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ABSTRACT

Context. A recent measurement of the mass of PSR J1614-2230 rules out most existing models of the equation of state (EOS) of
dense matter that is subjected to the high-density softening caused by either hyperonization or a phase transition to either quark matter
or a boson condensate.
Aims. We attempt to resolve the apparent differences between the predictions derived from up-to-date hypernuclear data, which in-
clude the appearance of hyperons at about three nuclear densities and the existence of a M = 2.0 M� neutron star.
Methods. We consider a non-linear relativistic mean field (RMF) model involving the baryon octet coupled to meson fields. An
effective Lagrangian includes quartic terms in the meson fields. The values of the model parameters are obtained by fitting the semi-
empirical parameters of nuclear matter at the saturation point, as well as potential wells for hyperons in nuclear matter and the strength
of the Λ − Λ attraction in double-Λ hypernuclei.
Results. We propose a non-linear RMF model that is consistent with up-to-date semi-empirical nuclear and hypernuclear data and
allows for neutron stars with hyperon cores and M > 2 M�. The model involves hidden-strangeness scalar and vector mesons, coupled
only to hyperons, and quartic terms involving vector meson fields.
Conclusions. Our EOS involving hyperons is stiffer than the corresponding nucleonic EOS (in which hyperons are artificially sup-
pressed) above five nuclear densities. The required stiffening is generated by the quartic terms involving the hidden-strangeness vector
meson.

Key words. dense matter – equation of state – stars: neutron

1. Introduction

A recent measurement of the mass of PSR J1614-2230, 1.97 ±
0.04 M� (Demorest et al. 2010), puts a stringent constraint on
the equation of state (EOS) of dense matter in neutron star cores.
In the light of this measurement, EOSs of dense matter, which
are based on the modern many-body theories and the realistic
strong-interaction model, lead to a puzzle. On the one hand, in-
teractions consistent with the available experimental data on hy-
pernuclei, predict the presence of hyperons at densities exceed-
ing 2–3ρ0, where ρ0 = 2.7 × 1014 g cm−3 (corresponding to the
baryon number density n0 = 0.16 fm−3) is the normal nuclear
density. On the other hand, the inevitable softening of the EOS,
due to the hyperonization, implies that the maximum allowable
mass is Mmax � 1.5 M� (see, e.g. Burgio et al. 2011; Vidana
et al. 2011, and references therein). Such a low value of Mmax
is only marginally consistent with that of 1.44 M� measured for
the Hulse-Taylor pulsar, but has been placed in doubt by that of
1.67 ± 0.04 M� for PSR J1903-0327 (Champion et al. 2008; a
more precise value was obtained by Freire et al. 2011). Vidana
et al. (2011) noted that this problem cannot be solved by adding
an ad hoc extremely stiff repulsive three-body contribution to
the EOS.

We consider neutron star cores composed of baryons, elec-
trons, and muons. Baryons and leptons are in weak-interaction
equilibrium. Hyperons appear at density ρ1 (baryon density n1).
For ρ < ρ1, only nucleons are present. For ρ > ρ1, matter con-
tains a mixture of nucleons and hyperons. This state (phase) is

� Retired.

denoted NH. We also consider a “reference dense-matter model”
with hyperons artificially suppressed. This purely nucleon state
is denoted N. The corresponding EOSs are denoted EOS.NH and
EOS.N. These EOSs coincide for ρ < ρ1.

A too low M(NH)
max is not an inevitable feature of neutron

stars with hyperon cores. Bonanno & Sedrakian (2012) obtained
M(NH)

max > 2 M�, starting from an extremely stiff relativistic mean
field model NL3 EOS.N, which yielded M(N)

max = 2.8 M� (close
to the absolute upper bound on Mmax stemming from causality,
e.g., Haensel et al. 2007). Bonanno & Sedrakian (2012) extend
the NL3 model to the hyperon sector, and get M(NH)

max = 2.03 M�.
Massive stars with hyperon cores exist there because of the ex-
treme stiffness of the EOS.N, and the nuclear-matter parameter
(the slope of symmetry energy versus density) L = 118 MeV is
significantly higher than its semi-empirical estimates.

