
The University of Manchester Research

HyperMAMBO-X64: Using Virtualization to Support High-
performance Transparent Binary Translation

DOI:
10.1145/3050748.3050756

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
d'Antras, A., Gorgovan, C., Garside, J., Goodacre, J., & Luján, M. (2017). HyperMAMBO-X64: Using Virtualization
to Support High-performance Transparent Binary Translation. In Proceedings of the 13th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments (pp. 228-241). (VEE '17). Association for Computing
Machinery. https://doi.org/10.1145/3050748.3050756

Published in:
Proceedings of the 13th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:26. Aug. 2022

https://doi.org/10.1145/3050748.3050756
https://www.research.manchester.ac.uk/portal/en/publications/hypermambox64-using-virtualization-to-support-highperformance-transparent-binary-translation(43546feb-5e08-4061-b3d9-f620397f3be0).html
/portal/james.garside.html
/portal/john.goodacre.html
https://www.research.manchester.ac.uk/portal/en/publications/hypermambox64-using-virtualization-to-support-highperformance-transparent-binary-translation(43546feb-5e08-4061-b3d9-f620397f3be0).html
https://www.research.manchester.ac.uk/portal/en/publications/hypermambox64-using-virtualization-to-support-highperformance-transparent-binary-translation(43546feb-5e08-4061-b3d9-f620397f3be0).html
https://doi.org/10.1145/3050748.3050756


HyperMAMBO-X64: Using Virtualization to Support

High-Performance Transparent Binary Translation

Amanieu d’Antras Cosmin Gorgovan Jim Garside John Goodacre Mikel Luján

School of Computer Science, University of Manchester

{bdantras,cgorgovan,jgarside,jgoodacre,mikel}@cs.manchester.ac.uk

Abstract

Current computer architectures — ARM, MIPS, PowerPC,

SPARC, x86 — have evolved from a 32-bit architecture to

a 64-bit one. Computer architects often consider whether it

could be possible to eliminate hardware support for a subset

of the instruction set as to reduce hardware complexity,

which could improve performance, reduce power usage and

accelerate processor development. This paper considers the

scenario where we want to eliminate 32-bit hardware support

from the ARMv8 architecture.

Dynamic binary translation can be used for this purpose

and generally comes in one of two forms: application-level

translators that translate a single user mode process on top of

a native operating system, and system-level translators that

translate an entire operating system and all its processes.

Application-level translators can have good performance

but is not totally transparent; system-level translators may be

100% compatible but performance suffers. HyperMAMBO-

X64 uses a new approach that gets the best of both worlds,

being able to run the translator as an application under the

hypervisor but still react to the behavior of guest operating

systems. It works with complete transparency with regards

to the virtualized system whilst delivering performance close

to that provided by hardware execution.

A key factor in the low overhead of HyperMAMBO-X64

is its deep integration with the virtualization and memory

management features of ARMv8. These are exploited to sup-

port caching of translations across multiple address spaces

while ensuring that translated code remains consistent with

the source instructions it is based on. We show how these at-

tributes are achieved without sacrificing either performance

or accuracy.

1. Introduction

ARM [33] is a general purpose architecture which is widely

used in both embedded systems and consumer devices such

as phones, tablets and TVs. While ARM has traditionally

been a 32-bit architecture, the ARMv8 version of the archi-

tecture [23] introduced a new 64-bit execution mode and in-

struction set, called AArch64. This 64-bit ISA has double

the number of general-purpose registers as the previous ar-

chitecture and extends them to 64 bits, as well as extending

the address space width to 64 bits.

While the 64-bit instruction set has many benefits, there

is a large ecosystem of existing 32-bit applications which

need to be able to run on ARMv8 systems. Most of the

current generation of ARMv8 processors is capable of run-

ning legacy 32-bit ARM code directly in AArch32 mode, but

maintaining this support comes at a cost in hardware com-

plexity, power usage and development time. For example,

Cavium does not include hardware support for AArch32 in

their ThunderX processors for this reason.

One solution to this issue is to use dynamic binary trans-

lation to translate AArch32 code into AArch64 code. A Dy-

namic Binary Translator (DBT) generally comes in one of

two forms: application-level translators which translate a

single user mode process running under a native operating

system, and system-level translators which translate an en-

tire operating system and all its processes. While the former

have been able to achieve performance levels approaching

that of native execution, they suffers from transparency is-

sues: a translated 32-bit process will still appear as a 64-bit

process to the operating system, and tools such as debug-

gers will see the state of the translator rather than that of

the translated process. System-level translators avoid these

issues since all processes are running natively from the point

of view of the translated OS, but these tend to have lower

performance than similar application-level translators.

A significant portion of the overhead of system-level

translators comes from the need to emulate the Memory

Management Unit (MMU) of the target architecture. This

requires mapping the guest OS page table into the format of

the host architecture and keeping these mappings consistent

when the guest modifies its page tables. Application-level
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Figure 1: Overview of application-level and system-level translators

translators do not suffer from this overhead since page ta-

bles are managed by the host OS using the native MMU.

We propose HyperMAMBO-X64, a new type of DBT

which is a hybrid of these two existing types, preserving

the best attributes of each. HyperMAMBO-X64 extends an

existing hypervisor to allow an AArch64 guest operating

system to run AArch32 user mode processes even when

the underlying processor only supports AArch64. This is

achieved by having the hypervisor trap attempts by the

guest OS to switch to AArch32 user mode and running the

AArch32 code under a DBT. The DBT returns control to the

guest OS once an exception (syscall, page fault, interrupt)

occurs by simulating an exception coming from AArch32

mode. This process is completely transparent to the guest

OS: from its point of view, the user process was execut-

ing natively in AArch32 mode. Yet, since the page tables

are entirely controlled by the guest OS which runs natively,

HyperMAMBO-X64 can achieve similar levels of perfor-

mance to application-level translators.

