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Abstract. In an application where autonomous robots can amalgamate sponta-

neously into arbitrary organisms, the individual robots cannot know a priori at

which location in an organism they will end up. If the organism is to be con-

trolled autonomously by the constituent robots, an evolutionary algorithm that

evolves the controllers can only develop a single genome that will have to suffice

for every individual robot. However, the robots should show different behaviour

depending on their position in an organism, meaning their phenotype should be

different depending on their location. In this paper, we demonstrate a solution

for this problem using the HyperNEAT generative encoding technique with dif-

ferentiated genome expression. We develop controllers for organism locomotion

with obstacle avoidance as a proof of concept. Finally, we identify promising

directions for further research.

1 Introduction

The research presented in this paper was undertaken as part of the European research

project SYMBRION: Symbiotic Evolutionary Robot Organisms.1 As the name suggests,

a key objective of the project is the evolution of robot organisms – structures consisting

of physically connected individual robots like those in Fig. 1 for tasks that an uncon-

nected group of individual robots cannot cope with.

In SYMBRION, individual robots are fully autonomous and viable as individuals,

while they have the ability to dock with each other and so aggregate into organisms,

becoming modules (cells) within the organism. Once in organism mode, the modules

share energy and control, acting autonomously but in co-ordination. Co-ordination is

inherently distributed, without central control. Such emergent organisms are not made

to last forever: they can separate to become a swarm of individual robots once more.

The individual robots are then available for the formation of new, possibly differently

shaped, organisms. This high level of flexibility implies challenging requirements for

robot controllers. Firstly, an individual robot needs a controller that works appropriately

within differently shaped organisms. For instance, the robot should be able to act within

a “snake”, a twenty-legged body, or a “dog” with four legs, a head and a tail. Further-

more, any robot should be able to function at different positions of any given organism

shape, e.g., at the head as well as in the middle of a snake. As an example of a task for

an organism that requires co-ordinated control of the robots/modules, consider locomo-

tion; obviously a key ability for the organism to perform meaningful tasks. In this paper

1 EU grant agreement 216342.
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Fig. 1. Illustration of possible SYMBRION organisms.

we leave shared energy for what it is and address the challenge of robot controllers that

work appropriately at different positions of a given organism shape. In particular, we

seek an evolutionary method that can produce such controllers for arbitrary organism

shapes (note: not a single controller for arbitrary shapes but a single developmental

technique).

Let us first clarify the difference between a robot controller and the evolvable code

that represents that controller. In general, a robot controller is a structurally and pro-

cedurally complex entity that directly determines the robots behaviour. When using

evolutionary methods for controller design, controllers are seen as phenotypes that are

represented by (structurally simpler) pieces of code, called genotypes. The phenotypes

are then perceived as expressions of the genetic code in the genotype through a pos-

sibly complex mapping. The fitness of an individual (typically: task performance) is

then determined by the phenotype. Meanwhile, –conforming to biological principles of

evolution– it is only the genotypes that undergo evolutionary operators (mutation and/or

crossover), not the phenotypes. Distinguishing in this way between phenotype (the ac-

tual controller) and the genotype that encodes it allows us to rephrase the challenge: we

seek an evolutionary method that is capable of generating genotypes that give rise to

controllers that work appropriately at different positions of a given organism.

Because it is unknown a priori at which location in an organism a particular robot

will end up, the robots must have a single genotype that encodes appropriate controllers

for each location: the group of robots is literally homogeneous. However, they should

have the flexibility to show different behaviour depending on their position in an organ-

ism. This means that their phenotype should be different, depending on their location.

For instance, a module that forms part of a quadruped’s backbone has a different role

and thus requires a different controller than does a module that makes up, say, a hip

joint (in biological terms, the expression of the genotypes must be influenced by the

environment).



