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Abstract

Since the discovery of neutron stars with masses around M2 ⊙ the composition

of matter in the central part of these massive stars has been intensively dis-

cussed. Within this paper we will (re)investigate the question of the appear-

ance of hyperons. To that end we will perform an extensive parameter study

within relativistic mean field models. We will show that it is possible to obtain

high mass neutron stars with (i) a substantial amount of hyperons, (ii) radii of

12–13 km for the canonical mass of M1.4 ⊙, and (iii) a spinodal instability at

the onset of hyperons. The results depend strongly on the interaction in the

hyperon–hyperon channels, on which only very little information is available

from terrestrial experiments up to now.

Keywords: neutron stars, equation of state, thermodynamic instabilities

(Some figures may appear in colour only in the online journal)

1. Introduction

With the purpose of better understanding the dynamics of core-collapse supernova and the

observed neutron star characteristics, considerable theoretical effort has been undertaken in
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recent years concerning the modelization of the equations of state (EoS) of cold dense matter

with some extensions to finite temperature.

If we admit that hyperonic and deconfined quark matter could exist in the inner core of

neutron stars, a complete understanding of its composition is far from being achieved.

Concerning hyperons, simple energetic considerations suggest that they should be present at

high density [1]. However, in the standard picture, the opening of hyperon degrees of freedom

leads to a considerable softening of the EoS [1], which in turns leads to maximum neutron star

masses smaller than the highest observed values [2, 3]. This puzzling situation could be

circumvented by a very early deconfinement transition [4], or by the population of other

baryonic states such as Δ-baryons pushing the hyperon onset to higher densities. The latter,

however, only replaces the hyperon puzzle by a Δ puzzle [5] unless a phase transition to quark

matter is simultaneously invoked.

Without calling upon such a transition, it has been shown within phenomenological

density functional models that the observed neutron star masses simply imply that the

hyperon–hyperon (YY) and hyperon–nucleon (YN) couplings must be much more repulsive at

high density than presently assumed (e.g. [6–17]). The general agreement is, however, that

the price to pay for this additional repulsion is a very low strangeness content of neutron

stars [10].

In microscopic calculations the missing repulsion for hyperons is more difficult to obtain.

Naturally, one would expect it to arise from three-body forces. But, using a microscopic

model based on the Brueckner–Hartree–Fock (BHF) approach, the authors of [18] found that

even phenomenologically adding a three-body force was not enough to allow for the exis-

tence of stars which are massive enough to be compatible with observations. On the other

hand, in recent calculations using an auxiliary field diffusion Monte Carlo method (AFQMC)

[19, 20], the authors found that a sufficiently strong repulsive three-body force, constrained

by the systematics of separation energies in a series of hypernuclei, can produce a stiff enough

equation of state of hyperneutron matter that satisfies the M2 ⊙ constraint, even if a strong

model dependence due to the phenomenological nature of the hyperon two- and three-body

force is apparent. With the stiffest interaction model studied in [20], the repulsive part of the

energy functional is important enough to shift the onset of hyperons to densities above 0.56

fm−3 [20], confirming the finding from density functional models that the solution to the

hyperon puzzle could simply be a reduced hyperon content of neutron stars.

However, it should be pointed out that within the BHF approach (purely nuclear) stellar

matter becomes superluminous at the center of massive neutron stars when hyperons are not

included in the calculation [18]. This problem is inherent to the non-relativistic nature of BHF

calculations and could appear in any non-relativistic approach, e.g. AFQMC. It is therefore

important to check the effect of repulsive interactions in the hyperon channels on a larger

variety of models, particularly relativistic models where the sound speed correctly behaves at

any density. At this point it should be mentioned that recent relativistic Dirac–Brueckner–

Hartree–Fock (DBHF) calculations [21], including automatically part of the three-body for-

ces, reproduce hyperonic neutron stars with two solar masses, but with a nuclear EoS that is

either too stiff or does not give enough binding, in contradiction with known properties of

symmetric nuclear matter at saturation. In this context, relativistic mean field models, which

have proven a powerful tool in the description of nuclei, hypernuclei and dense (hyper)

nuclear matter, can give useful insight and the dependence of the neutron star structure on the

hyperonic couplings can be studied. In particular, we will show in this paper that the 2 M⊙

constraint can be reached even with a non-negligible fraction of hyperons in the star’s core.

There is still some uncertainty due to the poor present knowledge of the hyperonic interaction
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and we would like to stress the importance of further, more stringent constraints from ab initio

models and/or experimental data.

Another argument put forward against hyperons is that the strong repulsion needed

leads to an overpressure close to nuclear saturation density, which is inconsistent with

microphysical constraints derived by [38]. This overpressure is also associated with large

radii for neutron stars, larger than those suggested for intermediate mass neutron stars by

recent observations. In many models with hyperons compatible with the neutron star

mass constraint, see e.g. [8, 10], indeed relatively high radii of about 14 km for a non-

rotating spherical neutron star with the canonical mass of M1.4 ⊙ are obtained. This can,

however, not be a general argument since there are some examples with lower radii

[7, 13, 15].

In addition, the generic presence of attractive and repulsive couplings suggests the

existence, in a model-independent manner, of a phase transition involving strangeness. A

detailed study of the phase diagram of dense baryonic matter was recently undertaken in [23–

25] within a non-relativistic mean-field model based on phenomenological functionals. It was

shown that under these assumptions first- and second- order phase transitions exist, and are

expected to be explored under the strangeness equilibrium condition characteristic of stellar

matter. In [26] such a phase transition has been discussed for relativistic mean field models,

but within a model with very strong YY attraction.

Here we are interested in (a) examining in which region of parameter space within

relativistic mean field (RMF) models a first order phase transition from purely nuclear to

hyperonic matter could exist and if the existence of such a phase transition is compatible

with experimental and observational data, (b) if it is possible to obtain high mass neutron

stars with a considerable amount of hyperons and (c) finding additional support for

hyperonic EoS with radii of 12–13 km for canonical M1.4 ⊙ neutron stars and maximum

masses in agreement with observations.

We will work at zero temperature throughout the whole paper. The paper is organized as

follows. In section 2 we discuss the model applied and the setup for the hyperonic interac-

tions. We explain the procedure to detect thermodynamic instabilities in section 3. In

section 4.1 we present results for neutron star matter containing nucleons, electrons and Λ-

hyperons. We extent the discussion to the full baryonic octet in section 4.2 and we close the

paper with a summary of the results in section 5.

2. The model

The literature on phenomenological RMF models including hyperons is large and many

different versions exist (see e.g. [27]), including either non-linear couplings or density-

dependent ones of baryons to the meson fields mediating the interaction. Let us stress at this

point that, although they are generally called meson fields, these fields are purely phenom-

enological and only serve to describe the interaction without any relation with existing meson

fields, except for the quantum numbers which give the names for the corresponding RMF

meson fields. The Lagrangian of the model can be written in the following form

J. Phys. G: Nucl. Part. Phys. 42 (2015) 075202 M Oertel et al

3



( )

(

)
( )

( )

i m g g

g I g g g I

m g g

m

m

W W P P R R

m c

m m

¯ *

· ·

1

2

1

3

1

4

1

2
* * *

1

2

1

4

1

4

1

4
·

1

2

1

4
1

2

1

2
· , (1)

*

*

j

j j j j

j j j j j j j

2 2
2

3
3

4

2
2

2 2

† † †

2
3

2

2 2





∑ψ γ σ σ

δ γ ω γ ϕ γ ρ ψ

σ σ σ σ σ

σ σ σ

δ δ δ

ω ω ω ω

ϕ ϕ ρ ρ

= ∂ − + +

+ ⃗ ⃗ − − − ⃗ ⃗

+ ∂ ∂ − − −

+ ∂ ∂ −

+ ∂ ⃗∂ ⃗ − ⃗

− − − ⃗ ⃗

+ +

+ + ⃗ ⃗

μ
μ

σ σ

δ ω μ
μ

ϕ μ
μ

ρ μ
μ

μ
μ

σ

μ
μ

σ

μ
μ

δ

μν
μν

μν
μν

μν

μν

ω μ
μ

μ
μ

ϕ μ
μ

ρ μ
μ

∈

⎛

⎝
⎜

⎞

⎠
⎟

where jψ denotes the field of baryon j, andW P R, , ⃗
μν μν μν are the vector meson field tensors of

the form

V V V . (2)= ∂ − ∂μν μ ν ν μ

, *σ σ are scalar–isoscalar meson fields, coupling to all baryons (σ) and to strange baryons

( *σ ), respectively. δ ⃗ induces a scalar–isovector coupling.

