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HYPERPOLAR HOMOGENEOUS FOLIATIONS
ON SYMMETRIC SPACES OF NONCOMPACT TYPE

JURGEN BERNDT, JOSE CARLOS Diaz-RAMOS & HIROSHI TAMARU

Abstract

A foliation F on a Riemannian manifold M is hyperpolar if it
admits a flat section, that is, a connected closed flat submanifold
of M that intersects each leaf of F orthogonally. In this article
we classify the hyperpolar homogeneous foliations on every Rie-
mannian symmetric space M of noncompact type.

These foliations are constructed as follows. Let ® be an orthog-
onal subset of a set of simple roots associated with the symmet-
ric space M. Then ® determines a horospherical decomposition
M = Fg x ErankM=|®| 5 Ny where Fj is the Riemannian product
of |®| symmetric spaces of rank one. Every hyperpolar homoge-
neous foliation on M is isometrically congruent to the product of
the following objects: a particular homogeneous codimension one
foliation on each symmetric space of rank one in Fg, a foliation
by parallel affine subspaces on the Euclidean space ErankM—|®[
and the horocycle subgroup Ng of the parabolic subgroup of the
isometry group of M determined by ®.

1. Introduction

Let M be a connected complete Riemannian manifold and H a con-
nected closed subgroup of the isometry group I(M) of M. Then each
orbit H-p={h(p) :h€ H}, p € M, is a connected closed submanifold
of M. A connected complete submanifold S of M that meets each orbit
of the H-action and intersects the orbit H - p perpendicularly at each
point p € S is called a section of the action. A section S is always a
totally geodesic submanifold of M (see e.g. [11]). In general, actions do
not admit a section. The action of H on M is called polar if it has a
section, and it is called hyperpolar if it has a flat section. For motivation
and classification of polar and hyperpolar actions on Euclidean spaces
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and symmetric spaces of compact type we refer to the papers by Dadok
[7], Podesta and Thorbergsson [23], and Kollross [18], [19]. If all orbits
of H are principal, then the orbits form a homogeneous foliation F on
M. In general, a foliation F on M is called homogeneous if the sub-
group of I(M) consisting of all isometries preserving F acts transitively
on each leaf of 7. Homogeneous foliations are basic examples of metric
foliations. A homogeneous foliation is called polar resp. hyperpolar if
its leaves coincide with the orbits of a polar resp. hyperpolar action.

An action of the Euclidean space E™ is polar if and only if it is hy-
perpolar. An example of a polar homogeneous foliation on E" is the
foliation given by the Euclidean subspace EF, 0 < k < n, and its paral-
lel affine subspaces. A corresponding section is given by the Euclidean
space E" ¥ which is perpendicular to EF at the origin 0. In fact, every
polar homogeneous foliation on E™ is isometrically congruent to one of
these foliations. The main result of this paper is the classification of all
hyperpolar homogeneous foliations on Riemannian symmetric spaces
of noncompact type. For codimension one foliations this was already
achieved by the first and third author in [4]. We mention that on sym-
metric spaces of compact type every hyperpolar action has a singular or-
bit, and there is no relation between such actions using duality between
symmetric spaces of compact and noncompact type. The methodol-
ogy for the classification presented in this paper is significantly different
from the known methodologies in the compact case. Our methodology
is conceptual and based on structure theory of parabolic subalgebras of
real semisimple Lie algebras which is irrelevant in the compact case.