HyperNEAT for Locomotion Control in Modular Robots 3

We argue that an evolutionary algorithm with a generative encoding presents a nat-

ural way to meet these requirements. As noted by D’Ambrosio and Stanley in [3], vari-

ation on a policy theme distributed across space is reminiscent of the regular spatial

patterns for which generative encodings are known [8, 11]. For our purposes, genera-

tive encodings offer the benefit that the genome can be interpreted multiple times with

variations. In our own bodies, this is exactly what happens when our DNA is expressed:

for instance, variations in expression cause each of the segments of our spines to be sim-

ilar yet specifically differentiated for their role within the spine as a whole. Enabling

similar differentiation when expressing the genome as controllers for the organism’s

modules allows the development of varying, specialised functionality. For this proce-

dure of varying the expression of a genotype to create specialised controllers for the

organism’s modules, we coin the phrase modular differentiation.2

Of course, specialisation can also be achieved by separately evolving specialist con-

trollers for (collections of) joints, vertebrae, etc. and selecting the appropriate controller

as needed. While such divide-and-conquer tactics have resulted in successful locomo-

tion, the underlying decomposition is inherently specific to a particular morphology and

must be performed manually. Also, it runs the risk of introducing constraints and biases

that limit the quality of solutions cf. [7, 2, and citations therein].

Locomotion of an organism that consists of autonomous modules can be viewed as

a task of a co-operating team of individual agents, with each module constituting an au-

tonomous agent. Although extending the scope of their findings to this scenario might

be tenuous, Waibel et al. have shown that for tasks requiring co-operation, homoge-

neous teams outperform heterogeneous ones [12]. The modular differentiation approach

allows us to enjoy the best of both worlds: it exploits the benefit that homogeneous

teams enjoy without sacrificing the advantages of specialisation.

The individual robots that make up the organism also have their own sensory ca-

pabilities that allow them, for instance, to steer the organism away from obstacles they

detect. Consequently, we seek controllers that put sensor information –specifically, ob-

stacle detection– to use: they should implement reactive control in addition to habitual

motion patterns such as found in [4, 6].

Summarising, the aim of this paper is to present an evolutionary algorithm that

combines generative encoding and modular differentiation to evolve reactive, co-ordi-

nated, autonomous modular controllers for organism locomotion.

2 Generative Encoding Description

The generative encoding we use is called HyperNEAT [9], which evolves artificial

neural networks with the principles of the widely used NeuroEvolution of Augmented

Topologies (NEAT) algorithm [10]. HyperNEAT evolves a particular type of artificial

neural network, called a Compositional Pattern Producing Network (CPPN). While tra-

ditionally, artificial neural networks typically contain only sigmoid functions, CPPNs

can employ a mixture of many other functions.

2 The term modular differentiation was chosen as an analogy to developmental biology’s cellular

differentiation, the process by which a less specialised cell becomes a more specialised cell

type.
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Fig. 2. A CPPN-gen-

erated grayscale im-

age.

A CPPN defines a function that can be employed, for in-

stance, to assign grayscale values to pixels in an image, as was

done to generate the picture in Fig. 23, which highlights impor-

tant attributes of the CPPNs that evolve in HyperNEAT: they

tend to produce designs with a large degree of regularity, sym-

metry and repetition. Often, patterns are repeated with slight

variations and at varying scales. The consequent layout can be

perceived as modular with variations.

HyperNEAT uses the CPPNs as an indirect encoding, so the

CPPNs do not constitute the controllers for the robot modules

themselves. Instead, the CPPNs are used to set up the artificial

neural networks that do control the robots. To avoid confusion,

these artificial neural nets that form the phenotype are usually referred to as substrates.

To define a substrate, the CPPN specifies the weight for every possible connection in the

template substrate; the connection weight between two nodes is determined by querying

the CPPN with the two nodes’ co-ordinates, which then returns the required connection

weight. Often, the distance between the nodes is passed into the CPPN as well. This

method of generating the substrate assigns meaning to the location of the neural net’s

nodes, implying that HyperNEAT has the unique ability to exploit the geometry of a

problem [9]: if the geometric disposition of the nodes in the substrate represents relevant

information, HyperNEAT can use that information.

HyperNEAT has been successfully used in many applications, maybe most perti-

nently to develop gaits for four-legged robots by Clune et al. [2]. There, Clune et al.

used HyperNEAT to develop monolithic, central controllers for a table-shaped robot.

This robot did not, in contrast to the organisms considered here, consist of multiple

modules, so modular differentiation could not play a role in controller development.

Moreover, no obstacle detection was employed and therefore control could not avoid

obstacles as we aim to do.

3 Experimental Set-up

We evolved controllers for locomotion of a quadruped organism consisting of 14 simple

modules as a proof of concept. Experiments were conducted in the well-known Webots4

simulation platform.