In the mean field approximation, the meson fields are replaced by their respective mean-
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and the number density by
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is present in density dependent models to ensure thermodynamic consistency.

For the present study we will limit ourselves to two non-linear models, GM1 [28] and

TM1–2 [29], and one density-dependent model, DDHδ [30, 31]. The two non-linear ones

have been chosen among the large number of existing models because they are widely used

and they have been obtained assuming very different strategies for determining the para-

meters: GM1 has been adjusted to nuclear saturation properties imposing a certain effective

mass and incompressibility, whereas TM1 has been fitted to ground state properties of nuclei

and at high densities to DBHF calculations. For the GM1 parametrization, c3 = 0, and the δ-

field is absent in GM1 and TM1–2. The density-dependent models assume g g c 02 3 3= = =
(no non-linear terms) and the following density dependence of the couplings is used within

DDHδ

g n g n h x x n n( ) ( ) ( ), , (14)i B i i B0 0= =

with n0 denoting nuclear matter saturation density and

( )

( )
h x a

b x d

c x d
( )

1

1
(15)i i

i i

i i

2

2
=

+ +

+ +

for all isoscalar couplings and

[ ] ( )h x a b x c x d( ) exp ( 1) . (16)i i i i i= − − − −

for the isovector ones. The parameter values for GM1 can be found, e.g., in [32], table III, for

TM1–2 in [29], table I, and for the DDHδ model in [30], table II. The EoS of homogeneous

symmetric nuclear matter for parametrization TM1–2 is shown in figure 1 of [29]. It has the

same properties as TM1 [33] at and below saturation density, but it is stiffer at supra-

saturation densities, still within the constraints imposed by heavy-ion flow [34]. However,

within this parametrization the slope of the symmetry energy at saturation is very large,

L = 110MeV. Since the radius of compact stars is very sensitive to L [35–37], we will

consider a modified version with L = 55MeV [29], too, introducing a non-linear ω ρ− term

as in [35]. The resulting properties of homogeneous symmetric nuclear matter are listed in
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table 1 for all parametrizations employed within the present paper. In the same table we also

include the value of the pressure of β-equilibrated cold neutron star matter at n0 for reference.

According to [38], where a microscopic neutron matter calculation in the framework of a

chiral effective field theory together with available information on symmetric nuclear matter

have been used to build the EoS of stellar matter, this value should lie in the range

P n1.8 ( ) 3.0 MeV fm . (17)0
3≲ ≲ −

This range of pressures is the result of a quite restrictive allowed region for the symmetry

energy (29.7–33.5MeV) and its slope L (32.4–57MeV) at saturation.

2.1. Setup for the hyperonic interaction

The wealth of nuclear data allows one to constrain the nuclear interaction parameters within

reasonable ranges, whereas this is not the case for hyperons, where data are scarce. These

leaves some freedom in adjusting the interaction parameters for the hyperonic sector.

Many recent works, see e.g. [10, 15, 32], use a procedure inspired by the symmetries of

the baryon octet to express the individual isoscalar vector meson–baryon couplings in terms

of g Nω and a few additional parameters [39] as follows

g
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Table 1.Nuclear matter properties of the models considered in this study for symmetric
nuclear matter at saturation, except for the last column where the pressure of β-equi-
librated neutron star matter at zero temperature and a baryon number density of n0 is
given.

K Esym n0 B L P n( )0
(MeV) (MeV) (MeV) (fm )3− (MeV) (MeV fm−3)

GM1 300 32.5 0.153 16.3 94 4.06

TM1–2 281 36.9 0.145 16.3 110/55 4.38/2.43

DDHδ 240 25.1 0.153 16.3 44 2.56
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The parameter α thereby determines the ratio of symmetric coupling of the baryons to the

vector meson octet (D-term) and the antisymmetric coupling (F-term), and g1 and g8 are the

coupling constants for coupling of baryons to the vector meson singlet and octet, respectively.

θ is the mixing angle of ω- and ϕ-mesons with the corresponding singlet and octet states, and

z g g8 1= . As commonly assumed, in what follows we will take tan 1 2θ = , corresponding

to ideal mixing and 1α = . In the literature, SU(6)-symmetry is mostly imposed to fix the

couplings, i.e. z 1 6= , and only recent studies in view of the observation of high mass

neutron stars have relaxed this assumption, for example [10, 14, 32].

It should be pointed out that if z 1 6≠ , the ϕ meson couples to nucleons and it has to

be included upon determining the parameters of the model that reproduce nuclear saturation

properties, see [10], equation (12). This means that we have readjusted g Nω upon varying z,

throughout all the calculations respecting the symmetry constraints on the isoscalar vector

meson couplings given by equation (18).

In the isovector sector symmetry arguments are not used since this would lead to con-

tradictions with the observed nuclear symmetry energy. g Nρ is therefore left as a free para-

meter, adjusted to the desired value of the symmetry energy, and the remaining nonvanishing

isovector vector couplings are all equal, the isospin symmetry being taken into account

through the isospin operator t3i, see equation (12),

g g g g0, . (19)N= = =ρΛ ρ ρΞ ρΣ

For the scalar sector, in [13] a symmetry inspired procedure is discussed and tested

against the constraints imposed by hypernuclear data. Here, as done in e.g. [10, 15], we will

directly use the information from hypernuclear data on hyperonic single-particle mean field

potentials to constrain the coupling constants. The potential for particle j in k-particle matter is

given by

U n M M( ) . (20)j
k

k j j j j
( ) * *μ μ= − + −

Based on data on Λ-hypernuclei produced in K( , )π+ + reactions, the presently accepted value

of the Λ-potential in symmetric nuclear matter at saturation density,U n( )N( )
0Λ , is 30≈ − MeV

[40]. U n( )N( )
0Ξ is attractive, too, with a value of ≈−14 – −18MeV, based on missing mass

measurements in the K K( , )− + reaction on carbon [41]. The situation of U n( )N( )
0Σ is

ambiguous. On the one hand K( , )π− + reactions on medium-to-heavy nuclei point to a

repulsive potential of up to 100MeV [42]. On the other hand, the observation of a He4
Σ bound

state in a 4He(K , π− −) reaction [43] pleads in favor of an attractive potential. Following the
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above procedure to fix the vector coupling constants, the couplings of hyperons to σ are then

adjusted to reproduce the hyperon potentials in symmetric nuclear matter.