A key challenge in the implementation of HyperMAMBO-

X64 is keeping the translated code generated by the DBT

consistent with any changes to the source AArch32 instruc-

tions. These modifications can come in the form of page

table modifications, such as loading or unloading a shared

library, or direct modifications to the underlying code, such

as in a JIT compiler. HyperMAMBO-X64 handles these by

exploiting several features of the ARMv8 architecture and

virtualization extensions. We associate each translated code

fragment with a user-mode process in the guest using the

address space identifier (ASID) tags which are used by the

TLB hardware. Modifications to the address space of a pro-

cess are detected by trapping all TLB flush instructions to

the hypervisor, which can then invalidate any translations

affected by the changed virtual memory mappings. Finally,

memory pages from which code has been translated are

write-protected by the hypervisor to detect any modifica-

tions.

We built a prototype of HyperMAMBO-X64 on top of the

Linux Kernel Virtual Machine (KVM) [17] hypervisor and

evaluated its performance by running SPEC CPU2006 and

several microbenchmarks. Our results on SPEC CPU2006

show that HyperMAMBO-X64 is able to match the perfor-

mance of MAMBO-X64 [18, 19], an equivalent application-

level DBT which also translates from AArch32 to AArch64.

We measured a geometric mean performance improvement

of about 1% by running the AArch32 version of SPEC

CPU2006 under HyperMAMBO-X64 compared to running

it natively on the ARMv8 processor.

Some existing system-level translators use techniques

similar to those used by HyperMAMBO-X64 to maintain

code cache consistency. Such systems include MagiXen [13]

and PinOS [11] which both translate x86 operating systems

under the Xen hypervisor. A significant source of overhead

in these systems comes from the need to emulate the page

tables used by the guest operating system and detect changes

to virtual memory mappings which would affect translated

code. HyperMAMBO-X64 is able to avoid this overhead by

running the guest operating system natively and exploiting

ARM hardware virtualization features to track page table

modifications.

The rest of this paper is organized as follows. Section 2

presents an overview of binary translation technology and

the ARM architecture. Section 3 describes the design and

implementation of the HyperMAMBO-X64 system. Sec-

tion 4 presents our performance results on a selection of

benchmarks. Section 5 summarizes some related works. Sec-

tion 6 discusses several ways in which HyperMAMBO-X64

can be extended and Section 7 concludes the paper.



2. Background

This section reviews the basic concepts of binary translation

and the ARM virtualization extensions.

2.1 Binary translation

Binary translation is a technology which allows a program to

be transparently translated, instrumented or modified at the

machine code level. It has numerous applications, such as

dynamic instrumentation [27, 34], program analysis [32, 43],

virtualization [1, 42] and instruction set translation [7]. A bi-

nary translator does not need access to the source code of a

program, which makes it particularly useful in cases where

source code is not available or is not portable enough to be

simply recompiled. In the context of this paper, we specif-

ically refer to cross-ISA binary translation, which involves

reading a sequence of instructions for a guest ISA and trans-

lating them into an equivalent code sequence for a host ISA.

A Dynamic Binary Translator (DBT) translates code only

as it is about to be executed rather than ahead of time.

Rather than translating instructions individually, a DBT usu-

ally translates instructions in blocks, called fragments. Since

some code, such as loop and function bodies, is likely to be

executed many times, it is advantageous to preserve trans-

lated fragments so that they can be used again, instead of

re-translating each time they are encountered. Rather than

modifying the program code, translated fragments are stored

in a code cache, separate from the original instructions.

DBTs can generally be split into two categories, shown

in Figure 1, depending on the type of environment that they

inhabit:

Application-level translators These translators work at the

level of a single user-mode process, running an application

compiled for a guest ISA on top of an operating system for

the host ISA. In addition to translating all the instructions

executed by the user-mode process, such a DBT also needs

to translate the operating system Application Binary Inter-

face (ABI), which can have significant variations from one

ISA to another. This is usually done by intercepting all inter-

actions between the translated application and the host OS,

such as system calls and signals, and translating them from

the format of the guest ABI to that of the host ABI. Examples

of DBTs in this category are QEMU [7], Aries [44], IA-32

EL [5], FX!32 [14, 25], Rosetta [2], MAMBO-X64 [18, 19]

and StarDBT [40].

System-level translators These translators work at the

level of a complete system and, effectively, simulate a virtual

machine running on a foreign architecture. These systems

tend to be more complex than application-level translators

because they need to be able to translate a larger portion of

the guest instruction set. Whereas an application-level trans-

lator only needs to support user-mode, unprivileged instruc-

tions, a system-level translator must support the full guest

ISA including all privileged instructions and related oper-
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Figure 2: ARMv8 exception levels

ations. An important part of this is efficiently simulating

the guest ISA’s virtual memory architecture, which involves

translating page tables from one format to another and cor-

rectly handling page table modifications. Examples of DBTs

in this category are MagiXen [13], Transitive QuickTran-

sit [38], QEMU [7], Transmeta’s Code Morphing Software

(CMS) [20] and Nvidia’s Project Denver [9].

2.2 ARMv8 virtualization extensions

The traditional ARM architecture is not classically virtualiz-

able [30] because it contains several sensitive instructions

that have observably different behavior depending on the

current privilege level [29]. While there have been several

attempts to support virtualization for the ARM architecture

through hardware modifications [8], binary rewriting [35]

or paravirtualization [21], these have not seen widespread

use. ARM introduced an optional virtualization extension

in ARMv7 which makes the ARM architecture classically

virtualizable through the introduction of a hypervisor mode

which executes at a higher privilege level than the existing

privileged execution modes.

This virtualization capability was carried over to ARMv8,

which also streamlined the various ARM execution modes.

Figure 2 shows the four execution modes supported by

ARMv8, called exception levels and numbered from EL0

to EL3:

• EL3 is the most privileged mode in ARMv8, called the

“secure monitor” mode, and is part of the ARM Trust-

Zone extension. This mode allows switching between

the “secure world” and “non-secure world”. TrustZone

works by only allowing software access to secure RAM

and secure peripherals when the processor is running in

EL3 or in secure EL1/EL0. TrustZone is designed for
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specialized applications such as digital rights manage-

ment and is outside the scope of this paper.

