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In the present study we analyse the effect of the density dependence of the symmetry

energy on the hyperonic content of neutron stars within a relativistic mean field

description of stellar matter. For the 3-hyperon, we consider parametrizations calibrated

to 3-hypernuclei. For the 6 and 4-hyperons uncertainties that reflect the present lack

of experimental information on 6 and 4-hypernuclei are taken into account. We perform

our study considering nuclear equations of state that predict two solar mass stars, and

satisfy other well-settled nuclear matter properties. The effect of the presence of hyperons

on the radius, the direct Urca processes, and the cooling of accreting neutron stars

are discussed. Some star properties are affected in a similar way if a soft symmetry

energy is considered or hyperonic degrees of freedom are included. To disentangle

these two effects it is essential to have a good knowledge of the equation of state at

supra-saturation densities. The density dependence of the symmetry energy affects the

order of appearance of the different hyperons, which may have direct implications on the

neutron star cooling as different hyperonic neutrino processes may operate at the center

of massive stars. Models that allow for the direct Urca process, whether they are purely

nucleonic or hyperonic ones built consistently with modern experimental data, are shown

to have a similar luminosity. It is shown that for a density dependent hadronic model

constrained by experimental, theoretical, and observational data, the low-luminosity of

SAX J1808.4−3658 can only be modeled for a hyperonic NS, suggesting that hyperons

could be present in its core.

Keywords: neutron stars, hyperonic stars, symmetry energy, hyperon interaction, neutron star cooling, relativistic

mean-field equation of state

1. INTRODUCTION

The behavior of asymmetric nuclear matter is strongly influenced by the density dependence of
the symmetry energy of nuclear matter, see (Li et al., 2014) for a review. This quantity defines
the properties of systems like nuclei far from the stability line or neutron stars (NS), from the
neutron skin thickness to the NS radius (Horowitz and Piekarewicz, 2001a). The advancement of
nuclear physics and astrophysics requires, therefore, a well-grounded knowledge of the properties
of isospin-rich nuclear matter (Baran et al., 2005; Steiner et al., 2005; Li et al., 2008). In the present
study, we will concentrate our attention on the effect of the density dependence of the symmetry
energy on some of the properties of hyperonic stellar matter that may occur inside NSs, including
the mass and radius of hyperonic stars (Cavagnoli et al., 2011; Vidana et al., 2011; Providencia and
Rabhi, 2013) or their cooling evolution (Prakash et al., 1992; Yakovlev et al., 2004).
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Although the symmetry energy is quite well-constrained at
nuclear saturation density, see (Tsang et al., 2012; Lattimer and
Lim, 2013; Oertel et al., 2017), its density dependence at high
densities is still badly known. The density dependence of the
symmetry energy has been investigated in many works, see for
instance (Klimkiewicz et al., 2007; Centelles et al., 2009; Tsang
et al., 2009; Vidana et al., 2009; Warda et al., 2009; Carbone
et al., 2010; Ducoin et al., 2011; Fattoyev et al., 2014), but
usually for the saturation and sub-saturation densities. Since the
description of NSs requires the knowledge of the equation of
state (EoS), from very low to very high densities, it is important
to have a correct description of the EoS in the whole range
of densities.

Hyperons may have non-zero isospin, and, therefore, their
chemical potential depend on the density dependence of the
symmetry energy. As a consequence, the fraction of the different
hyperonic species reflects the symmetry energy behavior, and,
in particular, it has been shown in Providencia and Rabhi
(2013) that the onset of the 6− and 3 hyperons is sensitive
to the slope of the symmetry energy. In the present study
we will analyse the interplay between the symmetry energy
and the hyperon content in the framework of relativistic
mean-field models, following closely the work developed in
Cavagnoli et al. (2011) and Providencia and Rabhi (2013), but
with the care of choosing hyperonic models that have been
calibrated to the existing experimental hypernuclei data, as
developed in Fortin et al. (2017) . Besides, we will only consider
unified inner crust-core EoS since a non-unified EoS may give
rise to a large uncertainty on the star radius, as discussed
in Fortin et al. (2016b).

The possible existence of hyperons inside NSs has been
questioned (Demorest et al., 2010; Vidana et al., 2011) because
many of the models including hyperons are not able to predict
massive stars such as the pulsars PSR J1614 − 2230 (Demorest
et al., 2010; Arzoumanian et al., 2018) and PSR J0348 + 0432
(Antoniadis et al., 2013) both with a mass close to or just above
two solar masses, or even the PSR J1903 + 0327 with a mass
1.67 ±0.02M⊙ (Freire et al., 2011; Vidana et al., 2011). This
has been designated by the “hyperon puzzle” and a review of
the problem, and of the solutions that can overcome possible
contradictory scenarios has been presented in Chatterjee and
Vidaña (2016). We will consider that the presence of hyperons is
not simply ruled out by the existence of two solar mass stars and
that this problem can be controlled by either using EoSs that are
hard enough at high densities (Fortin et al., 2016b) or by going
beyond the simple SU(6) symmetry ansatz to fix the isoscalar
vector meson couplings (Weissenborn et al., 2012, 2013). Other
strategies have been suggested as considering hyperon-scalar-
meson couplings weaker than the ones predicted by the SU(6)
symmetry (Colucci and Sedrakian, 2013; van Dalen et al., 2014),
or that nuclear matter may undergo a phase transition to
quark matter (Alford et al., 2007, 2013; Weissenborn et al.,
2011; Bonanno and Sedrakian, 2012; Klähn et al., 2013; Logoteta
et al., 2013; Masuda et al., 2013; Zdunik and Haensel, 2013;
Drago et al., 2016; Fukushima and Kojo, 2016; Pereira et al.,
2016; Alford and Sedrakian, 2017). Having this in mind we will
explore different RMF models of nuclear matter that satisfy a

set of well-established nuclear matter properties at saturation as
developed in Fortin et al. (2016b).

The paper is organized in the following way: a review of the
formalism and presentation of the models that will be used in
the study is given in section 2. In sections 3, 4, we discuss,
respectively, the calculation of the inner crust EoS, and the choice
of the hyperon-meson couplings, including the calibration of
the hyperon 3-meson couplings for the recently proposed RMF
models FSU2 (Chen and Piekarewicz, 2014), FSU2R, and FSU2H
(Tolos et al., 2017). In section 5 the effect of the symmetry energy
on the nucleonic direct Urca process, also in the presence of
hyperons, and the effect of the still-badly constrained6-potential
in symmetric nuclear matter on the star properties, including
cooling, are discussed. Finally, in section 6 some conclusions
are drawn.

2. THE MODEL

We will undertake the following discussion in the framework of
a relativistic mean field (RMF) approach to the equation of state
of nuclear and stellar matter. Many models have been proposed
within this framework, see the recent publication (Dutra et al.,
2014) for a compilation of a large number of those models and
their properties. We will restrict ourselves to a small set of models
and will consider two distinct classes of models: (a) models
with density dependent baryon-meson couplings that avoid self-
interacting or mixed terms between mesons and which will be
designate by DD models; (b) models with constant baryon-
meson couplings and which include non-linear meson terms
in order to describe correctly properties of nuclei and nuclear
matter, designated by NL models. Within this approach, we start
from a Lorentz-covariant Lagrangian which describes baryons
interacting with mesons. It is assumed the minimal coupling
between the baryons and the mesons. We write the effective
Lagrangian density in terms of three contributions,

L = Lb + Lm + Lm−nl, (1)

where Lb describes the baryons and their interaction with the
mesons, the second term refers to the free Lagrangian density for
the meson fields Lm, both terms are included in DD and NL
models. The third term, Lm−nl, is only present in NL models
and includes all the self-interaction terms between mesons and
non-linear terms mixing two different mesons. The first term
is given by

Lb =
8

∑

j=1

ψ̄j

(

iγµ∂
µ −mj + gσ jσ + gσ ∗jσ

∗

−gωjγµω
µ − gφjγµφ

µ − gρjγµ EρµEIj
)

ψj. (2)

ψj stands for the field of j baryon, σ , σ ∗ are scalar-isoscalarmeson
fields, coupling to all baryons (σ ) and to strange baryons (σ ∗),
and ωµ, φµ, Eρµ denote the vector isoscalar (the first two) and
isovector (the last) fields, respectively. The ω and Eρ couple to all
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baryons and the φ only to baryons with strangeness. The second
term is given by

Lm = +1

2
(∂µσ∂

µσ −m2
σσ

2)+ 1

2
(∂µσ

∗∂µσ ∗ −m2
σ ∗σ

∗2)

−1

4
WµνW

µν − 1

4
PµνP

µν − 1

4
ERµν ERµν

+1

2
m2
ωωµω

µ + 1

2
m2
φφµφ

µ + 1

2
m2
ρ Eρµ · Eρµ , (3)

where Wµν , Pµν , ERµν are the vector meson field tensors Vµν =
∂µVν − ∂νVµ. Finally, the third term, that is only present in NL
models, has the form

Lm−nl(σ ,ωµω
µ) = −1

3
g2σ

3 − 1

4
g3σ

4 + 1

4
c3(ωµω

µ)2

+
(

a1g
2
σNσ

2 + b1gωNωµω
µ
)

Eρµ · Eρµ

= −Us(σ )+ Uv(ω
µωµ)+ A(σ ,ωµωµ) Eρµ · Eρµ.

(4)

These terms allow the reproduction of nuclear properties in
NL models, and, in particular, the last term defines the density
dependence of the symmetry energy.

For DD models, L = Lb + Lm, and the couplings gσN ,
gωN , gρN are functions of the baryonic density. The couplings of
meson i to baryon j are written in the form

gij(nB) = gij(n0)hM(x) , x = nB/n0 , (5)

where the density n0 is the saturation density n0 = nsat of
symmetric nuclear matter. In the present study, we consider the
parametrizations DD2 (Typel et al., 2010) andDDME2 (Lalazissis
et al., 2005). For these two parametrizations the functions hM
assume for the isoscalar couplings the form (Typel et al., 2010),

hM(x) = aM
1+ bM(x+ dM)2

1+ cM(x+ dM)2
(6)

and for the isovector couplings the form

hM(x) = exp[−aM(x− 1)] . (7)

The values of the parameters aM , bM , cM , and dM , as well
as the σ , ω, and ρ meson masses, can be obtained from
Typel et al. (2010) for DD2 and from Lalazissis et al. (2005)
for DDME2.