Very few multi-hyperon exotic nuclei data exist so far and all of them correspond to

double-Λ light nuclei. Data on the bond energy can be reinterpreted in terms of the Λ potential

in Λ matter at the average density of Λ inside those nuclei [44]. Mean-field calculations

suggest that in light nuclei (from He to C) the average Λ density is close to one fifth of the

saturation density [44, 45]. Therefore, we take as an indicative value for U n( 5)( )
0Λ

Λ the

experimental value of BΔ Λ
Λ. Data on 10

ΛΛBe and B13
ΛΛ then suggestU n( 5) 5( )

0 ≈ −Λ
Λ MeV [46]

while He6
ΛΛ data point toward a higher value of U n( 5) 0.67( )

0 ≈ −Λ
Λ MeV [47, 48].

We will use here as a guideline that experimental data point towards U n( 5) 5( )
0 > −Λ

Λ

MeV. For the other potentials it is often assumed that in isospin symmetric Ξ- and Σ-matter,

U n U n( ) 2 ( 2)( )
0

( )
0≈Ξ

Ξ
Λ
Λ and U n U n( ) ( 2)( )

0
( )

0≈Σ
Σ

Λ
Λ [49] based on theoretical estimates. In

view of the only weakly attractive ΛΛ-potential and the uncertainties on other hyperon–

hyperon (YY) potentials, often *σ is neglected (see e.g. [8, 10, 15]).

In a first step we will use the procedure described above and study the dependence of the

results upon variations of the couplings to *σ and z. The symmetry arguments in the isoscalar

vector sector are, however, not very compelling. They are based on the naive quark model for

hadrons in vacuum and it is known that this model is too simple. The interactions of the

baryon octet in vacuum respect an approximate SU(3)-flavor symmetry, but symmetry

breaking effects are large. Since we are dealing here with an effective model for interacting

particles in matter, without any input about symmetry breaking effects in dense matter, there

is no reason to assume any flavor SU(3)-symmetry for the effective interaction. In addition,

the approach is inconsistent in the sense that symmetry constraints are imposed only for the

isoscalar vector couplings with other prescriptions for the other channels, see also the dis-

cussion in [14] on this point. By the way, in the vector–isovector channel, a strict application

of this procedure would lead to severe problems with the observed nuclear symmetry energy

[10]. Therefore, in a second step, we will only keep the NY- potentials at some given value

and vary the different coupling parameters freely. Note that for these parametrizations, where

we have relaxed the symmetry constraints, we have considered g 0N =ϕ and the nuclear

matter properties, see table 1, remain unaffected by a modification of the hyperonic couplings.

3. Thermodynamic instabilities

The existence of a first order phase transition can be spotted by analyzing the curvature of a

thermodynamic potential in terms of extensive variables, indicating the presence of a spinodal

instability related to the phase transition. The unstable region is thereby recognized by a

negative curvature. This convexity analysis has often been employed, among others for the

phase transition to hyperonic matter in [23–25] or for the neutron–proton system [50–52]. At

zero temperature, the adequate thermodynamic potential is given by the total energy density,

n({ })iε , with as variables the number densities corresponding to good quantum numbers6.

In the present case, assuming equilibrium with respect to strong and electromagnetic

interaction, for purely baryonic matter the good quantum numbers are baryon number,

strangeness and charge with densities n n,B S and nQ, respectively. Since we are interested in

6
Let us stress that for the stability analysis we assume that the time-scale of potential density fluctuations is such

that equilibrium with respect to strong interaction is always maintained. This allows one to reduce the nine-

dimensional space of all densities to a three-dimensional one. In this sense our study corresponds to the semi-frozen

case of [55].
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neutron star matter, we have to impose electrical charge neutrality and add leptonic degrees of

freedom with lepton number as an additional degree of freedom. Due to the strict electrical

neutrality condition, charge is no longer a good degree of freedom and the system remains

three-dimensional [24, 53], see also [54], in terms of the number densities n n,B S and nL.

Stability can now be checked by analyzing the eigen-values of the curvature matrix,

C n n n({ } )ij l l i j k i j
2

{ , , }ε= ∂ ∂ ∂= , where i j k B S L, , , ,= . The number of negative eigenvalues

corresponds to the number of directions in density space, in which density fluctuations get

spontaneously and exponentially amplified in order to achieve phase separation. In all our

studies at most one negative eigenvalue has been found.

Muons could be included in the analysis, since they are a priori present in neutron star

matter. Neglecting neutrino oscillations, they would add another dimension, corresponding to

conserved muon lepton number. However, as leptons are treated as an ideal gas, they change

the stability analysis only through the electrical charge neutrality constraint. Therefore,

including muons in addition to electrons does not qualitatively change the results. The

quantitative modifications are so small that we have decided to neglect muons for simplicity.

Exploring the complete three-dimensional space n n n, ,B S L is a very demanding task.

Since we are mainly interested in neutron star matter, we will restrict our investigation to the

case of strangeness changing weak equilibrium, i.e. 0Sμ = . In addition we will assume β-

equilibrium. We will thereby consider that a neutron star older than several minutes is cold

enough such that neutrinos can freely leave the system. This means that their chemical

potential is zero, i.e. the chemical potentials associated with (electron) lepton number vanish,

0Lμ = .

Let us stress that, although we restrict the study to a line in the three-dimensional density

space, the stability analysis remains three-dimensional: at every point on the 0, 0S Lμ μ= =
-line, the curvature matrix tests fluctuations in three directions, meaning that we do not

assume weak equilibrium to be maintained throughout the fluctuations, see [55], too.

4. Results and discussion

The results presented below assume U n( ) 28N( )
0 = −Λ MeV, U n( ) 18N( )

0 = −Ξ MeV, and

U n( ) 30N( )
0 =Σ MeV unless otherwise stated. To study the parameter dependence, we will

vary the different coupling constants keeping the nuclear matter properties of the different

models constant.

4.1. Neutron star matter with Λ-hyperons

4.1.1. Stability analysis. We will start the discussion with the simple case of matter

containing nucleons, Λ-hyperons and electrons. Although not completely realistic, it is

instructive since it allows one to see trends in the parameter dependence. As mentioned

earlier, in a first step we will follow the procedure proposed in [10] to vary the coupling

constants, see section 2.1 for details. The values of the isoscalar vector couplings are then

determined by the value of the parameter z and the couplings to σ are obtained from the

hyperon potentials in nuclear matter. We will thereby vary z between z = 0 and z 1 6= , the

SU(6) value, since for higher values of z it becomes more and more difficult to obtain neutron

star maximum masses in agreement with observations, see [10] and section 4.1.2.

In figure 1 the minimal eigenvalue of the curvature matrix, cmin, is displayed as a function

of baryon density for neutron star matter within GM1 and DDHδ models, varying z and g *σ Λ.

The kink in the curves indicates the respective threshold density for the onset of Λ-hyperons.
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The lower value of g *σ Λ has thereby been chosen such that the valueU n( 5) 5( )
0 = −Λ

Λ MeV is

reproduced, which corresponds to the strongest attraction compatible with present

experimental data7. Although, after the onset of Λ-hyperons, cmin decreases with increasing

z, no instability is found in this case. Upon increasing g *σ Λ, cmin further decreases and for

g g* crit>σ Λ a first order phase transition in neutron star matter can be observed.

At the same time, increasing the value of g *σ Λ renders the ΛΛ interaction more attractive

at low densities. The values ofU n( 5)( )
0Λ

Λ are given for g g* crit=σ Λ in table 2 for comparison

and the respective density dependence is shown in figure 2. The present results suggest that a

first order phase transition to np eΛ + matter can occur in RMF models, too. The price to pay

is a very strong Λ–Λ attraction, which is in contradiction with the actual experimental

information. In the following we use the definition R g g* *i i N=σ σ σ .

