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Abstract. Representational State Transfer (REST) services are gain-
ing momentum as a lightweight approach for the provision of services on
the Web. Unlike WSDL-based services, in REST the set of operations is
reduced, standardized, with well known semantics, and changes the re-
source’s state. Few attempts have been proposed to support composition
models for REST, they are mainly operation-centric and fail to acknowl-
edge the hypermedia nature of REST, that is, clients must inspect the
served resource state and choose the link to follow from there. We explore
RESTful service composition as it is driven by the hypermedia net that
is dynamically created while a client interacts with a server resulting in
a light-weight approach. We based our proposal on a hypermedia-centric
REST service description, the Resource Linking Language (ReLL) and
Petri Nets as a mechanism for describing the machine-client navigation.

1 Introduction

SOA services provide an endpoint that exposes a set of operations on entities
that are out of the reach of clients. Operations are described in a standard WSDL
document; semantics are not explicit and are usually specified in additional doc-
uments so that client designers understand the scope, effects, pre-conditions
and assumptions made by service designers and program the clients accordingly.
Clients interact with servers following the description (they are tightly coupled),
if it changes clients fail, clients cannot be notified about changes and failure
semantics and its recovery are ad-hoc. Client-server interaction state is kept by
the server (stateful), which negatively impacts service scalability and increases
the complexity of coarse grained operations.

The REST architectural style has been characterized as a restricted subset
of SOA [1]. Unlike WSDL operations, in REST the central elements are the re-
sources, which are abstract entities identified by URIs that can be manipulated
through a uniform interface, that is, a reduced set of standard operations whose
semantics are well known in advance and are defined by standard transport pro-
tocols such as HTTP. Resource’s state is transfered to/from the clients as a
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consequence of executing the standard operations. The state is portrayed to the
clients by means of representations, which are documents serialized according
to specific media types (e.g. XML), and contain hyperlinks to related resources,
and controls that allow clients to perform operations and change resources’ state
(e.g. <link=URI rel="service.POST">, <form ...>, etc.). There is no guaran-
tee that the operations, the resources or even the network remain available or
unchanged, however, there is a uniform failure interface (i.e. standard protocol
error codes) with well known semantics that allow clients to recover accordingly.

A REST service is not an endpoint but a web of interconnected resources,
with an underlying hypermedia model that determines not only the relation-
ships among resources but also the possible net of resource state transitions.
REST clients discover and decide which links/controls to follow/execute at run-
time. This constraint is known as HATEOAS (Hypermedia As The Engine Of
Application State). Hence, it is possible to provide a single or a small set of
URIs as entry-points to the whole service web or a subset of it. REST ser-
vices consider humans as its principal consumer and they are expected to drive
resource discovery and state transition by understanding the representation con-
tent. The lack of a machine-readable description forces REST service providers
to describe their APIs in natural language which makes difficult to properly
design machine-clients and recently is being studied as an infrastructure layer
for supporting service composition and business processes. Recent proposals,
however, heavily rely on the operation-based model neglecting the hypermedia
characteristics of REST. In this paper, we explore the impact of the hypermedia
(HATEOAS) property for supporting machine-clients that implement RESTful
service composition. Unlike current approaches, we based our strategy on a ser-
vice description called ReLL [2], that is also based on the hypermedia property.
The approach allow us to implement a machine client that is able to perform
dynamic discovery of REST resources.

This paper is organized as follows, Section 2 present related work in both
REST composition and REST description; Section 3 briefly presents ReLL, the
Resource Linking Language for REST service description; Section 4 introduces
an example to illustrate a composition model and language based on Petri Nets;
and Section 5 presents conclusions and future work.

2 Related Work

In [3] composition requirements specific to REST services are identified, such
as, dynamic late binding, that is the resource’s URI to be consumed is known
only in run-time; the composition technique must support the REST uniform
interface; dynamic typing, methods may require parameters with types known
only on run-time; content type-negotiation, the representations’ media type for
the component services as well as the composed service can be negotiated; and
clients should be able to inspect the state of the composition.