3.1 Modules and Organism

We based the modules on the YaMoR [6] oscillators. These consist of a solid body and

an oscillating arm, offering one degree of freedom. We added two extra connectors,

bringing the total to 4, which are situated as follows: one on the joint’s arm, one on

the opposite side of the module, and two on the left and right of the mobile joint, in

the motion plane. See Fig. 3(a) for a rendition of a module. For obstacle detection, we

3 See http://picbreeder.org/ for more examples and information.
4 http://www.cyberbotics.com/
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added 6 distance sensors with very limited range, indicated in figure 3(a) by the thin

lines emerging from the module. They are distributed on all sides of the module.

(a) Basic module (b) Quadruped organism

Fig. 3. Module and organism.

The module positions in the quadruped organism shown in Fig. 3(b) are inspired by

joint disposition in natural insect legs. The central modules allow for mid-body flexi-

bility. The organism is completely symmetrical around its center point.

In these experiments, each module’s controller has the sole task of setting the target

angle value for the actuator in each control step to achieve locomotion for the organism.

The individual modules that make up our organism are simpler than those being devel-

oped in the SYMBRION project [5] but for the purposes of organism locomotion have a

similar degrees of freedom and sensors.

3.2 Control

Each module within the organism operates autonomously and with only local interac-

tion. As described in Sec. 2, each module is controlled by its own neural network, or

substrate, controller. The nodes of the substrate are arranged in three layers of nine

nodes each as shown in Fig. 4. Links between nodes run only in one direction and only

between consecutive layers. The nodes have sigmoid activation functions.

Inputs consist of processed sensory information: when a new object appears in the

range of the sensors, a ‘new presence’ flag in the centre of the input layer (labelled

‘self’ in Fig. 4), is set to −1. To compute the occurrence of a new object, the distance

sensors are queried in each control step and the returned values are compared to the

values in the previous step. If at least one sensor gives a reading increase above 50%

of the maximum activation level, this is interpreted as the detection of a new object in

the perceptual range of the module, and the center input layer node is activated (with

values −1).
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Fig. 4. The substrate layout for the locomotion task.

Connections are shown as illustration; actual con-

nectivity is determined by the CPPN.

This scheme is loosely in-

spired by the biological process-

ing of olfactory information,

which triggers strong responses

primarily at the initiation of new

stimuli, but then develops adap-

tation (‘fatigue’).[13] Note that

the continued presence or re-

moval of an object from a sen-

sor’s range is not signalled.

Up to four adjacent con-

trollers (of any directly con-

nected modules) send their own

flag: these values are set in the

substrate input corresponding to the geometric position of connectors. In the 3x3 input

layer the central node accounts for the current module, and nodes above and below, to

the left and to the right of that node account for the modules connected using the front,

back, left and right connectors, respectively.

This very primitive, distributed, object detection scheme is intended to allow for

simple but effective reactions to obstacles.

If no perceptual changes are detected by the sensors of the current module, or the

modules connected to it, the substrate inputs are 0, allowing for default non-reactive

locomotive behaviour as specified by the output layer biases. Note, that this default

behaviour actually requires no interaction with other modules at all and the organism

moves by virtue of the modules acting in splendid isolation.

Producing a successful gait with such a reactive framework is harder than a non-

reactive one (which is actually implemented by the output layer’s biases), because the

modules are subjected to potentially different “perceptual histories” at every evaluation.

However, this scheme exposes the changes in behaviour to the evolutionary algorithm

and allows for adjustments to the base angle, speed and amplitude as responses to per-

ceived objects.

The output layer provides three values for the computation of the target angle of

the joint in each control step: α (reference angle), A (deviation amplitude from the

reference angle) and ω (angular speed of the oscillation). The target angle is computed

as follows:

αtarget = α + A · sin(πωt + id) (1)

with t the current time-step and id a number between 1 and 14 which identifies the

current module within the organism with no geometric meaning. This encoding of the

joint’s motion allows for both static and dynamic joints, with specific oscillation am-

plitudes and speeds. The modules are out of phase by a number of steps determined

by their position in the organism. This is important for generating some motion in the

initial stages of the evolutionary process. This encoding scheme was devised for its

effective task decomposition into concepts of speed, amplitude and a base angle.
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3.3 Modular Differentiation

To achieve modular differentiation, we extend the information passed to the CPPN when

determining the connection weight between two nodes in the substrate. Remember that

normally the connection weight is determined by querying the CPPN with the two

nodes’ co-ordinates, often passing the distance between the nodes into the CPPN as

well. In addition, we pass the CPPN inputs locating the module for which we are gen-

erating connection weights within the organism. By virtue of these extra inputs, each

module in the organism will have a different set of connection weights in its neural net

controller, but the underlying phenotype (i.e., the CPPN) is the same throughout the

organism.

