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Abstract. Let Bn
p = {x ∈ Rn; ∑n

i=1 |xi |p ≤ 1}, 1 ≤ p ≤ +∞. We study the extreme
values of the volume of the orthogonal projection ofBn

p onto hyperplanesH ⊂ Rn. For a
fixed H , we prove that the ratio vol(PH Bn

p)/vol(Bn−1
p ) is non-decreasing inp ∈ [1,+∞].

1. Introduction

Computing the volume of sections or projections of convex sets is not easy, even in
specific cases. However, in the last decades several authors managed to produce workable
formulas, often related to probability and to Fourier analysis, and to determine extremal
volumes of sections of certain bodies. The example of the cubeBn

∞ = [−1,1]n was
settled first: Hadwiger’s result in [11] implies that the hyperplane sections through the
origin have no less volume than the canonical sections. Vaaler [22] was able to show
this for sections of arbitrary dimension. The largest hyperplane section of the cube was
found by Ball [2], an important result which led to a negative answer to the Busemann–
Petty problem in dimensions larger than 10 (see [3] for results in larger codimension).
Denoting for 1≤ k ≤ n, Hk = {x ∈ Rn; ∑k

i=1 xi = 0}, the best control on hyperplane
sections of the cube reads as

vol(Bn
∞ ∩ H1) ≤ vol(Bn

∞ ∩ H) ≤ vol(Bn
∞ ∩ H2),
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for every vector-hyperplaneH ⊂ Rn. Here “vol” stands for the Lebesgue measure on
the corresponding subspace.

Vaaler’s result was considerably extended by Meyer and Pajor [14], who studied the
unit balls of`n

p for p ≥ 1, Bn
p = {x ∈ Rn; ∑n

i=1 |xi |p ≤ 1}. They showed that for any
k-dimensional vector subspaceE, the ratio

vol(Bn
p ∩ E)

vol(Bk
p)

is a non-decreasing function ofp ≥ 1. Since this quantity is always equal to 1 forp = 2,
this settles the question of minimal sections forp ≥ 2 and of maximal sections forp ≤ 2.
These results were later extended top ∈ (0,1) by Caetano [7] and the first named author
[5]. Meyer and Pajor also found the extremal hyperplane sections forp = 1. They proved
that for any hyperplaneH ⊂ Rn,

vol(Bn
1 ∩ Hn) ≤ vol(Bn

1 ∩ H) ≤ vol(Bn
1 ∩ H1),

and conjectured the same lower bound forp ∈ (1,2), which was proved by Koldobsky
[12] even for p ∈ (0,2). We mention related works by Webb [23] about the sections
of the regular simplex and by Oleszkiewicz and Pelczy´nski [16], concerning a complex
version of Ball’s upper bound.

The study of extremal volume projections is much less advanced, even though sections
and projections are related via duality. The problem is that volume does not behave well
under duality. Hence results for sections do not transfer to projections. However, in the
few known cases, the results for hyperplane projections are in perfect duality with the
ones for sections. The case of the Euclidean ballBn

2 is trivial, the one of the cube is
very simple: if H = {a}⊥ wherea ∈ Rn satisfies

∑n
i=1 a2

i = 1, then denoting byPH

the orthogonal projection ontoH , one has vol(PH Bn
∞) = vol(Bn−1

∞ )(
∑n

i=1 |ai |) and
therefore

vol(Bn−1
∞ ) = vol(PH1 Bn

∞) ≤ vol(PH Bn
∞) ≤ vol(PHn Bn

∞) =
√

n vol(Bn−1
∞ ).