For the class of NLmodels, we take the full Lagrangian density
(1) and the constants couplings gσN , gωN , gρN , g2, g3, c3, a1, b1
together with the σ , ω, and ρ meson masses are fitted to different
kinds of data: experimental, theoretical and observational. We
will only consider a1 6= 0 and b1 = 0 or, a1 = 0 and
b1 6= 0. These terms have been introduced in Horowitz and
Piekarewicz (2001a) and Horowitz and Piekarewicz (2001b) to
explicitly model the density dependence of the symmetry energy.

Both classes of models will be considered in the
mean field approximation, where the meson fields

are replaced by their respective expectation values in
uniform matter:

m2
σ σ̄ =

∑

j∈B
gσ jn

s
j +

∂Lm−nl

∂σ̄
(8)

m2
σ ∗ σ̄

∗ =
∑

j∈B
gσ ∗jn

s
j (9)

m2
ωω̄ =

∑

j∈B
gωjnj −

∂Lm−nl

∂ω̄
(10)

m2
φ φ̄ =

∑

j∈B
gφjnj (11)

m2
ρ ρ̄ =

∑

j∈B
gρjt3jnj −

∂Lm−nl

∂ρ̄
(12)

with ρ̄ = 〈ρ03 〉, ω̄ = 〈ω0〉, φ̄ = 〈φ0〉, and t3j the third component
of isospin of baryon j with the convention t3p = 1/2. The scalar
density of baryon j is given by

nsj = 〈ψ̄jψj〉 =
1

π2

∫ kFj

0
k2

M∗
j

ǫj
dk , (13)

and the number density by

nj = 〈ψ̄jγ
0ψj〉 =

k3Fj

3π2
, (14)

where ǫj(k) =
√

k2 +M∗2
j , and effective chemical potential is

µ∗
j =

√

k2Fj +M∗2
j . (15)

The effective baryon mass M∗
i is expressed in terms of the

scalar mesons

M∗
i = Mi − gσ iσ̄ − gσ ∗iσ̄

∗ , (16)

where Mi is the vacuum mass of the baryon i. The chemical
potentials are defined by

µi = µ∗
i + gωiω̄ + gρi t3iρ̄ + gφiφ̄ +6R

0 . (17)

where the rearrangement term 6R
0 is only present in the class of

DD models and ensures thermodynamic consistency,

6R
0 =

∑

j∈B

(

∂gωj

∂nj
ω̄nj + t3j

∂gρj

∂nj
ρ̄nj +

∂gφj

∂nj
φ̄nj

−∂gσ j
∂nj

σ̄nsj −
∂gσ ∗j

∂nj
σ̄ ∗nsj

)

. (18)

In the class of DD models we consider the models DD2 (Typel
et al., 2010) and DDME2 (Lalazissis et al., 2005). In the class
of NL models we choose FSU2 (Chen and Piekarewicz, 2014),
FSU2H and FSU2R (Tolos et al., 2017; Negreiros et al., 2018),
NL3 (Lalazissis et al., 1997), NL3 σρ and NL3 ωρ (Horowitz and

Frontiers in Astronomy and Space Sciences | www.frontiersin.org 3 March 2019 | Volume 6 | Article 13

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Providência et al. Hyperonic Stars and the Nuclear Symmetry Energy

TABLE 1 | Nuclear matter properties of the models considered in this study:

saturation density n0, binding energy B, incompressibility K, symmetry energy

Esym, and its slope L, all defined at saturation density, and the crust-core

transition density nt.

n0 B K Esym L nt

[fm−3] [MeV] [MeV] [MeV] [MeV] [fm−3]

DD MODELS

DD2 0.149 –16.0 242.6 31.7 55 0.067

DDME2 0.152 –16.1 250.9 32.3 51 0.072

NL MODELS

FSU2 0.1505 –16.28 238 37.6 113 0.054

FSU2R 0.1505 –16.28 238 30.7 47 0.083

FSU2H 0.1505 –16.28 238 30.5 44.5 0.087

NL3 0.148 –16.24 271 37.4 118 0.055

NL3 σρ 0.148 –16.24 271 31.7 55 0.080

NL3ωρ 0.148 –16.24 271 31.5 55 0.081

TM1 0.145 –16.26 281 36.8 108 0.060

TM1ωρ 0.145 –16.26 280 31.6 56 0.082

TM1 σρ 0.145 –16.26 280 31.4 56 0.080

TM1-2 0.145 –16.3 281.3 36.9 111 0.061

TM1-2 ωρ 0.146 –16.3 281.7 32.1 55 0.076

Piekarewicz, 2001a; Pais and Providência, 2016), TM1 (Sugahara
and Toki, 1994), TM1ωρ and TM1σρ (Bao and Shen, 2014; Pais
and Providência, 2016), TM1-2 and TM1-2 ωρ (Providencia and
Rabhi, 2013). See Table 1 for their properties.

Most of these models have a symmetry energy slope below 60
MeV but there are three of them with a slope above 100 MeV
(NL3, TM1, and FSU2), out of the range of values 40 < L < 62
MeV (Lattimer and Lim, 2013) and 30 < L < 86 MeV (Oertel
et al., 2017) which where defined by terrestrial, theoretical,
and, for the second range, also by observational constraints. In
addition, these three models do not satisfy constraints obtained
from microscopic calculations of neutron matter based on
nuclear interactions derived from chiral effective field theory
(Hebeler et al., 2013), or from realistic two- and three-nucleon
interactions using quantum Monte Carlo techniques (Gandolfi
et al., 2012). We keep them in the discussion because they are still
frequently used and it is interesting to show how a stiff symmetry
energy affects the behavior of an hyperonic EoS. Besides, the
Lead Radius Experiment (“PREX”) (Abrahamyan et al., 2012)
has not excluded large symmetry energy slopes and models as
the TAMUC parametrizations (Fattoyev and Piekarewicz, 2013)
or the FSU2 parametrization (Chen and Piekarewicz, 2014)
reproduce finite nuclei properties and the neutron star maximum
mass, and have a similar slope or even larger. Also, from the
analysis of elliptic flow in heavy ion-collisions the constraint
L = 85 ± 22(exp) ± 20(th) ± 12(sys) MeV has been recently
extracted (Cozma, 2018), and it does not exclude large slopes.

3. INNER CRUST

In the present study we will only consider unified EoSs at the
level of the inner crust and core, since it has been shown in

Fortin et al. (2016b) Pais and Providência (2016) that a non-
unified EoS may give rise to large uncertainties in the NS radius.
In fact, if the inner crust EoS is not obtained consistently with the
core EoS, that is using the same nuclear model, uncertainties on
the radius determination may arise both due to the EoS chosen
and to the matching procedure, in particular, the density chosen
for the inner-crust core transition. The uncertainties introduced
when using a non-consistent EoS for the core and the crust are
larger for the less massive stars and, in Fortin et al. (2016b), it
was shown that they can be as high as 4 and 30%, respectively,
for the radius and crust thickness of a 1.0M⊙ NS. In Pais and
Providência (2016), the authors propose that, if the crust-core
transition density is known , and it can be estimated from a
dynamical spinodal calculation, an adequate choice of the inner
crust EoS is to take one from a model that has a similar density
dependence of the symmetry energy. In Zdunik et al. (2017) a
simple and yet very accurate approximation is presented that
allows to calculate with a high precision the NS radius and the
crust thickness without employing any EoS for the crust. Several
outer crust EoS are available presently, e.g., BPS, HP, or Ruester
etc. (Baym et al., 1971; Haensel and Pichon, 1994; Rüster et al.,
2006), but since they all are strongly constrained by nuclear
physics data, the radius of the star is not affected by the choice
of a particular one. It is important to stress that the inner crust
EoS will affect the radius but not the mass of the star since the
mass fraction in the crust is very small. On the other hand, the
crust forming the less compact part of the star, it has an important
contribution to the star total radius.

The inner crust EoSs for the models we are considering
have been calculated within the Thomas-Fermi approximation
(Avancini et al., 2008; Grill et al., 2012, 2014). In the above
approach, we assume that the inner crust is formed by non-
homogeneous npe matter inside a Wigner-Seitz cell of one, two,
or three dimensions. Besides, the fields are considered to vary
slowly so that matter can be treated as locally homogeneous.
Since the density of the nucleons is determined by their Fermi
momenta, we can then write the energy as a functional of the
density. The equations of motion for the meson fields follow
from variational conditions and are integrated over the whole
cell. For a given density, the equilibrium configuration is the
one that minimizes the free energy. For the present study,
we have calculated the inner crust EoS for the models FSU2
(Chen and Piekarewicz, 2014) and FUS2R, FSU2H (Tolos et al.,
2017) see Table 5. In Table 2, we give the density transitions
between pasta configurations, nd−r from droplets to rods and
nr−s from rods to slabs, as well as nt , the crust-core transition
density that defines the transition to homogeneous matter.
β-equilibrium is imposed, and under these conditions, the
configurations corresponding to tubes and bubbles are not
present. We confirm the conclusion drawn in Oyamatsu and
Iida (2007), where it was discussed that models with large
values of L, such as FSU2, do not predict the existence of pasta
phases, due to their large neutron skin thicknesses, contrary to
models with a small value of L, such as FSU2R and FSU2H.
In Figure 5 we list the inner crust EoS, i.e., baryonic density,
energy density ,and pressure, for the models FSU2, FSU2H,
and FSU2R.
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TABLE 2 | Density transitions in the pasta phase, nd−r and nr−s, for the models

considered in this work.

Model nd−r nr−s nt

FSU2 – – 0.054

FSU2R 0.037 0.060 0.083

FSU2H 0.041 0.067 0.087

nt indicates the transition density to homogeneous matter. All densities are given in units

of fm-3.

