JOURNAL OF CHEMICAL PHYSICS VOLUME 113, NUMBER 3 15 JULY 2000

Hyperparallel tempering Monte Carlo simulation of polymeric systems
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A new hyperparallel tempering Monte Carlo method is proposed for simulation of complex fluids,
including polymeric systems. The method is based on a combination of the expanded grand
canonical ensembl@r simple temperingand the multidimensional parallel tempering techniques.

Its usefulness is established by applying it to polymer solutions and blends with large molecular
weights. Our numerical results for long molecules indicate that the new algorithm can be
significantly more efficient than previously available techniques.2@O0 American Institute of
Physics[S0021-96080)50427-9

I. INTRODUCTION tions. We capitalize on this efficiency to generate phase dia-
grams for polymer solutions with molecular weights
Solutions of polymers or biological macromolecules significantly larger than those simulated by previous tech-
pose significant obstacles to molecular simulation, particuniques.
larly at low temperatures and elevated densities. Complex
fluids such as solutions of macromolecules usually exhibit
rugged and complex energy landscapes; it is therefore diffi-

. ) . - Il. HYPERPARALLEL TEMPERING MONTE CARLO
cult to sample their configuration space efficiently. Conven-

tional molecular dynamics methods are unable to generate Consider a generalized ensemble whose partition func-

trajectories that are long enough to cover the inherently longion is given by

characteristic relaxation times that characterize polymeric

fluids. Over the last decade, several Monte Carlo methods Z(f)=2 QOOW(Xf), (1)

have been proposed to overcome the barriers facing tradi- X

tional molecular simulation methods and to improve sam- heref denot t of ified lized f

pling of configuration space for complex systetns: How- Wheret denoles a set of Speciiied generaizea forces or po-
e tentials, which determine the thermodynamic state of the sys-

ever, most of these methods are of limited use for

imulati f 00l ic liquids. A | i tem. In Eq.(1), x is used to denote a microscopic state, or an
simufations of polymeric iquids. AS an éxample We Mention; ., ¢ configuration of the systerf)(x) is the density of
the simulation of athermal, hard-sphere chains, where mo

of the above mentioned methods would not apply. %Eates, anav(x,f) is an arbitrary weighting function for state

. . ) X, at the given set of generalized potenti&lsThe grand
In recent years it has become increasingly clear tha&anonical ensemble is recovered by writing

open ensembles provide an effective means for overcoming
some of the problems associated with slow-relaxation phe- f={T,u}, w(x,f)=exp(—BUX)+N(x)Bur), (2

nomena,; in the particular case of polymeric fluids, mOIGCU|e§Nhere,8= 1kgT, Tis temperaturey is the specified chemi-

could get in and out of a system, thereby circumventing dif- : . : .
. cal potential,U the potential energy corresponding to
fusional bottlenecks. Furthermore, the expanded grand c P : () is b : % sponding

%’onf' rationx, andN is the number of particles in con-
nonical ensemble Monte Carl&@GCMC) formalism?*3has f 'guration, ()i u parti !

rendered open-ensemble simulations of lon macromoleculegurationx'
stic o 9 We now construct a collective ensemble consistintylpf
a realistic option.

In a recent r we drew elements from parallel t mnoninteracting replicas of the above mentioned generalized

fin angce nﬁpaeeﬂ nel bgﬁlﬁ[e re s 1o npsvame Itie ‘ensemble. Each replica is allowed to be at a different set of

pering and configurationa O Propose a new, muitt generalized potentials. The complete state of the composite
dimensional tempering Monte Carlo method for simulation

