

GM,1 GM,2 GM,N

V1

V2

VM

A
n

alo
g

I1 I2

Vector-Matrix
Multiplication

IN

 DAC

 DAC

 DAC

Bit-stream

D
ig

ital

b1

b2

bM

A
D

C

A
D

C

A
D

C

Y1 YNY2

V1

V2

V3

VM I1

I2
IN

Memristor

x1

x2

xM

Vector

Fig. 1. Vector-matrix multiplication (VMM) over the memristor crossbar. 3D
crossbar array has been displayed with input voltage and bit-line currents.

ciphertext for the same input. On the other hand, such random-
ness can be beneficial as it prevents the repetitiveness of the
encrypted text. The in-memory hyperdimensional computing
concept proposed by IBM [19] demonstrates the robustness of
binary hypervectors against memristor crossbar non-ideality.
Such discovery leads to the inspiration of this work: utilize
binary hypervectors encryption to control the impact of noise
generated by memristor crossbar, then train a shallow neural
network for decryption. We demonstrate in simulation exper-
iments: 1) the proof of concept on image cryptography, and
2) in-text en/decryption to show that at a fine level of noise,
the ciphertext is near 100% decryptable by the neural network
while being unique for each pass. Using a memristor crossbar
for this algorithm has a few benefits. First, the cost of VMM
operation is low due to in-memory computing. Second, the
algorithm can benefit from the intrinsic stochasticity of the
memristor crossbar without the need of adding artificial noises.
In the end, noises generated by the crossbar provide additional
security levels, and the exact properties of the crossbar are
unobtainable and unclonable by attackers. The power and
time complexity of the memristor crossbar are compared with
CMOS digital implementation.

II. PRELIMINARIES

A. Memristor Crossbar Arrays

A typical structure of a crossbar is shown in Fig. 1, where
memristors are programmed and sandwiched between the
word-lines and the bit-lines. When analog voltage vectors are

ar
X

iv
:2

20
1.

11
36

2v
1

 [
cs

.C
R

]
 2

7
Ja

n
20

22

ENCRYPTED
DATA

11

5

14

Real Number
Presentation

BHV
Presentation

1
0
1
1

1
0

0
1
1
1
1
0

23

22

21

20

23

22

21

20

23

22

21

20

Flipping MSBs Result in huge Error

 Each position has local meaning and
prone to noise

 Consumes less space

 Each position has no local meaning
 Consumes more space

001010101000110101100 010010

Hyperdimensional Vector

 Each bit contains roughly the same amount
of information

(a) (b)

ENCRYPTION DECRYPTION

x1

x2

xN

xh1 xh2 xhZ

Memristor Crossbar
X

XHyper

H(XHyper)

Xbhv

Xh1

Xh2

XhZ

x1

x2

xN

X

Neural Network

(c)

Fu
lly

 C
o

n
n

e
ct

e
d

La

ye
r

R
es

h
ap

e

Fl
at

te
n

Input Image Encrypted Image Decrypted ImageWencoder WGaussian

Randomly
Generated

Once

Randomly
Generated
Each Pass

Fig. 2. (a) Binary hypervector representation versus real vector representation. (b)Proposed model architecture schematic for in-memory hyperdimensional
encryption. (c) Image encryption and decryption implementation.

applied through the word-lines, memristors act as multipli-
cation units according to Ohm’s law (i.e. I = V G), and
the current output from the memristors are then accumulated
through the bit-lines. Despite its ideal functionalities, real
implementation of the crossbar often comes with non-ideality
[10]–[13] that causes errors in the output current vectors.

B. Binary Hypervectors

Binary hypervectors (BHV), first introduced by Kanerva
[20] in his model of hyperdimensional (HD) computing, are
binary vectors with dimensions in the orders of thousands.
Unlike traditional real-valued vectors that are optimized for
space, BHVs are optimized for robustness. In BHV, infor-
mation is distributed evenly across all entries. Such repre-
sentation provides resilience against noise, non-ideality, and
low resolution in computer hardware as randomly flipping
one bit of information has almost no impact on the vector’s
representation [20]. Since the information is evenly spread,
BHV can be more robust when its dimension is increased. Real
valued vectors, on the other hand, are prone to these noises, as
failures at critical bits can change the vector’s representation
significantly. Fig. 2(a) contrasts the two vectors.