We refer to [8] for more details on this and projections onto lower dimensions, and to [9]
for projections of the regular simplex. The case of the unit ball of`n

1 is more interesting.
It is well known to be related to Khinchine inequalities, see [4]. Since all the facets ofBn

1
have the same volume, and their outer normals are corresponding to the vertices of the
cube (its dual body), the usual formula for volumes of projections of polytopes yields

vol(PH Bn
1 )

vol(Bn−1
1 )

= E|∑n
i=1 εi ai |√

E|∑n
i=1 εi ai |2

,

whereεi are independent symmetric Bernoulli variables. Finding extremal projections
reduces to computing the sharp constants in the Khinchine inequality for these vari-
ables, which was done by Szarek [21] (see also [13] for a short proof). The result for
projections is

vol(PH2 Bn
1 ) ≤ vol(PH Bn

1 ) ≤ vol(PH1 Bn
1 ).
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The aim of the present paper is to study the extremal projections ofBn
p for p ∈

(1,+∞). We bring the knowledge on this problem to the same level as it is for sections.
Although we do not use duality in our proof, the reader will see that there is a continuous
analogy between our methods and the ones used for sections, but not an obvious one.

2. A Khinchine Formula for Volumes of Projections

In this section we derive a simple formula for the volume of a hyperplane projection of the
unit ball of`n

p. In what follows we work on the standard Euclidean space(Rn, ‖·‖2, 〈·, ·〉).
Let K be a convex symmetric body inRn. We denote by area(K ) the surface area

of K . Let σK be the normalized surface area measure on∂K . One can define another
natural probability measure on∂K , the so-called “cone measure,” which we denote by
µK . For anyA ⊂ ∂K , µK (A) is defined as follows:

µK (A) = vol([0,1]A)

vol(K )
= vol(ta; a ∈ A, 0≤ t ≤ 1)

vol(K )
,

i.e.,µK (A) is the volume of the cone with baseA and cusp 0, normalized by the volume
of K . It was proved in [15] that for almost everyx ∈ ∂K ,

dσK

dµK
(x) = n · vol(K )

area(K )
‖∇(‖ · ‖K )(x)‖2,

where‖ · ‖K is the Minkowski functional ofK . Fix somea in the unit sphereSn−1. By
a well-known formula of Cauchy,

2 vol(Pa⊥K ) = area(K )
∫
∂K
|〈n(x),a〉|dσK (x),

wheren(x) is the outer unit normal to∂K at x, see, e.g., [20]. Hence,

2 vol(Pa⊥K ) = area(K )
∫
∂K

∣∣〈∇(‖ · ‖K )(x),a〉
∣∣

‖∇(‖ · ‖K )(x)‖2
· dσK

dµK
(x)dµK (x)

= n · vol(K )
∫
∂K

∣∣〈∇(‖ · ‖K )(x),a〉
∣∣dµK (x).

Specializing toK = Bn
p we get that for some constantC(p,n),

vol(Pa⊥Bn
p) = C(p,n)

∫
∂Bn

p

∣∣∣∣∣ n∑
i=1

|xi |p−1 sign(xi )ai

∣∣∣∣∣dµBn
p
(x).

This formula is useful sinceµBn
p

has a concrete probabilistic description. Letg be a
random variable with density 1/(20(1 + 1/p))e−|t |

p
(t ∈ R). If g1, . . . , gn are i.i.d.

copies ofg, set

S=
(

n∑
i=1

|gi |p
)1/p

,
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and consider the random vector

Z =
(g1

S
, . . . ,

gn

S

)
∈ Rn.

The following result appeared in [19], and later independently also in [18]:

Theorem 1. The random vector Z is independent of S. Moreover, for every measurable
A ⊂ ∂Bn

p we have

µBn
p
(A) = P(Z ∈ A).

Plugging this in the above formula for vol(Pa⊥Bn
p) we get

vol(Pa⊥Bn
p) = C(p,n)E

[∣∣∑n
i=1 |gi |p−1 sign(gi /S)ai

∣∣
Sp−1

]

= C(p,n)
ESp−1

ESp−1
· E
[∣∣∑n

i=1 |gi |p−1 sign(gi /S)ai

∣∣
Sp−1

]

= C(p,n)

ESp−1
E

∣∣∣∣∣ n∑
i=1

|gi |p−1 sign(gi )ai

∣∣∣∣∣ ,
where we have used in the last equality the independence ofSandZ.