In our approach, we keep L (and the stiffness of the EOS.N
near ρ0) within the semi-empirical estimates (i.e., those obtained
within a model of atomic nuclei, hence model-dependent val-
ues). Our EOS.N at high density is stiff, but not extremely stiff:
M(N)

max = 2.1 M�. In general, M(NH)
max is essentially determined by

the ρ >∼ 5ρ0 segment of the EOS.NH. Hence if the hyperon soft-
ening occurs at 2–3ρ0, then, to get a sufficiently high Mmax, the
softening must be followed by a sufficiently strong stiffening of
EOS.NH for ρ >∼ 5ρ0. One has therefore to identify a mechanism
that stiffens the EOS.NH at these densities. For our model of
EOS.N, in order to yield M(NH)

max > 2 M�, the EOS.NH for ρ >∼ 5ρ0
should be actually stiffer than the EOS.N one. Simultaneously,
the NH phase has to be stable (thermodynamically preferred over
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the N one). We derive a constraint on the EOS.NH resulting from
the conditions mentioned above, and discuss the consequences
of the violation of this constraint.

In our discussion, we restrict ourselves to hadronic mat-
ter, and do not consider the possibility of quark deconfinement.
Because of the surface effects and electrical screening in a quark
plasma, a transition to quark matter would occur at nearly con-
stant pressure and with an only slightly smoothed density jump
(see, e.g., Endo et al. 2006, and references therein). A reasonable
scenario is: softening of the N phase by hyperonization at 2–3ρ0,
followed by softening of the NH phase by quark deconfinement
at a significantly higher density. Bonanno & Sedrakian (2012)
show that assuming NL3 EOS.NH, a transition to quark matter
occurring after hyperonization could be consistent with the de-
tection of 2 M� neutron star provided that the vector repulsion
in quark matter is sufficiently strong and quark deconfinement
takes place near the maximum NS mass. For our EOS.NH, get-
ting 2 M� with a quark core would require a very fine tuning,
and we do not consider such an unlikely possibility.

The problem of an interplay between attraction (softening)
and repulsion (stiffening) in dense hadronic matter can be for-
mulated in simple terms using a modern effective field theory,
involving baryon and meson fields. In the case of nucleon mat-
ter, such a theory can be put on a firm theoretical basis, starting
from quantum chromodynamics (QCD) (Walecka 2004, and ref-
erences therein). Such an effective theory can be solvable within
the mean field approximation and can give a satisfactory de-
scription of a wealth of nuclear physics data if the coupling
of nucleons to the scalar meson field σ, and two vector meson
fields: ωμ and ρi

μ, is considered. Here, μ and i denote the space-
time and isospin-space components of the field. An effective
Lagrangian contains quadratic and quartic terms in vector fields,
and quadratic, cubic, and quartic terms in scalar fields. While
σ yields an attraction to bind nuclei, vector meson fields gen-
erate repulsion to saturate nuclear matter at ρ0. Numerical coef-
ficients in the effective Lagrangian are fixed by fitting a wealth
of nuclear data (Sugahara & Toki 1994). The effective model is
then extended to include the hyperon sector. Two meson fields
with “hidden strangeness” (ss) are added: scalar σ∗ (quadratic
terms) and vector-isovector φi

μ (quadratic and quartic terms).
These fields couple only to hyperons (Schaffner et al. 1994). An
important constraint on the hyperon sector of Lagrangian results
from the existing evaluations of the depth of the potential well
acting on a single zero-momentum hyperon in nuclear matter,
U (N)
Λ

, U (N)
Σ

, and U (N)
Ξ

(binding energy of a hyperon in nuclear
matter is BH = −U (N)

H ). An effective theory of hadronic matter
described in the general terms above and solved in the mean field
approximation are referred to as a non-linear relativistic mean
field model (non-linear RMF, Bednarek & Mańka 2009).

There exist a few older and simpler models of NH mat-
ter that predict that M(NH)

max > 2 M�. These models are based
on the relativistic mean field Lagrangian involving an octet of
baryons coupled to the σ, ωμ, and ρi

μ meson fields (quadratic
terms in the Lagrangian), with additional cubic and quartic σ
self-interaction terms (for a review, see Glendenning 1996). The
mean field solutions of the field equations are referred to collec-
tively as the relativistic mean field (RMF) model. Glendenning
& Moszkowski (1991) can exceed 2 M� assuming high nuclear
matter incompressibility, K = 300 MeV, and a strong Λ − σ at-
traction, balanced by a Λ − ω repulsion to be consistent with an
experimental U (N)

Λ
. Experimental constraints on UΣ and UΞ in

nuclear matter are not applied. It is assumed that all hyperons in
the baryon octet have the same coupling as Λ.