) ensemble is specified througt= (X1, X, . . . ,Xy) ", where
of many-molecule systentS.Such a method combines the X; denotes the state of thth replica. The partition function

benefits of tempt_aring _technique_s, with those pf Open- s ihe composite ensemble is given by
ensemble based simulations. In this paper, we build on that
method through a combination of expanded ensemlis® M

known as simple temperifigand multidimensional parallel Zc(flva:---rfM):H Z(fy), (©)
tempering. For lack of a better term, we refer to the new =t

method as “hyperparallel tempering” Monte Carlo the unnormalized probability density of the complete state
(HPTMC). The performance of HPTMC is examined in the is proportional to

context of dense polymer solutions and blends. It is shown M

tr_lat HPTMC can be several orders of n_1agn|tude more eff_l- p(x):H Q(x)W(x; f). @)
cient than existing methods for simulation of phase transi- i=1
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(1) Canonical Monte Carlo trial moves are used to locally
update each of the replicas of the system. Since replicas
do not interact with each other, standard Metropolis
acceptance/rejection criteria can be employed within
each replica.

(2) Trial shrink/growth moves are used to change the length
of the tagged chain in each replica, thereby implement-
ing the underlying expanded grand canonical formalism.

(3) Configuration swaps are proposed between pairs of rep-
licasi andj, such that

new__ ,,old new__ ,,old
X=X, X=X (7)

Len=0

s .:v:t:;

Len=4

s

Len=n

Expanded Ensemble States

Te t . " . .
emperatures To enforce a detailed-balance condition, the pair of replicas

FIG. 1. Schematic illustration of the implementation of hyperparallel Monte {0 be swapped is selected at random, and the trial swap move
Carlo. Each box in the figure represents a distinct replica of the simulategs accepted with probability,

system; these replicas are simulated simultaneously in a single run. In ad-

dition to traditional Monte Carlo trial moves, these replicas ¢Bnrchange | owixg L f)w(xg L f)
the their state variables in the expanded dimensi@nhgxchange configu- pacc(XiHXj) =min 1.m .
ration with each other, thereby visiting different valuesTadind . i 17

®

By substituting Eqs(5) and(6) into Eq.(8), we arrive at
the following acceptance criteria for swapping two replicas:
The hyperparallel tempering Monte Carlo method pro-

posed in this work is designed to generate configurations of Pacc=min[1,exp A BAU—ANyA(Bu)) ], ©

polymeric systems distributed according to distributg®). ~ where Ag=pg;—p;, AU=U;—U;, AN,=N,;—N

In this work, we implement the hyperparallel tempering tech-A(Bu) = Bjui— Bju; -

nique in the framework of the expanded grand canonical

ensemblé? and we apply it to simulate phase equilibria for |11 MODELS AND SIMULATION DETAILS

polymer solutions and blends. Some of the details concern:

: ) - ._A. Models

ing the expanded grand canonical ensemble and its applica-

tion to polymeric systems can be found in the literature. Here  In this paper, we apply the proposed HPTMC method to

we merely mention that the system can jump along a set adimulate polymer solutions and blends on a cubic lattice. The

expanded states, in addition to the conventiondl ) polymer is modeled as a chain of connected lattice sites;

phase-space variables of a grand canonical ensemble. For tlagtice sites have single occupancy. Nonbonded monomers

particular implementation to polymeric fluids, we insert or interact with each other only when they are nearest neigh-

destroy chain molecules gradually, i.e., several segments atbrs. If we denote the interaction energies for polymer—

time. In other words, a simulation box consists of severapolymer, polymer—solvent, and solvent—solvent pairs by

regular chain molecules and a tagged chain, whose length €, €,s, and s, respectively, the single relevant energy

fluctuates during the simulatiom, therefore serves as the scale is

expanded state variable. A preweighting factor d@xy) is

assigned to each expanded stath the language of Eq1),

the weighting function for the expanded grand canonical enln this work we sete,,= —1, ande,s= €5s=0.

semble is For pure polymer solutions, we simulate chains consist-
ing of up to 2000 sites. For the lattice model employed in

F={Tw ¥}, wix.h=exd - UX)+ N(X)'B““I’(y)]é this work, a 2000-site chain corresponds to polystyrene with
an approximate molecular weight of one million and a half;

If we assume that the segmental chemical potential is indethough clearly feasible, simulations of longer chains would

pendent of chain length, we can set the preweighting functherefore be of little practical relevance. For polymer blends,

Y.