JOpera [3] satisfies such requirements, and it is one of the most mature plat-
forms for supporting REST services composition. JOpera provides a visual lan-
guage for defining a control flow and a data flow transfer graphs, as well as
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an execution engine for the resulting workflow. Nodes in the control flow graph
represent tasks that are dynamically bound to adapters such as local UNIX
programs, services invocation, etc., and “glue” adapters that perform local com-
putations (e.g. XPath queries, XSLT transformations, etc.). Tasks and adapters
have input and output parameters, for instance, HTTP adapter parameters are:
Method, URI, Body and headers (headin). Adapter invocation order is regulated
by control tasks that define conditional synchronization points, conditional loops,
and forks. The data flow graph makes explicit the data flow between tasks and
the resulting composition is written as a BPEL extension for REST [4].

Similarly, Bite [5] proposes a BPEL-inspired workflow composition language
describing both control and data flow. Bite partially supports an HTTP-based
uniform interface, dynamic typing, state inspection (both GET and POST). Re-
garding dynamic late binding, Bite can mint URIs for resources created, but
can not inspect representation content and selectively retrieve the URIs served
by the service. In both JOpera and Bite, the composition workflow is seen as a
unique composed resource. In [6], it is possible to inspect the state of the work-
flow instance (i.e. the composed resource or case) and the tasks that compose it.
State transition is modeled as links following a URI template that can change
dynamically. Tasks progression is driven by humans and no automatic support
is provided to retrieve and follow the links embedded in the representation.

Decker [7], presents a formal model for REST process enactment based on
Petri Nets, PNML (Petri Net Markup Language), and an execution engine. They
partially support dynamic late binding by minting URIs for created resources
but do not support the HATEOAS constraint, neither complex guard conditions
such as authentication, nor content negotiation (only XML as media type).

On the other hand, it is argued that a service description introduces a contract
between clients and servers and hence some degree of coupling. In practice,
service developers provide informal documents for its REST APIs describing the
resource types, the set of entry points (static URIs) and URI patterns for the
resources, authentication mechanisms, protocols, operations and media types,
and even representation content samples, so that machine-clients can be designed
accordingly. Documents may end up outdated, inaccurate or unclear, forcing
developers to engage in trial-error phases to accommodate such changes.

A few languages have been proposed to create RESTful services description.
For instance, the Web Application Description Language (WADL) [8] describes
RESTful services as resources identified by URI patterns, media types and the
schemas of the expected request and response. Representations support param-
eters that can contain links to another resources. WADL does not support link
discovery or link generation for new resources, the resulting model is operation-
centric and introduces additional complexity with unclear benefits for both
human and machine-clients. Other proposals such as WRDL (Web Resource
Description Language), and WDL (Web Description Language) [4], introduce
less complex descriptions to model resources, but they focus also on the opera-
tions allowed for each particular resource and their input and output parameters
and do not support the HATEOAS property.
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3 Resource Linking Language (ReLL)

In [2] we introduced ReLL, the Resource Linking Language, which describes
REST services with emphasis on the hypermedia characteristics of the model.
Figure 1 presents the metamodel that comprises the main constraints of REST
and is the basis for ReLL. A ReLL XML Schema has been also produced [2] and
is used to write ReLL XML descriptions. A snippet, written in ReLL, describing
a requestToken resource is shown in Figure 2. A REST service exposes a set
of one or more resources each with a unique identifier (xml:id), names and
descriptions (human-readable labels) and optionally constraints for the expected
resources, such as a uri pattern for the expected (match) resource URI (so that
a machine client can identify a URI change). A resource may have multiple
representations, which are the serialization of the resource in some syntax or
media type. Representations can define schemas for validation of input data.