• EL2 is an execution mode designed for hypervisors: it

supports an extensive set of configuration registers that

allow it to trap certain classes of privileged or sensitive

instructions to EL2 for special handling. These registers

also allow configuring the exception level at which vari-

ous exceptions are handled. This can be used to handle

hardware interrupts in the hypervisor while letting the

guest kernel handle system calls directly.

• EL1 is a privileged execution mode typically used by op-

erating system kernels. On a system without virtualiza-

tion extensions this would be the level which manages

hardware peripherals directly, but inside a virtual ma-

chine it will manage virtual peripherals that are emulated

by the hypervisor instead. EL1 also supports many sys-

tem registers to configure various aspects of how user-

mode processes execute in EL0.

• EL0 is the least privileged execution mode, which is in-

tended for the execution of normal user-mode processes.

This mode has no access to privileged instructions for

operations such as page table and TLB management in-

structions, which means that it must perform system calls

to EL1 or above for such operations.

Transitions between exception levels are only possible

through exceptions (interrupts, system calls, page fault, etc.)

and the exception return (ERET) instruction. All exception

levels except EL0 define an exception vector which allows

them to handle exceptions coming from the current excep-

tion level or any level below it. Similarly, the ERET instruc-

tion is allowed to switch to an exception level equal to or be-

low the current level. The specific exception level at which

a particular exception is handled is determined by special

configuration registers that are only accessible to higher ex-

ception levels.

Architectural support for the legacy 32-bit ARM in-

struction set is implemented by allowing each exception

level to run in either the 32-bit AArch32 mode or the 64-

bit AArch64 mode. A transition between AArch32 and

AArch64 is only possible through an exception or excep-

tion return, with two restrictions:

1. Only EL0 and EL1 support AArch32 mode. EL2 and EL3

must run in AArch64 mode.

2. If an exception level is running in AArch32 mode then

all exception levels below it must also run in AArch32

mode. This means that while a 64-bit OS can run 32-bit

user mode processes and a 64-bit hypervisor can run 32-

bit virtual machines, it is not possible for a 32-bit OS to

run a 64-bit user mode process.

The separation between exception levels is further sup-

ported by the ARMv8 virtual memory architecture, which

supports specialized address translation mechanisms de-

pending on the current exception level, as shown in Fig-

ure 3. EL2 and EL3 each has its own page table base reg-

ister, which is used by the processor when executing code

in one of those exception levels. Code executing at EL0 and

EL1 share the same set of page tables but use a more com-

plicated address translation system which involves two sets

of page tables. Stage 1 page tables controlled by EL1 are

used to transform virtual addresses into intermediate physi-

cal addresses (IPAs), while stage 2 page tables controlled by

EL2 are used to transform IPAs into physical addresses. This

system allows a hypervisor to control the physical memory

used by a guest operating system transparently, giving the

guest kernel the illusion that it has full access to its physical

memory.

To avoid the need to perform a full TLB flush when con-

text switching, the ARM architecture has support for TLB

tagging. This involves associating two pieces of informa-

tion with each TLB entry: a 16-bit address space identifier

(ASID) and a 16-bit virtual machine identifier (VMID). The

ASID is set by the kernel in EL1 when switching from one

user-mode process to another by changing the stage 1 page

tables. The VMID is set by the hypervisor in EL2 when

switching from one virtual machine to another by changing

the stage 2 page tables. This system effectively associates

each set of stage 1 page tables with an ASID and each set of

stage 2 page tables with a VMID.

TLB invalidation is performed using privileged instruc-

tions which come in several variants: a TLB flush can be

directed to either remove only TLB entries relating to a spe-

cific virtual address or to remove TLB entries for all virtual



addresses. A flush can be further restricted to remove only

TLB entries associated with a specific ASID or VMID. The

ARM architecture requires that ASIDs and VMIDs be con-

sistent across all processors in a system, which allows TLB

flushes to be broadcast across processors.

We exploit the TLB features of the ARM architecture to

keep track of the different user-mode processes in a virtual

machine and handle code cache invalidation efficiently.

3. HyperMAMBO-X64

We propose using dynamic binary translation to translate

AArch32 instructions into AArch64 code, which would

open a path for future ARMv8 processors to remove hard-

ware support for the legacy 32-bit instruction set while re-

taining the ability to run AArch32 applications. We devel-

oped a binary translation system, called HyperMAMBO-

X64, which integrates with a hypervisor to allow a virtual

machine to run AArch32 user mode processes transparently

under an AArch64 kernel even when the underlying proces-

sor does not support AArch32 mode.

3.1 Proposed approach

As described in Section 2.1, binary translators generally

fit into one of two categories, application-level translators

and system-level translators, each of which has benefits and

disadvantages:

System-level translators are the most flexible since they

emulate a full virtual machine, including a full operating

system. This allows a single translator to run any guest OS

without needing specialized support. However this flexibility

comes at a significant cost in performance, in particular due

to the need to handle virtual memory address translation

within the guest. This requires either translating guest page

tables to the host page table format [12] or performing guest

page table walks in software and caching the results in a

software TLB [37].

While application-level translators are limited to translat-

ing a single user mode process, they do not suffer from many

of the disadvantages of system-level translators because they

work purely in a virtual address space managed by the host

OS. An application-level translator can also make assump-

tions based on the OS ABI, such as determining which mem-

ory locations are read-only1, and optimizing the generated

code based on those assumptions. Another advantage is the

ability to recognize memory locations that are mapped from

an on-disk file and using this information to support persis-

tent code caches [10, 31] which allow faster start-up and can

be shared among multiple processes. The main disadvantage

of this type of translators is that they are not fully transpar-

ent. For example, in the case of AArch32 to AArch64 trans-

lation, a translated process would still appear as a 64-bit pro-

1 Simple page table permissions are not a sufficient guarantee that data at a

certain address is constant due to the possibility of writable aliases of that

memory.

cess to the operating system, and debuggers attached to that

process would be debugging the translator itself rather than

the translated process.

HyperMAMBO-X64 is a hybrid of these two types of

translator: like a system-level translator, it controls a guest

operating system from a hypervisor running at EL2, but

it only translates AArch32 code running at EL0 as an

application-level translator.