Let X be the random variable|g|p−1 sign(g). For p = 1, X is a Rademacher. It is
easy to check that forp > 1 the density ofX is

p

2(p− 1)0(1/p)
|t |(2−p)/(p−1)e−|t |

p/(p−1)
.

Summing up, we have proved the following extension of the formula for the volume of
projections ofBn

1 which appeared in the introduction:

Proposition 2. Let X1, . . . , Xn be i.i.d. random variables with density proportional to
|t |(2−p)/(p−1)e−|t |

p/(p−1)
, p > 1. Then for every a∈ Sn−1,

vol(Pa⊥Bn
p)

vol(Bn−1
p )

= E
∣∣∑n

i=1 ai Xi

∣∣
E|X1| .

Remark. In the case 0< p < 1, Bn
p is no longer convex, and the Cauchy formula

fails. Although some estimates can be made, more work needs to be done in the study
of hyperplane projections ofBn

p when 0< p < 1.
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3. An Analogue of the Meyer–Pajor Theorem

The aim of this section is to establish the following:

Theorem 3. Let1≤ p ≤ q ≤ +∞ and let H be a hyperplane inRn. Then

vol(PH Bn
p)

vol(Bn−1
p )

≤ vol(PH Bn
q )

vol(Bn−1
q )

.

We prove this fact by an induction argument, which is nicely explained in terms of
the Choquet ordering of measures. The Choquet ordering originated from the proof of
the classical Choquet representation theorem, where the main interest focused on the
study of maximal measures, see, e.g., [17] and [10]. It turns out that this notion has some
purely probabilistic applications. We start with some definitions and useful facts. Since
we are interested in symmetric measures, we formulate the definition in this case only.

Definition 4. Let µ and ν be symmetric Radon measures onRn. We say thatµ is
smaller thanν with respect to the symmetric Choquet order and writeµ ≺ ν if, for every
even non-negative convex functionc: Rn→ [0,+∞], one has∫

Rn

c dµ ≤
∫
Rn

c dν.

Switching to probabilistic notation, for any two symmetric random vectorsU,V ∈ Rn,
we say thatU ≺ V if for every even non-negative convex functionc: Rn→ R we have
E c(U ) ≤ E c(V).

This ordering behaves well under products:

Lemma 5. Letµ, ν be symmetric Radon measures onRn such thatµ ≺ ν. Then for
any k≥ 2, the product measures compare:

µk ≺ νk.

Proof. By induction, it is enough to show the following: ifµ ≺ ν are symmetric
measures onRn andλ is a symmetric measure onR`, thenµ⊗ λ ≺ ν ⊗ λ. To see this,
consider an even non-negative convex functionc onRn+` and notice that the function

s(x) :=
∫

R`
c(x, y)dλ(y)

is also convex and even, because bothc andλ are symmetric with respect to the origin.
Therefore ∫

Rn+`
c dµ dλ =

∫
Rn

s dµ ≤
∫
Rn

s dν =
∫
Rn+`

c dν dλ.

To apply this lemma, we need to characterize the symmetric Choquet ordering for
measures onR.
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Lemma 6. Let U and V be symmetric, real-valued random variables withE |U | =
E |V | <∞. Then U≺ V if and only if for every t≥ 0,

E
[
(|U | − t) · 1{|U |≥t}

] ≤ E[(|V | − t) · 1{|V |≥t}
]
.

Proof. Let c: R→ R be an even, non-negative, convex, twice differentiable function.
Taylor’s formula gives

c(a) = c(0)+ c′(0)a+
∫ a

0
c′′(t)(a− t) dt.