4. CALIBRATED HYPERON COUPLINGS

In the present study, we will only consider calibrated 3-meson
couplings as obtained in Fortin et al. (2017, 2018a) in order
to reproduce experimental data of 3-hypernuclei. The binding
energies of single and double 3-hypernuclei are calculated
solving the Dirac equations for the nucleons and 3s, following
the approach described in Shen et al. (2006) and Avancini et al.
(2007). For the RMF models with density-dependent couplings,
we have assumed the same density dependence for hyperon- and
nucleon-meson couplings.

Besides the hyperon-meson coupling calibration to the
hypernuclei properties done in Shen et al. (2006), some
other works have discussed this problem. Glendenning and
Moszkowski (1991) have been the first to set constraints on the
scalar and vector couplings of the hyperons using hypernuclei
measurements, in particular, the empirical binding of the 3
hyperon in saturated symmetric nuclear matter. More recently
van Dalen et al. (2014) have adjusted a relativistic density
functional to simultaneaously satisfy laboratory hypernuclei data
and astronomical data, allowing SU(6) symmetry breaking and
mixing in the isoscalar sector.

Following the approach described in Fortin et al. (2017),
we have obtained calibrated couplings for the FSU2 (Chen
and Piekarewicz, 2014), and the FSU2R and FSU2H RMF
parametrizations recently proposed in Tolos et al. (2017). The
last two parametrizations have been fitted to both properties of
nuclear matter and finite nuclei and NS properties. The former
one was fitted to ground-state properties of finite nuclei and their
monopole response. They all describe 2M⊙ NSs.

The values of the coupling constant fractions Rσ3 and Rω3
to the σ and ω mesons are given in Table 3, and Rσ ∗3 and Rφ3
to the σ ∗ and φ mesons in Table 4 where Rσ3 = gσ3/gσN and
similarly for the other meson fields. For reference, we also give
the3-potential in symmetric nuclear matter at saturation density
n0 in Table 3, and in pure 3-matter at n0 and n0/5 in Table 4 as
these are quantities traditionally used to obtain hyperonic EoSs
within the RMF approach.

For the coupling of the 3 to the ω meson we consider either
the SU(6) quark model value: Rω3(SU(6)) = 2/3, the so-called
models “-a,” or the maximum expected coupling, i.e., Rω3 = 1,
forming the models “-b.” For the coupling between the 3 and
the φ-meson we include in the tables results obtained with the
SU(6) value, Rφ3(SU(6)) = −

√
2/3 and with 3Rφ3(SU(6))/2 =

−
√
2/2. We assume that the ω and φ mesons do not couple

(Schaffner and Mishustin, 1996; Weissenborn et al., 2012).

TABLE 3 | Calibration to single 3-hypernuclei: for given Rω3, values of Rσ3
calibrated to reproduce the binding energies B3 of hypernuclei in the s and p

shells.

Model Rω3 Rσ3 UN
3
(n0)

FSU2-a 2/3 0.619 –30

FSU2-b 1 0.894 –32

FSU2R-a 2/3 0.618 –34

FSU2R-b 1 0.893 –37

FSU2H-a 2/3 0.620 –35

FSU2H-b 1 0.893 –38

The last column contains the value of the 3-potential in symmetric baryonic matter at

saturation in MeV, for reference.

For a given φ-meson coupling, the σ ∗-meson coupling is fitted
to the bond energy of the only double-3 hypernucleus for which
it has been measured unambiguously, that is 6

33He. Two sets of
parameters are given for each φ coupling corresponding to the
lower and upper values of the bond energy of 6

33He: 1B33 =
0.50 or 0.84 MeV.

To test the new parametrizations, we have integrated
the Tolman-Oppenheimer-Volkoff equations, allowing the
appearance of hyperons in the core of the star. For the outer
crust, we have considered the EoS proposed in Rüster et al.
(2006), and the EoS of the inner crust was obtained from a
Thomas Fermi calculation, see (Grill et al., 2012, 2014), as
discussed in the previous section, consistently with the core EoS.

With the complete EoS, we have calculated the NS maximum
mass Mmax as a function of Rφ3 including only the 3 hyperons
in the EoS in addition to the nucleons, for the models “-a”
and “-b,” see black lines in Figure 1. The values Rσ3, Rφ3, and
Rσ ∗3 are adjusted to reproduce the binding energies of single3-
hypernuclei and of 633He with 1B33 = 0.50 MeV (solid lines)
and 0.84 MeV (dashed lines).

In Figure 1 the colored lines correspond to models that also
include the 4 and 6 hyperons. For these hyperons the values of
hyperonic single-particle mean field potentials have been used
to constrain the scalar coupling constants. The potential for a
hyperon Y in symmetric nuclear matter is given by

UN
Y (nk) = M∗

Y −MY + µY − µ∗
Y , (19)

where the chemical potential µY and the effective chemical
potential µ∗

Y have been defined in Equations (17) and (15). For
the 4 potential we take UN

4 (n0) = −14 MeV, compatible with
the analysis in Khaustov et al. (2000) and Gal et al. (2016) of the
experimental data for the reaction 12C(K−,K+)12

4−Be, which are

reproduced using a potential UN
4 (n0) ∼ −14 to−18 MeV.

Phenomenological analysis of data on 6− atoms and
(π−,K+) reactions indicate that the 6 potential in nuclear
matter is repulsive and strongly spin dependent (Gal, 2010;
Sugimura et al., 2014; Gal et al., 2016; Honda et al., 2017;
Harada et al., 2018), an estimation for the isoscalar 6-potential
at saturation density being +30 ± 20 MeV. Similar conclusions
are drawn for the 6-nucleon potential derived within the chiral
effective field theory Haidenbauer and Meißner (2015), although
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TABLE 4 | Calibration to double 3-hypernuclei for models -a and -b of Table 3.

Model 1B33 = 0.50 1B33 = 0.84

Rφ3 R
σ *3

U3
3
(n0) U3

3
(n0/5) R

σ *3
U3

3
(n0) U3

3
(n0/5)

FSU2-a −
√
2/3 0.553 −7.98 −5.03 0.577 −11.33 −5.72

−
√
2/2 0.862 −5.56 −5.04 0.877 −8.88 −5.74

FSU2-b −
√
2/3 0.573 0.48 −6.21 0.604 −3.85 −7.15

−
√
2/2 0.874 5.39 −6.18 0.894 1.15 −7.12

FSU2R-a −
√
2/3 0.552 −7.52 −4.95 0.577 −11.00 −5.67

−
√
2/2 0.860 −5.12 −4.96 0.876 −8.56 −5.68

FSU2R-b −
√
2/3 0.573 1.31 −6.15 0.604 −3.13 −7.11

−
√
2/2 0.873 6.18 −6.12 0.894 1.83 −7.08

FSU2H-a −
√
2/3 0.544 −8.62 −5.52 0.570 −12.16 −6.26

−
√
2/2 0.848 −6.42 −5.53 0.865 −9.93 −6.26

FSU2H-b −
√
2/3 0.564 4.20 −7.01 0.598 −0.34 −7.99

−
√
2/2 0.860 8.75 −6.98 0.883 4.31 −7.96

For a given Rφ3, Rσ *3 is calibrated to reproduce either the upper or the lower values of bound energy of 633He. For reference the 3-potential in pure 3-matter at saturation and at n0/5

are also given. All energies are given in MeV.

FIGURE 1 | NS maximum mass Mmax as a function of Rφ3 for FSU2R (Left) and FSU2H (Right) and hyperonic models -a and -b. The values Rσ3 and R
σ *3

are

adjusted to reproduce the binding energies of single 3-hypernuclei and of 6
33

He with 1B33 = 0.50 MeV (solid lines) and 0.84 MeV (dashed lines) for chosen values

of Rω3 and Rφ3. The arrows indicate Rφ3 (SU(6)). See text for details.

slightly less repulsive potentials are predicted, of the order of+15
MeV. Taking into account the existing uncertainties with respect
to the strength of the 6 potential we show results for two values,
UN
6 (n0) = 0 and+30 MeV.
Since, presently no information on double 4- or 6-

hypernuclei exist, we obtain a lower limit for the maximummass
of hyperonic NSs not including the mesons that account for the
YY interaction except for the 3-hyperons in order to reproduce
measurements obtained for 6

33He. However, since the φ meson
is responsible for a repulsive YY interaction, its inclusion will
raise the lower mass limit favoring more massive stars. In
the next section, we will, therefore, perform our discussion
including the φ-meson and will fix its coupling using SU(6)
symmetry arguments. For the ω-meson couplings we consider
the SU(6) values:

gω4 = 1

3
gωN = 1

2
gω6 . (20)

In Figure 1 predictions for two limiting scenarios are plotted:
(a) the EoSs defining the minimal hyperonic model include
only the 3 hyperons in addition to the nucleons (black lines).
These models may be considered to set an upper limit on
the maximum mass of an hyperonic NS, because adding other
degrees of freedom will soften the EoS; (b) the EoSs designated
as maximal hyperonic models include the full baryonic octet
(colored lines). An estimation of the lower limits for the
maximum mass of hyperonic NSs is obtained not including
the mesons that account for the YY interaction. The blue
stripped areas in Figure 2 correspond, precisely, to the mass
range covered when employing the minimal hyperonic models
and the maximal hyperonic models with U6(n0) = 0 MeV
and U4(n0) = −14 MeV, taking the SU(6) values of the
coupling constants Rω3 and Rφ3 for both sets of models and
also the SU(6) value of the coupling constant Rω6 in the maximal
hyperonic models.
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TABLE 5 | Equation of state of the inner crust with pasta for the FSU2, FSU2R, and FSU2H models.