A model similar to that of Glendenning & Moszkowski
(1991) was used to obtain M(NH)

max > 2 M� by Bombaci et al.
(2008). Dexheimer & Schramm (2008) applied a hadronic chiral
model of NH matter. They treated mesons and the baryon octet
as flavor-SU(3) multiplets. For one form of the quartic term in
the vector-meson fields, they obtained M(NH)

max = 2.06 M�.
Two specific ways of ensuring that M(NH)

max > 2 M� have
been proposed. The first way, chosen in both our work and
Weissenborn et al. (2012b,a), consists in introducing a hy-
peron repulsion due to a hidden-strangeness vector meson φμ
that couples only to hyperons. The second way, pointed out in
Weissenborn et al. (2012a), consists in making vector-meson –
hyperon repulsion stronger by going from the SU(6) symme-
try relations to the SU(3) ones. In contrast to Weissenborn et al.
(2012a), we keep the vector-meson – hyperon coupling constants
at their SU(6) values.

In the present paper, we propose a resolution to the problem
of the “hyperonization− Mmax > 2 M�” using a specific realiza-
tion of the non-linear RMF model of hadronic matter (Bednarek
& Mańka 2009). The non-linear RMF model of NH matter
is presented in Sect. 2. Experimental constraints from nuclear
and hypernuclear physics are described in Sect. 3. A particular
EOS.NH is described in Sect. 4. A model of PSR J1614-2230
with a hyperon core is presented in Sect. 5. The problem of the
high-density instability of the NH phase and the M − R rela-
tion for neutron stars models are discussed in Sect. 6. Finally,
in Sect. 7 we summarize the results of the paper, compare
them with results obtained by other authors, and present our
conclusions.

Preliminary results of our work were presented at
the MODE-SNR-PWN Workshop in Bordeaux, France,
November 15−17, 2010, and in a poster at the CompStar 2011
Workshop in Catania, Italy, May 9–12, 2011.

2. Non-linear RMF model of hyperon cores

Our adopted model was formulated by Bednarek & Mańka
(2009). The octet of baryons includes a nucleon doublet N and
six of the lowest-mass hyperons H: Λ singlet, Σ triplet, and
Ξ doublet. The uniform number density of each baryon species
B is denoted nB (B = n, p,Λ, . . .).

In the nucleon sector, the meson fields are: scalar σ, vec-
tor ωμ, and vector-isovector ρi

μ. The generalization of the non-
linear RMF model to the baryon octet is done in the following
way. Additional “hidden-strangeness” mesons, namely scalar σ�
and vector φμ, are introduced. They couple only to hyperons,
such that gNσ� = gNφ = 0. The vector-meson coupling constants
to hyperons are assumed to fulfill the relations stemming from
the SU(6) symmetry (additive quark model) of hadrons

gΛω = gΣω = 2gΞω =
2
3
gNω,

gΛρ = 0, gΣρ = 2gΞρ = 2gNρ, (1)

gNφ = 0, gΛφ = gΣφ =
gΞφ

2
= −
√

2
3
gNω.

Similar symmetry relations can be obtained for the coupling con-
stants of the scalar mesons, but they are not used in the present
model. We instead adjust them to fit experimental estimates
of U (N)

B .
At fixed {nB} (B = n, p,Λ, . . . ), and assuming vanishing

baryon currents, the hadronic Lagrangian density Lhad is used
to derive the equations of motion for the meson fields. Static

A157, page 2 of 7



I. Bednarek et al.: 2 M� pulsar and hyperon cores

solutions are found assuming that baryonic matter is isotropic
and uniform. The mean-field approximation, neglecting quan-
tum corrections, is used: σ −→ 〈σ〉 = s0, ωμ −→ 〈ωμ〉 = w0δμ0,
ρi
μ −→ 〈ρi

μ〉 = r0δμ0δi3, σ� −→ 〈σ� 〉 = s�0 , φμ −→ 〈φμ〉 = f0δμ0.
The resulting Lagrangian density functionLhad consists of three
components, Lhad = LB + L(2)

M + L(3,4)
M . The component LB

is obtained from the free-baryon Lagrangian by replacing bare
baryon masses mB (B = n, p,Λ, . . .) by the effective ones, m�B =
mB−gBσs0−gBσ� s�0 . The quadratic (interaction) componentL(2)

M

contains terms proportional to s2
0, w2

0, r2
0, s�0

2, and f 2
0 . The inter-

action component L(3,4)
M contains cubic and quartic terms in s0,

and quartic vector-meson terms proportional to w4
0, r4

0, and f 4
0

and the cross terms proportional to f 2
0 w

2
0, f 2

0 r2
0, and w2

0r2
0.