 

Fig. 5. Distribution of modules in the

〈t1, t2〉 coordinate space. Modules are la-

belled with their ids.

To be precise, the substrate weights

are determined by querying the CPPN

with the corresponding co-ordinates for

the source and destination nodes in 3 di-

mensions 〈x, y, z〉 and the relative posi-

tion of the module in the organism on

a two dimensional plane 〈t1, t2〉, illus-

trated in Fig. 5.

We also use four delta inputs: ∆x,

∆y and ∆z are the respective co-ordinate

value differences, while ∆t is the Eu-

clidean distance to the centre of the or-

ganism shape.

As an example, consider the link between two nodes at co-ordinates 〈1, 0, 1〉 and

〈0, 1, 0〉 in the substrate. To determine the weight for that connection the CPPN would

be queried with nine values that pertain to the two nodes themselves: the six original

co-ordinate values and three ∆-values that denote the differences for the x, y and z co-

ordinates (∆x = 1, ∆y = 1, ∆z = 1). Additionally, we pass three values to differenti-

ate between modules: for module 6 in Fig. 5, for example, we pass t1 = 0.66, t2 = 0.25
and ∆t =

√
0.662 + 0.252, while for module 11 these values are t1 = 0, t2 = −0.25

and ∆t =
√

0 + 0.252.

Links for which the CPPN returns values below 90% are ignored, so the CPPN’s

output is interpreted as a link’s relevance measure, and only very strong stimulatory and

inhibitory links are kept. The 90% threshold was established empirically. The percep-

tual scheme introduces a lot of noise directly into the values that determine the motion

patterns, so only very strong links are worth keeping.

3.4 Task and Evolution

We ran a series of simulations in the arena depicted in Fig. 6. The task for the organism

was to move the whole body along the corridor of which the walls are too high to

scale. The corridor is littered with bricks. The organism starts roughly in middle of

the corridor. Bricks and walls are detected when they are in the (short) range of each

module’s distance sensors. Bricks can be moved, but walls cannot. This allows for a

“perceptual” difference between them, since bricks are more dynamic and will typically
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Fig. 6. Experimental setting: a corridor with bricks and walls.

activate sensors which walls will not, e.g. underneath the body. The organism needs to

adjust its gait to steer away from walls, but not be deterred by mere stacks of bricks.

Each evaluation lasts 20 simulated seconds for a total of around 80 control steps.

Each CPPN is evaluated 3 times on the same task, to get a better approximation of its

fitness. Fitness increases exponentially with the final distance from origin achieved by

the organism, and the average height of the middle section, it is computed as follows:

f(CPPN) = e(dorigin∗0.95
(

dtravelled
dorigin

−1)
+havg) (2)

with dorigin the distance from the origin after 20 seconds, dtravelled the total distance

travelled and havg the average height from the floor of the body’s centre during the 20

second evaluation period. The dtravelled

dorigin
−1 part measures the effectiveness of the overall

gait: the final distance from origin is scaled down to penalise ineffective gaits that do not

move in one consistent direction. The inclusion of havg promotes individuals that can

raise their bodies. As the distance-related part of the fitness formula quickly becomes an

order of magnitude larger than the average height, its effects are felt mainly in the initial

stages of evolution. We used Jason Gauci’s publicly available C++ implementation of

HyperNEAT, version 2.6.5 Apart from a population size of 10, we used the settings as

found in that implementation’s TicTacToe experiment. We did not engage in further

tuning of parameters or thorough analysis of alternative fitness calculations since the

experiments provide a proof of concept rather than a comprehensive analysis.
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4 Results and Analysis

The evolved gaits we observed were smooth and seemed natural with the organism

moving in a controlled, co-ordinated manner using cyclical motion patterns. In the later

stages of evolution, motion patterns often exhibit left-right symmetry, replacing the

initial phase difference to produce useful gaits. They gave the impression that the or-

ganism would happily walk for hours on end without faltering as the organism returned

to a neatly poised stance after every step.

The sensory input was often seen to be used with the organism lifting a leg higher

than normal to avoid a brick, as illustrated in Fig. 7. Because the bricks can also be

shoved aside, this kind of behaviour did not always emerge, but that it does at all is a

clear indication that reactive controllers do evolve in this set-up.