FSU2 FSU2R FSU2H

nB (fm−3) ε P ε P ε P

0.002 – – 0.009527397342 1.114900624E-05 0.009527062997 1.084494306E-05

0.003 0.01427514106 1.190916646E-05 0.014298330992 1.92066982E-05 0.014297628775 1.854789298E-05

0.004 0.019038049504 1.555793278E-05 0.019072251394 2.883538582E-05 0.0190710444 2.77711606E-05

0.005 0.023801861331 1.90039882E-05 0.0238487795 3.988303797E-05 0.023846937343 3.831203867E-05

0.006 0.02856634371 2.219665839E-05 0.028627665713 5.224829874E-05 0.028625067323 5.00691749E-05

0.007 0.033331338316 2.518662041E-05 0.033408716321 6.588049291E-05 0.033405266702 6.304256385E-05

0.008 0.038096740842 2.787251651E-05 0.038191791624 8.06275857E-05 0.038187392056 7.702950097E-05

0.009 0.042862471193 3.045706035E-05 0.042976766825 9.633754962E-05 0.042971335351 9.21820174E-05

0.01 0.047628492117 3.299092714E-05 0.047763541341 0.0001129090306 0.047757018358 0.0001081453593

0.011 0.052394766361 3.547411325E-05 0.052552033216 0.0001304940524 0.052544362843 0.000125274295

0.012 0.057161271572 3.816001117E-05 0.057342153043 0.0001487378759 0.057333290577 0.0001430620323

0.013 0.061928000301 4.089658614E-05 0.062133830041 0.0001677418768 0.062123749405 0.0001618632959

0.014 0.066694952548 4.403857383E-05 0.06692700088 0.0001874553564 0.066915675998 0.0001813740673

0.015 0.071462139487 4.753530811E-05 0.071721583605 0.0002076755918 0.071709007025 0.0002014929632

0.016 0.076229587197 5.148813943E-05 0.076517544687 0.0002283012436 0.07650372386 0.0002223720076

0.017 0.080997288227 5.609977597E-05 0.08131480962 0.0002493830107 0.081299744546 0.0002436057839

0.018 0.08576527983 6.131953705E-05 0.0861133039 0.0002707181557 0.086097031832 0.0002654477139

0.019 0.090533591807 6.740081153E-05 0.090913005173 0.0002924080472 0.090895555913 0.0002876950603

0.02 0.09530223906 7.4292926E-05 0.095713868737 0.0003139965702 0.095695272088 0.0003102971241

0.021 0.100071251392 8.219858137E-05 0.100515827537 0.0003359398397 0.100496120751 0.0003333046334

0.022 0.104840673506 9.121913899E-05 0.105318851769 0.0003578324395 0.105298064649 0.0003565148218

0.023 0.109610520303 0.000101202575 0.11012288928 0.0003798264079 0.110101081431 0.0003796743404

0.024 0.114380836487 0.0001125542913 0.114927917719 0.0004017696483 0.114905133843 0.0004031886056

0.025 0.119151651859 0.0001250715868 0.119733855128 0.0004236115783 0.119710162282 0.0004268042394

0.026 0.123922996223 0.0001390585239 0.124540701509 0.0004456055467 0.124516174197 0.0004503185046

0.027 0.12869489193 0.0001543630642 0.129348397255 0.0004673461081 0.129323080182 0.0004739848082

0.028 0.133467406034 0.0001713399688 0.134156942368 0.000488934631 0.13413092494 0.0004976511118

0.029 0.138240531087 0.0001899385388 0.138966232538 0.0005105231539 0.138939589262 0.0005212160759

0.03 0.143014326692 0.0002100067359 0.143776282668 0.0005318076001 0.143749088049 0.0005448316806

0.031 0.147788822651 0.00023195002 0.148587062955 0.0005528387264 0.148559391499 0.0005683459458

0.032 0.152564063668 0.0002554136154 0.153398528695 0.0005738697946 0.153370469809 0.0005917081726

0.033 0.157340064645 0.0002810056321 0.158210650086 0.0005944954464 0.158182263374 0.0006148677203

0.034 0.162116870284 0.0003082193434 0.163023427129 0.0006149184192 0.162994787097 0.0006379765691

0.035 0.166894495487 0.000337612204 0.167836785316 0.0006351386546 0.167807996273 0.0006608827389

0.036 0.171672984958 0.0003686773998 0.172650724649 0.0006551561528 0.1726218611 0.0006836875109

0.037 0.176452368498 0.000402124424 0.177465245128 0.0006747682928 0.177436366677 0.0007060868666

0.038 0.181232705712 0.00043759853 0.182280123234 0.0006842956063 0.182251513004 0.0007283848827

0.039 0.1860139817 0.0004748970096 0.187095478177 0.0007031476125 0.187067225575 0.0007504802197

0.04 0.190796226263 0.0005146786571 0.191911309958 0.0007218982209 0.191883504391 0.0007723727613

0.041 0.195579528809 0.0005562847364 0.196727633476 0.0007402940537 0.196700364351 0.0007939613424

0.042 0.200363859534 0.0006004753523 0.201544389129 0.0007583858096 0.201517611742 0.0008047556039

0.043 0.205149263144 0.0006465410697 0.206361606717 0.000776224304 0.206335306168 0.0008256346337

0.044 0.209935769439 0.0006952419062 0.211179211736 0.0007938092458 0.21115347743 0.000846361625

0.045 0.214723423123 0.0007457671454 0.215997248888 0.0008110902854 0.215972140431 0.0008667845977

0.046 0.219512179494 0.0007990797167 0.220815643668 0.0008282191702 0.220791265368 0.0008869034355

0.047 0.224302142859 0.0008542166324 0.22563444078 0.000844891998 0.225610807538 0.0009068703512

0.048 0.229093328118 0.000912090065 0.230453595519 0.0008614128456 0.230430826545 0.0009265838307

0.049 0.233885720372 0.0009717879584 0.235273063183 0.0008776801988 0.235251218081 0.0009459425928

0.05 0.238679364324 0.001034171786 0.240092903376 0.0008935928927 0.24007204175 0.0009650985594

(Continued)
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TABLE 5 | Continued

FSU2 FSU2R FSU2H

nB (fm−3) ε P ε P ε P

0.051 0.243474245071 0.001098278561 0.244913056493 0.0009093027911 0.244893237948 0.0009840012062

0.052 0.24827042222 0.001162892091 0.249733552337 0.0009247594862 0.249714821577 0.001002650475

0.053 0.25306776166 0.001220613485 0.2545543015 0.0009399626288 0.254536747932 0.001021046308

0.054 0.257866412401 0.001290649641 0.259375363588 0.0009549123934 0.259359031916 0.001039239462

0.055 – – 0.2641967237 0.0009696595371 0.264181643724 0.001057128538

0.056 – – 0.269018322229 0.0009840518469 0.269004613161 0.001074814936

0.057 – – 0.273840218782 0.0009982922347 0.273827910423 0.001092247898

0.058 – – 0.278662353754 0.001012228429 0.278651505709 0.00110942754

0.059 – – 0.283484727144 0.001025962061 0.283475399017 0.001126353745

0.06 – – 0.288307338953 0.001039492781 0.288299590349 0.001143077272

0.061 – – 0.293129920959 0.001004930935 0.293124079704 0.001159547362

0.062 – – 0.297952502966 0.001019424642 0.29794883728 0.001175764133

0.063 – – 0.302775323391 0.001033664914 0.302773833275 0.001191778225

0.064 – – 0.307598352432 0.001047702623 0.307599157095 0.001207640162

0.065 – – 0.312421619892 0.001061537536 0.312424719334 0.001223147381

0.066 – – 0.317245006561 0.001075220411 0.317250490189 0.001238451921

0.067 – – 0.322068631649 0.001088599092 0.322076499462 0.001253503142

0.068 – – 0.326892495155 0.001101825968 – –

0.069 – – 0.331716567278 0.001114748651 – –

0.07 – – 0.33654075861 0.001127468655 – –

0.071 – – 0.34136518836 0.001139935222 0.341381192207 0.001264145365

0.072 – – 0.346189767122 0.00115209783 0.346207857132 0.001279652584

0.073 – – 0.351014554501 0.00116395636 0.35103482008 0.001294906368

0.074 – – 0.355839431286 0.001175460056 0.355861902237 0.001309957588

0.075 – – 0.36066454649 0.001186609035 0.360689252615 0.001324755372

0.076 – – 0.365489840508 0.001197352656 0.365516811609 0.001339299721

0.077 – – 0.370315164328 0.001207538764 0.370344519615 0.001353590749

0.078 – – 0.375140637159 0.001217218116 0.375172406435 0.001367526944

0.079 – – 0.379966259003 0.001226238674 0.380000561476 0.001381159294

0.08 – – 0.384792000055 0.001234499039 0.384828835726 0.001394436695

0.081 – – 0.389617711306 0.001241948688 0.389657229185 0.00140725798

0.082 – – 0.394443571568 0.001248486107 0.394485831261 0.001419521985

0.083 – – 0.399269461632 0.0012539085 0.399314552546 0.001431279001

0.084 – – – – 0.404143542051 0.001442377339

0.085 – – – – 0.408972501755 0.001452614204

0.086 – – – – 0.413801699877 0.001462040236

0.087 – – – – 0.418630868196 0.001470199204

The energy density, ε, and pressure, P, are in units of fm−4.

Under the above conditions the FSU2R model with hyperons
does not describe two solar mass stars [not even 1.9 M⊙ as
indicated by the most recent measurements of PSR J1614 −
2230 (Arzoumanian et al., 2018)]. This conclusion had already
been drawn in Tolos et al. (2017). In Figure 2 the red curves
have been obtained with the hyperon parametrization defined
in Tolos et al. (2017). It lies above the upper limit defined by
the minimal hyperonic model because the σ ∗ was not included,
and the 3-σ coupling was also smaller giving rise to a potential
equal to –28 MeV instead of ∼ −35 MeV obtained with the
calibrated parametrization.

5. SYMMETRY ENERGY AND HYPERONIC
NEUTRON STARS

In the present section, we discuss the effect of the density
dependence of the symmetry energy on the onset of the different
hyperon species, and on the onset of the direct Urca process in the
presence of hyperons. The study will be undertaken considering
a family of models generated from the TM1 model (Sugahara
and Toki, 1994). The inclusion of the non-linear term Lnl that
couples the ω and the σ mesons to the ρ-meson will allow
the generation of a family of models with the same underlying
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FIGURE 2 | M− R relations for the FSU2R and FSU2H models. The gray

strips correspond to the mass of the two heaviest known NSs, PSR

J1614− 2230 and PSR J0348+ 0432. The black lines are obtained for purely

nucleonic models, the red ones for the models presented in Negreiros et al.