Hence, by Fubini’s theorem,

E c(U ) = E c(|U |) = c(0)+ c′(0)E|U | +
∫ ∞

0
c′′(t)E

[
(|U | − t) · 1{|U |≥t}

]
dt,

and similarly forV . Hence, by approximating a general non-negative even convex func-
tion onR by a twice differentiable one, we get thatU ≺ V if and only if for every
measurableθ : [0,∞)→ [0,∞),∫ ∞

0
θ(t)E

[
(|U | − t) · 1{|U |≥t}

]
dt ≤

∫ ∞
0
θ(t)E

[
(|V | − t) · 1{|V |≥t}

]
dt,

and this implies the required result.

For absolutely continuous measures, the above condition could be expressed more
explicitly. For any integrablef : R→ R denotef (−1)(x) = − ∫∞x f (t)dt, and if f (−1)

is also integrable, setf (−2) = [ f (−1)](−1).

Corollary 7. Let f, g: R → R be non-negative even integrable functions which are
continuous onR\{0} and such that∫ ∞

0
f (t) dt =

∫ ∞
0

g(t) dt <∞ and
∫ ∞

0
t f (t) dt =

∫ ∞
0

tg(t) dt <∞.

Then f dx≺ g dx if and only if f(−2) ≤ g(−2) onR+.

Proof. One just has to notice that

f (−2)(t)=
∫ ∞

t

∫ ∞
s

f (u)du ds=
∫ ∫
{u>s>t}

f (u)ds du=
∫ ∞

t
f (u)(u− t)du.

We apply this by using the following convenient necessary condition:

Lemma 8. Let f, g: R→ R be non-negative even integrable functions such that∫ ∞
0

f (t)dt =
∫ ∞

0
g(t)dt <∞ and

∫ ∞
0

t f (t)dt =
∫ ∞

0
tg(t)dt <∞.

Assume that there are0 < x < y <∞ such that{t ≥ 0; g(t) < f (t)} = (x, y). Then
f dx ≺ g dx.
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Proof. For everyt ≥ 0 defineϕ(t) = g(−2)(t) − f (−2)(t). By the construction,
limt→∞ ϕ(t) = 0. Moreover, as explained before,f (−2)(0) = ∫∞0 t f (t) dt = g(−2)(0),
so thatϕ(0) = 0. Now, ϕ′′ = g − f so that by our assumptionϕ′ is increasing on
[0, x], decreasing on(x, y), and increasing again on [y,∞). However, by the definition,
limt→∞ ϕ′(t) = 0 andϕ′(0) = ∫∞

0 ( f − g) = 0. Thus there is someu > 0 such that
ϕ′ ≥ 0 on [0,u] andϕ′ ≤ 0 on [u,∞). Finally, sinceϕ equals zero at 0 and∞, first
increases, and then decreases, we conclude thatϕ ≥ 0, and the previous corollary gives
the result.

The latter criterion is easily checked for exponential type densities:

Lemma 9. Let α1, α2 be real numbers and letβ1, β2, c1, c2,d1,d2 be positive real
numbers. For i = 1,2, consider the function

fi (t) = ci t
αi e−(t/di )

βi
, t ∈ (0,+∞).

If α1 < α2 and0 < β1 < β2, then either the function f1 − f2 is non-negative or there
exist0< x < y < +∞ such that f1− f2 is negative exactly on the set(x, y).

Proof. Taking logarithms,f1(t) ≥ f2(t) amounts toϕ(t) ≥ 0, where fort > 0,

ϕ(t) = log

(
c1

c2

)
+ (α1− α2) log t +

(
t

d2

)β2

−
(

t

d1

)β1

.

This function clearly tends to+∞ at 0 and+∞. We study the sign of its derivative, or
rather of the more convenient function

ψ(t) = tϕ′(t) = α1− α2+ β2

(
t

d2

)β2

− β1

(
t

d1

)β1

.