£=€ppt €ss— 2€ps. (10

tion to be we simulated two highly asymmetric systems; in the first,
n n N polymers consist of 16 sites and 64 sites, respectively. In the
V(y)= Fy,B,ur:Fy ﬂM—In(Vy”, (6)  second, polymer chains have 50 sites and 500 sites, respec-

tively. Both blend systems are simulated at constant tempera-
whereN,=N+n,/n; ny is the length of the tagged chain, ture. The interaction energies are as follows: For system 1,
andn is the length of a full polymer chain. In E@6), u' kT/e1,=2.33, kT/€,,=2.95, kT/€,,=2.80; for system 2,
denotes the residual chemical potential of a polymer chain.kT/e,,=2.75, kT/€;,=3.10, kT/€,,=3.30. These param-
Figure 1 illustrates schematically our implementation ofeters are chosen such that the critical temperature for the
HPTMC. Each box in the figure represents a replica in thandividual components of the blend are close to each other.
simulation system; each replica has a different valug, of, For all systems, each Monte Carlo step consists of 50%
andn, . Three types of trial move&ach corresponding to a chain growth or shrinking moves, and 50% local moves
distinct axis of the figureare used to realize the underlying (kink-jump and crankshaft movesConfiguration swaps are
Markov chain. attempted every 10 Monte Carlo steps. Rer1000, the size

Downloaded 07 Mar 2007 to 128.104.198.190. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



1278 J. Chem. Phys., Vol. 113, No. 3, 15 July 2000 Q. Yan and J. J. de Pablo

of the simulation box id. =60; for n=2000, we use a size 10°
L=285. We use 18 to 20 replicas to calculate the phase dia- |
gram of the systems of interest. The temperature and chemi-
cal potential of the replicas are such that their states are in
the neighborhood of the binodal curve.

n

B. Optimization of expanded grand canonical
ensemble

The number of segments. to be grown or deleted dur-
ing an expanded ensemble trial move is an important param-
eter in expanded grand-canonical ensemble simulations. We
refer ton. as the insertion length. A small value of the in-
sertion length results in an unnecessarily large number of . . . .
intermediate states, while a large value can lead to low ac- 0 200 400 600 800 1000
ceptance rates. ifi,=n, the expanded grand-canonical en- Insertion Size
semble reduces to a conventional grand-canonical ensemblﬁ , _ .

. . . . ] G. 2. Average number of trial steps required to generate a full chain or to
A_n opt|_mal Insertion length can be estimated as follows; forremove a full chain in expanded grand canonical ensemble simulations, as a
simplicity, we assume that the acceptance rate decreases @action of “insertion size.” The symbols are the actual number of steps
ponentially as the insertion length increases, that is, used in simulations; the curve is a prediction given by @4).

Steps Required To Insert a Cha

g
(]

Paccept: aPSC, (11

wherep, is the acceptance ratio when=1 (i.e., it is the  yajyes given by Eqg14) and(16). In our work, a few short
acceptance ratio for a single segmerind wherea is a  preliminary runs with differenn, are used to estimatg,
proportionality constant. The length of the tagged chain cafyom Eq. (11). The value ofn. is selected as the integer
increase or decrease with equal probability; the averaggijvider of the chain length which is closest to those given by
length of the tagged chain afté, successful growing and Egs. (14) and(16).
shrinking steps should be To illustrate our optimization procedure, we have calcu-
= nc\/N—. (12) lated the average number of trial growth steps required to
insert a whole chain as a function of insertion length for long
The average number of attempts to obtain a full-lengthmolecules on a cubic lattice. Figure 2 shows results from a