(2018). The blue stripped areas correspond to the mass range covered when

employing the minimal and maximal hyperonic models for SU(6) values of the

coupling constants Rω3 and Rφ3 of the 3 hyperons, and, additionally, the

SU(6) value of the coupling constant Rω6 , U6 (n0) = 0 MeV and

U4(n0) = −14 MeV for the maximal hyperonic model—see Figure 1.

isoscalar properties and different isovector properties (Bao and
Shen, 2014; Pais and Providência, 2016). This family is built
in such a way that all the models predict the same symmetry
energy, equal to the one predicted by TM1, at nB = 0.1 fm−3. It
was shown in Pais and Providência (2016) that the ground-state
properties of nuclei used to calibrate TM1 are still quite well-
reproduced when the new terms are introduced in the model.
Contrary to the previous section, in the present and following
sections we will consider that the 6 and 4 hyperons couple to
the φ-meson with the couplings defined by the SU(6) symmetry,
unless when Figure 9 is discussed.

5.1. The Direct Urca Process: Nucleonic
Neutron Stars
The most efficient cooling mechanism of a NS by neutrino
emission is the nucleonic electron direct Urca (DU) process
(Lattimer et al., 1991) described by the equations

n → p+ e− + ν̄e and p+ e− → n+ νe. (21)

This process operates only if momentum conservation is allowed,
and this can be translated into the inequalities:

pFn ≤ pFp + pFe, (22)

where pFi is the Fermi momentum of species i. As a consequence,
in order for the DU process to occur the proton fraction
must be equal or above a minimum proton fraction Ymin

p

(Klahn et al., 2006):

Ymin
p = 1

1+
(

1+ x
1/3
e

)3 , (23)

where xe = ne/
(

ne + nµ
)

, and ne and nµ are the electron
and muon densities. In the following, we will designate by
nDU and mass MDU, respectively, the baryonic density at
which the DU process sets in and the mass of the star
where it starts operating, i.e., which has a central density
equal to nDU.

For some models the nucleonic DU process does not operate
inside NSs because the onset DU density is above the central
density of the most massive star. In our study this is the case
for the two models with density-dependent coupling parameters
DD2 and DDME2.

In order to discuss the influence of the density dependence
of the symmetry energy on the DU process, we include in
Figure 3 right panel the DU onset density as a function of
the slope L of the symmetry energy at saturation density (blue
curves) and the corresponding star masses on the left panels.
The blue dotted line is obtained for the nucleonic EoSs from
the family of TM1 models defined in section 2 and the other
blue curves have been obtained for hyperonic EoSs and will
be discussed below. It is clear that the DU process is strongly
influenced by the density dependence of the symmetry energy,
because this quantity defines the proton fraction in matter. A
similar relation was obtained in Cavagnoli et al. (2011) and
Providência et al. (2014). A large symmetry energy disfavors a
large proton-neutron asymmetry and, therefore, favors the DU
process and it sets in at low densities. On the contrary, a small
symmetry energy allows for large proton-neutron asymmetries
hence pushing the DU threshold to higher densities. In Horowitz
and Piekarewicz (2002), the authors have discussed how it
is possible to establish a relation between the 208Pb neutron
skin and the possibility of occurring the DU process. Since
the nuclear neutron skin is strongly correlated with the slope
L, the above observation is equivalent to the one displayed
in Figure 3.

5.2. The Direct Urca Process: Hyperonic
Neutron Stars
In the presence of hyperons, other channels are opened for
neutrino emission (Prakash et al., 1992):

6− → 60ℓ−ν̄ℓ, R = 0.61 (24)

4− → 40ℓ−ν̄ℓ, R = 0.22 (25)

6− → 3ℓ−ν̄ℓ, R = 0.21 (26)

40 → 6+ℓ−ν̄ℓ, R = 0.06 (27)

3 → pℓ−ν̄ℓ, R = 0.04 (28)

4− → 60ℓ−ν̄ℓ, R = 0.03 (29)

4− → 3ℓ−ν̄ℓ, R = 0.02 (30)

6− → nℓ−ν̄ℓ, R = 0.01. (31)

For each process the R factor indicates the efficiency of each
process with respect to the nucleonic DU process for which R = 1
(see Prakash et al., 1992). These different hyperonic DU channels
are opened as soon as the species involved set in. The most
efficient processes being the ones described by Equations (24–
26) and, in particular, the process (24) is almost three times more
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FIGURE 3 | (Right) Onset density of the different hyperons (3, 6−, and 4−) (red, yellow, and green lines), and of the DU process (blue lines), and NS central density

at the maximum mass (black lines) for the TM1ωρ family and three different values of the 6 potential at saturation (−10, 10, and 30 MeV) as a function of the slope of

the symmetry energy L. (Left) The NS masses corresponding to the different densities plotted in the right panel. The DU onset density in nucleonic matter and

corresponding star mass are also shown with blue dots. All other curves were obtained with models including hyperons.

FIGURE 4 | Particle fractions for U6 = +30 MeV (black lines with marks),

U6 = −10 MeV (color lines with marks), npeµ matter (solid lines), obtained

with model TM1ωρ.

efficient that the other two. This indicates that it is important to
establish whether the 6-hyperon occurs inside a NS. Since this
hyperon has isospin equal to one, it is expected that its occurrence
will be strongly influenced by the density dependence of the
symmetry energy.

The occurrence of hyperons affects the neutron, proton and
electron fractions. Therefore, Equation (21) for the nucleonic DU
threshold looses validity, and after hyperons set in, the minimum

proton fraction for nucleonic electron DU is given by
(

np

np + nn

)

= 1

1+
(

1+ xYe
1/3

)3 , xYe = ne

ne + nµ − nchY
,

(32)
where nchY = −n6− + n6+ − n4− . The nucleonic electron DU
process is not affected by the presence of hyperons inmodels with
a large slope L because its threshold is at densities lower than the
hyperon onset density. However, if L ≤ 75 MeV, the presence of
hyperons will affect the nucleonic electron DU process and the
effect depends on the value of the 6 potential: if very repulsive
(U6 of the order of couple of tens of MeV), the DU process turns
on at densities larger that the one obtained for nucleonic matter.
The contrary holds for less repulsive6 potentials.

In Figure 4, the fractions of the particles present inside a
NS star below n = 0.8 fm−3 for the TM1ωρ parametrization
are shown for hyperon free matter (thin black lines) and for
hyperonic matter taking U6(n0) = −10 and +30 MeV. For
the attractive potential (U6 at saturation negative) the 6− is
the first hyperon to set in and as soon as it appears the proton
fraction increases and the neutron fraction decreases, reducing
the difference between the proton and neutron Fermi momenta
and favoring the DU process relative to nucleonic matter. For the
very repulsive potential at saturation: U6 = 30 MeV, a value
that is generally employed in the recent literature, the 3 is the
first hyperon to set in and above its densities of appearance the
fractions of neutrons, protons, electrons, and muons all suffer
a reduction, the overall effect being that DU is disfavored with
respect to nucleonic matter.
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In Figure 3 right panel, which was partially discussed before,
we also plot, besides the onset density of the nucleonic electron
DU process, the onset densities of the 3, 6−, and 4− hyperons,
and the central density nc of the NS with the maximum mass
for three different values of U6 at saturation: −10, 10, and
30 MeV. Hyperons that are not included in the figure do
not appear at densities below nc and hence are not present
at all in NSs. The gray bands show the mass constraints
set by the pulsars PSR J1614 − 2230 and PSR J0348 +
0432. Even though the TM1ωρ family with hyperons and the
vector meson couplings to the hyperons defined by the SU(6)
symmetry do not satisfy the two solar mass constraint, the
main conclusions drawn with respect to the L dependence
of the several properties we discuss, is still valid for more
massive stars.

For L ≥ 75 MeV the DU process sets in at a density below
the hyperon onset density and, in fact, the DU process is possible
at densities of the order of 2n0 or below, corresponding to
stars with a mass equal to 1M⊙ or below. Observations do not
support a fast cooling for these low masses (see e.g., discussion in
Fortin et al., 2018b). The DU mass threshold rises monotonously
as L decreases below 75 MeV, and for L = 50 MeV attains
1.4 − 1.7M⊙ depending on the value of U6 , a large repulsive
value favoring a higher threshold. Similar conclusions have
been drawn in Cavagnoli et al. (2011), although using different
hyperonic models.

We finally comment on the effect of L on the hyperonic species
inside the star. The3 hyperon onset is practically not affected by
the value of U6 , and, although its onset density increases slightly
when L decreases, the mass of star at the 3-onset is essentially
independent of L and equal to 1.3M⊙. However, the other two
hyperons 6− and 4−, having a non-zero isospin are strongly
affected by the density dependence of the symmetry energy, the
onset density decreasing as L decreases. The more repulsive the
U6 the larger the onset density of the 6 and the mass of the star
where the hyperon sets in.

The strongest effect of the U6(n0) is observed for the lowest
values of L. At L = 56 MeV in nucleonic matter, the DU sets in at
nDU = 0.504 fm−3 corresponding to a star with a mass MDU =
1.81M⊙. The density nDU andmassMDU change to nDU = 0.411
fm−3 and MDU = 1.39M⊙ if U6(n0) = −10 MeV, and to
nDU = 0.566 fm−3 andMDU = 1.67M⊙ if U6(n0) = +30 MeV,
The4− does not occur unless the6 potential is quite repulsive.

One fact that should be pointed out is that the overall effect
of the value of L on the star maximum mass is negligible, a
conclusion that had already been drawn in Cavagnoli et al. (2011)
and Providencia and Rabhi (2013).