We will see that these foliations can be constructed from rather ele-
mentary foliations on Euclidean spaces and the hyperbolic spaces over
normed real division algebras. We first describe these elementary foli-
ations. Each Riemannian symmetric spaces of rank one is a hyperbolic
space FH™ over a normed real division algebra F € {R, C,H, O}, where
n>2 and n =2if F = 0. It was proved in [4] that on each hyper-
bolic space FH™ there exist exactly two isometric congruency classes
of homogeneous codimension one foliations. One of these two classes
is determined by the horosphere foliation on FH"™. We denote by Fg
a representative of the other congruency class, and refer to Section 4
for an explicit description. If M = F{H™ x ... x F,H™ is the Rie-
mannian product of k& Riemannian symmetric spaces of rank one, then
fﬁl X ... x Fg : is a hyperpolar homogeneous foliation on M. If V is a
linear subspace of E™, we denote by 7/ the homogeneous foliation on
E™ whose leaves are the affine subspaces of E™ which are parallel to V.
We will now explain how these particular foliations lead to the classifi-
cation of hyperpolar homogeneous foliations on Riemannian symmetric
spaces of noncompact type.
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Let M = G/K be a Riemannian symmetric space of noncompact
type, where G is the connected component of the isometry group of M
containing the identity transformation. We denote by r the rank of M.
The Lie algebra g of G is a semisimple real Lie algebra. Let £ be the Lie
algebra of K, g = t @ p be a Cartan decomposition of g, a be a max-
imal abelian subspace of p, and gy @ (@Aez g A) be the corresponding
restricted root space decomposition of g. The set ¥ denotes the corre-
sponding set of restricted roots. We choose a subset A C ¥ of simple
roots and denote by X7 the resulting set of positive restricted roots in
Y. It is well known that there is a one-to-one correspondence between
the subsets ® of A and the conjugacy classes of parabolic subalgebras
qe of g. Let ® be a subset of A and consider the Langlands decom-
position qe = mg @ ag O ng of the corresponding parabolic subalgebra
qe of g. This determines a corresponding Langlands decomposition
Qs = Mg AgpNg of the parabolic subgroup Q¢ of G with Lie algebra g4
and a horospherical decomposition M = Fg x E™™"® x Ng of the sym-
metric space M. Here, r¢ is equal to the cardinality |®| of the set @,
Fj = Mg-ois a semisimple Riemannian symmetric space of noncompact
type with rank equal to r$ embedded as a totally geodesic submanifold
in M, and E""" = Ag -0 is an (r — rg)-dimensional Euclidean space
embedded as a totally geodesic submanifold in M. Now assume that ®
is a subset of A with the property that any two roots in ® are not con-
nected in the Dynkin diagram of the restricted root system associated
with A. We call such a subset ® an orthogonal subset of A. Each simple
root a € ® determines a hyperbolic space F,H"> embedded in M as
a totally geodesic submanifold, and F§ is isometric to the Riemannian
product of rp Riemannian symmetric spaces of rank one,

Fy = [[ FaBE™.
acd

We denote by Fg the hyperpolar homogeneous foliation on this product
of hyperbolic spaces as described above, that is,

Fo = H }71?5
acd

We are now in a position to state the main result of this paper.

Main Theorem. Let M be a connected Riemannian symmetric space
of moncompact type.

(i) Let ® be an orthogonal subset of A and V be a linear subspace of
E™="®. Then

Fov=FoxF, X Np CFgxE ™™ x No =M

18 a hyperpolar homogeneous foliation on M.
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(ii) Ewvery hyperpolar homogeneous foliation on M is isometrically con-
gruent to Fo v for some orthogonal subset ® of A and some linear
subspace V' of E" "%,

For ® = () the symmetric space F§ consists of a single point and we
need to assume that dim V' < r in this case to get a proper foliation.
The foliation JFy (o is the horocycle foliation on M.

We briefly describe how to construct a subgroup of G whose orbits
form the foliation Fg 1. Since Ag acts freely on M and E"™"* = Ag - o,
there is a canonical identification of E"~"® with the Lie algebra as C a.
We define a nilpotent subalgebra n of g by n = ny and put a = ap.
Then the closed subgroup AN of G with Lie algebra a @ n acts simply
transitively on M, and M is isometric to the solvable Lie group AN
equipped with a suitable left-invariant Riemannian metric. Let £¢ be
an rg-dimensional linear subspace of n such that dim({g Ngs) = 1 for
all @ € ®. We denote by a® the orthogonal complement of ag in a and
by n © €3 the orthogonal complement of /¢ in n. Here, the orthogonal
complement is taken with respect to the standard positive definite inner
product on g given by the Killing form on g and the Cartan involution
on g determined by €. Then