tagged chain should therefore scale as series of simulations for chains of 2000 segmentsT*t
2 =3.34 andBu =300, where the average density is abgut
— n
= —. (13) =0.33. The symbols are the actual average number of steps
an§ Py’ required to insert a full chaifor delete a full chainduring a

simulation; the curve is the prediction of E4.3). As we can

By minimizing N, the optimal insertion length is estimated see, Eq(13) describes the behavior of our EGCMC simula-

to be tion reasonably well; the optimal insertion length corre-
oot 2 sponds to the minimum of that curve, and the location of the
neP'=— m- (14 theoretical minimum is close to that of the numerical simu-

) i ) o lation results.
From the point of view of computational efficiency, the av-

erage CPU time required to insert a full chain is a reasonable

measure of performance. If we assume that the CPU time to o

insertn, segments is proportional to the insertion length, theC- Histogram reweighting

average CPU time required to insert a full chain becomes We use histogram reweighting techniques to determine
binodal curves. The details of the technique can be found in

_ (15)  the literature'’~**Here we only outline briefly its application

ang p,° to grand-canonical simulations of two-component systems.

The probability that, for specifieflu,,u,,V,T], precisely

wheret is the CPU time required to insert one segment. TheN . .
: . . . ; . 1 chains of component 1 aridl, chains of component 2 are
corresponding optimal insertion length is therefore given by

observed having potential energly is given by

ton?

, 1
opt _ _ T
nC In pO. (16) p(N11N21U1T11u‘111u2)
During an actual simulation, chain growth and shrinking ~ Q(N1,N,,V,U)exp(— U+ BuiN;+ BuoNy) 1
moves are not the only elementary steps employed to gener- E(my.pn,V,T) » (17)

ate trial configurations; since the CPU time consumed by
other types of moves is independent of the insertion lengthwhere(Q(N,N,,V,U) is the microcanonical partition func-
the actual optimal insertion length is usually between theion, andZ= is the grand partition function, given by
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A Monte Carlo estimate of)(N;,N,,V,U) is obtained

E(Ml:ﬂZlva):NE NE % Q(Ng1,N2,V,U) by combining Eqs(17) and(19) according to
1 2
Xexp(—BU+N Bui+NoBus).  (18) (N, Nz, V,U)=wH(Ny,Nz,U)
During a grand canonical simulation g&{,u5,V,T°), X exp(B2U—N; 8%ud—N,B8%%9), (20)
Monte Carlo estimates of the probabilipycan be obtained in
the form of histograms, where w=E(ul,u3,V,T9/K is a constant. Since

0 O\ Q(N4,N,,V,U) is independent of temperature or chemical
P(N1,N2, U, T% g, ) =H(N1 No, U)/K, (19 potential, the probability that the system Hag particles of
where H is the number of observation®r entries into a  component 1N, particles of component 2, and energyat
histogram of N;,N,,U), andK is the total number of ob- a different state pointT,«q,x5,), can be estimated accord-
servations in a simulation run. ing to

(NN T st ) H(N1 N, U)exd — (8= B%)U+Ny(Bus— B°ud) + No(Bua— Bus)] o1
s Ny u HNL N U exd] — (B— 82U+ Ny (Bras— B+ No(Bus— Bud)]’

The pressure of the system can be determined from namic properties of interest, including binodal curves. For
more details regarding the manipulation of histograms read-
ers are referred to the literature:'°

BP(T p1,12)= InE > 2 H(Ng,Np,U)
o M U o IV. RESULTS AND DISCUSSION
0 0

Xexg = (A= FIUANL(Bra— ) Figure 3 illustrates how replicas are swapped during a

+ Nz(,@,uz—ﬂoug)]JrC, (22 simulation. The figure can be explained in terms of “physi-
cal replicas” and “logical replicas.” A “logical replica” is
a simulation box which exists at a given thermodynamic
state. A physical replica is the actual collection of chains that
we follow through the course of a simulation. By construc-
tion, a physical replica can occupy any logical replica. Figure

whereC=Inw/V is a constant, which must be evaluated in-
dependently. When the system exhibits a phase transition
the above probability distribution can exhibit two or more