Next, we would like to quantify the effect of strangeness on
the star radius. This will be achieved by calculating the total
strange baryonic fraction NS/NB in stars with a fixed mass and
comparing the radii of these stars. NS is the star total strange
baryonic number and is defined by

NS =
4π

3

∫ R

0
dr

nsr
2

√

1−m(r)/r
,

FIGURE 5 | (Left) Radius of a 1.67M⊙ NS as a function of the total strange

baryonic fraction NS/NB at the maximum mass for four TM1ωρ models with

four different values of the slope L: 55.7, 68.0, 84.8, and 108.2 MeV. (Right)

M-R curves obtained with the models with the different values of L for

U6 = +30 MeV (thick lines) and −10 MeV (thin lines). The line color indicates

the value of the L as in the left panel. The blue upper bands show the

constraints set by the pulsars PSR J1614− 2230 and PSR J0348+ 0432.

where m(r) is the mass inside the radius r and ns the magnitude
of the strangeness density, and NB is the total baryonic number
of the star. As reference mass, we take a mass equal to 1.67M⊙,
the mass of the pulsar PSR J1903+0327, because the onset of
strangeness generally occurs in stars with a mass below this value.
In Figure 5 left panel, we show how the radius of NSs with a
mass equal to 1.67M⊙ changes with the total strange baryonic
fraction NS/NB when U6 varies between −10 and +30 MeV
and the other hyperon coupling parameters are kept unchanged
for parametrizations of the TM1ωρ family with different
values of L.

The right panel of the same figure represents the M-R curves
of the same models. For L = 108 MeV the 3-hyperon is the
responsible for almost all the strangeness content and, therefore,
it is not sensitive to the 6 potential. On the other hand, models
with smaller values of L are sensitive to the 6 potential and a
change of U6(n0) between −10 and +30 MeV is translated into
a reduction of ∼ 20% of the total strangeness content and an
increase of 300 − 400 m of the star radius. The overall effect
on the radius due to the inclusion of hyperons in the family of
models considered in this section is a reduction of at most 400 to
600m. Let us recall that several authors, including (Horowitz and
Piekarewicz, 2001b; Lattimer and Prakash, 2001; Carriere et al.,
2003; Cavagnoli et al., 2011; Lattimer and Steiner, 2014; Pais and
Providência, 2016), have shown that the NS radius is correlated
with the nucleus neutron skin, a quantity directly related with
the slope of the symmetry energy: the larger the slope of the
symmetry energy the larger the radius. This behavior is clearly
seen in the left panel of Figure 5 : for the non-hyperonic models,
located on the vertical axis where NS/NB = 0 of the left panel,
the radius of a 1.67M⊙ increases with the symmetry energy slope
L, and a difference in radius of almost 1 km is obtained between
models with L = 56 MeV and L = 108 MeV.
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FIGURE 6 | (Right) Onset density nDU of the DU process for models in which

the DU process turns on in NSs, as a function of the 6 potential at saturation

density. (Left) corresponding NS masses. All models considered include

hyperons.

5.3. Effect of the 6 Potential
It was shown in the previous section that besides the symmetry
energy the value of6 potential in symmetric matter at saturation,
chosen to fix the value of the σ -meson coupling, could also have
a strong effect on the properties of the star, in particular, if the
model has a small value of L. In the following, we analyse this
effect and, taking into account that the 6-meson interaction is
still not constrained, we allow it to vary between−10 and 30MeV,
although, as discussed in section 4, experimental results seem to
indicate it is repulsive in nuclear matter.

5.3.1. Direct Urca Process
In this section, we consider the set of models defined in section
2. We have discussed in the previous section the effect of the
density dependence of the symmetry energy on the onset of the
nucleonic electron DU process, whether hyperons are included
and present or not. In Figure 6 left panel, we plot the DU onset
density for the different models as a function of U6(n0) the 6
potential in symmetric nuclear matter at saturation. In the right
panel, the corresponding NS masses are shown. Models with a
large L, i.e., NL3, TM1, and FSU2, are not affected because nDU is
just above saturation density and lower than any of the hyperon
onset density. For all the other models the trend is similar: the
more repulsive U6(n0) is, the larger nDU.

To conclude, let us point out that the two models with density
dependent couplings do not predict the occurrence of the DU
process, even in the presence of hyperons.

5.3.2. Hyperon Species
In section 5.2 we have indicated the different channels that allow
for hyperonic direct Urca. It is, therefore, important to determine
under which conditions these processes occur, in particular, the
masses of the NSs for which they are opened. In the present
section we discuss for the models of Table 1 the maximum mass
central density, the onset density of the different hyperons and

the onset density of the nucleonic electron DU process as a
function of the U6 , and the corresponding NS masses.

In Figure 7, the above information is plotted for TM1, TM1ωρ
and TM1σρ MeV (left panels), and for TM1-2 and TM1-2ωρ
(right panels). Models with a non-linear term in ωρ or σρ have
L ≃ 55 MeV while TM1 and TM1-2 have a slope that is twice
as large: L ∼ 110 MeV. All these models give a maximum mass
below 1.9M⊙.

The behavior of the TM1 and TM1-2 EoS only differ
above saturation density, the TM1-2 EoS being stiffer. As a
consequence, hyperons set in at lower densities in TM1-2, and
the maximum masses are larger, but still below 1.9 M⊙, for the
set of hyperon-meson coupling chosen which considers for the
vector-isoscalar mesons the SU(6) symmetry. For TM1 and TM1-
2 as discussed before, the DU sets in NSs with masses below
1M⊙, independently of U6 . Models including the non-linear
term ωρ or σρ, and having a symmetry energy slope L ∼ 55
MeV, show a very different behavior. In this case, the magnitude
of U6(n0) has an important effect on the behavior of the system:
for U6 . 5 MeV, the 6 hyperon sets in at densities below
the onset of 3, and the corresponding NS have masses below
∼ 1.2M⊙, that is ∼ 0.2 − 0.3M⊙ smaller than the mass of the
star where the nucleonic electron DU process starts operating.
For U6 & 5 MeV, the 3-hyperon is the first hyperon to set in
and is not affected by the magnitude of U6(n0). This occurs for
stars with a mass ∼ 1.3M⊙. If U6 & 20 MeV, the 4−-hyperon
sets in before 6−, corresponding to a star mass of ∼ 1.6M⊙.
It is interesting to comment on the differences between models
TM1ωρ and TM1σρ which have the same symmetry energy slope
at saturation, but the density dependence of the symmetry energy
in TM1ωρ is modeled by the coupling of the ω-meson to the ρ-
meson, while in TM1σρ the ρ-meson couples to the σ -meson.
Within TM1σρ, the onset of the3 and6-hyperons as well as the
nucleonic electron DU process occur in stars with lower masses.
This is due to the fact that the softening effect on the symmetry
energy, which is always very effective in TM1ωρ because the ω-
field increases with density, saturates in model TM1σρ due to the
behavior of the σ -meson with density. Finally, we also conclude
that the overall effect of the value ofU6(n0) on the star maximum
mass is negligible.

Similar conclusions may be drawn for the models NL3,
NL3ωρ, and NL3ωρ, the main difference being that in this
case much larger star masses are attained, well above ∼ 2M⊙,
because these EoSs are harder than the EoS resulting from TM1,
TM1-2, and respective families. However, for these models the
maximum NS masses correspond to configurations where the
effective nucleonic mass becomes zero, as already pointed out in
Fortin et al. (2017). For this reason we do not show plots obtained
with this family of models.

In Figure 8 left panel, the behavior of models FSU2, FSU2R,
and FSU2H is shown. Model FSU2 has a large symmetry energy
slope L = 113 MeV, and properties similar to the ones of
TM1, presenting, however, smaller star masses at the hyperon
onset and smaller maximum star masses. FSU2R and FSU2H
have been fitted to a different set of properties and, in particular,
to a smaller symmetry energy slope (L ∼ 45 MeV), and were
built to describe a 2M⊙ star, even in the presence of hyperons
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FIGURE 7 | (Left) For TM1, TM1ωρ, TM1σρ (solid, dashed, and dot-dashed lines) and (Right) TM1-2 and TM1-2ωρ (solid and dashed lines), the onset density of the

different hyperons (3, 6−, and 4−) (magenta, gold, and green lines), onset density of the DU process (blue lines), and NS central density at the maximum mass

(black lines) (right) and the NS masses having as central densities the different densities plotted in the right panels (left).

FIGURE 8 | The same as in Figure 7 for the models FSU2, FSU2R, and FSU2H (Left) and DD2, DDME2 (Right).

for FSU2H . FSU2 and FSU2R in fact predict similar maximum
masses taking the SU(6) symmetry to fit the vector isoscalar
mesons, close to 1.75 M⊙, but for FSU2H the maximum mass
goes up to 2M⊙. Comparing the FSU2H and FSU2R models,
it is clear that because FSU2H is harder, the onset of hyperons
occurs at smaller densities, which, however, corresponds to larger
star masses. As an example, the onset of 3s occur at ∼ 1.3M⊙
for FSU2R and at ∼ 1.4M⊙ for FSU2H. Also the nucleonic
electron DU process turns on for the FSU2H model for masses
∼ 0.2M⊙ larger, and above 1.5M⊙ whichever values of U6 is
employed, going up to ∼ 1.7M⊙ for U6 = +30 MeV. The 6-
hyperon appears before the 3-hyperon in these two models at
larger values of U6 than discussed before, i.e., for U6 . +10
MeV. For such a slightly attractive potential hyperons appears
already in stars with masses below 1.25M⊙. One difference with
respect to the previous NL3, TM1 and TM1-2-like models is that
for the FSU2 like models, the 4-meson does not set in before
the 6-hyperon for U6 ≤ +30 MeV. This is a consequence of
the large isospin of 6− that compensates the repulsion of the 6
potential in symmetric nuclear matter. In order to analyze the
effect of the present results on the cooling of the NSs, one would

need to take into account the nucleonic and hyperonic pairing
(Raduta et al., 2017; Negreiros et al., 2018), and this will be left
for a future work.

We finally consider the two models with density-dependent
parameters, see Figure 8 right panel. They have very similar
behaviors, the only difference being that, since the DDME2
EoS is slightly harder, the incompressibility at saturation is
K = 251 MeV, the onset of hyperons and of the nucleonic
DU process occur at smaller densities and slightly larger star
masses (∼ 0.1M⊙). Just as for the FSU2-like models, for these
two models the 4−-hyperon does not set in before the 6− for
U6(n0) in the range −10,+30 MeV. The 3-meson appears in
stars with M = 1.3 − 1.4M⊙ and if U6 ∼ −10 MeV stars with
M ∼ 1 − 1.1M⊙ already contain 6-hyperons. The two density-
dependent models do not allow for the nucleonic electron DU
process to turn on. However, the hyperonic DU processes operate
inside the stars, and for U6 ≤ 10 MeV the process described in
Equation (26) is already open for stars withM ∼ 1.3M⊙.