Each representation can contain any number of links that can be retrieved
through selectors written in a language (selector type) that suits the repre-
sentation media type. For instance, XPath (XML Path Language) expressions for
XML-based representations since they allow structured selections within XML
document trees. Selectors have a name and refer also to a location in the rep-
resentation (e.g. the content or the metadata such as HTTP headers). Links
relate resource’s representations with other resource type (instead of a resource
URI) as indicated by the target, in order to avoid coupling with the resources’
naming scheme. A link can also specify a protocol and it is possible to mint
or generate a URI by executing an expression (e.g. a concatenation written
in XPath). ReLL allows also to annotate resources and links with types, so
that application domain semantics can be explicitly declared without requiring
changes in the existent resources.

A machine-client can use the description to automatically and selectively re-
trieve the underlying web of resources. For instance, in [9], RESTler, a Web
crawler uses ReLL descriptions to retrieve resources from a Web site, and REST
APIs (Twitter, and Google Calendar). Since domain semantics are explicitly
supported, it is possible to transform the retrieved resources to its semantic
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<resource xml:id="requestToken">
     <uri match="https://api.linkedin.com/uas/oauth/requestToken" type="regex"/>
     <representation xml:id="requestToken-text" type="iana:text/plain">
          <name>oauth_token request parameters</name>
          <link xml:id="authorizeRq" type="request" target="authorize" minOccurs="0" maxOccurs="1">
              <selector name="oauthUri" select="oauth_request_auth_url=[a-zA-Z0-9\-\%\.]+" type="regex"/>
              <selector name="oauthToken" select="oauth_token=[a-zA-Z0-9\-]+" type="regex"/>
              <generate-uri xpath="concat($oauth_url,'?',$oauth_token)"/>
              <protocol type="http">
                    <request method="get"/>
                    <response media="iana:text/plain"/>
              </protocol>
          </link>
     </representation>
</resource>
<resource xml:id="authorize">
      <uri match="https://api.linkedin.com/uas/oauth/authorize\?oauth_token=[a-zA-Z0-9\-]*" type="regex"/>
 </resource>

Fig. 2. LinkedIn ReLL snippet

counterpart through XSLT, and integrate the services at the semantic level. For
instance, in [10] resources from four REST services (Flickr, Twitter, a Web site
and a User mapping) are transformed to RDF, and integrated so that SPARQL
queries can consider the resulting graph.

4 REST Service Composition

4.1 OAuth, LinkedIn and Facebook, a Composition Example

We illustrate these ideas by composing two REST services, LinkedIn and Face-
book. A machine-client will retrieve the SocialNetwork (contacts and friends)
from both sources and will provide an XML representation of the merged data.
Entities (top rectangles in each thread) represent REST resources. Both services
require user authentication based on the OAuth protocol, though with different
versions, 1.0 for LinkedIn (Figure 3a) and 2.0 for Facebook (Figure 3b). This
difference imply variations in the client-server conversation as well as the passed
values. Client-server interaction occurs between the machine-client and the re-
sources implementing the steps of the protocol (e.g. generate a requestToken,
authorize, and generate an accessToken). Part of the interaction occurs out of
band, as a separate conversation between the service provider and the user. Some
parameters are sent to/from the server in the message body, others in the Head-
ers, some messages must be signed, and some parameters are used as inputs for
the next client-server interaction step.

The HATEOAS constraint is extensively used in Web content (i.e. it contains
embed hyperlinks and controls) and is in great part responsible for the Web pop-
ularity since it allows users to dynamically discover material they are interesting
in, but unfortunately it is not considered yet by REST API designers, that is,
representations typically do not include hyperlinks but data fields that serve to
generate or mint the URIs to follow. This practice introduces a strong coupling
between clients and servers and forces machine-clients to mint their own URIs.
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Fig. 3. OAuth sequence diagram for LinkedIn (a) and Facebook (b)

4.2 A Petri Net Model

We are interested in the development of machine-clients that enable service
composition, so that B2B or mashups involving REST services could be eas-
ily developed. The HATEOAS constraint becomes fundamental provided that
machine-clients can understand the semantics of the links and controls served in
the representations. A ReLL document describes in a declarative way a partial
(or whole) view of the web of resources, its domain semantics and the mecha-
nisms required to navigate across such web, and hence, provides machine-clients
access to a basic semantic model at a protocol and application level.