?;:ng:affék?; tzgt;mﬁw eeratlrJ];eS;s xz}l(igf;ﬁ\g;he ;”Sﬁ al 3 shows the evolution of the logical replica®t=3.35 and
P P 9 Bu=145.9, forn=1000 chain molecules. The ordinate axis

nodal curvg, the value of the chemical potentials must be
indicates which physical replica happens to be visiting the
manipulated in such a way as to enforce a constant pressuye

throughout the twe(or mord phases present in the system, ogical replica at any given step during the simulation. A
S . " jump in the figure indicates a successful configuration swap.

which is equivalent to the condition that the ardas vol- After such a swap, the two relevant logical replicas adopt

umes under each peak be equal to each other. The other two '

conditions for phase coexistence, namely, constant tempera-

ture and constant chemical potentials, are satisfied by con- 5

struction in grand canonical simulations.

The above discussion pertains to a single histogram. Be-
cause the ranges of energy and number of particles acces-
sible to a single simulation run are somewhat limited, the
ideas discussed above are only useful for small extrapola-
tions in the neighborhood of 0,2, 19). To extend the
range of applicability of histogram reweighting techniques, it
is therefore customary to run several simulations at different
state points, and then combine the resulting multiple histo-
grams to provide a representation of the system over a wide
range of conditions. These runs have traditionally been con-
ducted independently of each other. In this work, such simu- ‘ ‘ ,
lations are conductedn parallel (i.e., simultaneously 0 50000 100000 150000 200000 250000
through our proposed HPTMC method. The histograms col-
lected in these simulation runs are subsequently combined to

eStimateQ(Nl-szVvU)_ over a wide range ofNy,N3,U); FIG. 3. Replica number as a function of Monte Carlo stepsnferL000,
such an estimate can in turn be used to calculate thermody* =3.35, andgu=145.9.

Replica Number
o

O N b O

MC Steps
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decay is only marginally better than that for tieVT
method. This is due to the extremely low molecule-insertion
acceptance rate experienced with macromolecules. The
dashed curve shows results from multidimensional parallel
S CE P tempering simulations in the grand canonical ensemble; the
’ Az performance is much better than that of naive grand canoni-
cal or NVT simulations. A notable feature of this curve is
that it decays rapidly during the first 500 steps; after that, the
relaxation curve adopts a much smaller slope whose decay to
zero is comparable to that for tiéV T and GC simulations.
o Again, the reason for this behavior is that the acceptance rate
TN e ] of the underlying GC simulation is too low. In this case
replica swapping does little beyond switching back and forth
several nearly-unchanged configurations. The sudden initial
. s . drop of the autocorrelation function only arises because sev-
0 1000 2000 3000 4000 5000 eral completely different configurations are combined in the
T Markov chain; swapping, however, is of limited help for the
FIG. 4. End-to-end vector autocorrelation function for polymer chains ob—lomv:"“me relaxation behavior ‘?f ang polymeric systems.
tained by different simulation methodgl) short dashed line: canonical The dashed—dotted curve in Fig. 4 shows results for the
ensemble;(2) dashed-dotted—dotted line: grand canonical ensentBle; expanded grand canonical ensemble. As discussed earlier,
dashed line: multidimepsional parallel tgm_perinjg) dashed—dotted Iipe: expanded ensembles improve significantly the performance
expanded grand canonical ensemiif;solid line: hyperparallel tempering. . . .
of a grand canonical simulation. The curve decays to zero
after about 3000 MC steps. The performance of the ex-