Before finishing this section we would like to discuss the
effect of the uncertainties introduced in the previous discussion
by fixing the U4 in symmetric matter to −18 MeV and by

Frontiers in Astronomy and Space Sciences | www.frontiersin.org 13 March 2019 | Volume 6 | Article 13

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Providência et al. Hyperonic Stars and the Nuclear Symmetry Energy

FIGURE 9 | The same as in Figure 7 for different values of U6 , U4 and xφY and for models FSU2H and DDME2.

the unconstrained couplings of the 6 and 4-hyperons to
the φ-meson.

Following (Khaustov et al., 2000), we could have considered
U4(n0) = −14 MeV. In Figure 9 the solid (dashed) lines were
obtained with U4 = −18 (−14) MeV. The curves corresponding
to these two calculations are generally superposed, except for the
ones showing the onset density of the 4-hyperon, which will
occur at a density 0.05–0.1 fm−3 larger, if the higher value of U4
is considered. All other properties, such as the onset of the DU
process and of the other hyperons are insensitive to this change
ofU4, except if the6 potential is so repulsive that the4 hyperon
sets in before the6 hyperon. If future experiments show that the
6 potential is very repulsive in symmetric nuclear matter, models
will be more sensitive to the4 hyperon interaction.

We discuss in the following the role of the φ meson. In
Figure 9, for the FSU2H and DDME2 models the result of
switching off the coupling of the hyperons 6 and 4 to the
φ meson [as in the maximal hyperonic models defining a
lower limit on the NS mass (Fortin et al., 2017)] are compared
with the previous calculations for which the φ couplings to 6
and 4 hyperons are fixed to the SU(6) values. The φ meson
is responsible for the description of the YY interaction and,
therefore, its effect is noticeable at high densities but not on
the first hyperon to appear, for which it is the YN interaction
that plays a role. Once the first hyperon sets in, not including
the coupling to the φ-meson results in an earlier onset (lower
density) of the other hyperons. In particular, the 4 hyperon is
strongly affected because, having strangeness−2, the coupling of
the φ meson to the4 hyperon is two times larger. An immediate
consequence of this last effect is that the maximum mass
configuration is lowered and for both FSU2H and DDME2 it falls
below 1.9M⊙, the mass of the PSR J1614−2230. Removing the φ-
meson also affects the DU process in the FSU2Hmodel, bringing
its onset to lower densities, because of an increased hyperon
content and thus a reduction of the neutron Fermi momentum
which ultimately favors the occurrence of the DU process.

5.3.3. Steady Thermal State of Accreting NSs
We now explore how the value of the U6 potential and of the
symmetry energy affects the cooling of NSs. In particular, we

model the thermal state of NSs in Soft X-ray transients (SXTs)
and focus more specifically on SAX J1808.4-3658 (SAX J1808 in
the following) (Campana et al., 2002; Heinke et al., 2009), the SXT
with the lowest-observed luminosity.

Very recently, three works focused on the study of the cooling
of isolated middle-aged neutron stars containing hyperons in
their interior (Raduta et al., 2017; Grigorian et al., 2018; Negreiros
et al., 2018). The discussion in Raduta et al. (2017) has been
performed in the framework of the DDME2 relativistic density
functional and including pairing in the hyperonic sector, for the
3 and well as the 6− and 4−-hyperons, with hyperonic pairing
gap equations calculated within the Bardeen-Cooper-Schrieffer
approach. It was shown that the hyperons play an important role
in the cooling of neutron stars. The authors considered a highly
repulsive interaction between 6−. In Negreiros et al. (2018)
the authors also take a repulsive interaction for the 6− and
perform cooling simulations having as underlying models FSU2,
FSU2R, and FSU2H and including nucleon pairing only. They
conclude that cooling observations seem to be more compatible
with an a soft symmetry energy EoS. In Grigorian et al. (2018)
the authors compute the cooling evolution of NS using a stiff
EoS, MKVORHφ including hyperons (Maslov et al., 2016), and a
repulsive 6− potential. They include nucleon and3 pairing and
show that their cooling curves are quite sensitive to the proton-
proton gap. The present available cooling data are explained
within this models by either including or not including hyperons,
if appropriate pairing gaps are chosen and one considers that
different sources have different masses. In the following we will
only consider transiently accreting neutron stars. No pairing
effects will be included and, therefore, we should interpret the
results obtained as lower limits for the heating curves. In Han and
Steiner (2017) and Fortin et al. (2018b), thermal states of neutron
stars in soft x-ray transients were studied within nucleonic
models and the authors concluded that the interpretation of
observational data requires that the direct Urca process has to
occur and superfluidity pairing gaps should be small.

In SXTs NSs accrete matter from their binary companion
during short phases with a high luminosity followed by long
period of quiescence characterized by a low luminosity signaling
zero or strongly reduced accretion. During the accretion phases,

Frontiers in Astronomy and Space Sciences | www.frontiersin.org 14 March 2019 | Volume 6 | Article 13

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Providência et al. Hyperonic Stars and the Nuclear Symmetry Energy

the accreted matter undergoes a series of nuclear reactions
[electron captures and pycnonuclear fusions—see (Haensel and
Zdunik, 2008) and references therein] as it sinks deeper into
the crust under the weight of the newly-accreted matter. These
reactions release heat in the crust which propagates in the NS
interior, inwards heating the core and outwards emitted in the
form of photons at the surface. This is the so-called deep crustal
heating. After frequent and short periods of accretion the NS
reaches a state of thermal equilibrium with a constant internal
temperature throughout the star (Yakovlev and Pethick, 2004;
Yakovlev et al., 2004). This temperature is determined by the
balance between the heating generated during the accretion
phase, which is directly proportional to the accretion rate Ṁ
averaged over periods of accretion and quiescence, and the energy
losses in the form of (1) photons emitted from the surface of
the star and (2) of neutrinos freely escaping from the whole star
(see e.g., Fortin et al., 2018b for details). Consequently the steady
thermal states of accreting NS depends on three ingredients (1)
the composition of the NS envelope from where the photons
escape; (2) the NS core properties (EoS and composition) since
the core is responsible for most of the neutrino losses; (3)
the total heat release in the accreted crust. The EoS for the
crust hardly affects the thermal states, only the heat release per
accreted nucleon QDCH does and its values have been shown
to be rather robust: QDCH ∼ 2 MeV per accreted nucleon
(Haensel and Zdunik, 2008; Fantina et al., 2018). Thus, in the
following we adopt the model for the accreted crust and the
deep crustal heating from Haensel and Zdunik (2008) for lack
of model consistent with the core EoSs that we employ. We
use two limiting models of NS envelopes corresponding to
either the absence of light elements (non-accreted envelope)
or a maximum amount of them (fully accreted envelope)
from Potekhin et al. (2003).

In Figure 10 for the TM1 (left) and DDME2 (right) EoSs, we
show, on the left panel of each plot the luminosity in quiescence
as a function of the accretion rate together with the observational
data from (Beznogov and Yakovlev, 2015) and on the right
panel the composition for the different models. We use the TM1
and DDME2 EoSs with various hyperonic contents obtained for
different values of the 6 potential (dashed, dotted, and dot-
dashed lines) together with their purely nucleonic versions (solid
lines). TM1 is chosen as a representative model that predicts
that the nucleonic DU process occurs for quite low star masses
M < 0.8M⊙ while DDME2 as a model which does not allow
for this process at all. For each EoS we compute (1) the upper
bound on the thermal state of NSs that is obtained for NSs
with a mass below the DU threshold—this defines the lowest
possible neutrino losses and hence the largest luminosity, (2) the
lower bound of the thermal state which is reached for maximum
mass NSs with the largest neutrino emissions obtained when
the DU processes operate and hence the lowest luminosity. We
do not include superfluidity in the models (see discussion in
Fortin et al., 2018b) as it reduces the DU emissivity. We indeed
want to confront the lowest-bound on the thermal state we
obtain with the observational data on SAX J1808. This object,
indicated in red in the plots in Figure 10, has the lowest observed
luminosity and a precisely measured accretion rate thanks to the

observations of multiple type I X-ray bursts (Heinke et al., 2009).
Its low-luminosity is challenging to model and suggests that very
efficient neutrino processes, the most efficient of which are the
nucleonic and hyperonic DU processes, are operating in its NS
core. In Yakovlev and Pethick (2004), the authors could explain
its luminosity only by using an hyperonic core EoS. The model
they have considered for nuclear matter is GL85 (Glendenning,
1985) that predicts a quite hard EoS with an incompressibility
K = 285 MeV and a symmetry energy at saturation Esym =
36.8 MeV. For the hyperonic interaction the universal couplings
were considered, i.e., the hyperon-meson couplings equal the
nucleon-meson couplings. This choice gives rise to strongly
attractive hyperon potentials in symmetric nuclear matter at
saturation, of the order −60 to −70 MeV, and allows for the
appearance of all six hyperons inside the maximum mass star,
and, therefore, all channels defined by Equations (24–31) are
opened. As a consequence in addition to the nucleonic DU
process all hyperonic processes are turned on and hence the
neutrino emissivity is larger and the luminosity lower for the
hyperonic EoS than for purely nucleonic one. The low-luminosity
of SAX J1808 could only then be modeled for a hyperonic NS,
suggesting that hyperons could be present in SAX J1808.