III. PROPOSED MODEL ARCHITECTURE

Our proposed architecture (Fig. 2(b)) consists of a hy-
perdimensional stochastic encoder that encrypts the ordinary
real value vectors into binary hypervectors, and a multi-layer
perceptron (MLP) decoder that reconstructs the original vector.

A. Hyperdimensional Stochastic Encoder

The stochastic encoder is characterized by Equation (1),
where Wencoder is a tall, randomly initialized matrix that
linearly transforms the original low dimensional input vector
x into a hypervector, fnoise(t,Wencoder,x) is some noise
function that depends on time t, Wencoder, and x, and H is
a binarization function defined by Equation (2), where ε is
a hyperparameter. The result, xbhv , is an encrypted binary

hypervector.

xbhv = H(Wencoderx+ fnoise(t,Wencoder,x)) (1)

H(x) =

{
0, x < ε

1, x > ε
(2)

The above formulation models the VMM of an intrin-
sic memristor crossbar array followed by a threshold. The
randomly initialized matrix Wencoder can be thought of
as an untuned memristor crossbar, and the noise func-
tion fnoise(t,Wencoder,x) models the crossbar non-idealities
which depend on the crossbar conductance (finite conductance
states and conductance variability), input voltage vectors (e.g.
sneak path current), and time (cycle to cycle variability).

The intuition behind a hyperdimensional stochastic encoder
is that the VMM operation will create hypervectors, evenly
distributes the input vector’s information across all entries.
As a result, information at each entry can be represented by
binary states. On the other hand, the impact on performance
from noise reduces as the dimension of the BHV gets larger.
By altering the output dimension of the stochastic encoder, we
control the level of noise present in the encrypted BHV.
B. Neural Network Decoder

Encrypted BHV is fed into a fully connected neural network,
dimension reduced by the weighted edges to reconstruct the
original input vector. Weights of the neural network can be
obtained through supervised learning.

IV. IMAGE ENCRYPTION

We first apply our proposed model for image en/decryption
(Fig. 2(c)) to verify the assumptions we had in our formulation.
We create a naive simulation on PyTorch, where the stochastic
encoder is implemented by Equation (3).

xbhv = H((Wencoder +WGaussian)x) (3)

Wencoder is a fixed matrix randomly generated by PyTorch’s
uniform initialization function in the interval (−2, 2) and

IMAGE ENCRYPTION RESULTS IMAGE DECRYPTION RESULTS

Before Encryption

(a)

(b)

(c)
Before Binarization After Binarization

Original
MNIST

CIFAR

1 5 10 20 40 80

Dimension Multiplier

(d)

(e)

Gaussian Noise Standard Deviation

0 0.5 1 2

B
e

n
ch

m
a

rk
M

N
IS

T

2
0

-D
im

e
n

si
o

n

M
u

lt
ip

lie
r

M
o

d
el

Fig. 3. Image encryption and decryption results. Image encryption result is on a 150 × 150 pixels Girl with a Pearl Earring image. (a) Raw image at three
stages of encryption: before, after dimension expansion, and after threshold. (b) Pixel correlation at the three stages. (c) Adjacent pixel correlation at the three
stages. Note that pixel correlation at the third stage is represented by a bar graph due to there being only 4 adjacent pixel combinations, namely: 0 − 0,
0− 1, 1− 0, 1− 1. (d) Image decryption results: Reconstructed images at different levels of dimension multiplier (the factor in which the input image vector
dimension is expanded) in the stochastic encoding. (e) Reconstructed MNIST images at different standard deviations of Gaussian noise.

WGaussian is a Gaussian noise matrix generated by PyTorch’s
normal distribution function at each pass. The input vector
x is the flattened image vector. After encoded by Equation
(3), the encrypted BHV is fed into a single layer MLP to
reconstruct the original image. During training, we used root
mean square error as the cost function and stochastic gradient
descent (SGD) to train the model until the validation loss
stabilizes. We present the en/decryption result in Fig. 3.