This function has a negative value at 0 and tends to+∞ at+∞. Next,

ψ ′(t) = β2
2

tβ2−1

dβ2
2

− β2
1

tβ1−1

dβ1
1

is non-negative if and only iftβ2−β1 ≥ β2
1dβ2

2 β
−2
2 d−β1

1 . Sinceβ2 > β1, this happens
exactly on an interval of the form [z,+∞) for somez > 0. Hence,ψ starts from a
negative value at zero, decreases, and then increases to+∞. It is therefore first negative
and then positive. So the original functionϕ is+∞at 0, first decreases, and then increases
to+∞. The conclusion follows.

Proof of Theorem3. We can restrict to 1< p < q < ∞. For r > 1, let X(r ) be the
random variable with density:

r

2(r − 1)0(1/r )
|t |(2−r )/(r−1)e−|t |

r/(r−1)
,
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and letY(r ) = X(r )/(E|X(r )|). Its density is given by

r ′

0(1/r )r ′
|t |(2−r )/(r−1) exp

[
−
( |t |
0(1/r )

)r ′
]
,

where 1/r + 1/r ′ = 1. Using the previous lemmas, we getY(p) ≺ Y(q). Tensorizing
this inequality we get that(Y(p)

1 , . . . ,Y(p)
n ) ≺ (Y(q)

1 , . . . ,Y(q)
n ) whereY(p)

1 , . . . ,Y(p)
n are

i.i.d. copies ofY(p) and similarly forq. Therefore for everya ∈ Sn−1, one has

E
∣∣∣∑n

i=1 ai X
(p)
i

∣∣∣
E|X(p)| = E

∣∣∣∣∣ n∑
i=1

ai Y
(p)
i

∣∣∣∣∣ ≤ E
∣∣∣∣∣ n∑

i=1

ai Y
(q)
i

∣∣∣∣∣ = E
∣∣∣∑n

i=1 ai X
(q)
i

∣∣∣
E|X(q)| .

The theorem then follows from Proposition 2. 2

4. Extremal Projections whenp≥ 2

This section is devoted to the proof of the following result:

Theorem 10. Let p≥ 2 and H be a hyperplane ofRn, then

vol(PH1 Bn
p) ≤ vol(PH Bn

p) ≤ vol(PHn Bn
p).

The lower bound is a consequence of Theorem 3 applied with 2 andp. It also follows
from Meyer and Pajor’s result [14]. Indeed, for every hyperplaneH containing the origin
Bn

p ∩ H ⊂ PH Bn
p so vol(PH Bn

p) ≥ vol(Bn
p ∩ H) ≥ vol(Bn−1

p ). Our argument for the
upper bound will provide yet another proof of the lower bound.

We begin with a lemma, which originates from Koldobsky’s article [12]. First recall
that an infinitely differentiable functionf : (0,+∞) → R+ is said to becompletely
monotonicif for everyn = 0,1,2, . . . , (−1)n f (n) ≥ 0. Direct differentiation shows that
f (t) = t−α, α > 0, is completely monotonic. A straightforward induction shows also
that f (t) = e−tβ is completely monotonic provided 0< β ≤ 1. Similarly, the product
of completely monotonic functions is still completely monotonic. A classical theorem
of Bernstein, see, for example, [24], asserts thatf is completely monotonic if and only
if there is a non-negative Borel measureµ onR+ such thatµ([0,∞)) = f (0+) and for
eachx > 0,

f (x) =
∫ ∞

0
e−t x dµ(t).

For complete proofs of the above facts, refer to [24].

Lemma 11. Let g: R→ R+ be an even integrable function such that g(
√

t) is com-
pletely monotonic. Then the function

t 7→ log ĝ(
√

t), t > 0,

is convex. Hereĝ(ξ) = ∫R eisξg(s)ds is the Fourier transform of g.
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Proof. By Bernstein’s theorem, there is a non-negative measureµ onR+ such that for
everyt ≥ 0,

g(
√

t) =
∫ ∞

0
e−t x dµ(x).