completely new configurations, thereby reducing dramatifanded grand-canonical method is more than one order of
cally the correlation time corresponding to a thermodynamidnagnitude better than that of a naive grand canonical simu-
state. Furthermore, a swap passes a physical replica at a Id@tion. The solid curve shows the results for HPTMC; the
temperature and a high density over to logical replicas witflecay to zero is even faster than for the expanded grand
higher temperature and lower density, where the physicatanonical method. The relaxation of the end-to-end autocor-
replica can relax more rapidly before eventually returning torelation function occurs in less than 1000 steps. In this re-
its original logical replica. The swapping process greatly acspect, HPTMC is several times more efficient than the ex-
celerates the overall relaxation of the global system and faPanded grand canonical technique and it is several orders of
cilitates sampling of phase space under adverse conditionsmagnitude more efficient than the methods that have tradi-
In a first test of HPTMC we examine the response of ationally been used to simulate polymeric fluids.
polymer solution to a step change in chemical potential. In It is important to stress the advantages of HPTMC in
this test, we prepare a set of well-equilibrated initial configu-Fig. 4 over multi-dimensional tempering in the grand canoni-
rations ofn=1000 polymers at a relatively low densityp( cal ensemble. As discussed in the literature, conventional
=0.2), and expose them to a sudden step increase of thrallel tempering would not provide a much better perfor-
chemical potential, for which the new equilibrium density mance than a conventional grand-canonical method. Clearly,
should be abou$=0.38. For reference, a simulation using a the high efficiency of HPTMC is largely due to the fact that
traditional grand canonical method is also performed undethe underlying expanded-ensemble simulation leads to a high
the same conditions. The results indicate that HPTMC attaingcceptance rate for particle transfers.
the new equilibrium density approximately 50 times faster ~ Having examined the efficiency of the proposed simula-
than the traditional method. tion method, we now proceed to illustrate its usefulness and
The performance of HPTMC is a result of two, essentialrelevance by applying it to polymeric systems of practical
elements; expanded-ensemble insertions and destructiorig)portance. Figure 5 shows coexistence curves for polymers
and multi-dimensional replica swapping. To identify the roleof 100, 600, 1000, and 2000 sites. The lines are the results of
of these two contributions, we perform a series of simulathis work, and the open symbols are simulation data from the
tions using theNVT ensemble, the grand canonical en- literature?® For n=100 andn= 600, our results are in good
semble, multidimensional parallel tempering in a grand caagreement with literature reports. Note, however, that with
nonical ensemble, an expanded grand canonical ensemblbe new method, we are able to explore the phase behavior of
and the newly proposed HPTMC method; in all cases wdong polymer chains down to fairly low temperatures. The
examine the decay of the end-to-end vector autocorrelationomputational demands of the new method are relatively
function for the polymer. The decay of this function to zero modest. For example, calculation of the full phase diagram
provides one of the most stringent tests of efficiency for aor polymer chains of length 2000 required less than 5 days
polymer-simulation technique. Figure 4 shows the resultson a workstation. The same calculation using traditional
The dotted curve shows the decay of this function for thegrand canonical or Gibbs ensemble techniques would require
NV T ensemble; the relaxation is slow, and reaches a value afeveral years of computer tiieThe results of simulations
only 0.62 after 5000 steps. The curve below that ofRNET  are also consistent with the experimental data for
ensemble corresponds to the grand canonical simulation; theolystyrene—cyclohexane solutioffsMore importantly, our
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. . . FIG. 7. Phase diagram for asymmetric polymer blends. Circles are for the
FIG. 5. Phase diagram for long polymer chains. The triangles are resultg 9 Y poly

reported by Panagiotopoules al. (Ref. 20. The curves show results of this :ystgrsn) gz%g:glsnzrgffgfiﬁ: ;It:tt;/fﬁil; zcr?;nz-réfezszg/;o%osgs/;:(iz
work. Note that with the HPTMC, we are able to calculate the phase dia- _* Y 1

gram for longer polymers, down to lower temperatures, with modest com-~ 2.75,kTl €2,=3.30, kT/ €1,=3.10).

putational requirements.