A. Dataset and Benchmark model

We trained the model on MNIST and CIFAR-10 image
classification datasets respectively. MNIST consists of 60K
28 × 28 black and white images of handwritten digits from
0 − 9, and CIFAR-10 consists of 60K 32 × 32 color images
representing 10 classes of objects. Instead of performing
classification, we trained the MLP to reconstruct these images.

We trained a benchmark model where Wencoder in Equation
(3) is a square matrix that does not expand the input vector x
to hyperdimension, and we got rid of the threshold function.
Ideally, the MLP decoder will learn the inverse of Wencoder

when noise is not presented, achieving little to no image
reconstruction noise for decryption in a perfect scenario.

B. Simulation Results

We show, in Fig. 3(a-c), the raw encryption results along
with the change in pixel distribution and correlation of en-
crypting a 150× 150 pixels Girl with a Pearl Earring image
using our method. We show no obvious correlations between
pixels. In Fig. 3(d), we demonstrate the positive correlation
between dimension expansion and reconstructed image quality
and, in Fig. 3(e), the robustness of the BHV model against

noise compared to the benchmark model. Reconstructed digit
still remains legible even when the Gaussian noise standard
deviation is equal to Wencoder’s initialization range (-2, 2).

V. TEXT ENCRYPTION

A. Model Algorithm, Dataset and Simulation Setup

In this section, we generalize our proposed model to a text
en/decryption model, as shown in Fig. 4(a) and described by
Algorithm 1. A new model can be generated without new
crossbar simply by regenerating secret vectors and running
Train(). The dataset used in simulations are characters of
94 classes, corresponding to ASCII 32 to 126. Our training,
validation, and test sets consist of 100K, 100K, and 10K of
randomly generated characters from the 94 classes, respec-
tively. We tested the above algorithm on a memristor crossbar
array simulation based on PyTorch. Conductance variability
is modeled based on Gaussian distribution and randomly
stuck on/off memristors. Samples of crossbar hyperparameters
are presented in Table 1 along with the test set decryption
accuracy.
B. Experimental Results

We show the encrypted letters at different levels of crossbar
noise in Fig. 4(b), with their corresponding decryption accu-
racy. Non-ideality within the memristor crossbar array makes
the encoded BHV different at each pass, thereby ensuring
the security of the encrypted text. In Fig. 4(c), we show the
decryption performance on a crossbar with, 0.05 Pon and
0.05 Poff , at various levels of dimension multipliers and
conductance variability. A model is considered “good” if the
result decryption accuracy is at least 99.9% on the test set. In

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

10x500 10x100020x100020x200040x2000

Read Latency
Ag:Si Memristor Crossbar Digital SRAM

Ti
m

e
 (

s)

Crossbar Dimension

TEXT ENCRYPTION & DECRYPTION MODEL
(a)

(c)

(b)

B

xh1 xh2 xhZ

Memristor Crossbar

E

XHyperdimensional

A

B

C

E

~

 B

Decrypted
Character

E

Text to be
encrypted

Associated
Random Vector

with Input
Character

Binarized to
HBV

Encodes to
Hyperdimension

Decode and
Classify with

SoftMax

Probability
Distribution of

a Character

σ = 0 σ = 0.2

σ = 0.4 σ = 0.6

A B C D E
D.A: 100%

A B C D E
D.A: 100%

A B C D E
D.A: 99.9%

A B C D E
D.A: 98.64%

Optimal Range

(d) (e) (f)Model with D.A. 99.9%

Model with D.A. < 99.9%

0

20

40

60

80

100

120

140

160

10x500 10x1000 20x1000 20x2000 40x2000

Read Energy
Ag:Si Memristor Crossbar Digital SRAM

En
er

gy
 (

µ
J)

Crossbar Dimension

Fig. 4. Application for Text Decryption and Encryption results. (a) Text en/decryption model. (b) Encrypted text by different levels of noise within the
memristor crossbar. Each column is a BHV and each letter (A, B, C, D, and E) is encoded 200 times. An optimal model is achieved when both noise
and decryption accuracy is high. (c) Decryption performance of models with various dimension multipliers and crossbar noise levels. Grid search on 10
dimensional secret key models with 0.05 Pon and 0.05 Poff . “Good” models (shaded) are those with decryption accuracy ≥ 99.9% on the test set. (d)
Decryption accuracy vs conductance variability for selected models. Note that more noise means more security for the encoded BHV, while less dimension
multiplier means less computation cost. (e) Power and complexity analysis of memristor crossbar implementation. (f) Time and complexity analysis.