The basic principle of HyperMAMBO-X64 is to allow

64-bit guest kernels and 64-bit user-mode processes to run

natively on the processor in AArch64 mode, while trapping

attempts by the 64-bit kernel to switch to AArch32 user

mode. When such an attempt is detected, HyperMAMBO-

X64 will run the 32-bit process using binary translation until

an exception (such as a system call) occurs, at which point

HyperMAMBO-X64 will return to the guest kernel. All of

this is done transparently: from the point of view of the guest

kernel, the user process was running natively in AArch32

mode.

The binary translator part of HyperMAMBO-X64 is

based on MAMBO-X64 [18, 19], an application-level trans-

lator designed to translate AArch32 Linux programs into

AArch64 code. We have adapted the code of MAMBO-X64

to work in a hypervisor environment without any depen-

dency on either the host or guest OS.

The main disadvantage of our approach compared to a

full system-level translator is that we require the guest kernel

to run in AArch64 mode. However, this problem is not a

significant drawback because most AArch64 kernels, such

as Linux, have strong support for running AArch32 user

mode applications. This in turn makes it easy to replace

an AArch32 kernel with an AArch64 one since no other

changes are required to the system: all existing AArch32

applications will still be able to run on the new kernel.

Similarly, a disadvantage of our approach compared

to application-level translators is its inability to recognize

memory mapped files in a translated process since that infor-

mation is only known to the guest operating system. How-

ever there exist other persistent code caching techniques

which do not require this information and, instead, keep a

cache of translated code indexed by a hash of the code rather

than the module it was loaded from [41], albeit at a cost in

performance.

In addition to providing a platform for running AArch32

programs on a processor which only supports AArch64,

HyperMAMBO-X64 can be used to support more exotic

systems:

• ARM’s big.LITTLE architecture [3] combines a cluster

of high-performance “big” cores with a cluster of low-

power “LITTLE” cores. This allows for higher perfor-

mance and lower power consumption than similar ho-

mogeneous architectures [16]. While both clusters typi-

cally support the same ISA to allow an operating system

to migrate processes from one cluster to another trans-
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parently, HyperMAMBO-X64 would allow relaxing this

restriction. For example, HyperMAMBO-X64 would al-

low a “LITTLE” core to eliminate hardware support for

AArch32 and reduce its power usage, while still allowing

an operating system to freely migrate AArch32 tasks be-

tween the two core clusters. HyperMAMBO-X64 would

then only perform translation on the “LITTLE” cores

while running AArch32 code natively on the “big” cores.

• ARM-based servers are a growing market and the avail-

ability of hardware virtualization is a key factor driving

this growth. While 64-bit ARM servers are starting to

see widespread use, many need to run legacy AArch32

applications. The need to keep supporting AArch32 ap-

plications is a barrier to the adoption of AArch64-only

processors, but this barrier can be eliminated by using

HyperMAMBO-X64 to assist the migration of virtual

machines to a physical server with AArch64-only proces-

sors. HyperMAMBO-X64 can even be used to support

live migration of a virtual machine to an AArch64-only

processor, as long as the virtual machine is running an

AArch64 kernel.

3.2 Architecture

Figure 4 gives an overview of the different components com-

prising HyperMAMBO-X64. The basic principle is simple:

the hypervisor traps attempts by a guest kernel to switch

to AArch32 user mode and injects a binary translator into

the address space of the 32-bit process. Control is then

transferred to the DBT which will translate and execute the

AArch32 code in that process.

The DBT and the translated code it generates run in EL0

under the direct control of the hypervisor in EL2. This is

necessary to ensure that memory accesses performed by the

translated code use the correct set of permissions and that

any permission faults are detected correctly.

Execution of the translated process continues until an ex-

ception occurs. This can be a synchronous exception caused

by the translated program itself, such as a system call or a

page fault, or an asynchronous exception caused by a virtual

interrupt from the hypervisor. In either case, control needs to

be returned to the guest OS so that it can handle the excep-

tion as if it came directly from AArch32 mode.

Upon regaining control, the guest OS expects to see the

register state of the underlying AArch32 process rather

than the AArch64 register state of the translated code.

HyperMAMBO-X64 reuses the signal handling mechanisms

of MAMBO-X64 to recover the AArch32 register state when

an exception occurs:

• Some exceptions are detected at translation time, such as

system calls and undefined instructions. In those cases,

specialized context recovery code can be compiled di-

rectly into the translated fragment.

• Runtime faults such as data aborts are handled by main-

taining metadata for all potentially fault-generating in-

structions, such as load and store instructions. For each

fragment, HyperMAMBO-X64 builds a table containing

the addresses of these instructions and information on

how to recover the AArch32 register context if that in-

struction generates a fault.



• Virtual interrupts are generated by the hypervisor to no-

tify the guest OS of certain events such as virtual de-

vice interrupts. Keeping metadata for all translated in-

structions is impractical since such interrupts can occur

at any point in the translated code. HyperMAMBO-X64

therefore uses a different strategy: after an interrupt is

caught, the interrupted code is resumed with interrupts

disabled until it reaches the end of the current fragment.

The AArch32 context can then be recovered from the

fragment metadata used to link fragments together.

Control is returned to the guest kernel through a hyper-

visor call which takes an AArch32 register context as a pa-

rameter. The hypervisor will restore the page tables to their

original state and simulate an exception entry in the guest

OS, which will make the guest kernel see an exception com-

ing from an AArch32 process.

3.3 Memory management

In addition to the usual RAM and memory-mapped virtual

devices usually present in a virtual machine, HyperMAMBO-

X64 includes an area of RAM reserved for use by the DBT

in the guest physical address space which is separate from

the main RAM used by the guest OS. Each virtual machine

managed by HyperMAMBO-X64 has a separate instance

of this memory area, into which the DBT image is loaded

when the virtual machine is created, and which holds all the

runtime data managed by the DBT, including its code cache.