In [7], a formalization for service nets implementing RESTful processes is
introduced. A service net is a colored Petri Net represented by a tuple S =
(P , T ,F ,Fread, TS , TR, init, g, uri), where P and T are disjoint sets of places
and transitions. Places represent states that contain tokens with multiple at-
tributes, and transitions represent activities that can be guarded; transitions
are fired when all the tokens in the corresponding input place arrive. Places
and transitions are connected through arcs. F represents the set of flows, and
Fread the set of read arcs (GET). TS , TR correspond to the disjoint sets of send
and receive transitions (also called communication transitions), init is the initial
marking, that is, the function that initially assigns multiple tokens (with values
serialized as XML documents) to places, g is a function that assigns guard con-
ditions to transitions and conditions are combinations of XML serialized input
documents, and uri is a function that assigns URIs to tuples of communication
transitions (TS , TR) and combinations of XML serialized input documents, this
feature allows the model to generate URIs. According to Decker, REST service
composition is defined as the merge of send and receive transitions offered by
senders and receivers that belong to separate service nets. One token is assigned
to an input place and removed to an output place when a transition fires. In
the case of read arcs, tokens are not removed from input places and there is no
functional dependency between tokens.

Dynamic late binding in this model, is implemented by receive transitions
(TR) that take input tokens to generate new URIs called here dynamic ports.
The rules for uploading information into tokens and for generating new URIs
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are not presented, but this is not a trivial task since it may require parsing
information, encrypting, digital signatures, store information into headers, etc.

This feature is fundamental in real life scenarios, as is shown by a popular
language used for service composition in the industry, namely BPEL, which
supports data transformation by means of XPath and XQuery expressions; or
JOpera which uses a library of extensible adapters to satisfy the same require-
ment. The other aspect of dynamic late binding, that is, to inspect representa-
tion’s content and determine from there the URI of a send transition (i.e. the
HATEOAS constraint) is not discussed.
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Fig. 4. A PetriNet for the composed resource: socialNetwork
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The colored Petri Net shown in Figure 4 corresponds to the example of
Section 4.1. It implements a socialNetwork resource that composes resources
from LinkedIn and Facebook. The Petri Net was modeled and simulated using a
CPN tool. Places (circles) represent states of the composed resource; tokens (set
of attributes) are shown near places (e.g. LnToken); places receive a determined
type of token and transitions provide the mapping between tokens with different
attributes. Places and transitions within dotted rectangles and labeled as OOBn
(Out Of Band) and refer to interaction controlled by the REST OAuth service,
the machine client has not control nor access to such resources but only waits
until the flow is redirected through a receiving transition. Transitions may have
guard conditions (if), perform internal tasks (e.g. EvalAccessToken, Store,
etc), pass values or perform HTTP requests to external REST services (POST,
GET, Redirect, etc.), corresponding to sender transactions (TS) in Decker’s
model. An input place (e.g. S0 ) can receive HTTP messages such as POST.

4.3 ReLL Based Dynamic Late Binding

The Petri Net is also modeled in XML as a simplified version of PNML (Figure 5).
Concerns are separated in three layers: the REST service resources layer (which
may introduce new resources when composing services (e.g. http://ing.puc.cl/
socialNetwork); the ReLL service descriptions layer (which supports dynamic
late binding); and the Petri Net model layer, that drives the client-server
interaction.

Consider Figure 4, once the socialNetwork resource receives a POST, a token
is generated and a Fork operation is performed separating the original token
in two, one for each source service (LinkedIn and Facebook). Figure 5 details
the token received at s1, it declares key-value pairs that were received in the
POST request header, must be generated on run-time (e.g. timestamp), or are
part of the machine-client internal state (e.g. cokies). Transition Eval Access
Token evaluates whether the attribute accessToken (in this case, for LinkedIn)
is set, and a guarded condition determines the next place. If the attribute is not
set, tokens are moved to s2 and the OAuth authentication process begins by
triggering the POST requestToken transition.