Relaxing the symmetry conditions, see equation (18), for the variation of the isoscalar

vector coupling constants leads to essentially the same conclusion on the stability of neutron

star matter with Λ-hyperons: an instability shows up for strongly attractive Λ–Λ interactions.

The value of U n( 5)( )
0Λ

Λ for which the instability sets in depends only very weakly on the

values of the isoscalar vector couplings and is U n( 5) 40( )
0 ≈ −Λ

Λ MeV within the DDHδ

model and U n( 5) 30( )
0 ≈ −Λ

Λ MeV within GM1.

It is interesting to observe that these results are very different from what is obtained in the

non-relativistic framework [25]. In that study the parameter space associated to an instability

is very large and includes the present hypernuclear experimental constraints. Within the

present models, we arrive at the opposite conclusion. We cannot exclude that the different

functional forms associated to the energy density in the relativistic and non-relativistic

framework might be at the origin of this discrepancy, since it has been observed in the past

that non-relativistic functionals often present unphysical instabilities [56]. An alternative

explanation might be the qualitatively different behavior of the hyperon–hyperon potentials,

which in both approaches are fully phenomenological. In particular the minimum of those

potentials systematically occurs below saturation density in the Skyrme functionals [25] for

the considered stiffness coefficients, while in the RMF models we have analyzed, it

Figure 1. Smallest eigenvalue of the curvature matrix of the energy density as a
function of baryon number density for neutron star matter with R g g* *i i N=

σ σ σ . The

GM1 and DDHδ parameter sets have been employed. Only Λ-hyperons are considered.
To test the parameter dependence we have respected the symmetry constraints in the
isoscalar vector sector, see equation (18). The couplings to σ are adjusted to the

hyperon potentials in nuclear matter and the *σ are varied, see section 2.1 for more
details.

7
Please note that for vanishing g *σ Λ

, as always assumed in the recent literature, in most cases no attraction at all in

the Λ-potential is observed.
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systematically occurs above saturation. In particular, in RMF models the scalar fields saturate

at large densities. The role of the scalar isoscalar meson, and scalar densities on the properties

of RMF models has been discussed several times in the past, see [57, 58].

Since the instability at high baryonic density seems to be strongly correlated with the NY

and YY potentials at low hyperonic densities, there is hope in confronting the different

Figure 2. The Λ single particle potential in Λ-matter as a function of baryon density.
The GM1 (left) and DDHδ (right) parameter sets have been employed. The setup is the
same as in figure 1.

Table 2. Summary of results respecting the symmetry arguments for the isoscalar vector
couplings allowing for Λ-hyperons as the only hyperons. R1.4 denotes the radius of a

non-rotating star with M M1.4= ⊙ and Rmax is the radius at maximum mass. The values

of R *σ Λ
for models nΛ thereby correspond to the critical values of these coupling

constants for the onset of an instability in the Λ-channel, and models denoted as Yn do
not present any instability. Please note that the value of −7 MeV for U n( 5)( )

0Λ
Λ for

GM1 Y3 is the highest that can be obtained within the model and the given para-
meter set.

Model R *σ Λ z Mmax R1.4 Rmax U n( 5)( )
0Λ

Λ

M( )⊙ (km) (km) (MeV)

GM1

Y1 0.45 0.41 1.99 13.8 12.0 −5

1Λ 0.98 0.41 1.70 13.8 11.1 −22

Y2 0.2 0.2 2.22 13.8 12.0 −5

2Λ 1.02 0.2 2.03 13.8 11.2 −28

Y3 0 0. 2.32 13.8 12.0 −7

3Λ 1.08 0. 2.22 13.8 11.5 −34

DDHδ

Y1 0.61 0.41 1.71 12.7 10.4 −5

1Λ 1.07 0.41 1.58 10.5 9.0 −34

Y2 0.5 0.2 1.93 12.7 10.8 −5

2Λ 1.08 0.2 1.83 12.7 9.8 −39

Y3 0.4 0. 2.06 12.7 11.1 −5

3Λ 1.1 0. 1.99 12.7 10.5 −44
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functional forms with new more extensive experimental hypernuclear data to solve the

ambiguity. This perspective is left for future work.

4.1.2. Neutron star masses and radii. In order to obtain neutron star masses and radii we

solve the Tolman–Oppenheimer–Volkoff (TOV) equations [59] for hydrostatic equilibrium of

a non-rotating (spherical) star in general relativity with the different EoS. The different EoS

have been supplemented at low densities with the crust EoS from Baym, Pethick and

Sutherland [60]. The results for the mass-radius relation are displayed in figure 3 for GM1

(left) and DDHδ (right) following the symmetry inspired procedure. The two values of g *σ Λ

for each value of z thereby correspond to the cases discussed above: the one leading to the

canonical value of U n( 5) 5MeV( )
0 = −Λ

Λ and the one corresponding to the critical value for

the onset of an instability. Qualitatively the results look very similar in both models.

Concerning the maximum mass associated with the different EoS, it is obvious that

decreasing z, the maximum mass increases. This finding is not new, see [10], and is explained

by the fact that a smaller z leads to an interaction with stronger repulsion at high densities.

Similarly, increasing g *σ Λ renders the interaction more attractive and lowers therefore the

maximum mass. In both models, maximum masses compatible with the recent observations of

neutron stars with masses of 1.97 ± 0.04 [2] and 2.01 ± 0.04 [3] can be obtained. The effect of

a nonzero coupling to *σ is to reduce the allowed parameter range in z and smaller values of z

are required to obtain a high enough maximum mass. The weak attraction suggested by

experimental data still allows for a wide range in z, whereas the strong attraction leading to an

instability reduces the allowed range in z considerably.

The latter conclusion can be softened relaxing the symmetry constraints on the isoscalar

vector couplings, see section 4.2 where several examples are shown with acceptable neutron

star masses and, at the same time, leading to the onset of an instability.

It has been claimed that the strong repulsion needed within RMF models as well in the

hyperonic sector as for the purely nuclear part to obtain neutron stars compatible with recent

mass measurements and containing hyperons would lead always to very large radii and that

there would be a tension with recent radius determinations, see for instance [61]. Let us stress

at this point that the radius determinations are difficult and that they are presently far from

being as reliable as the mass observations from [2, 3]. The main problem is that the extraction

of radii from observations is much more model-dependent than the above-mentioned mass

determinations, see e.g. [62], where a reanalysis gives a radius of 9.0 4
2.9

−
+ km instead of 6.61.1

1.2+

km [61] for the same object, a neutron star in NGC6397. A summary and discussion of

Figure 3. Mass-radius relation for non-rotating spherical neutron stars. The GM1 (left)
and DDHδ (right) parameter sets have been employed. The setup is the same as
in figure 1. The two horizontal lines indicate the mass of PSR J0348 + 0432,

M2.01 0.04± ⊙.
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different observational radius determinations can be found in [22]. In addition, for a rotating

star due to its deformation there is no unambiguous relation between the observed quantity

and the radii determined theoretically. On the theoretical side, due to the matching between a

core and a crust EoS, not necessarily obtained within the same model, the calculated radii are

subject to uncertainties of the order of several percent, too [63, 64]. However, much

observational effort is being put into the determination of neutron star radii and further

constraints are to be expected. Thus, it is interesting to investigate the radius range that

neutron stars with hyperons can have.