A key feature of HyperMAMBO-X64 is its complete

transparency with regards to the guest OS: at no point does

HyperMAMBO-X64 modify the contents of the RAM used

by the guest OS, except through the actions of a translated

AArch32 process. This presents an issue for injecting the

DBT into the address space of the target process since it

must be done without modifying the page tables of the guest

OS. HyperMAMBO-X64 instead uses a shadow top-level

page table in DBT RAM which contains the virtual memory

mappings used while running a process under the DBT.

When the hypervisor starts running a process under the

DBT, it will initialize the shadow top-level page table to

contain the mappings shown in Figure 5 and then set the

guest page table base register to point to it. The virtual

memory map of an AArch32 process running under the

HyperMAMBO-X64 DBT has four main components:

32-bit process pages The page table entries for the lowest

4GB of the address space are copied directly from the

page tables set up by the guest OS2. Copying only the

page table entries referring to the lowest 4GB of the

address space is sufficient because the AArch32 process

accesses memory using 32-bit pointers which restricts it

to the lowest 4GB of the 64-bit virtual address space.

This portion of the address space is remapped every time

2 In practice, only the entries in the top-level page table need to be copied

since the lower-level page tables can be used directly.

RAM identity map

32-bit process pages

4 GB

DBT dynamic mappings

0

64 GB

65 GB

66 GB

256 GB

512 GB

DBT RAM

Figure 5: Virtual memory map of a process running under

the HyperMAMBO-X64 DBT

the DBT switches to running a different user process

so that it always contains the mappings for the process

currently being translated.

DBT RAM The DBT reserved memory is mapped directly

into the address space of the translated process. This

memory area contains the DBT code and data, as well as

the translated code fragments and their associated meta-

data.

Dynamic DBT mappings A portion of the address space is

reserved for dynamic mapping of certain data structures

used by the DBT. These typically consist of data struc-

tures that require memory protection features. One ex-

ample of such is the return address stack [18] used for

optimizing function returns in the translated code, which

requires guard pages to catch stack overflows.

RAM identity map An identity map of the entire guest

RAM is made available to the DBT for the purpose of

performing page table walks in software. This is neces-

sary to determine the access permissions for a particular

memory address and, in particular, to determine whether

a certain page has execute permission when translating

code from it.

One of the key benefits of our binary translation model

compared to a full system translator is that page tables are

entirely managed by the guest OS, which avoids the need

to perform expensive software TLB emulation. However

this requires ensuring that the shadow page tables used by

the DBT always match those set by the guest OS for the

AArch32 process. In a virtual machine with only a single



virtual CPU, this is trivially handled by updating the shadow

page table entries every time the hypervisor enters the DBT.

The situation is more complicated in a multi-processor

virtual machine since the top-level page table of an AArch32

process may be modified by one processor while that process

is running in the DBT on another processor. HyperMAMBO-

X64 handles such cases by trapping guest execution of TLB

invalidation instructions to the hypervisor, where it will up-

date the shadow top-level page tables for any processes run-

ning under a DBT on another processor. This is safe since

the ARM architecture requires a TLB flush to ensure that up-

dated page table entries are picked up by all processors. We

also take advantage of trapping guest TLB flush instructions

for our code cache consistency algorithm which is described

in Section 3.4.

3.4 Code cache consistency

A key aspect of a DBT is maintaining consistency between

translated code fragments and the original instructions they

were translated from: if the original instructions are modified

and the instruction cache is flushed appropriately then the

underlying architecture guarantees that the new code will be

executed, and this must be reflected in the code cache of a

DBT by invalidating all relevant translated fragments when

such a modification occurs.

In an application-level translator such as MAMBO-X64,

this problem is easily solved: there is only a single address

space to deal with and we can keep track of any changes

by intercepting system calls. In Linux for example, there

are only 2 types of system calls which can affect trans-

lated code: those which modify virtual memory mappings

(mmap, mprotect, munmap, etc.) and those which perform

instruction cache invalidation on behalf of the application3

to support self-modifying code and runtime code generation

(cacheflush).

This approach is not viable in HyperMAMBO-X64 be-

cause it has no knowledge of the underlying guest OS and

its system call interface. The guest OS is free to perform

an instruction cache invalidation or page table modifica-

tion affecting the translated process at any point. Instead,

HyperMAMBO-X64 uses a three-tiered approach to ensure

that translated code remains consistent with the instructions

it is sourced from.

ASID-based address space management A guest OS may

have multiple AArch32 processes running concurrently,

each with its own address space. HyperMAMBO-X64 is

able to distinguish the different address spaces by reading

the ASID value from the system registers. The ASID is a

16-bit value set by the guest kernel to identify the current

address space. It is used by the hardware to tag addresses in

the TLB and avoid TLB flushes on context switches.

3 Instruction cache flushing is a privileged operation in AArch32, thus

requiring a system call to perform from user mode.

HyperMAMBO-X64 takes advantage of this ARM ar-

chitecture feature by tagging every translated code frag-

ment with the ASID it originated from, and uses this tag

when looking up a code fragment to execute. This allows

HyperMAMBO-X64 to support two or more user processes

with different code at the same virtual address without re-

quiring a full code cache flush when switching to a different

address space.

TLB invalidation tracking HyperMAMBO-X64 also needs

to keep track of changes within a particular address space:

the guest kernel can modify the page table entries of an

AArch32 process at any time, even if that process is concur-

rently executing on a different virtual CPU. HyperMAMBO-

X64 exploits the fact that any such modification requires a

TLB flush and traps the execution of any TLB flush instruc-

tion by the guest kernel to the hypervisor. The hypervisor

can then invoke a callback in the DBT to invalidate any code

fragments that were based on the pages affected by the TLB

flush. Once the DBT invalidation is complete, the hypervisor

will perform the TLB flush on behalf of the guest OS and

then resume execution of the guest OS.