Figure 8 shows the development of fitness over 25 repeats of the experiment. The

centre line shows the median of the best of every generation over 25 runs, with the bars

extending from the lower to the upper quartile. Considering the exponential nature of

Eq. 2, the median fitness after 150 generations of circa 15 equates to more than 2.5

metres travelled. The lower quartile after 150 generations, at 10, equates to travelling

ca. 2.3 metres. For values of 20 or higher, the organism actually reaches the end of the

corridor after 3 metres.

To analyse the effect of modular differentiation in the organism and the reactiv-

ity of the controllers we analyse the substrate outputs of a high fitness individual. The

networks use sigmoid functions with outputs between -1 and 1, which are afterwards

linearly rescaled to the full ranges of the effectors. For simplicity we omit the scaling

here, and show raw network output values. Figure 9 shows substrate outputs for the

three output nodes (see substrate in figure 4) for all 14 controllers over 80 control steps.

The horizontal base lines indicate the substrate output in unexcited state, i.e., when no

obstacles are detected. If the controllers were identical, these lines would obviously

overlap for all modules: the different levels we see are the result of modular differen-

tiation. Jags in the plots indicate reactions to perceptual input (detecting an obstacle),

either direct or via a neighbouring module. Note that not all modules react with the

same intensity or at the same time, further proof of modular differentiation.

Figure 9(a) shows the outputs for the base angle α; many of the outputs remain

constant throughout the experiment: controllers that do not use sensory inputs to set the

base angles. The number of lines we can distinguish indicate that modular differentia-

5 http://eplex.cs.ucf.edu/software.html#gaucij_HyperNEAT

Fig. 7. Locomotion while negotiating an obstacle.
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Fig. 8. Fitness plot over 150 generations. The centre line shows the median of each generation’s

best individual over 25 repeats, the bars extend from the lower to upper quartile.

tion leads to some specialisation. The variation of the three non-constant plots results

from obstacle detection, but the magnitude of the changes is small.

Figure 9(b) shows that the outputs for angular speed (ω nodes) are almost equal

for all modules (note the scale). Moreover, no perceptual information is used, since the

outputs are constant. This parameter barely differentiates modules.

By far the most diverse behaviour is shown in Fig. 9(c), which depicts the amplitude

node outputs. All controllers use perceptual information to set amplitude values, and the

magnitude of the changes is as big as 0.3 in absolute difference, in some cases. Also,

there is a high degree of specialisation, since the default output levels range from -0.6

to 0.4.

5 Conclusion and Future Work

Using HyperNEAT’s generative encoding technique and modular differentiation, we

have designed an evolutionary algorithm to develop homogeneous yet specialised con-

trollers for modules within a multi-robot organism. We showed that this algorithm can

successfully develop a reactive quadruped gait. The individual robots’ controllers act

autonomously and with only local exchange of information but in a co-ordanated man-

ner to allow successful locomotion of a given organism.

Analysis of the substrate output of all modules over the course of an evaluation

showed considerable differences in activation between modules, indicating adaptation
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Fig. 9. Substrate outputs for all modules of a high-fitness organism over 80 time-steps.

of module controllers to their particular position in the organism as the result of modular

differentiation.

The controllers incorporate sensory feedback from the modules’ obstacle sensors,

resulting in the CPPN encoding multiple motion patterns. The base pattern is deter-

mined by the substrate output layer biases (used when no obstacles are detected and

the remaining controller network is not activated). The CPPN also encodes the changes

to this default behaviour, different for each perceptual flag combination, which directly

activates the network. Instead of exchanging information about the motion pattern, the

modules send information about detected obstacles to any directly connected neigh-

bours.This way perceptual information propagates locally and progressively, as the new

object also enters the sensory range of adjacent modules.

Analysis showed that the primitive “perceptual flag” sensory scheme can success-

fully switch policies for all modules, for this particular individual the most notable

changes affecting amplitude values.

Further study of the perceptual scheme described here is required to asses its effec-

tiveness in arenas of different shapes and scales. A promising avenue of further research
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leads towards an implementation of the HyperNEAT modular differentiation approach

for on-line adaptation of controllers for emergent rather than pre-defined organism mor-

phologies. Future research will also combine the use of CPPNs to generate organism

morphology as well as controllers for the constituent modules.
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