TABLE I
SAMPLE CROSSBAR HYPERPARAMETERS IN EXPERIMENT

size RLRS (KΩ) RHRS (KΩ) σ1 Pon Poff D.A.2

5 × 250 1 100 0.1 0.01 0.01 99.55%
5 × 500 1 100 0.1 0.01 0.01 99.96%
10 × 500 1 10 0.1 0.02 0.02 100.0%
10 × 1000 1 10 0.4 0.05 0.05 99.97%
15 × 300 1 10 0.2 0.02 0.02 100.0%
15 × 600 1 10 0.7 0.02 0.02 98.17%
1Each conductance is perturbed by Gaussian noise with standard devia-
tion equal to σ multiplied by the crossbar conductance range.
2Decryption accuracy over 10K characters.

Fig. 4(d), we show the decryption accuracy curves of various
models. We simulated energy and time complexity on analog
Ag:Si memristor crossbar and digital SRAM [21] at different
crossbar sizes for the stochastic encoder with NeuroSim MLP
[22]. Fig 4(e-f) compares the result. The Ag:Si memristor
consumes 30× less energy than digital SRAM implementation
while having consistent read latency at increasing the VMM
scale. In addition, the digital implementation does not have
the security advantage from crossbar non-ideality.

VI. CONCLUSION

Overall, we demonstrate a novel cryptography algorithm
designed specifically for memristor crossbar. In the image
encryption experiment, we verified our hypothesis using binary
hypervectors to control crossbar noise levels. We then devel-

Algorithm 1 Text En/Decryption
Input: text, char list, train set
Def Generate(char list): . Returns a randomly generated
low-dimensional secret vector for each char in char list.
Def Map(S, SV): . Maps a String to its Secret Vector.
Def VMM(A,x): . Performs Ax using the crossbar.
Def Train(): . Returns a NN Model (linear mapping +
SoftMax) for decryption, trained by negative log likelihood
loss and SGD over examples in train set.
procedure TEXT EN/DECRYPTION()

Model = Train() . Give Model to receiver.
secret keys = Generate(char list)
for char in text do

xhyper = VMM(Map(char, secret keys))
xhbv = H(xhyper) . This is encryption.
... send over to receiver ...
c decrypted = Model(xhbv) . This is decryption.

end for
end procedure

oped a stochastic text encryption system and demonstrated
near 100% decryption accuracy in the text decryption with
selected crossbar models. This work is a proof of concept
of how memristor crossbars with their non-ideal nature can
be used to directly encrypt data, paving the foundations for
future works in this direction.

REFERENCES

[1] L. Chua, “Memristor-the missing circuit element,” IEEE Transactions
on Circuit Theory, vol. 18, no. 5, pp. 507–519, 1971.

[2] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The
missing memristor found,” Nature, vol. 453, no. 7191, pp. 80–83, May
2008. [Online]. Available: https://doi.org/10.1038/nature06932

[3] A. Amirsoleimani, F. Alibart, V. Yon, J. Xu, M. R. Pazhouhandeh,
S. Ecoffey, Y. Beilliard, R. Genov, and D. Drouin, “In-
memory vector-matrix multiplication in monolithic complementary
metal–oxide–semiconductor-memristor integrated circuits: Design
choices, challenges, and perspectives,” Advanced Intelligent Systems,
vol. 2, no. 11, p. 2000115, 2020. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/aisy.202000115

[4] P. Yao, H. Wu, B. Gao, J. Tang, Q. Zhang, W. Zhang, J. J. Yang, and
H. Qian, “Fully hardware-implemented memristor convolutional neural
network,” Nature, vol. 577, no. 7792, pp. 641–646, Jan 2020. [Online].
Available: https://doi.org/10.1038/s41586-020-1942-4