Switching from the guest OS to the DBT via the hyper-

visor and back for every TLB invalidation has significant

overhead, especially considering that the majority of TLB

invalidations are due to memory allocation and deallocation

for data rather than code, so we implemented several op-

timizations to reduce this overhead. As it translates code,

the DBT tracks the set of virtual memory addresses from

which instructions are read for translation.These addresses

are tracked at a page granularity, tagged with the ASID of

the process they belongs to. When the translator reads in-

structions from a page for the first time, it performs a hy-

pervisor call to register the virtual address and ASID of that

page, which indicates to the hypervisor that the DBT has

fragments which are based on that page.

Since the hypervisor only needs to notify the DBT about

TLB invalidations which affect a previously registered vir-

tual address and ASID combination, it can filter out TLB

invalidations which do not affect the DBT by using a hash

table lookup in the trap handler. Calling into the DBT to

perform an invalidation can thus be avoided if the lookup

finds that the TLB invalidation does not affect any virtual

addresses registered by the DBT.

Code page write protection Even when the virtual mem-

ory mappings of an AArch32 process are not modified, the

contents of the underlying page can be modified, invalidating

any translated code derived from it. This can happen when

code is modified by a JIT compiler or simply because the

guest OS is reusing a page that previously contained code

for another purpose. While the ARM architecture requires

an instruction cache flush in such cases, simply trapping all

instruction cache flushes to the hypervisor, as is done for

TLB flushes, is not viable for several reasons:
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Virtual memory pages

Guest physical pages 50 51 57 65 123 155

0x10000 – 0x25000
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ASID: 17

0x10000 – 0x4e000
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[Translated code]

PC: 0x14ef4

[Translated code]

PC: 0x3388c

[Translated code]

Figure 6: HyperMAMBO-X64 data structures for tracking code cache invalidation

• Unlike TLB flushes, ARMv8 does not provide a way for

a hypervisor, which uses EL2 page tables, to perform an

instruction cache flush on behalf of a guest kernel which

uses EL1/EL0 page tables.

• There are many situations in which the guest OS needs

to flush the entire instruction cache, which would require

the DBT to flush all translated code for all address spaces.

• Translated fragments may be sourced from data as well

as instructions, but the former may be modified without

an instruction cache invalidation. One example of this is

the branch table translation used by MAMBO-X64 [18]:

an entry of the source branch table may be modified

without an instruction cache flush, yet the translated code

must take this modification into account the next time the

branch table is executed.

HyperMAMBO-X64 instead makes use of the hypervisor-

managed stage-2 page tables to detect code modifications:

when the DBT registers a virtual address for TLB invali-

dation tracking, the hypervisor will also write-protect the

underlying guest physical address for that page. If the guest

attempts to write to a protected page, the hypervisor will

notify the DBT so that it can invalidate any affected code

fragments. Once the invalidation is complete, the hypervisor

will remove the write-protection on the page and remove it

from the set of watched pages since all translated fragments

based on that page have been invalidated.

Figure 6 shows how these three mechanisms fit together.

Each code fragment (top row) is translated from a sequence

of source instructions which are located within a range of

virtual addresses in a given address space (middle row). In

turn, these virtual addresses are backed by a set of of physi-

cal pages (bottom row). If the data on one of these physical

pages or the page mappings themselves are modified then all

affected fragments are invalidated. Switching between dif-

ferent address spaces, such as during a context switch, does

not cause any invalidations since virtual addresses are ASID-

tagged.

3.5 Implementation

A prototype implementation of HyperMAMBO-X64 was

built on top of the Linux Kernel Virtual Machine (KVM) [17]

hypervisor. However the general concept is portable to other

AArch64 hypervisors such as Xen [6] or Xvisor [28]. An-

other possibility for consumer devices such as smartphones,

which do not need to run more than one OS, is to implement

HyperMAMBO-X64 as part of a minimal hypervisor which

only performs binary translation while allowing the guest

OS full access to the underlying hardware.

One significant issue that we encountered while imple-

menting HyperMAMBO-X64 is that there is no direct way

to trap mode switches from an AArch64 guest kernel to

AArch32 user mode in current ARMv8 processors. In our

prototype, we worked around this issue by performing a

small modification to the guest kernel: the ERET instruction

responsible for perform an exception return into AArch32

mode was replaced with a HVC hypercall instruction. We an-

ticipate that in an AArch64-only processor this instruction

would generate an “Illegal Mode” exception when trying to

switch to the non-existent AArch32 mode, which could be

caught by the hypervisor.

4. Evaluation

In this section we evaluate the performance of HyperMAMBO-

X64 and how it compares to a similar application-level

translator. We use a set of microbenchmarks and the SPEC

CPU2006 benchmark suite.

Because the ARMv8 processors used in these experi-

ments are capable of running AArch32 code directly, all

benchmarks are executed natively on the same processor and

the results are used as a baseline for the experiments. All

other results are normalized to this baseline, showing the rel-

ative performance of the DBT compared to native execution.

We also run the same benchmarks under MAMBO-X64,

an application-level translator which also translates code

from AArch32 to AArch64, which HyperMAMBO-X64 ex-

tends. Since HyperMAMBO-X64 and MAMBO-X64 share



the same DBT engine, they produce similar translated code.

The differences appear at the boundary between the trans-

lated application and the operating system.

To ensure consistent results, the benchmarks executed

in the three configurations (Native, MAMBO-X64 and

HyperMAMBO-X64) all use the same statically linked

AArch32 binaries.

Our test system is an AppliedMicro X-Gene X-C1 de-

velopment kit with 8 X-Gene processor cores running at

2.4GHz. Each core has a 32 kB L1 data cache, a 32 kB L1

instruction cache, a 256 kB L2 cache shared between each

pair of cores and an 8MB L3 cache. The machine comes

with 16GB of RAM and runs Debian Unstable with Linux

kernel version 4.6.

4.1 Microbenchmarks

We started by running some microbenchmarks which stress

particular aspects of the implementation of HyperMAMBO-

X64. Four different benchmarks were run, and their results

are shown in Table 1.