5q>,v:(a¢®‘/)®(n@€q>) Ca®n

is a subalgebra of a®n. Denote by S¢ 1 the connected closed subgroup of
AN with Lie algebra s¢ 1. Then the action of S v on M is hyperpolar
and the orbits of this action form the hyperpolar homogeneous foliation
Fov on M. We will see later in this paper that for a given set ®
different choices of £ lead to isometrically congruent foliations on M.
We now describe the contents of this paper in more detail. In Section
2 we show that all homogeneous foliations on Hadamard manifolds can
be produced by isometric actions of solvable Lie groups all of whose
orbits are principal. In Section 3 we present the aspects of the general
theory of symmetric spaces of noncompact type and of parabolic subal-
gebras of real semisimple Lie algebras which are relevant for our paper.
In Section 4 we prove a necessary and sufficient Lie algebraic criterion
for an isometric Lie group action inducing a foliation on a symmetric
space of noncompact type to be polar or hyperpolar. Using this criterion
we present examples of polar and of hyperpolar actions on symmetric
spaces of noncompact type. In particular, we show examples of polar
actions on symmetric spaces of noncompact type that are not hyperpo-
lar. In this section we also prove part (i) of the main theorem, which
is the easiest part of the proof. Section 5 constitutes the main part of
this paper and contains the proof of part (ii) of the main theorem. Fi-
nally, in Section 6 we discuss aspects of the geometry of the leaves of the
hyperpolar homogeneous foliations on symmetric spaces of noncompact

type.
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2. Homogeneous foliations on Hadamard manifolds

A simply connected complete Riemannian manifold with nonpositive
sectional curvature is called a Hadamard manifold.

Proposition 2.1. Let M be a Hadamard manifold and H be a con-
nected closed subgroup of I(M) whose orbits form a homogeneous folia-
tion on M. Then each orbit of H is a principal orbit.

Proof. Assume that there exists an exceptional orbit, that is, a non-
principal orbit whose dimension coincides with the dimension of the
principal orbits. Let K be a maximal compact subgroup of H. By
Cartan’s Fixed Point Theorem (see e.g. [9], p. 21), K has a fixed point
o € M. Since K is maximal compact, the orbit through o must be
exceptional and K = H,. Then H -0 = H/K is diffeomorphic to R,
where k is the dimension of the foliation (see for example [22, p. 148,
Theorem 3.4]). Since the orbit H - o is simply connected, the stabilizer
K is connected. The cohomogeneity of the slice representation at o
coincides with the cohomogeneity of the action of H on M, and since
all the orbits of H have the same dimension it follows that the orbits of
the slice representation at o are zero-dimensional. Since K is connected,
it follows that the orbits of the slice representation at o are points. This
means that K acts trivially on the normal space v,(H - 0) of H - 0 at o,
which contradicts the assumption that the orbit H - o is exceptional.

q.e.d.

We will now use the previous result to show that every homogeneous
foliation on a Hadamard manifold can be realized as the orbits of the
action of a closed solvable group of isometries.

Proposition 2.2. Let M be a Hadamard manifold and let H be a
connected closed subgroup of I(M) whose orbits form a homogeneous
foliation F on M. Then there exists a connected closed solvable subgroup
S of H such that the leaves of F coincide with the orbits of S.

Proof. Consider a Levi-Malcev decomposition h = [ & v (semidirect
sum of Lie algebras) of the Lie algebra h of H into the radical v of h and
a Levi subalgebra [. The radical v is the largest solvable ideal in h and [
is a semisimple subalgebra. Let [ = ¢@a®n (direct sum of vector spaces)
be an Iwasawa decomposition of [. Then a is an abelian subalgebra of
[, n is a nilpotent subalgebra of [, and @ = a & n (semidirect sum of
Lie algebras) is a solvable subalgebra of [. Since the semidirect sum of
two solvable Lie algebras is again solvable, the subalgebra s = 0 € ¢
(semidirect sum of Lie algebras) is a solvable subalgebra of h, and we
have h = £ @ s (direct sum of vector spaces). Let S be the connected
solvable subgroup of H with Lie algebra s and let K be the connected
subgroup of H with Lie algebra €. Since M is a Hadamard manifold,
Cartan’s Fixed Point Theorem implies that the compact group K has a
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fixed point o € M. Since H = SK, it follows that the orbits H - 0 and
S - o coincide.