This transition sends a message to LinkedIn’s requestToken resource, the
machine-client expects a response of type requestToken, text/plain (see
Figure 2). The response is the input for the s3 place and a new token (LnToken)
will be minted by executing the regular expressions defined for oauthUri and
oauthToken variables in the ReLL description. The URI for the REDIRECT tran-
sition will be minted by following the ReLL instructions for the authorizeRq
link. To follow the minted URI, the machine-client must sent the LnToken, when
performing a get operation on the http protocol, and expect a text/plain
response; at most one link may be generated and the retrieved resource will cor-
respond to the authorize type (Figure 2). The authorize resource represents
the beginning of an out of band conversation between the service provider (e.g.
LinkedIn) and a Web client controled by the provider. The machine-client waits
until a response corresponding to the callback resource is received at place s5.
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         <place id="s1" resource="SocialNetwork">
            <token name="LnToken">
                <attr location="header" name="lnUser"/>
                <attr location="cookie" name="oauth_consumer_key" />
                <attr name="oauth_nonce" type="Random"/>
                <attr name="oauth_timestamp" type="Timestamp"/>
                <attr name="oauth_signature_method">HMAC-SHA1</attr>
                <attr location="cookie" name="oauth_callback" />
                <attr location="cookie" name="accessToken" />
                <attr name="oauth_version">1.0</attr>
                <attr location="cookie" name="connections" />
            </token>
        </place>
        ...
        <place id="s3" resource="requestToken">
            <token name="LnToken">
                 <attr location="body" name="oauthUri"/>
                 <attr location="body" name="oauthToken"/>
            </token>
        </place>
        <transition id="REDIRECT" link="authorize_rq">
            <token name="LnToken">
                <attr location="body" name="oauthUri"/>
                <attr location="body" name="oauthVerifier"/>
            </token>
        </transition>
        <place id="wait" resource="authorize"/>
        <place id="s5" resource="callback">
        ...

Fig. 5. Petri Net XML snippet

An internal operation will store part of the received response (the accessToken),
a new URI will be minted for the next transition (GET connections) and the
token as detailed initialed for the s1 place will be sent with updated values
(cookies). The response of both LinkedIn and Facebook services will be merged
and a new resource will be generated (i.e. socialNetwork/1).

A CPN tool was used to model and simulate the composition. An XML
description for the Petri was manually created, and both Petri and ReLL descrip-
tions were parsed, uploaded and executed by the machine-client. The machine-
client is a refined version of RESTler [9]. Internally, the machine-client includes
libraries for parsing and executing regular and XPath expressions, as well as
an HTTP client to perform requests to REST resources and expose itself as a
resource: the SocialNetwork. Transitions are fired according to an enablement
component that handles the markings and tokens passed among places.

5 Conclusions

Service descriptions (e.g. ReLL) introduce coupling between clients and servers,
however even loosely coupled services need a shared set of assumptions, and
a more formal way of describing those assumptions will help service providers
and consumers in service documentation and consumption, as evidenced by the
currently existent REST APIs documentation. ReLL allows clients to detect
whether some assumptions have changed (e.g. more links than expected are
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served, the URIs have changed, the protocol have changed etc.), so that a proper
action can be taken (e.g. extend the ReLL description and describe the new
interface or even versioning the description).

By separating concerns in different layers (description, composition) instead
of merging them in a full fledged service composition engine, the ReLL descrip-
tions are reusable in scenarios other than the described in this paper (e.g. web
crawling, and semantic integration), we expect that the Petri net descriptions
could be also reused in complex scenarios where composition actually include
composed resources. On the downside, ReLL descriptions and the composition
itself are static. We plan to explore recent work on planning that make possible
to introduce dynamic decisions and generate Petri Nets accordingly, as well as
to explore the impact of explicit semantics in a dynamic composition scenario.
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