Integer This benchmark simply increments an integer in

memory one billion times. It aims to measure the overhead

HyperMAMBO-X64’s handling of interrupts that would

otherwise be transparent to MAMBO-X64 or a native appli-

cation, such as timer interrupts. Because the guest OS needs

to see the AArch32 register state of the translated process

upon receiving the interrupt, HyperMAMBO-X64 needs to

recover this state every time a virtual interrupt occurs, unlike

MAMBO-X64 which only needs to do this when an asyn-

chronous OS signal occurs. However, the results show no

measurable difference in the three tested configuration. This

is due to interrupts being such a relatively rare occurrence

that any performance impact in their handling is negligible.

Syscall This benchmark measures the overhead of invok-

ing a system call by calling the ‘getppid‘ system call in

a loop ten million times. This system call performs very

little work and effectively measures just the overhead of

switching into and out of the kernel. Both MAMBO-X64

and HyperMAMBO-X64 suffer in this respect because they

need to perform internal bookkeeping operations before per-

forming the system call. HyperMAMBO-X64 additionally

suffers from the need to go through the hypervisor when

switching into and out of the DBT.

Page fault This benchmark allocates 2GB of virtual mem-

ory using mmap and then touches every 4 kB page by writing

one byte into each. The mmap call will initially map every

page to a copy-on-write zero page. Every write to such a

page will trigger a page fault which the OS will handle by

allocating a new writable page. As with interrupts, this pro-

cess is transparent to native executables and MAMBO-X64.

HyperMAMBO-X64 however must catch the fault and re-

cover the AArch32 register state at the faulting instruction

so that it can be presented to the guest OS for fault handling.

Benchmark Native MAMBO-X64 HyperMAMBO-X64

Integer 2.92 2.92 2.92

Syscall 1.00 8.39 10.63

Page fault 1.94 1.96 1.96

Signal 1.67 6.19 4.65

Table 1: Microbenchmark results in the three tested configu-

rations. All results are in seconds.

However the results show that there is negligible difference

in performance in the three tested configurations, due to the

cost of the page fault in the OS dwarfing any handling by

MAMBO-X64.

Signal This benchmark measures the overhead of signal

handling by registering a signal handler for SIGSEGV and

then dereferencing a null pointer one million times. Each

dereference causes a page fault which the guest OS reflects

back to the user process as a synchronous signal. The sig-

nal handler simply skips the offending instruction and allows

the program to continue. Although HyperMAMBO-X64 and

MAMBO-X64 both use the same algorithm for recovering

an AArch32 register state, MAMBO-X64 also needs to em-

ulate the Linux signal handling interface, which requires ad-

ditional system calls to set the signal mask and leads to it

having a higher overhead compared to HyperMAMBO-X64.

4.2 SPEC CPU2006

To evaluate the performance of HyperMAMBO-X64 with

complex applications, we ran the SPEC CPU2006 [36]

benchmark suite under HyperMAMBO-X64, MAMBO-

X64 and natively. Figure 7 shows the results of these exper-

iments. These show that, overall, both HyperMAMBO-X64

and MAMBO-X64 are able to deliver a performance level

comparable to and sometimes even exceeding that of the pro-

cessor’s hardware support for AArch32 code. The geometric

mean average of the results show that HyperMAMBO-X64

and MAMBO-X64 are 1.1% and 1.0% faster than native

execution respectively.

Both systems are able to run many 32-bit benchmarks

faster than if they were run natively on the processor. This

is due to a combination of several factors:

• MAMBO-X64 takes advantage of the more flexible

AArch64 instruction encodings to translate certain AArch32

instruction sequences into a single AArch64 instruction.

• Previous research in Dynamo [4] has shown that effective

trace generation in a DBT can improve runtime perfor-

mance compared to native execution.

• We have observed that on certain combinations of bench-

marks and microarchitectures, such as the libquantum

benchmark on X-Gene, the AArch32 code generated by

GCC causes processor pipeline stalls which do not occur

in the AArch64 translated code.



Figure 7: Performance of SPEC CPU2006 under HyperMAMBO-X64 and MAMBO-X64. Performance numbers are relative

to the benchmark running natively in AArch32 mode.

Note that a few benchmarks have an overhead that is

up to 13% higher under HyperMAMBO-X64 than under

MAMBO-X64. This particularly affects the gcc and cactu-

sADM benchmarks, while also affecting the wrf benchmark

to a lesser extent.

Analysis of these benchmarks showed that the perfor-

mance loss was indirectly related to the way HyperMAMBO-

X64 handles page faults. HyperMAMBO-X64 and MAMBO-

X64 both use a variant of the Next Executing Tail [22]

algorithm to generate traces, which are large single-entry

multiple-exit fragments. Traces are built by finding hot ba-

sic blocks and recording an execution path through these

blocks, which are then combined into a single fragment.

Page faults interfere with the recording of an execution path

and cause traces to terminate prematurely. This in turn re-

sults in a greater number of small traces, thus limiting their

effectiveness.

5. Related work

MagiXen [13] is probably the closest work to ours, which

also integrates a DBT with a hypervisor, in this case to trans-

late a 32-bit x86 operating system on an Itanium system

using the Xen hypervisor. Like HyperMAMBO-X64, Mag-

iXen reuses the core of an existing application-level trans-

lator (IA-32 EL) as the DBT, however MagiXen differs in

that it is closer to a full system-level translator. A limitation

of MagiXen is that it only supports running paravirtualized

guest operating systems, which means that the guest runs in

user mode and does not make use of privileged instructions.

Despite this, the performance of MagiXen still suffers com-

pared to native execution due to the need to translate page ta-

bles in the hypervisor: although the guest OS is paravirtual-

ized, its page tables are still in the x86 format. Additionally,

x86 does not support tagged TLBs and ASIDs, which means

that a full TLB flush is required on every context switch.

This TLB flush must necessarily invalidate all of the trans-

lated code for the current process.

PinOS [11] is an extension of the Pin [26] dynamic in-

strumentation framework, which it adapts to instrument an

entire operating system. Like HyperMAMBO-X64, it builds

on top of existing hardware virtualization platforms (Xen for

PinOS, KVM for HyperMAMBO-X64) to support transpar-

ent instrumentation of unmodified operating systems. While

both face similar issues with regards to detecting modifica-

tions of code pages, HyperMAMBO-X64 exploits ARM ar-

chitectural features to detect such situations while PinOS re-

quires runtime checks for page table modifications. This is

reflected in the overall performance of the systems: while

HyperMAMBO-X64 is able to achieve near-native perfor-

mance, applications under PinOS typically suffer from a

slowdown on the order of 50x.