By Proposition 2.1, the orbit H -0 is a principal orbit of the H-action.
Let p be a point in M which does not lie on the principal orbit H - o.
Since H -0 is a closed subset of M, there exists a point ¢ € H -0 such that
the distance ¢ between p and ¢ minimizes the distance between p and
H - 0. Since M is complete there exists a geodesic joining ¢ and p, and
a standard variational argument shows that this geodesic intersects the
orbit H - o perpendicularly. This proves that every orbit of H is of the
form H -p with p = exp,(§) and £ € v,(H - 0). Since H - 0 is a principal
orbit of the H-action on M and S C H, the slice representation at o of
each of these two actions is trivial. This fact and H -0 = S - 0 imply

S+ p = {s(expy(€)) : 5 € 5} = {expy(y(5.8) : 5 € 5}
= {expy(o)(hd) - h € HY = {h(exp,(€) - h € H} = H -p,

which shows that the actions of S and H are orbit equivalent.

Since S is solvable, its closure S in I(M) is a closed solvable subgroup
of I(M) (see e.g. [21], p. 54, Theorem 5.3). Since the actions of S and
H are orbit equivalent, the orbits of S are closed, and hence by [8], the
actions of S and S are orbit equivalent. This finishes the proof of the
proposition. q.e.d.

3. Riemannian symmetric spaces of noncompact type

In this section we present some material about Riemannian symmetric
spaces of noncompact type. We follow [13] for the theory of symmetric
spaces and [15] for the theory of semisimple Lie algebras.

Let M be a connected Riemannian symmetric space of noncompact
type. We denote by n the dimension of M and by r the rank of M. It is
well known that M is a Hadamard manifold and therefore diffeomorphic
to R™. Let G be the connected component of the isometry group of M
containing the identity transformation of M. We fix a point 0 € M
and denote by K the isotropy subgroup of G at 0. We identify M with
the homogeneous space G/K in the usual way and denote by g and ¢
the Lie algebra of G and K, respectively. Let B be the Killing form
of g and define p as the orthogonal complement of ¢ with respect to B.
Then g = ¢@p is a Cartan decomposition of g. If 8 is the corresponding
Cartan involution, we can define a positive definite inner product on
g by (X,Y) = —B(X,0Y) for all X,Y € g. We identify p with T, M
and we normalize the Riemannian metric on M so that its restriction
to T,M x To,M = p X p coincides with (-, -).

We now fix a maximal abelian subspace a C p and denote by a* the
dual space of a. For each A € a* we define gy = {X € g: ad(H)X =
AH)X for all H € a}. We say that 0 # A\ € a* is a restricted root
if gy # {0}, and we denote by ¥ the set of all restricted roots. Since
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a is abelian, ad(a) is a commuting family of self-adjoint linear trans-
formations of g. This implies that the subset ¥ C a* of all restricted
roots is nonempty, finite and g = go® (P, 5, 91) is an orthogonal direct
sum called the restricted root space decomposition of g determined by
a. Here, gg = £y @ a, where ¢y = Z(a) is the centralizer of a in ¢. For
each A € a* let H) € a denote the dual vector in a with respect to the
Killing form, that is, A(H) = (H,, H) for all H € a. This also defines
an inner product on a* by setting (\, u) = (Hx, H,) for all X\, € a*.

We now introduce an ordering in ¥ and denote by T the resulting
set of positive roots. We denote by A = {ay,..., .} the set of simple
roots of ¥ in line with the notation used in [15]. By {H',...,H"} C a
we denote the dual basis of {a1,...,q,}, that is, o;(H7) = 67, where
0 is the Kronecker delta. Then each root A € X can be written as
A =37, cioy where all the ¢; are integers, and they are all nonpositive
or nonnegative depending on whether the root is negative or positive.
The sum Y., ¢; is called the level of the root.

The subspace n = @5+ gr of g is a nilpotent subalgebra of g.
Moreover, a @ n is a solvable subalgebra of g with [a ® n,a ® n] = n.
We can write g as the direct sum of vector subspaces g = ¢ ® a @ n,
the so-called Iwasawa decomposition of g. Let A, N and AN be the
connected subgroups of G with Lie algebra a, n and a @ n, respectively.
All these subgroups are simply connected and G is diffeomorphic to
the product K x A x N. Moreover, the simply connected solvable Lie
group AN acts simply transitively on M. We can then equip AN with
a left-invariant Riemannian metric (-, -)an so that M and AN be-
come isometric. This metric is determined by (H; + X1, Ho + Xo)an =
(Hy,Hs) + (1/2)(X1, X9) for all Hi,Hy € a and X, X2 € n (see e.g.
the proof of Proposition 4.4 in [24]). Consider X,Y,Z € a® n as left-
invariant vector fields on AN. If V denotes the Levi-Civita covariant
derivative of M = AN, the equality (ad(X)Y,Z) = —(ad(6X)Z,Y)
implies that the Koszul formula can be written as