So for everyt ∈ R,

g(t) =
∫ ∞

0
e−t2x dµ(x).

Taking Fourier transforms int and using Fubini’s theorem, we get

ĝ(u) =
∫ ∞

0
e−u2/(4x)

√
π

x
dµ(x).

Hence, foru ≥ 0,

ĝ(
√

u) =
∫ ∞

0

(
e−1/(4x)

)u√π
x

dµ(x),

which is log-convex by H¨older’s inequality.

Remark. It follows from the above proof that ifg(
√

u) is completely monotonic, then
alsoĝ(

√
u) is completely monotonic.

Proof of Theorem10. Leta be a unit vector orthogonal toH . Using the representation

|s| = c
∫ ∞

0

1− cos(us)

u2
du,

and the notation of Proposition 2, we get that

E

∣∣∣∣∣ n∑
k=1

ak Xk

∣∣∣∣∣ = cE
∫ ∞

0

1− Re
(
eiu
∑n

k=1
ak Xk

)
u2

du

= c
∫ ∞

0

1−∏n
k=1E

(
eiuak X

)
u2

du,

where we also used the symmetry ofX. Let f be the density ofX. For t ≥ 0,

f (
√

t) = cpt (2−p)/(2p−2)e−t p/(2p−2)
.

Since, for p > 2, (2 − p)/(2p − 2) < 0 and p/(2p − 2) ∈ (0,1], we get by the
preceding remarks thatf (

√
t) is a product of two completely monotonic functions, and

is therefore completely monotonic. Lemma 11 implies that logf̂ (
√

t) is convex. So
for everyu ≥ 0, the function(αj )

n
j=1 7→

∑n
j=1 log f̂ (

√
αj u) is convex on the simplex

{α ≥ 0; ∑n
j=1 αj = 1}. Thus, it attains its minimum at the barycenter of the simplex

and its maximum at the vertices. Since
∑n

j=1 a2
j = 1, we get that

f̂

(
u√
n

)n

≤
n∏

j=1

f̂ (aj u) ≤ f̂ (u) f̂ (0)n−1 = f̂ (u).
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Combining this estimate with the relation

vol(Pa⊥Bn
p) = c′p,n

∫ ∞
0

1−∏n
j=1 f̂ (aj u)

u2
du,

we obtain that

vol(P(1,0,...,0)⊥Bn
p) ≤ vol(Pa⊥Bn

p) ≤ vol(P(1/√n,...,1/
√

n)⊥Bn
p).

5. The Case 1≤ p≤ 2

Theorem 12. Let1≤ p ≤ 2 and let H be a hyperplane ofRn, then

max

(
1√
2
,
(n− 1

n

)(n−1)(1/p−1/2)
)

vol(Bn−1
p ) ≤ vol(PH Bn

p) ≤ vol(PH1 Bn
p).

The lower bound is sharp only for p= 1 or 2.

Proof. The upper bound follows from Theorem 3 withq = 2. The 1/
√

2 lower bound
can be viewed as a consequence of it too, and of the optimal lower bound on projections
of Bn

1 :
vol(PH Bn

p)

vol(Bn−1
p )

≥ vol(PH Bn
1 )

vol(Bn−1
1 )

≥ vol(PH2 Bn
1 )

vol(Bn−1
1 )

= 1√
2
.

There is however a shorter argument: introduceε1, . . . , εn symmetric i.i.d. Bernoulli
variables, independent from the vector(X1, . . . , Xn). Since theXi ’s are symmetric, the
vectors(ε1|X1|, . . . , εn|Xn|) and(X1, . . . , Xn) have the same law, therefore, using only
the Khinchine inequality for Bernoulli laws,

vol(Pa⊥Bn
p)

vol(Bn−1
p )

=
EεEX

∣∣∣∑n
i=1 ai εi |Xi |

∣∣∣
E|X1| ≥

Eε
∣∣∣∑n

i=1 ai εiE|Xi |
∣∣∣

E|X1|

≥ 1√
2

E( n∑
i=1

ai εi

)2
1/2

= 1√
2
,

for anya ∈ Sn−1. The other part of the lower bound is proved in [6] using the reverse
Brascamp–Lieb inequality.