The hadronic Lagrangian density function Lhad is then used
to calculate the hadron energy-density as a function of partial
baryon densities {nB}, Ehad({nB}). To simplify the formulae, we
use the units in which � = c = 1, except where indicated oth-
erwise. Calculations done for the considered model (Bednarek
& Mańka 2009) lead to the following explicit formulae for the
hadron contribution to the energy density E and pressure P (we
note that the original equations of Bednarek & Mańka contain
several misprints that are corrected below; for the sake of sim-
plicity, we use a shorthand notation gNσ ≡ gσ, gNω ≡ gω, . . . )

Ehad = +
1
2

m2
σs2

0 +
1
2

m2
ωw

2
0 +

1
2

m2
ρr

2
0 + U(s0)

+
∑

B

2
π2

∫ kF,B

0
k2dk

√
k2 +

(
mB − gBσs0 −gBσ� s�0

)2

+3ΛV(gρgω)2w2
0r2

0 +
3
4

c3

(
w4

0 + r4
0

)

+
1
2

m2
φ f 2

0 +
1
2

m2
σ� s�2

0 + 3

(
1
8

c3 +
1
4
ΛV(gρgω)2

)
f 4
0

+3

(
3
4

c3 − 1
2
ΛV(gρgω)2

)
f 2
0

(
w2

0 + r2
0

)
, (2)

Phad = −1
2

m2
σs2

0 +
1
2

mρr
2
0 +

1
2

mωw
2
0 − U(s0)

+
∑

B

1
3π2

∫ kF,B

0

k4dk√
k2 +

(
mB − gBσs0 −gBσ� s�0

)2

+
1
4

c3(w4
0 + r4

0) + ΛV(gρgω)2w2
0r2

0

+
1
2

m2
φ f 2

0 −
1
2

m2
σ� s�2

0 +

(
1
8

c3 +
1
4
ΛV(gρgω)2

)
f 4
0

+

(
3
4

c3 − 1
2
ΛV(gρgω)2

)
f 2
0 (w2

0 + r2
0) , (3)

where the non-linear σ-self-interaction potential is

U(σ) =
1
3
g3σ

3 +
1
4
g4σ

4. (4)

The terms vanishing in purely nucleon (zero strangeness) matter
are presented above in rectangles.

The quartic terms in Ehad and Phad deserve additional ex-
planations. Their form stems from the chiral SU(3) symmetry

of the baryon-meson and meson-meson interactions. The co-
efficients of the quartic terms involve two phenomenological
parameters, c3 and ΛV.

We first consider the quartic terms in the nucleon sector.
The vector-isoscalar quartic term (w4

0) was included in the TM1
model of Sugahara & Toki (1994). However, the TM1 model was
constructed to describe atomic nuclei, hence is valid for both nu-
clear matter near saturation density and a small neutron excess.
It is to be expected that extrapolation to supranuclear density and
large neutron excess would necessitate a richer isospin and den-
sity dependence of the model Lagrangian than assumed in the
TM1 model. Bednarek & Mańka (2009) proposed to do this by
enlarging the quartic terms by adding a vector-isovector one (r4

0)
and a cross-term (w2

0r2
0). The strengths of the quartic terms are

determined by two parameters,ΛV and c3, instead of only one in
the TM1 model of Sugahara & Toki (1994). This allows a good
fitting of not only (semi-empirical estimates of) nuclear symme-
try energy and incompressibility, but also the slope parameter L,
and simultaneously yields Mmax > 1.97 M�.

As shown in Bednarek & Mańka (2009), the chiral SU(3)
symmetry yields a suitable extension of the quartic terms to the
hyperon sector, the same c3 and ΛV entering the quartic-terms
coefficients. Additional quartic terms in the hyperon sector are
generated by the hidden-strangeness vector-isoscalar field f0.

3. Determination of parameters of non-linear
RMF model

We denote the neutron excess in nuclear matter by δ =
(nn − np)/nb. The energy per nucleon (excluding the nucleon rest
energy) is E(nb, δ). An analysis of a wealth of data on heavy
atomic nuclei can yield the parameters of nuclear matter near the
saturation point, corresponding to the minimum of energy per
nucleon, Es, reached at nb = ns and δ = 0. The results are model-
dependent and therefore they are called semi-empirical. Other
semi-empirical parameters are: the symmetry energy S s, the in-
compressibility Ks, and the symmetry-energy slope parameter L,

S s =

(
∂2E
∂δ2

)
ns ,δ=0

, Ks = 9n2
s

⎛⎜⎜⎜⎜⎝∂2E

∂n2
b

⎞⎟⎟⎟⎟⎠
ns,δ=0

,

L = 3ns

(
∂3E
∂nb∂δ2

)
ns,δ=0

· (5)

Studies of hypernuclei and of Σ− atoms allow us to evaluate the
potential energy of a single zero-momentum hyperon in symmet-
ric nuclear matter, U (N)

H . The non-linear RMF yields following
expression for this quantity:

U (N)
H = gHσs0 − gHωw0, (6)

which should be calculated at ns and δ = 0. The semi-empirical
estimates are U (N)

Λ
= −28 MeV, U (N)

Σ
= +30 MeV, and U (N)

Ξ
=

−18 MeV (Schaffner-Bielich & Gal 2000). Equation (6) is then
used to determine gΛσ, gΣσ, and gΞσ.