QEMU [7] is a DBT which supports a large number of

architectures both as host ISAs and as guest ISAs. A key

feature of QEMU is its ability to run both as a system-level

translator and as an application-level translator. However it

performs virtual address translation in software when run-

ning as a system-level translator, which impacts its perfor-

mance.

Nvidia’s Project Denver [9] and Transmeta’s Crusoe [20]

are two processors which use a DBT to translate code for a

source architecture (ARM for Denver, x86 for Crusoe) into

the processor’s internal VLIW instruction set. While this



puts them in the category of system-level translators, they

do not suffer from the overheads of page table translation

since they include specialized hardware support.

Finally, there have been many instances of application-

level translators used to assist an architecture transition. Ex-

amples include HP Aries [44] (PA-RISC to IA-64), IA-32

EL [5] (x86 to IA-64), FX!32 [14, 25] (x86 to Alpha) and

Rosetta [2] (PowerPC to x86).

6. Discussion

The evaluation has not covered every stress point of a DBT,

such as the handling dynamically generated code, memory

usage or startup overhead. The following discussion indi-

cates how these situations would be handled.

6.1 Dynamically generated code

A disadvantage of the use of page permissions to detect code

modifications is their coarse granularity. This is not a prob-

lem for typical compiled applications since code pages are

generally mapped with read-only permissions and do not

contain any mutable data. However, the use of just-in-time

(JIT) compilers, which involves frequent modifications of

code pages, is becoming increasingly common to accelerate

the execution of scripting languages such as Javascript. The

performance of JIT compilers could suffer under the basic

HyperMAMBO-X64 system when generating a high num-

ber of page faults due to code page write protection in the

hypervisor.

One approach to reducing this overhead would be to adapt

the parallel mapping technique developed by Hawkins et al.

for DynamoRIO [24]. This involves creating two “views” of

the RAM in the guest physical address space. The first view

is used by the guest OS and most translated code. The second

view is a “mirror” which is identical except that writes to

code pages in this view are not trapped to the hypervisor.

HyperMAMBO-X64 can then identify memory write in-

structions which cause frequent hypervisor traps and replace

them with instrumented writes. The instrumented write can

use a fast hash table lookup to check if the target address

points to a virtual page in the current process from which

code has been translated and continue with a normal write if

not. If the check passes then the DBT invalidates any code

fragments derived from the instructions at the target address

and performs the write in the mirror RAM to avoid a hyper-

visor trap.

6.2 Persistent code caching through virtualized

non-volatile memory

A ‘traditional’ file system copies its contents into RAM

pages; however it is increasingly feasible to implement large

portions of the filestore in RAM. If this has been done it

makes little sense to load a file by copying from one part of

the RAM to another. The idea of virtual persistent memory

has previously been used in Intel’s Clear Containers [39]

and involves mapping an entire virtual disk image directly

as guest physical memory. If the guest OS supports it, such

as through Linux’s DAX subsystem [15], pages from the

disk can be mapped directly into the address space of a guest

process, thus entirely bypassing the disk cache in the guest

OS.

HyperMAMBO-X64 can exploit this feature to create

persistent code caches because it can associate translated

code fragments directly with a page of the virtual disk. This

key piece of information allows translated code to be writ-

ten to a cache file and to persist across reboots of the virtual

machine: once the pages are mapped into a process running

under the DBT, the translated code can be ‘loaded’ immedi-

ately from the cache. This cache can even be shared across

multiple virtual machines, for example if they share a read-

only virtual disk containing the guest OS and applications.

7. Conclusions

We have proposed and evaluated HyperMAMBO-X64, a

new type of Dynamic Binary Translator which is a hybrid

of existing types of translators and preserves the best at-

tributes of each. HyperMAMBO-X64 extends an existing

hypervisor to allow an AArch64 guest operating system to

run AArch32 user mode processes even when the underlying

processor only supports AArch64. This is achieved by hav-

ing the hypervisor trap attempts by the guest OS to switch to

AArch32 user mode and running any AArch32 code under

a DBT. The DBT returns control to the guest OS once an

exception (syscall, page fault, interrupt) occurs by simulat-

ing an exception coming from AArch32 mode. This process

is completely transparent to the guest OS: from its point of

view, the user process was executing natively in AArch32

mode. Yet since the page tables are entirely controlled by

the guest OS which runs natively, HyperMAMBO-X64 can

achieve similar levels of performance as application-level

translators.

A key challenge in the implementation HyperMAMBO-

X64 is keeping the translated code generated by the DBT

consistent with any changes to the source instructions.

HyperMAMBO-X64 solves this challenge by exploiting

several features of the ARMv8 architecture and virtualiza-

tion extensions. Each translated code fragment is associated

with a user-mode process in the virtual machine using the

address space identifier (ASID) tags which are used by the

TLB hardware. Modifications to the address space of a pro-

cess are detected by trapping all TLB flush instructions to

the hypervisor, which can then invalidate any translations

affected by the changed virtual memory mappings. Finally,

memory pages from which code has been translated are

write-protected by the hypervisor to detect any modifica-

tions.

The evaluation using microbenchmarks and SPEC CPU2006

shows that HyperMAMBO-X64 introduces negligible per-

formance overhead when compared with MAMBO-X64, a



similar application-level DBT for ARMv8, while reaping

the transparency benefits of system-level translators.

In addition to its applicability to virtual machine migra-

tion to new, AArch64-only processors, HyperMAMBO-X64

can also be used to support specialized situations. One such

example is supporting ARM “big.LITTLE” single-ISA het-

erogeneous systems where HyperMAMBO-X64 will allow a

“LITTLE” core to eliminate hardware support for AArch32

and reduce its power usage, while still allowing an operating

system to freely migrate AArch32 tasks between the clus-

ters.
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