_ o ) _ sure on miscibility. To a large extent, this is due to the fact
calculations indicate that, for ultrahigh molecular weights,iat most theoretical models assume that polymer blends are
polymer solutions exhibit a crossover to classical beh&ior. incompressible. To address this deficiency, we therefore de-

This is contrary to the results of previous simulations foriarmine the miscibility of our blends as a function of pres-
shorter polymeré? but it is consistent with recent theoretical sure. Figure 7 shows the resulting phase diagrams. For both

arguments by Grassberger and Frauenkfon. systems, pressure has a non-negligible negative effect on the
In a second example of the usefulness of HPTMC, weniscibility of the blends; this implies that the volume-change
use it to examine the miscibility of highly asymmetric poly- ot mixing is positive. Clearly, the assumption of incompress-
mer blends. For brevity only two systems are considered; ifyjjity for these blends would be invalid. To the best of our
the first, polymers consist of 16 sites and 64 sites, respegnqyledge, this is the only available simulation report of the
tively. In the second, polymer chains have 50 sites and 50@hase diagram of such highly asymmetric and compressible
sites, respectively. For each replica, the temperature angy\ymer blends. We are therefore unable to provide a com-
chemical potential of each component are specified. Threeﬁarison between our results and previous work. However, a

dimensional histograms are collected, and the coexistenGgore extensive simulation study of the miscibility of poly-
curve is determined from a histogram reweighting analysis;her plends is under way, and in that report we compare our
Figure 6 shows the projection of the histograms obtained fofagits to the predictions of available theor&&®

the 16/64 system on tfé, —N, plane. As can be seeninthat  The calculations described above have only been pos-

figure, the simulation conditions for different replicas aregjye through use of the HPTMC method. The advantages of
such that these histograms overlap nicely with each otheghis new method have been shown to arise from the combi-
thereby permitting efficient swapping and reliable interpola-5tion of biased, open ensemble simulations with replica

tion via histogram reweighting. swapping. The first aspect of the method permits destruction

While much theoretical work has been devoted t0 dexf chain molecules from a simulation box and creation in

scribe the temperature dependence of miscibility for poneEompletely new positions and configurations; one needs not
blends, there are relatively few studies of the effect of presy,,it for particles to slowly diffuse through the system.

Through replica swapping, one takes the whole configuration
100 , . : out of a logical box, and puts a completely different configu-
ration (from another replicaback into the logical box, so
that one needs not wait for configurations to slowly diffuse
through phase-space bottlenecks. One can think of replica
swapping as an arbitrargbut correct method for forcing
fluctuations in phase-spaée.g., fluctuations of energy, den-
sity, etc) into a simulation run. The new method therefore
accelerates both real-space and phase-space diffusion,
. thereby leading to efficient sampling.
2(‘)0 300 400 Several factors affect the performance of HPTMC. F@rst
of all, factors that affect the performance of the underling
N1 expanded ensemble simulation clearly influence the perfor-
FIG. 6. Histograms obtained in the simulation of polymer bletta/ea ~ mance of HPTMC. In this work, we optimized the perfor-
system. The figure shows the projection of histograms infhe-N, plane.  mance of the expanded ensemble simulation by carefully se-

N, 50 f

0 1
0 100
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lecting the insertion size. With regards to HPTMC itself, theposed method is the large memory requirement for simulta-
frequency and success rate of configuration swaps is theeous simulation of several boxes. This problem, however,
most important factor. At first glance, more frequent swapsan be turned into an advantage with a parallel processor
would appear to increase the efficiency of HPTMC. Tooarchitecture.

much swapping, however, is detrimental. As Fig. 4 already

reveals, if replicas switch too frequently, configurationsACKNOWLEDGMENTS
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