As we consider the NH phase, which contains finite fractions
of hyperons, we need information on the hyperon-hyperon inter-
action. Studies of double-Λ hypernuclei suggest that the Λ − Λ
interaction is attractive. In the mean-field approximation, it can
be characterized by the potential well of a zero-momentum Λ
in Λ-matter. In our model we get a general expression for the
potential energy of a zero-momentum hyperon H′ in H-matter

U (H′)
H = gHσs0 − gHωw0 + gHσ� s�0 − gHφ f0. (7)
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The latest (very uncertain) semi-empirical estimate coming from
double-Λ hypernuclei is U (Λ)

Λ
= −5 MeV (Takahashi et al. 2001;

Song et al. 2003). Equation (7) is then used to determine gΛσ� .
For U (Σ)

Σ
and U (Ξ)

Ξ
, no data exist. We therefore estimate them

using the relations

U (Ξ)
Ξ
� U (Ξ)

Λ
� 2U (Λ)

Ξ
� 2U (Λ)

Λ
. (8)

These relations were established based on one-boson exchange
models and semi-empirical evaluation of the strength of the
Λ − Λ attraction (Schaffner et al. 1994).

Our aim is to adjust the parameters of our Lagrangian to
reproduce, to within a few percent, ten semi-empirical nuclear
and hyper-nuclear data. As we have mentioned in the intro-
duction, the term “semi-empirical” refers to an indirect, model-
dependent way of extracting these parameters from a wealth of
experimental data. We first consider five nuclear matter param-
eters at saturation. The modern models used to extract the nu-
clear matter data are energy-density functionals of a sufficiently
rich structure. Their parameters are adjusted to fit the masses
and charge-radii (and often some additional data) of a broad
sample (some thousands) of atomic nuclei. An extrapolation to
the limiting case of infinite nuclear matter is then made, yield-
ing semi-empirical values of ns, Es, Ks, S s, and L. The scatter
in the values of the nuclear-matter parameters extracted in this
way visualizes the model dependence of the procedure used.
In particular, systematic differences are noticed for Ks: non-
relativistic models give typically 210–240 MeV, while the rela-
tivistic ones yield larger values 260–290 MeV. The starting point
for our Lagrangian, Sect. 2, was a very successful relativistic
model TM1 (Sugahara & Toki 1994), and therefore we kept its
values of ns, Es, and Ks. Our results for the nuclear matter pa-
rameters at saturation are presented in Table 3.

Our adjustement of the isovector parameters in Lagrangian
density, namely gρ and ΛV, deserves additional explanation. We
performed this by employing existing information on the den-
sity dependence of the symmetry energy, that is, we used not
only the value of the symmetry energy at saturation, S s, but also
a semi-empirical estimate of symmetry energy at nb ≈ 0.1 fm−3,
26.67 MeV, which determined the value of L (Horowitz &
Piekarewicz 2001). This influenced the EOS of neutron matter,
because E(nb, 1) ≈ E(nb, 0.5) + S (nb) (see, e.g., Haensel et al.
2007).

4. EOS of neutron-star matter

The total energy density and the total pressure are the sums of the
contributions of hadrons and leptons, because the contributions
of the electromagnetic interaction to these quantities are negli-
gibly small, and leptons (electrons and muons) can be treated as
ideal Fermi gases, such that

E = Ehad + Elep, P = Phad + Plep. (9)

The (total) baryon number density is

nb =
∑

B

nB. (10)

Imposing electrical charge neutrality and beta equilibrium, one
gets a system of non-linear equations for the particle species
fractions Yi = ni/nb. At a given nb the equilibrium fractions
are {Y0

i (nb)} and the energy density and pressure become func-
tions only of nb. For the sake of comparison, we consider not
only a general EOS involving nucleons and hyperons, EOS.NH,

Table 1. BM165 model of hadronic matter.

mσ gNσ gΛσ gΣσ gΞσ g3

(MeV) (fm−1)
511.198 10.0289 6.169 4.476 3.201 7.2325
mσ� gNσ� gΛσ� gΣσ� gΞσ� g4

(MeV)
975.0 0 5.482 5.482 11.372 0.6183

Notes. Masses and coupling constants of scalar mesons. We neglect
mass-splitting within charge multiplets of the baryon octet assum-
ing that: mn = mp = 938.919 MeV, mΛ = 1115.63 MeV, mΣ =
1193.12 MeV, and mΞ = 1318.1 MeV.