The first remark to be made, looking at the radii in figure 3, is that the central density

exceeds the threshold for the onset of Λ-hyperons only for neutron stars with M M1.5≳ ⊙

(GM1) and M M1.4≳ ⊙ (DDHδ), respectively. Thus the radius at the canonical mass of

M M1.4= ⊙ is almost exclusively determined by the nuclear part of the EoS, i.e. the nuclear

interaction. The finding that the radius (see table 2 for a summary of the different values) for

M M1.4= ⊙ is significantly higher in GM1 than in DDHδ is consistent with it being

dominated by the nuclear interaction and shows again the strong impact of the

incompressibility and the symmetry energy asym and its slope L, see table 1, which are

considerably lower in DDHδ than in GM1. It is, however, not true that hyperons cannot be

added to nuclear models with low incompressibility or symmetry energy and slope without

violating the neutron star maximum mass constraint, see the examples in DDHδ in figure 3,

see table 2. We will further discuss this point in section 4.2 upon including the full baryonic

octet.

4.1.3. Strangeness content of neutron star matter. Does the stiffening of the EoS necessary

to obtain maximum masses of at least M2∼ ⊙ reduce the hyperon content of neutron star

matter finally excluding hyperons from neutron stars? The general recipe to increase the

maximum mass is clear: add additional short range repulsion. If this is done mainly in the

hyperon sector, then the strangeness content will be reduced. This is what happens upon

decreasing z. In figure 4 we display the ratio of strangeness density with respect to baryon

number density in GM1 (left panel) and DDHδ (right panel) as a function of radius for the

maximum mass configurations obtained earlier.

The general trend confirms the findings of [10], decreasing z decreases the hyperon

content of neutron star matter. There is, however, a point to add. The hyperon content, as can

be seen from figure 4 is very sensitive to the attraction furnished by a coupling to *σ . Of

course, adding attraction reduces again the maximum mass such that the general trend is not

modified: a higher maximum mass means globally fewer hyperons. But the absolute value of

the hyperon content is strongly model dependent. And, as can be seen from the examples in

figure 4 present observations are far from excluding hyperons from neutron stars.

4.2. Including the full octet

In the previous section, only Λ-hyperons have been considered. Although Λ-hyperons are the

first to appear in neutron star matter for most interactions (in particular for models with a

repulsive Σ− potential in symmetric nuclear matter) and are in general the most abundant

hyperons, this is of course not completely realistic. Therefore, we will now repeat the same

analysis, but allowing a priori all particles of the baryon octet to have a nonzero density. In

the following subsections we will first perform a stability analysis, and then look at neutron

star properties.
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4.2.1. Stability analysis. As in section 4.1.1 we are interested here in sets of couplings

describing stellar matter with an instability at the onset of hyperons. For a given choice of the

isoscalar vector meson couplings g iϕ and/or g iω and fixing the couplings to σ by the values of

the hyperon potentials in nuclear matter, the only remaining parameters are the couplings to

*σ . The isovector vector couplings are kept fixed by isospin symmetry.

In table 3 for GM1 and table 4 for TM1–2 and DDHδ we adopt the following convention:

if no instability is present the model is identified with Yn; the sets identified with nΛ all lead

to an instability at the onset of Λ; the sets identified with nΞ and nΣ originate an instability

driven by the onset of the Ξ or the Σ isovector multiplet.

Let us start with the results respecting the symmetry constraints of equations (18). We

will show only results obtained using GM1 here for two reasons. First, as discussed in

section 4.1 qualitatively the results are similar for different models. Secondly, as shown in

section 4.1.2, for the models including only the Λ-hyperon, the parameter space for obtaining

high enough neutron star masses is very reduced within DDHδ upon applying the symmetry

constraints to the isoscalar vector couplings. The allowed parameter space becomes even

smaller if the full octet is considered and the results do not give us any new insight with

respect to those with GM1 presented here.

In figure 5 we show the minimal eigenvalue of the curvature matrix, cmin, as a function of

baryon number density in neutron star matter for different choices of the couplings to *σ and z

within GM1. The choice of couplings in the upper panel corresponds to those giving

U n( 5) 5( )
0 = −Λ

Λ MeV and U n( 5) 10( )
0 = −Ξ

Ξ MeV. Since only ,Λ Ξ− and 0Ξ -hyperons

appear in neutron star matter with the employed parameter set, only the couplings associated

to these hyperons are given. The Σ-hyperons, mainly due to the assumed strongly repulsive

NΣ interaction, appear only well above nB = 1 fm−3 beyond the central density of the neutron

stars with the highest mass. In the curves, successive thresholds leading to kinks in cmin can be

observed. They correspond to the onset of ,Λ Ξ− and 0Ξ -hyperons, respectively.

For the above choice of parameters, the system is perfectly stable. However, we have

seen before for the case of neutron star matter with Λ-hyperons, see figure 1, that increasing

g *iσ decreases the minimal eigenvalue of the curvature matrix leading finally to an instability.

This can again be observed here. In the middle and bottom panels, results are displayed with

the smallest value of g *σ Λ and g *σ Ξ , respectively, leading to an instability for a given choice of

the other couplings. As can be seen in the bottom panel, within GM1, for the critical value of

g *σ Ξ , the system is not driven into an instability when the Ξ− sets in, but the instability arises

Figure 4. The ratio of strangeness density ( n= Λ for the present case) to baryon number

density, Y n ns S B= as a function of radius, normalized to the star’s radius, for the

respective maximum mass configuration of a spherical star. The GM1 (left) and DDHδ
(right) parameter sets have been employed. The setup is the same as in figure 1.
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Table 3. Summary of results using the symmetry arguments in the isoscalar vector sector, meaning that the isovector couplings are fixed by the value
of z and the relation in equations 18. The parametrization GM1 has been employed. The parameters are indicated in columns 2–5. The values of
R *σ Λ

and R *σ Ξ
for models nΛ and nΞ thereby correspond to the critical values of these coupling constants for the onset of an instability in cold β-

equilibrated neutron star matter, in the Λ and Ξ channel, respectively. The central energy density, baryon number density and strangeness fraction
Y n ns S B= are given for the maximum mass configuration. fS represents the integral of the strangeness fraction Y 3s over the whole star for the

maximum mass configuration, as in [10]. The potentials U ( )
Λ
Λ , U ( )

Ξ
Ξ and U ( )

Σ
Σ are calculated at n 50 .

Model R *σ Λ
R *σ Ξ R *σ Σ z Mmax R1.4 Rmax c( )ϵ nB

c( ) YS
c( )

fS U ( )
Λ
Λ U ( )

Ξ
Ξ U ( )

Σ
Σ

M( )⊙ (km) (km) (MeVfm 3− ) (fm 3− ) (MeV) (MeV)

GM1

Y4 0.45 1.16 0 0.41 1.79 13.8 13.0 825.8 0.73 0.70 0.04 −5 −10 14

4Λ 0.91 1.16 0 0.41 1.59 13.8 13.6 598.3 0.56 0.59 0.006 −19 −10 14

1Ξ 0.45 1.35 0 0.41 1.71 13.8 13.4 737.1 0.67 0.75 0.02 −5 −21 14

Y5 0.20 0.87 0 0.2 2.12 13.8 12.3 1040 0.85 0.71 0.07 −5 −10 14

5Λ 1.0 0.87 0 0.2 1.94 13.8 11.0 491.1 1.08 0.93 0.20 −27 −10 14

2Ξ 0.20 1.26 0 0.2 1.98 13.8 13.1 806.9 0.71 0.84 0.03 −5 −29 14

Y6 0 0.55 0 0. 2.29 13.8 12.1 1075 0.85 0.46 0.04 −7 −10 13

6Λ 1.08 0.55 0 0. 2.19 13.8 11.7 1139 0.90 0.64 0.12 −34 −10 13

3Ξ 0 1.13 0 0. 2.24 13.8 12.4 1004 0.82 0.76 0.05 −7 −33 13
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Table 4. Summary of results calculated within different models allowing for a free variation of the isoscalar vector couplings. The parameters used
are indicated in columns 3–7. RωΛ and RϕΛ represent the ratio of the corresponding isoscalar vector coupling constants to their respective SU(6)

values. As before, the couplings to *σ are defined with respect to g Nσ . The choices of parameters named n n n, ,Λ Ξ Σ with g 0*Y ≠
σ

originate an

instability driven by the onset of Λ, Ξ or Σ, respectively. The parametrizations named Yn do not show any instability. The central energy density and
baryon number density are given for the maximum mass configuration. fS represents the integral of the strangeness fraction Y 3s over the whole star

for the maximum mass configuration. The potentials U ( )
Λ
Λ , U ( )

Ξ
Ξ and U ( )

Σ
Σ are calculated at n 50 .