[5] C. Li, Z. Wang, M. Rao, D. Belkin, W. Song, H. Jiang, P. Yan,
Y. Li, P. Lin, M. Hu, N. Ge, J. P. Strachan, M. Barnell,
Q. Wu, R. S. Williams, J. J. Yang, and Q. Xia, “Long short-term
memory networks in memristor crossbar arrays,” Nature Machine
Intelligence, vol. 1, no. 1, pp. 49–57, Jan 2019. [Online]. Available:
https://doi.org/10.1038/s42256-018-0001-4

[6] M. Rahimi Azghadi, Y.-C. Chen, J. K. Eshraghian, J. Chen, C.-Y.
Lin, A. Amirsoleimani, A. Mehonic, A. J. Kenyon, B. Fowler, J. C.
Lee, and Y.-F. Chang, “Complementary metal-oxide semiconductor
and memristive hardware for neuromorphic computing,” Advanced
Intelligent Systems, vol. 2, no. 5, p. 1900189, 2020. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/aisy.201900189

[7] D. Ielmini and H.-S. P. Wong, “In-memory computing with resistive
switching devices,” Nature Electronics, vol. 1, no. 6, pp. 333–343, Jun
2018. [Online]. Available: https://doi.org/10.1038/s41928-018-0092-2

[8] A. Sebastian, M. Le Gallo, R. Khaddam-Aljameh, and E. Eleftheriou,
“Memory devices and applications for in-memory computing,” Nature
Nanotechnology, vol. 15, no. 7, pp. 529–544, Jul 2020. [Online].
Available: https://doi.org/10.1038/s41565-020-0655-z

[9] M. Le Gallo, A. Sebastian, R. Mathis, M. Manica, H. Giefers, T. Tuma,
C. Bekas, A. Curioni, and E. Eleftheriou, “Mixed-precision in-memory
computing,” Nature Electronics, vol. 1, no. 4, pp. 246–253, Apr 2018.
[Online]. Available: https://doi.org/10.1038/s41928-018-0054-8

[10] W. Yi, S. E. Savel’ev, G. Medeiros-Ribeiro, F. Miao, M.-X. Zhang, J. J.
Yang, A. M. Bratkovsky, and R. S. Williams, “Quantized conductance
coincides with state instability and excess noise in tantalum oxide
memristors,” Nature Communications, vol. 7, no. 1, p. 11142, Apr
2016. [Online]. Available: https://doi.org/10.1038/ncomms11142

[11] S. Ambrogio, P. Narayanan, H. Tsai, R. M. Shelby, I. Boybat,
C. di Nolfo, S. Sidler, M. Giordano, M. Bodini, N. C. P. Farinha,
B. Killeen, C. Cheng, Y. Jaoudi, and G. W. Burr, “Equivalent-accuracy
accelerated neural-network training using analogue memory,” Nature,
vol. 558, no. 7708, pp. 60–67, Jun 2018. [Online]. Available:
https://doi.org/10.1038/s41586-018-0180-5

[12] C. Du, F. Cai, M. A. Zidan, W. Ma, S. H. Lee, and W. D. Lu, “Reservoir
computing using dynamic memristors for temporal information
processing,” Nature Communications, vol. 8, no. 1, p. 2204, Dec 2017.
[Online]. Available: https://doi.org/10.1038/s41467-017-02337-y

[13] S. Lv, J. Liu, and Z. Geng, “Application of memristors in hardware
security: A current state-of-the-art technology,” Advanced Intelligent
Systems, vol. 3, no. 1, p. 2000127, 2021. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/aisy.202000127

[14] R. Zhang, H. Jiang, Z. R. Wang, P. Lin, Y. Zhuo, D. Holcomb, D. H.
Zhang, J. J. Yang, and Q. Xia, “Nanoscale diffusive memristor crossbars
as physical unclonable functions,” Nanoscale, vol. 10, pp. 2721–2726,
2018. [Online]. Available: http://dx.doi.org/10.1039/C7NR06561B