Table 2. BM165 model of hadronic matter.

mω mρ mφ gNω gNρ

(MeV) (MeV) (MeV)
783.0 770.0 1020.0 12.6139 10.037

Notes. We provide both the masses and coupling constants of the vector
mesons. The coupling constants in the quartic terms are c3 = 71.3075
and ΛV = 0.0165.

Table 3. BM165 model of hadronic matter.

ns Es Ks S s L

(fm−3) (MeV) (MeV) (MeV) (MeV)
0.145 –16.3 279 33 74

Notes. Calculated nuclear matter parameters at the saturation point.

Table 4. BM165 model of hadronic matter.

U (N)
N U (N)

Λ
U (N)
Σ

U (N)
Ξ

U (Λ)
Λ

(MeV) (MeV) (MeV) (MeV) (MeV)
–69 –28 +30 –18 –5

Notes. Calculated zero-momentum single-baryon potentials in symmet-
ric nuclear matter, U (N)

B and of Λ in Λ matter, U (Λ)
Λ

. All results are ob-
tained at nb = ns.

but also an EOS of nucleon matter, EOS.N, with artificially sup-
pressed hyperons (see Sect. 1).

Expression for Phad, Eq. (3), shows that hyperons produce
new repulsive quartic terms involving f0, w0, and r0. The de-
pendence of the EOS on ΛV turns out to be quite strong. All
other parameters are determined by the conditions of reproduc-
ing nuclear and hypernuclear data (i.e., near the saturation point
of nuclear matter), and the high-density stiffness of EOS.NH in-
creases monotonically with increasing ΛV. In what follows, we
use ΛV = 0.0165, which as we see yields a high-density stiffness
of the EOS.NH consistent with M(NH)

max > 2 M�, while keeping
good agreement with semi-empirical nuclear matter parameters.
This EOS.NH is referred to hereafter as BM165.

The parameters of the BM165 model, and the values of ten
semi-empirical nuclear and hyper-nuclear parameters given by
this model, are presented in Tables 1–4.

The thermodynamical equilibrium of the NH matter imposes
relations between the chemical potentials of hyperons present
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in dense matter, nucleons, and leptons. These relations can be
expressed in the general form (see, e.g., Haensel et al. 2007)

μH = μn − qHμe, μe = μμ, (11)

where qH is the charge of the hyperon H in units of the proton
charge. The threshold density for the appearance of hyperons H,
nH

b , is determined by the enthalpy of a single hyperon H in beta-
equilibrated dense matter

μ(0)
H = mH + UH + P/nb, (12)

where UH is the potential energy of this hyperon. For nb < nH
b ,

μ(0)
H > μn − qHμe, and H decays in a weak interaction process. At

the threshold density, a single H in dense matter is stable so that
μ(0)

H = μn − qHμe, (13)

and for nb > nH
b , the density of stable H grows with increas-

ing nb.
For the BM165 model, the first hyperon to appear is Λ at

6.3 × 1014 g cm−3 (0.35 fm−3), where μ(0)
Λ
= μn. The next hy-

peron is Ξ−, which appears at 7.7 × 1014 g cm−3 (0.42 fm−3),
where μ(0)

Ξ− = μn +μe. A repulsive U (N)
Σ− implies that Σ− appears at

significantly higher density than Ξ−, namely 1.23 × 1015 g cm−3

(0.63 fm−3), even though mΣ− < mΞ− .
The order of appearance of hyperons in dense matter de-

serves a comment. For a long time, in view of the lack of ex-
perimental information on U (N)

Σ
and U (N)

Ξ
, they were assumed

to be similar to U (N)
Λ

. Consequently, Σ− was found to be the first
hyperon to appear, not the lightest hyperonΛ, because the (unfa-
vorable) effect of mΣ− > mΛ was weaker than the (favorable) ef-
fect of the presence of μe in the threshold condition μ(0)

Σ− = μn+μe
(see, e.g., Haensel et al. 2007). However, the large positive (re-
pulsive) U (N)

Σ
derived by analyses of the Σ−-atoms pushes nΣ

−
b

well above nΞ
−

b . Consequently, Σ− is the last, instead of the first,
hyperon to appear in a neutron star core (Fig. 2).

The appearance of hyperons leads to significant softening of
the EOS.NH compared to EOS.N (Fig. 1). To be able to model
neutron stars with M > 2 M�, the EOS.NH has necessarily to
significantly stiffen at higher densities. The curve PNH(ρ) crosses
the PN(ρ) one at ρ2 = 1.76 × 1014 g cm−3 (n2 = 0.85 fm−3), and
at higher density the EOS.NH is stiffer than the EOS.N.