Model L R *σ Λ R *σ Ξ
R *σ Σ R Yω R Yϕ Mmax R1.4 Rmax c( )ϵ nB

c( ) fs U ( )
Λ
Λ U ( )

Ξ
Ξ U ( )

Σ
Σ

(MeV) M( )⊙ (km) (km) (MeVfm 3− ) (fm 3− ) (MeV) (MeV) (MeV)

TM1–2

Y1 110 0 0 0 1 1 1.95 14.55 12.57 1028 0.86 0.15 1.7 21.1 16.17

Y2 55 0 0 0 1 1 1.94 13.43 12.02 1085 0.91 0.12 1.7 21.1 16.17

Λ1 110 1.01 1 1 1 1 1.51 14.55 14.48 505.2 0.48 0.004 −21.8 −2.3 −7.17

Λ2 110 1.23 1.23 1.23 1 1.5 1.74 14.55 10.61 1634 1.28 0.40 −23.8 23.1 −0.84

Λ3 110 1.48 1.48 1.48 1 2 1.90 14.55 11.04 1458 1.15 0.31 −27.0 59.1 −12.62

Λ4 110 1.68 1.68 1.68 1.5 2 2.13 14.55 12.20 1119 0.90 0.16 −41.1 36.0 −20.96

Λ5 55 1.445 1.445 1.445 1 2 1.85 13.43 10.76 1482 1.17 0.26 −23.9 62.1 −9.40

Λ6 55 1.58 1.58 1.58 1.5 2 2.09 13.43 11.85 1337 0.92 0.11 −33.7 44.4 −12.77

Ξ1 110 0.3 1.42 1 1 1 1.75 14.63 14.08 722.2 0.65 0.04 −0.37 −25.82 −7.17

Ξ2 55 0.3 1.42 1 1 1 1.78 13.43 12.89 921.5 0.78 0.06 −0.37 −25.26 −6.93

Σ1 110 0.8 1 1.1 1 1.2 1.75 14.57 13.21 856.4 0.76 0.11 −9.80 11.04 −9.68

Σ2 110 0.8 1 1.23 1 1.5 1.87 14.57 13.12 921.5 0.79 0.10 −3.74 35.11 −12.75

Σ3 110 0.8 1 1.37 1.3 1.5 2.05 14.57 12.91 959.0 0.80 0.12 −4.19 30.36 −14.66

DDHδ

Y4 44 1.03 0 0 1.5 0.85 2.05 12.7 11.2 1217 0.99 0.04 −5 79 62

Y5 44 1.03 1 1 1.5 0.85 2.00 12.7 11.1 1262 1.02 0.06 −5 41 24

Y6 44 1.81 2.70 1.99 1.5 1.59 2.01 12.7 10.9 1325 1.06 0.08 −0.2 −1 −0.4

4Λ 44 1.5 0 0 1.5 0.85 2.04 12.7 10.9 1358 1.07 0.08 −48 79 62

1Ξ 44 1.81 2.85 1.99 1.5 1.59 2.00 12.7 10.9 1325 1.06 0.09 −0.2 −33 −0.4
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rather at the 0Ξ -threshold. In addition, although the Λ is the first hyperon to appear, after the

onset of Ξ−, the number of Λ-hyperons remains almost constant with increasing density and

even starts to decrease with the onset of 0Ξ due to the large attraction that Ξ− and 0Ξ feel

induced by the large coupling to *σ . Changing the isovector channel by choosing a smaller

symmetry energy slope would move the instability to larger densities, because a smaller L

disfavors the onset of neutral hyperons [29]. We will discuss this statement in a more

quantitative way within two versions of TM1–2 below.

The critical values for g *σ Λ leading to an instability are slightly lower than those obtained

in section 4.1.1 for n p e, , ,Λ -matter, except for the z = 0 case. At first sight this might be

surprising since at densities below the Ξ−-threshold, the results should be exactly the same.

The reason is that actually the instability is not caused here by the onset of Λ-hyperons, but

Ξ−-hyperons. The threshold densities are very close and the two distinct thresholds are hardly

distinguishable, looking at cmin. A closer inspection of the data shows that the minimal value

of cmin lies at densities above the Ξ−-threshold, see figure 9, too, where the number fractions

are shown for the different species.

Not surprisingly, we are able to find an instability in other models, too. In figure 6 several

examples of parameter sets leading to an instability within TM1–2 and DDHδ are shown. The

g Yσ couplings are adjusted to the hyperon potentials in nuclear matter as before. Again, the

values of g *iσ correspond to the limiting values for the onset of an instability, as seen from the

behavior of cmin. No symmetry constraints have been imposed on the isoscalar vector

couplings. All parameter values are listed in table 4.

Figure 5. Smallest eigenvalue of the curvature matrix of the energy density as a
function of baryon number density for neutron star matter in GM1 for different
parameter sets including the full baryonic octet. Top: parameter sets not showing any
instability; middle: instability driven by the onset of Λ; bottom: instability driven by the
onset of Ξ. Parameters and neutron star properties are given in table 3.
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The sets in table 4 identified with nΛ , nΞ or nΣ , displayed in figure 6 in the top, middle

and bottom panels, respectively, all lead to an instability at the onset of Λ, Ξ or Σ hyperons. A

Ξ-driven instability is possible for strong g *σ Ξ and weak g *σ Λ couplings. A Σ-driven instability

requires a strong g *σ Σ coupling. Just as with GM1, a Ξ or Σ-driven instability was only

obtained after all members of the multiplet set in. It should be pointed out that, although the Σ

driven instability occurs at quite a high density, it still occurs within the range of densities

inside a neutron star, see sections 4.2.2 and 4.2.3. A less repulsive U N( )
Σ would allow for an

instability at lower densities. In the same way a less attractiveU N( )
Ξ would remove the onset of

the Ξ inside a neutron star.

Let us mention that, in contrast to GM1, neutron star matter contains Σ-hyperons for

some sets in table 4 with U 30N( ) =Σ MeV and more than three thresholds can be observed

within the range of densities relevant for neutron stars. We will discuss the composition in

detail in section 4.2.3.

Of course, the YY-interaction is very sensitive to the couplings to *σ . Remember that

originally the *σ was introduced to allow for very attractive YY-interactions in view of

experimental results for double-Λ hypernuclei at the epoch in [49]. A strong attraction in the

ΛΛ-channel was indeed found in section 4.1.1 for the values of g *σ Λ leading to an instability.