4<VXK Z>AN = <[X7Y] + (1 - 9)[9X, Y]7Z>'

We will now associate to each subset ® of A a parabolic subalgebra
qe of g. Let ® be a subset of A. We denote by g the root subsystem
of ¥ generated by ®, that is, X ¢ is the intersection of ¥ and the linear
span of ®, and put ¥ = X NET. Let

lp = go® @GA and ne = @ gx

AE€Xg AezH\ud
Then lg is a reductive subalgebra of g and ng is a nilpotent subalgebra
of g. Let
ap = ﬂ kera and a® = aoagp.
acd
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Then ag is an abelian subalgebra of g and [ is the centralizer and the
normalizer of ag in g. The abelian subalgebra ag is also known as the
split component of the reductive Lie algebra [p. Since [lg, ng] C nog,

qgo = lo ® no

is a subalgebra of g, the so-called parabolic subalgebra of g associated
with the subset ® of A. The subalgebra ls = qo N O(qe) is a reductive
Levi subalgebra of q¢ and ne is the unipotent radical of q¢, and therefore
the decomposition q¢ = lg @ ne is a semidirect sum of the Lie algebras
[ and ng. The decomposition qe = le @ ne is known as the Chevalley
decomposition of the parabolic subalgebra qg.

We now define a reductive subalgebra mg of g by

me=1lpOap =8 ©a®® @9,\
AEX S

The subalgebra mg normalizes ag @ ng, and
go = [mg, mg] = [lo, [3]

is a semisimple subalgebra of g. The center 3 of mg is contained
in €y and induces the direct sum decomposition me = 3¢ ® go. The
decomposition
Jo = Mg © ap O no

is known as the Langlands decomposition of the parabolic subalgebra
qo-
For ® = () we obtain [y = gog, mp = £y, ayg = a and nyg = n. In this
case qp = € D adn = go @ n is a minimal parabolic subalgebra of g.
For ® = A we obtain [y = mp = g and ay = ny = {0}. Each parabolic
subalgebra of g is conjugate in g to q¢ for some subset ® of A. The set
of conjugacy classes of parabolic subalgebras of g therefore has 2" ele-
ments. Two parabolic subalgebras q¢, and q¢, of g are conjugate in the
full automorphism group Aut(g) of g if and only if there exists an auto-
morphism F' of the Dynkin diagram associated to A with F(®;) = ®,.
Every parabolic subalgebra contains a minimal parabolic subalgebra.

Each parabolic subalgebra q¢ determines a gradation of g. For this
we define H® = DA\ ® H? and put gk = Dresufopae )=k 91- Then
g = @iy 0h is a gradation of g with g} = lo, Pyoo0h = ne and
D)5 9% = go. The vector H® € a is called the characteristic element
of the gradation. The Cartan involution 6 acts grade-reversing on the
gradation, that is, we have 99{% = g;k for all kK € Z. Moreover, this
gradation is of type ag, that is, g]grl = [gclb,g’},] and g;k_l = [g;l,g;k]
holds for all & > 0 (see e.g. [14]). If X is the highest root in ¥ and
me = MN(H?), we have gip® # {0} and g§ = {0} for all k > mge. For
® = () we have ny = n, and we also use the notation n* = gg for all
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k > 0. Thus we have a gradation n = @Zzl n* of n which is generated
by n!. Note that my is the level of the highest root in . For each
k > 0 we define

pF=pn (gé‘?@gak) :
which gives a direct sum decomposition p = a @ (@;n:ml pk).
For each A € ¥ we define

B =EN(gxDg_n) and py=pN(gr ®g_»)

Then we have py =p_y, ta =ty and py Bty =g D g_) forall A € 3.
It is easy to see that the subspaces

po = loNp = a® EB px | and pj = meNp = gonp = a®® EB P
PYSIFS AEX S

are Lie triple systems in p. We define a subalgebra g of € by

to=dqenNt=lgNt=ment=ta | P &
PYSIINY

Then go = (go N€s) ® p§ is a Cartan decomposition of the semisimple
subalgebra ge of g and a® is a maximal abelian subspace of p3. If we

define (ga)o = (9o N ) ® a®, then go = (ga)o & <@)\62¢ 9)\) is the

restricted root space decomposition of ge with respect to a® and & is
the corresponding set of simple roots. Since mg = 3¢ P go and 34 C &,
we see that ge Nty =€ S 3.