In reality, the difference PNH − PN is limited by the stability
of the NH phase against the re-conversion into the N phase. We
assume that the matter is in beta equilibrium. At T= 0, the small
change in energy per baryon dE is related to the small change in
the baryon density dnb by

dE = P
dnb

n2
b

· (14)

Therefore, the condition for the stability of the NH phase
(against the conversion into the N one)

ENH(nb) < EN(nb), (15)

implies that

∫ nb

n1

PNH(n′b) − PN(n′b)

n′b
2

dn′b < 0, (16)

where n1 is the density at the first hyperon threshold. For the
BM165 model, n1 = 0.35 fm−3.

Fig. 1. Equations of state EOS.N and EOS.NH calculated using the
BM165 model. Hyperons appear at point 1 and the EOS.NH crosses
the EOS.N one at point 2.

Fig. 2. Number fractions of the constituents of dense matter in beta equi-
librium, Yi = ni/nb, versus baryon density, nb. Dotted lines: EOS.N.
Solid lines: EOS.NH.

5. A model of PSR J1614-2230

To get a complete EOS of the neutron-star interior, the
BM165 EOS of the liquid core was supplemented by an EOS
of the crust. We used the EOS of the inner crust of Douchin
& Haensel (2001), the model of Haensel & Pichon (1994) for
the outer crust down to 108 g cm−3, and the classical model of
Baym et al. (1971) for the outer layer with ρ < 108 g cm−3. A
model of a neutron star of gravitational mass 1.97 M�, rotat-
ing rigidly at 317 Hz, was calculated using the two-dimensional
rotstar code from the LORENE library1 implementing the for-
mulation of Bonazzola et al. (1993). The circumferential equa-
torial radius of neutron star is Req = 11.83 km, its central den-
sity ρc = 1.73 × 1014 g cm−3, and its central baryon density
nc = 0.834 fm−3. At 317 Hz, polar flattening is rather small:
the radial coordinate at the equator is only 200 m larger than
that at the pole. The number fractions of the particle species
Yi = ni/nb in the liquid core of neutron star, are plotted ver-
sus the radial coordinate r in Fig. 4. The radius of the hyperon

1 http://www.lorene.obspm.fr
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Fig. 3. EOS BM165 in the vicinity of the high-density NH-N phase tran-
sition, where 2 is the crossing of the the N and NH pressures, 3 repre-
sents the density and pressure of the NH phase at the phase coexistence,
and 3′ is the density and pressure of the N phase at the phase coexis-
tence. Horizontal segment 33′ is the pressure at the first order phase
transition. Were the NH phase to be (sufficiently) stable until reach-
ing a maximum mass, maximum (central) density in stable stars would
correspond to the asterisk sign, ρc,max = ρ∗. For the fully equilibrated
hadronic matter ρc,max is slightly higher than ρ′3. For a more detailed
discussion of this point, see the text.

core is 8.36 km. The strangeness per baryon at the star’s center
is (S/Nb) = −0.35.

6. High-density instability of the NH phase
and neutron star models

Violation of the inequality (16) indicates that the NH phase is
unstable with respect to a conversion into a purely nucleon (N)
one. Thermodynamic equilibrium of dense matter at pressure P
corresponds to the minimum of the baryon chemical potential
μb = (E + P)/nb. An equilibrium phase-transition NH−→N oc-
curs at P3 such that

μ(NH)
b (P3) = μ(N)

b (P3), (17)

and is accompanied by a density jump from ρ3 = ρ
(NH)(P3) =

2.58 × 1015 g cm−3 (n3 = 1.105 fm−3) on the NH side to ρ′3 =
ρ(N)(P3) = 3.25 × 1015 g cm−3 (n′3 = 1.31 fm−3) on the N side.
The BM165 EOS in the vicinity of P3 = 1.05 × 1036 erg cm−3

is shown in Fig. 3. The softening of the EOS for P > P3 is
twofold. First, there is a constant pressure sector of the EOS (cor-
responding to the vanishing compression modulus!). Second,
there is a transition to the N-phase, which is significantly softer
than the NH one.