The same is true here, as seen for the ΞΞ -potentials and the ΣΣ -potentials, shown in figure 7,

right panel, and the ΛΛ-potential displayed in figure 7, left panel, for different examples in

TM1–2 and DDHδ. The corresponding values at n 50 are listed in table 4. It is obvious that

Figure 6. Smallest eigenvalue of the curvature matrix of the energy density as a
function of baryon number density for neutron star matter in TM1–2 for different
parameter sets including the full baryonic octet. Top: parameter sets with an instability
driven by the onset of Λ; middle: instability driven by the onset of Ξ; bottom: instability
driven by the onset of Σ. Parameters and neutron star properties are given in table 4.
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the attraction needed in the ΛΛ-channel to obtain an instability is much higher for all

examples shown than the values suggested by experimental data. Even if we neglect the

Nagara event and only consider the earlier data (see e.g. [49] for a discussion) resulting in a

stronger attraction in this channel, the coupling strength needed for the onset of an instability

is far off.

In the ΞΞ -channel and the ΣΣ -channel the situation is less evident because there is no

experimental information available in these channels. Current information, based on

theoretical arguments for the baryon octet in vacuum and corresponding meson exchange

models, is clearly not sufficient to pin down the amount of attraction for the YY interaction in

dense matter. Since the coupling to *σ is determined mainly via the YY interaction, more data,

in particular on hyperons other than Λ-hyperons, would be very welcome to be able to judge

whether the different chosen values are pertinent or not.

4.2.2. Neutron star masses and radii. In section 4.1.2 we have presented results for neutron

star masses and radii with matter containing neutrons, protons, Λ-hyperons and electrons. The

conclusions were that, within this restricted setup, firstly the observed neutron star masses can

not be used to exclude the existence of a first order phase transition to hyperonic matter in

RMF models. Secondly, the radii for intermediate mass neutron stars are most sensitive to the

properties of the nuclear interaction and, in contrast to previous claims, it is possible to obtain

masses in agreement with recent observations for models containing a substantial amount of

Λ-hyperons, using a nuclear interaction with low L leading to relatively small radii of the

order 12–13 km at intermediate masses.

Within this section we would like to investigate whether these conclusions about

including the full baryonic octet remain true. From the simple argument that new degrees of

freedom soften the equation of state we would expect the mass constraint to become more

difficult to fulfil, at least if more than one hyperon species becomes populated. This argument

is, however, only strictly valid for free Fermi gases without interaction and we thus have to

study the questions within different interaction models.

In tables 3 (GM1) and 4 (TM1–2 and DDHδ) the maximum mass, the radius at a

gravitational mass of M1.4 ⊙ and the radius at maximum mass for spherical non-rotating

neutron stars are given for the different parameter sets discussed in the preceding section. In

figure 8 the corresponding mass-radius relations are plotted, for TM1–2 in the left panel and

GM1 and DDHδ in the right panel.

Figure 7. The Y-potential in isospin symmetric Y-matter as a function of baryon number
density, for Λ (left), Σ and Ξ (right) hyperons for a selection of parameter sets in table 4
as predicted by TM1–2 (lines) and DDHδ (symbols). The results for model 2Ξ should
be considered multiplied by a factor of 2.
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Very generally, increasing the magnitude of the vector-meson couplings allows for larger

masses due to the stronger repulsion. This can be observed for all cases. Within GM1,

respecting the symmetries, the maximum mass increases with decreasing z, see table 3. For

TM1–2 and DDHδ no constraint is set on the isoscalar vector couplings and the maximum

neutron star mass increases upon increasing those values, see table 4.

Increasing the *σ -couplings, leading to a stronger attraction, the maximum mass

decreases. This can again be observed within all the models discussed here. For instance,

taking for the isoscalar vector couplings their respective SU(6) values, and choosing g 0*i =σ ,

a maximum mass of M1.95∼ ⊙ is obtained for both L = 110 and 55MeV within TM1–2.

Increasing g *iσ reduces the maximum mass as expected, and for g g1.01
*
crit

N=
σ Λ σ the

maximum mass is 1.51 M⊙. If, however, no constraint is set on the isoscalar vector couplings,

it is possible to choose a set of couplings which predict larger maximum masses, also above 2

M⊙, and still give rise to an instability driven by the onset of strangeness.

Compared with the case of npΛ+e-matter, see section 4.1.2, the maximum masses are

reduced by the presence of other hyperon species, as expected. The effect is more pronounced

if more species enter and if their respective threshold densities are considerably below the

central density of the maximum mass configuration. For instance, as can be observed from the

GM1 results, for the highest value of z the maximum mass is strongly reduced with respect to

the npΛ+e case and only very small for z = 0. The reason is that for the respective maximum

mass configurations, 0Ξ -hyperons enter for z = 0.41 and z = 0.2 in addition to Λ and Ξ−,

whereas they are absent for the z = 0 models, see figure 9, too. Another point should be

mentioned concerning these results: the effect of increasing the attraction due to a

*σ -coupling between the canonical and the critical value is more pronounced for the threshold

to Λ-hyperons than for the Ξ. The reason is that the difference between the canonical and the

critical value in the Ξ-channel is smaller than for the Λ-hyperons, partly because at the Ξ

thresholds other hyperons are already present, pushing the instability.

From all the above-discussed examples, it is clear that the existence of an instability is

not excluded by the neutron star maximum masses. The maximum masses are more strongly

dependent on the vector couplings than on the *σ -couplings for values between zero and the

critical values, such that the allowed parameter space is still large. In addition, as discussed in

section 4.1.2, there is no evidence that nuclear EoS with large L have to be chosen to obtain

maximum masses above M2 ⊙ with a considerable amount of hyperons in the central part.

Figure 8. (Gravitational) mass/radius curves for spherical neutron stars for a selected
choice of parameters using TM1–2 (left) and GM1/DDHδ (right). For TM1–2, we
show the families of stars obtained with the parametrizations of table 4 that drive the
stellar matter into an instability upon the onset of Λ. The two horizontal lines indicate
the mass of PSR J0348 + 0432, M2.01 0.04± ⊙.
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Since for almost all the parameter sets considered here, Λ-hyperons appear first, the

neutron star radii at intermediate masses still depend mainly on the properties of the purely

nuclear EoS and considerable differences due to the presence of hyperons can be observed

only for masses close to the respective maximum mass. For the EoS giving acceptable

maximum masses, the difference in radii due to hyperons becomes clearly visible for stars

with masses above roughly 1.8 M⊙. Therefore, again, the main parameter determining the

radii at intermediate masses is the slope of the symmetry energy, L, as found earlier in the

context of purely nuclear models [35–37].

To illustrate this point, let us first compare the two versions of TM1–2. It should again be

noted that within those models hyperons are present only in stars with M M1.5≳ ⊙, such that

the radius at M M1.4= ⊙ is determined by the nuclear parameters. The original

parametrization TM1–2 has a very large value of the symmetry energy slope at saturation

L, and, not surprisingly the radius of a M1.4 ⊙ star is above 14 km. However, including a non-

linear ωρ term in the Lagrangian density it is possible to decrease L. For L = 55MeV, a radius

of 13.4 km is obtained. The DDHδ model has an even lower value of L = 44MeV and, as

discussed already in section 4.1.2, the radius of a star with M M1.4= ⊙ is 12.7 km. Hyperons

can be added to the EoS within this model without any contradiction to present neutron star

mass observations.

Hence, since the maximum masses are only moderately influenced by the presence of

hyperons other than Λ’ s, we conclude as before that hyperons can be added to nuclear models

with low symmetry energy and slope without violating the neutron star maximum mass

constraint, and that in this way radii between 12–13 km can be obtained for neutron stars with

the canonical mass of M1.4 ⊙, see the numbers given in table 4.