The calculation of the minimal volume hyperplane projection ofBn
p, 1 < p < 2,

seems more difficult. This reflects the situation for maximal sections ofBn
p in the case

2< p <∞. Ball’s calculation of the maximal section of the cube has not been extended
so far to anyp <∞. Moreover, recent results of Oleszkiewicz (private communication)
show that for 2< p < 24 and largen, vol(Bn

p ∩ Hn) > vol(Bn
p ∩ H2), so that the

direction of the maximal hyperplane changes withp.



Hyperplane Projections of the Unit Ball of`n
p 225

A similar phenomenon occurs for hyperplane projections in the case 1≤ p ≤ 2. As
remarked in the Introduction, the minimal hyperplane projection forp = 1 is orthogonal
to the direction(1,1,0, . . . ,0). Now, by the central limit theorem,

lim
n→∞

vol(PHn Bn
p)

vol(Bn−1
p )

= lim
n→∞

E
∣∣(∑n

i=1 Xi )/
√

n
∣∣

E|X|

= (EX2)1/2

E|X|
∫ ∞
−∞
|u|e−u2/2 du√

2π
=
√

2

π
· 0
(

1

p

)
0

(
2− 1

p

)
.

On the other hand,

vol(PH2 Bn
p)

vol(Bn−1
p )

=
E
∣∣∣(X1+ X2)/

√
2
∣∣∣

E|X| = vol(P(1,1)⊥B2
p)

vol(B1
p)

= 21/2−1/p.

So that

lim
n→∞

vol(PHn Bn
p)

vol(PH2 Bn
p)
= 21/p

√
π
·
√
0

(
1

p

)
0

(
2− 1

p

)
.

Sety = 1− 1/p ∈ [0,1). The previous limit is

ψ(y) = 21−y

√
π
·
√
0(1− y) 0(1+ y).

The functionψ is clearly strictly log-convex,ψ(0) > 1= ψ( 1
2) and limy→1ψ(y) = ∞.

Moreover, by the complement formula (see [1]),

ψ( 1
4) =

23/4

√
π

√
0( 3

4)0(
1
4)/4=

2−1/4

√
π

√
π

sin(π/4)
= 1= ψ( 1

2).

It follows that ψ(y) < 1 for 1
4 < y < 1

2 andψ(y) > 1 for 0 < y < 1
4. Hence

for 1 < p < 4
3 andn large enough, vol(PH2 Bn

p) < vol(PHn Bn
p), whereas the reverse

inequality holds for43 < p < 2 and largen.
It is plausible that forp < 2 close to 2, the minimal volume projection is the one

onto Hn. Indeed, for any hyperplaneH and p ≥ 2, we have shown that vol(PH Bn
p) ≤

vol(PHn Bn
p). Since these quantities are differentiable inp and coincide forp = 2, it

follows that
d

dp
vol(PH Bn

p)|p=2 ≤ d

dp
vol(PHn Bn

p)|p=2,

which also gives information forp < 2 very close to 2. If the previous inequality were
strict for some directionH , then vol(PH Bn

p) ≥ vol(PHn Bn
p)would hold forp ∈ (2−ε,2].

It would be nice to prove the strict inequality for hyperplanes which are not orthogonal to
the main diagonal. Note that the same reasoning applies for sections and that, for once,
any result on projections would yield the corresponding result for sections and vice versa.
Indeed, for anyH and p, vol(Bn

p ∩ H) ≤ vol(PH Bn
p) with equality for p = 2, so their

derivatives atp = 2 coincide.
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