The reaction of the stellar structure to the (first order) phase
transition (NH−→N) can be described by the linear response the-
ory formulated in Zdunik et al. (1987). This theory describes
stellar configurations in the vicinity of a star that has a central
pressure equal to P3. In our case, this region of stellar configura-
tions is very small because we are close to the maximum mass.
The crucial parameter, determining the stability of the star with
a small core of the denser phase (N), is the relative density jump
at phase transition pressure, P3 of λ = ρ′3/ρ3. The stability con-
dition for a star with a small N-core is

λ < λcrit =
3
2

(
1 +

P3

ρ3c2

)
(18)

Fig. 4. The logarithm of the number fractions of the constituents of
dense matter, log10(Yi), versus circumferential radius, in the liquid core
of a 1.97 M� star model based on the BM165 EOS.

f=0

317 Hz

10 10.5 11 11.5 12 12.5

1.95

2

2.05

Fig. 5. Gravitational stellar mass, M, versus circumferential radius, R,
calculated for the EOS.N and EOS.NH. Only stable configurations are
displayed. Inset: effect of rotation at f = 317 Hz on the M – equatorial
circumferential radius curve near Mmax.

(see Sect. 3.4 of Zdunik et al. 1987). In our case, the condition
in Eq. (18) is fulfilled, because λ = 1.27 while λcrit = 2.18.
Consequently, there is a (very small) region of stable configura-
tions with the N-phase core. In reality, this region is very narrow:
the maximum mass of non-rotating stars is reached for a central
pressure Pc,max that is only higher by 0.04% than the pressure at
the phase transition, P3.

We plot in Fig. 5 the M − R relations for non-rotating neu-
tron stars, and those rotating at 317 Hz, based on the BM165
EOS. Stars with M > 1.4 M� have a hyperon core. The flat-
tening of the M(R) curve due to the hyperon softening of the
EOS is significant. However, it remains possible to achieve
M(NH)stat

max = 2.03 M�, which is smaller than M(N)stat
max by only

0.07 M�. Rotation at 317 Hz, as measured for PSR J1614-2230,
increases M(NH)

max to 2.04 M� (see zoomed inset of Fig. 5).

7. Discussion and conclusions

We have constructed a model of the hyperon cores of neutron
stars that allows for the existence of neutron star of 2 M�.
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The model is consistent with ten semi-empirical evaluations
of nuclear and hyper-nuclear matter parameters. As an addi-
tional constraint, we have imposed SU(6) symmetry relations
between the coupling constants of baryons and vector mesons.
In spite of this, by introducing two hidden-strangeness meson
fields (scalar and vector) coupled only to hyperons, we have
been able to reproduce four semi-empirical parameters stem-
ming from hypernuclear physics.

In contrast to the NL3 model, which was used by Bonanno &
Sedrakian (2012), our symmetry energy is not unusually “stiff”
near the saturation point: we get L = 74 MeV, compared to
L = 118 MeV for NL3 (Agrawal et al. 2005). Consistently,
our EOS.N is not unusually stiff, and yields for NS with nu-
cleon cores M(N)stat

max = 2.10 M�, which to be contrasted with the
NL3 value of 2.8 M�. The hyperon softening for the model of
Bonanno & Sedrakian (2012) is dramatic, and leads to M(NH)stat

max ,
which is lower by nearly 0.8 M� than the N one. In our case,
getting M(NH)stat

max > 2.0 M� is conditioned by the high-density
vector interactions in the hyperon sector, which are not excluded
in view of our lack of knowledge of high-density hyperon in-
teractions. A similar solution was proposed Weissenborn et al.
(2012b,a), who obtained the stiffening of the EOS.NH from the
φ meson coupled to hyperons.

Our EOS.NH becomes stiffer than the EOS.N for ρ � 5ρ0,
and its stiffness grows with density. This leads eventually to the
instability of the NH matter with respect to the conversion into
the N state, softening the EOS due to the first order phase tran-
sition. The maximum density at which the stable NH phase can
exist actually determines our M(NH)stat

max , which is only 0.07 M�
lower than M(N)stat

max . The rotation at 317 Hz, as measured for
PSR J1614-2230, increases M(NH)

max by 0.01 M�, to 2.04 M�.
Breaking the SU(6) symmetry for the vector-meson couplings
to hyperons, in a similar way to Weissenborn et al. (2012a), can
make the value of M(NH)

max even higher.
In the present paper, we have restricted ourselves to the

hadronic forms of matter. A consistent treatment of the phase
transition to the quark phase in the neutron star core would re-
quire the use of the QCD for both hadronic and quark phases. As
the transition occurs in the strong-coupling regime, one is forced
to use different models that separately describe the baryon and
the quark phases. An approach based on an effective model of
the QCD of quark matter (Nambu-Jona-Lasinio) and NL3 for the
hadronic phase, used by Bonanno & Sedrakian (2012) indicates
that to get Mmax > 2 M�, vector repulsion in quark matter should
be sufficiently strong. In any case, the maximum mass obtained
by them is very close to that reached at a central density equal to
the deconfinement density.
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