4.2.3. Strangeness content of neutron star matter. In figure 9 we display the fractions of the

different particles in neutron star matter as a function of baryon number density within GM1,

varying z and g *iσ . As expected, rendering the vector repulsion stronger by choosing a smaller

value of z, the respective hyperonic thresholds are shifted to higher densities. Thereby, the

cascade thresholds show a stronger z dependence than the Λ-threshold. The reason is the

stronger z-dependence of the individual hyperon–meson coupling constants, see

Figure 9. Particle fractions in neutron star matter (x n ni i B= ) for the different

parameter sets discussed above within GM1. The vertical lines indicate the central
density of the respective maximum mass configurations.
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equation (18), induced by the symmetry requirements of the procedure used. It can be

observed that all threshold densities for z 0.41< are significantly lower than those in [10],

i.e., hyperons are present at much lower baryon number densities. This can be explained by a

different readjustment of the couplings to σ: we keep the values of the hyperon potentials in

nuclear matter, U n( ) 28N( )
0 = −Λ MeV, U n( ) 18N( )

0 = −Ξ MeV and U n( ) 30N( )
0 =Σ MeV,

constant when changing the value of z. In addition, all the curves have been calculated with

nonzero coupling to *σ .

The observed dependence on the attraction furnished by *σ is no surprise. Increasing g *iσ ,

the threshold density for hyperon i is lowered and its abundance is globally increased. In

particular, in the right panel it can be seen that for a strongly attractive coupling of Ξ-

hyperons, although due to the much higher mass of the Ξ with respect to Λ, the latter

threshold still remains the lowest, at densities beyond the 0Ξ -threshold, Λ-hyperons become

the less abundant ones. This is again an example which shows to what extent the composition

of the core of neutron stars depends on the interactions between different particles and the

necessity of more experimental data to pin down the neutron star composition.

The fractions of particles plotted in figure 10 were calculated within TM1–2

(L = 110MeV) and TM1–2 with the ωρ nonlinear term (L = 55MeV). In case of an existing

instability, it is driven by the hyperon indicated in the name of the parametrization, see

table 4. Some additional comments are in order:

(a) for the hyperon potentials chosen and taking for the isoscalar vector mesons the SU(6)

couplings, the first hyperon to set in is always the Λ followed by the Ξ−;

(b) increasing the strength of the g Yϕ coupling with respect to its SU(6) value disfavors the

onset of Ξ due to the large strangeness of these hyperons and the onset of Λ is followed

by the onset of Σ−;

(c) increasing the strength of the g Yω coupling with respect to its SU(6)-value will disfavor

more strongly the onset of Σ and Λ, and, therefore, it may happen that the Ξ− onset

density is the lowest, mainly if L = 55MeV, the latter having a larger g iρ favoring

negatively charged hyperons;

Figure 10. Particle fractions in neutron star matter (x n ni i B= ) for the different

parameter sets discussed above within TM1–2. The vertical lines indicate the central
density of the respective maximum mass configurations.
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(d) taking the smaller value of the symmetry energy slope, L = 55MeV, the Λ-hyperons set

in at larger densities, and the Σ-hyperons at smaller densities. The total strangeness inside

the maximum mass star is smaller for the EoS with smaller L.

5. Summary and conclusions

We have investigated neutron star matter including hyperonic degrees of freedom within an

RMF approach. For the nucleonic EoS we have considered the GM1 parametrization [28], the

DDHδ [31], and some variations of the TM1 parametrization [33] with a smaller symmetry

energy slope L and/or a harder EoS at large densities [29]. The hyperon–nucleon interactions

have been adjusted to existing experimental data. Thereby we have followed two different

strategies in the isoscalar vector sector: either symmetry constraints [39] have been imposed,

relaxing the SU(6)-symmetry to fix the couplings as done in several recent works [10, 14, 32]

or no particular symmetry has been assumed between hyperonic and nuclear couplings. For

the hyperon–hyperon interaction, that in the present formalism is described through the

mesons with hidden strangeness, *σ and ϕ, the couplings g *iσ have been varied freely, and, in

particular, they have been chosen strong enough to originate an instability with the onset of

hyperons; whereas for the coupling to ϕ, the prescription for the isoscalar vector sector has

been followed.

Our main focus has been to study the possibility that an instability driven by the onset of

hyperons could exist, the neutron star maximum mass, and the strangeness content of neutron

star matter. We have also looked at the radii of intermediate mass neutron stars with EoS

containing hyperons. The existence of an instability as a trace of a first order phase transition

was identified by analyzing the curvature of the thermodynamical potential with respect to the

baryonic, strangeness and leptonic densities. In all our studies at most one negative eigen-

value, corresponding to the direction in density space, in which density fluctuations are

spontaneously and exponentially amplified in order to achieve phase separation, has been

found.

First we have studied npΛ+e matter in β-equilibrium, and showed that it was possible to

choose a set of parameters that gives rise to an instability driven by the onset of Λʼs and still

predict a maximum star mass of the order of M2 ⊙, and stars with a mass of M1.4∼ ⊙ with a

radius of 12–13 km. It was shown that the hyperon content is very sensitive to the attraction

furnished by a coupling to *σ and that the absolute value of the hyperon content is strongly

model dependent. The npeΛ+e calculations are far from excluding hyperons from neutron

stars. The price to pay for having an instability is, however, a very strong Λ–Λ attraction,

which is in contradiction with the actual experimental information.

In a second step we considered the whole baryonic octet. Again, it was shown that a

particular choice of the coupling parameters g *iσ , g iϕ and g iω allowed the construction of EoS

giving rise to star masses as high as M2 ⊙, which, in addition, predict the occurrence of

instabilities at the onset of hyperons. In particular, it was shown that it is possible to have an

instability driven by the onset of the Λ-, the Ξ- or the Σ-hyperons depending on the choice of

the coupling parameters. The coupling parameters will also determine the different hyperon

species and the strangeness fraction occurring inside a neutron star. Presently, the scarce

amount of experimental information on the hyperon sector leaves too much freedom in

adjusting the interaction parameters to give a definite answer about the composition of

neutron star matter with hyperons.
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It was also shown that the neutron star radii at intermediate masses depend mainly on the

properties of the purely nuclear EoS and considerable differences due to the presence of

hyperons can be observed only for masses close to the respective maximum mass. The main

parameter determining the radii at intermediate masses is the slope of the symmetry energy, L,

as found earlier [35–37]. It was shown that hyperons can be added to nuclear models with low

symmetry energy and slope without violating the neutron star maximum mass constraint, and

that in this way radii between 12–13 km can be obtained for neutron stars with the canonical

mass of M1.4 ⊙. From rather general arguments it seems indeed difficult to obtain even lower

radii with an EoS satisfying the maximum mass constraint [65]. In fact, for almost all the

parameter sets considered, the Λ-hyperons appear first, and the hyperons are present only in

stars with M M1.5≳ ⊙, such that the radius at M M1.4= ⊙ is determined by the nuclear

parameters. Contrary to existing models, see [22] for a discussion, we could get hyperonic

stars described within a RMF calculation with a mass M M2= ⊙ or above, and still satisfying

the semi-empirical constraint on the pressure of neutron star matter at saturation density [38].

Our results obtained from a wide range of allowed parameter sets clearly show that

additional constraints from future experimental data on hyperonic interactions and/or ab initio

calculations of baryonic matter with hyperons are necessary to clarify the structure and

composition of neutron stars. Possible non-homogeneous phases in the star would affect the

mean-free path of neutrinos (see e.g. [24]), and, consequently, the cooling rate of the star, or

its transport properties, e.g. heat and electric conductivity, and shear viscosity.

A selection of the EoS presented in this paper is publicly available on the Compose web

site [66] (http://compose.obspm.fr).
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