For the hyperonic TM1 EoSs on the left plot in Figure 10,
in addition to the nucleonic DU process, for the model with a
slightly attractive potential, U6 = −10 MeV the DU channels in
Equations (26, 28, 31) are operating in the star with themaximum
mass, for a repulsive U6 = 10 MeV the DU process in Equation
(30) is turned on as the 4− is present. However, since the 6−

appears at larger densities than when an attractive potential is
used, the most efficient of all hyperonic DU processes turned on
for such models, is the one in Equation (26) that then operates in
a smaller region of the star and the process in Equation (30) is too
weak to compensate these lesser neutrinos losses. For the model
with U6 = 30 MeV since no 6− are present only processes in
Equations (28) and (30) set in and both are less efficient than the
one in Equation (30). Hence the model with the U6 = −10 MeV
is the coolest of all hyperonic models. We obtain that the purely
nucleonic has the lowest luminosity compared to hyperonic
models but the difference is quite small. The purely nucleonic
NS, in which only the nucleonic DU process, which is the most
efficient process, operates is almost ∼ 0.2M⊙ more massive than
the hyperonic NSs. Hence for hyperonic NSs even if more DU
channels are opened, these are less efficient and do not exactly
compensate for the fact that the nucleonic NS has an extra region
of 0.2M⊙ emitting neutrinos via the most efficient channel. Thus,
hyperonic stars emit all in all less neutrinos and hence have a
slightly larger luminosity. As in Fortin et al. (2018b) we obtain
that NSs with a fully accreted envelope are more luminous than
with a non-accreted one. Thus, we obtain that for the TM1 EoS
SAX J1808 is compatible with a NS with a small or null amount
of accreted matter in the envelope, with or without hyperons.

For the DD2 parametrization (right plots of Figure 10), as
the nucleonic DU process does not operate at all for the purely
nucleonic EoS, non-hyperonic NSs will have a very similar
and large luminosity. Hyperonic models have, however, a small
luminosity as the additional hyperonic DU processes operates
and only such models can explain the low-luminosity of SAX
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FIGURE 10 | For the TM1 (Left) and DDME2 (Right) parametrizations, the left panel of each plot shows the luminosity of NSs in SXTs obtained for different masses

and EoSs vs the observational data taken from Beznogov and Yakovlev (2015). In the right panel the composition of each EoS that is employed is plotted. In addition

to the purely nucleonic EoS for each parametrization (solid line), hyperonic EoSs with various values of the U6 potential are employed: −10, 10, 30 MeV (dashed,

dotted, and dot-dashed lines, respectively). The NS maximum mass for which the lower bound of the luminosity of SXTs is obtained are indicated in the labels of the

left panels of each plot. SAX J1808, with the lowest observed luminosity, is indicated in red.

J1808. For all hyperonicmodels the4− ,6−, and3 are present at
the maximummass, and the latter two species in similar amount.
The most efficient hyperonic DU process is then the channel in
Equation (26) between the 3 and the 6−. As the model with
U6 = −10 MeV has the largest amount of 6− (it even appears
before the3) it has the largest neutrino emissivity and hence the
lowest luminosity of all models. The model with U6 = 10 MeV
has approximately 50 % less of 6− and hence is slightly more
luminous as it emits less neutrinos. Finally for U6 = 30 MeV
the fraction of 6− is one order of magnitude less than for the
slightly attractive potential. As a consequence this model gives
the largest luminosity of all hyperonic models. We conclude that
for the DDME2 model, since the nucleonic DU process does not
operate, SAX J1808 is only compatible with a NS with hyperons
and no or a very small amount of accreted matter in the envelope.

We can see that the delicate interplay between the symmetry
energy and the 6-potential strongly affects the cooling of
SXTs. These objects could potentially offer the possibility to
constraint the 6-potential and thus the properties of the 6
hyperon, from the astrophysical observations of SXTs with a low-
luminosity complementing the little experimental constraints on
the properties of the 6 hyperon currently available. A more
systematic study of the thermal state of accreting NSs is beyond
the scope of the present paper and will be the subject of a
future work.

5.3.4. Hyperonic Star Radius
There are still large observational uncertainties associated with
the radius of NSs including the canonical NS with a mass
equal to 1.4M⊙, see the discussion in Potekhin (2014),Fortin
et al. (2016a), and Steiner et al. (2016), although there have
been several indirect predictions from different analysis. Recently
several studies have used the detection of the gravitational waves
emitted from a neutron star merger GW170817 (Abbott et al.,
2017) to constrain the upper limit of the 1.4M⊙ star radius to
∼ 13.7 km (Abbott et al., 2018; Annala et al., 2018; Fattoyev
et al., 2018; Lim and Holt, 2018; Malik et al., 2018; Most et al.,

2018; Raithel et al., 2018; Tews et al., 2018). Similar constraints
had been obtained before from the analysis of the experimental
constraints set on the symmetry energy (Li and Steiner, 2006;
Steiner et al., 2016).

Since we are interested in analyzing the effect of strangeness
on the radius of a NS, and as we have seen for many models,
strangeness sets in inside stars with a mass above 1.4M⊙, we
will again consider a more massive star. In the discussion of
this section we calculate the radius of a star with M = 1.67M⊙
as in section. Results are plotted in Figure 11 left panel as a
function of the total star strange baryonic fraction. On the right
panel, we have plotted the hyperonic star mass-radius curves
to help the discussion. The thin (thick) lines correspond to
U6 = −10 (+30) MeV.

The strange baryonic fraction increases if the 6 potential
becomes less repulsive, and simultaneously the radius decreases.
The relation between the radius and the strange baryonic fraction
is essentially linear but the slope is model dependent. For models
like NL3, TM1, TM1-2 changing U6 does not have a large effect
on the strangeness content and on the radius. This is clearly
understood looking at Figure 7 where the star mass at the onset
of the 6 hyperon is plotted: a star with M = 1.67M⊙ has no
(only a few) 6 hyperons for U6 = +30 (-10) MeV. Density-
dependent models have a similar behavior, being the models that
predict a larger amount of strangeness, as large as 0.075, although
still satisfying the 2M⊙ constraint. For −10 < U6 < +30
MeV the radius increases ∼ 300 m. Models TM1ωρ, TM1σρ,
TM1-2ωρ, FSU2H have a similar behavior but do not predict
strangeness contents above 0.05. Models FSU2 and FSU2R suffer
a quite large radius change for a small increase of strangeness
because, as seen in the right panel, 1.67M⊙ is very close to
the maximum star mass. Contrary to Providencia and Rabhi
(2013) we do not see a linear correlation if also the NS/NB = 0
radius is included. In Providencia and Rabhi (2013) NS/NB is the
strangeness fraction defined as the total strangeness number over
the total baryonic number and not the strange baryonic fraction.
However, in that work the authors did not use unified crust-core
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FIGURE 11 | (Left) Radius of a 1.67M⊙ star as a function of the total strange baryonic fraction for all the models considered in this work and for U6 = −10, 0, 10,

20, and 30 MeV. (Middle, Right) M− R relations for all the models for U6 = −10 and 30 MeV (thick and thin lines, respectively).

EoS and different hyperon interactions, giving rise to much larger
strangeness fractions inside the star, were discussed.

6. SUMMARY AND CONCLUSIONS

In the present study, we have explored how the density
dependence of the symmetry energy may affect the properties
of hyperonic neutron stars. The study was undertaken within
the RMF approach to nuclear matter and models that describe
ground-state properties of nuclei and 3-hypernuclei, as well as
constraints frommicroscopic calculations of NS (except for three
models) and the 2M⊙ constraint on nucleonic stars have been
chosen. We have also considered a family of models based on
TM1 (Sugahara and Toki, 1994; Providencia and Rabhi, 2013;
Bao and Shen, 2014) that has allowed us to directly discuss the
effect of the density dependence of the symmetry energy on the
properties of hyperonic stars. For all the models considered, we
have taken an inner crust-core unified EoS. In the present work,
we have calculated the FSU2, FSUR2H, and FSU2H inner crust of
catalyzed β-equilibrium matter, which are given as Table 5.

The 3-meson and 4-meson couplings were constrained by
the existing hypernuclei experimental data. Taking into account
the present lack of knowledge concerning the properties of the
6 hyperon in nuclear matter, we have discussed the properties
of hyperonic matter considering values of the 6 potential in
symmetric nuclear matter that go from −10 MeV to +30 MeV
at saturation density, having in mind that if no 6-hypernucleus
has been detected, the 6 potential must be repulsive or only
slightly attractive.

We have shown that the DU process is affected by hyperons
only if the slope of the symmetry energy is L . 70 MeV.
The nucleonic electron DU process is both sensitive to the

slope of the symmetry energy and, for L . 70 MeV, to the
value of the 6 potential in nuclear matter. The more repulsive
U6 the larger the nucleonic electron DU process. A small L
shifts the DU onset to larger densities but the effect is stronger
the more repulsive the 6 potential is. Models with density-
dependent couplings simply do not allow for the nucleonic
electron DU process to turn on. However, the cooling of stars
within this framework is also affected when new hyperonic
channels open inside the star. So, even though the density-
dependent models do not predict nucleonic electron DU, when
the reactions described in Equations (28, 26, 31) start to
operate the star is much less luminous. This occurs in stars
with a mass of the order of 1.1 − 1.3M⊙ models. All other
models, with constant couplings, predict the occurrence of
both hyperonic and nucleonic DU processes inside massive
enough NSs.

We have studied how the value of the U6 potential affects
the thermal state of NSs in Soft X-ray transients and focused
more specifically on SAX J1808 (Campana et al., 2002; Heinke
et al., 2009), the SXT with the lowest-observed luminosity. We
have shown that the low luminosity of this object could be
described by a model, with an unrealistically high symmetry
energy slope, that predicts the opening of the DU inside low
mass stars, independently of taking a nucleonic or an hyperonic
EoS. For the nucleonic EoS, the maximum star mass is large
and allows the nucleonic DU process to occur in a wide range
of the NS interior, while for the hyperonic EoS although the
maximummass is smaller, inside the core both the nucleonic DU
and the hyperonic DU processes act. However, the SAX J1808
low luminosity could also be explained in the framework of a
density dependent hadronic model, satisfying well-established
nuclear matter and nuclei properties and describing a 2M⊙ star, if
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hyperonic degrees of freedom are allowed to occur inside the star.
In this case, objects like the SAX J1808 could potentially offer the
possibility to constraint the hyperonic interaction, in particular,
the6 potential.
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