[15] H. Jiang, C. Li, R. Zhang, P. Yan, P. Lin, Y. Li, J. J. Yang, D. Holcomb,
and Q. Xia, “A provable key destruction scheme based on memristive
crossbar arrays,” Nature Electronics, vol. 1, no. 10, pp. 548–554, Oct
2018. [Online]. Available: https://doi.org/10.1038/s41928-018-0146-5

[16] H. Nili, G. C. Adam, B. Hoskins, M. Prezioso, J. Kim, M. R.
Mahmoodi, F. M. Bayat, O. Kavehei, and D. B. Strukov, “Hardware-
intrinsic security primitives enabled by analogue state and nonlinear
conductance variations in integrated memristors,” Nature Electronics,
vol. 1, no. 3, pp. 197–202, Mar 2018. [Online]. Available:
https://doi.org/10.1038/s41928-018-0039-7

[17] C. Yang, Q. Hu, Y. Yu, R. Zhang, Y. Yao, and J. Cai, “Memristor-
based chaotic circuit for text/image encryption and decryption,” in 2015
8th International Symposium on Computational Intelligence and Design
(ISCID), vol. 1, 2015, pp. 447–450.

[18] J. Wu, L. Wang, G. Chen, and S. Duan, “A memristive chaotic
system with heart-shaped attractors and its implementation,” Chaos,
Solitons & Fractals, vol. 92, pp. 20–29, 2016. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0960077916302648

[19] G. Karunaratne, M. Le Gallo, G. Cherubini, L. Benini, A. Rahimi,
and A. Sebastian, “In-memory hyperdimensional computing,” Nature
Electronics, vol. 3, no. 6, pp. 327–337, Jun 2020. [Online]. Available:
https://doi.org/10.1038/s41928-020-0410-3

[20] P. Kanerva, “Hyperdimensional computing: An introduction to
computing in distributed representation with high-dimensional random
vectors,” Cognitive Computation, vol. 1, no. 2, pp. 139–159, Jun 2009.
[Online]. Available: https://doi.org/10.1007/s12559-009-9009-8

[21] P.-Y. Chen and S. Yu, “Technological benchmark of analog synaptic
devices for neuroinspired architectures,” IEEE Design Test, vol. 36,
no. 3, pp. 31–38, 2019.

[22] P.-Y. Chen, X. Peng, and S. Yu, “Neurosim: A circuit-level macro
model for benchmarking neuro-inspired architectures in online learning,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 37, no. 12, pp. 3067–3080, 2018.

https://doi.org/10.1038/nature06932
https://onlinelibrary.wiley.com/doi/abs/10.1002/aisy.202000115
https://doi.org/10.1038/s41586-020-1942-4
https://doi.org/10.1038/s42256-018-0001-4
https://onlinelibrary.wiley.com/doi/abs/10.1002/aisy.201900189
https://doi.org/10.1038/s41928-018-0092-2
https://doi.org/10.1038/s41565-020-0655-z
https://doi.org/10.1038/s41928-018-0054-8
https://doi.org/10.1038/ncomms11142
https://doi.org/10.1038/s41586-018-0180-5
https://doi.org/10.1038/s41467-017-02337-y
https://onlinelibrary.wiley.com/doi/abs/10.1002/aisy.202000127
http://dx.doi.org/10.1039/C7NR06561B
https://doi.org/10.1038/s41928-018-0146-5
https://doi.org/10.1038/s41928-018-0039-7
https://www.sciencedirect.com/science/article/pii/S0960077916302648
https://doi.org/10.1038/s41928-020-0410-3
https://doi.org/10.1007/s12559-009-9009-8

	I Introduction
	II Preliminaries
	II-A Memristor Crossbar Arrays
	II-B Binary Hypervectors

	III Proposed Model Architecture
	III-A Hyperdimensional Stochastic Encoder
	III-B Neural Network Decoder

	IV Image Encryption
	IV-A Dataset and Benchmark model
	IV-B Simulation Results

	V Text Encryption
	V-A Model Algorithm, Dataset and Simulation Setup
	V-B Experimental Results

	VI Conclusion
	References