We now relate these algebraic constructions to the geometry of the
symmetric space M. Let ® be a subset of A and r¢ = |®|. We denote
by Ag the connected abelian subgroup of G with Lie algebra ag and by
Ng the connected nilpotent subgroup of G with Lie algebra ng. The
centralizer Ly = Zg(ag) of ag in G is a reductive subgroup of G with
Lie algebra [p. The subgroup Ag is contained in the center of Lg.
The subgroup Lg normalizes Ng and Q¢ = LgNg is a subgroup of G
with Lie algebra qg. The subgroup (¢ coincides with the normalizer
Neg(lp ®ng) of lp ®ng in G, and hence Qg is a closed subgroup of G.
The subgroup Q¢ is the parabolic subgroup of G associated with the
subsystem ® of A.

Let G be the connected subgroup of G with Lie algebra gg. Since go
is semisimple, Gg is a semisimple subgroup of G. The intersection K¢
of Ly and K, i.e. Ko = Ly N K, is a maximal compact subgroup of Lg
and €y is the Lie algebra of K. The adjoint group Ad(Lg) normalizes
g, and consequently Mg = KoGg is a subgroup of Lg. One can show
that Mg is a closed reductive subgroup of Lg, K¢ is a maximal compact
subgroup of Mg, and the center Zg of Mg is a compact subgroup of
Kg. The Lie algebra of Mg is mg and Lg is isomorphic to the Lie
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group direct product Mg X Ag, i.e. L = Mg X Ag. For this reason
Ag is called the split component of Ly. The parabolic subgroup Qs
acts transitively on M and the isotropy subgroup at o is Kg, that is,
M =Qs¢/Ks.

Since go = (goNte) Dpg is a Cartan decomposition of the semisimple
subalgebra ge, we have [p§,p5] = go N €s. Thus Gg is the connected
closed subgroup of G with Lie algebra [p§,p5] @ p§. Since p§ is a
Lie triple system in p, the orbit F§ = Gg - 0 of the Gg-action on M
containing o is a connected totally geodesic submanifold of M with
T,Fg = pg. If @ = 0, then Fj = {0}, otherwise Fj is a Riemannian
symmetric space of noncompact type and rank(F3) = re, and

Fq‘z :GQ‘OZGQ/(qumK@) :qu-OZqu/K@.

The submanifold F§ is also known as a boundary component of M in
the context of the maximal Satake compactification of M (see e.g. [6]).

Clearly, ag is a Lie triple system as well, and the corresponding totally
geodesic submanifold is a Euclidean space

Er—"e = Aq; - 0.

Since the action of Ag on M is free and Ag is simply connected, we can
identify E™""®  Ag and ag canonically. This identification will be used
throughout this paper.

Finally, pp = p3 @ ag is a Lie triple system, and the corresponding
totally geodesic submanifold Fg is the symmetric space

Fe =Lg-0= Lqp/Kq) = (M@ X A@)/qu = Fqs) x E""e,

The submanifolds Fg and F§ have a natural geometric interpreta-
tion. Denote by CT(A) C a the closed positive Weyl chamber which is
determined by the simple roots A. Let Z be nonzero vector in CT(A)
such that a(Z) = 0 for all & € ® and a(Z) > 0 for all @ € A\ P,
and consider the geodesic vz(t) = Exp(tZ) - o in M with vyz(0) = o
and 47(0) = Z. The totally geodesic submanifold Fg is the union of all
geodesics in M which are parallel to vz, and F§ is the semisimple part
of Fg in the de Rham decomposition of Fg (see e.g. [9], Proposition
2.11.4 and Proposition 2.20.10).

The group Qg is diffeomorphic to the product Mg x Ag X Ng. This
analytic diffeomorphism induces an analytic diffeomorphism between
Fg xE"™"® x Ngp and M known as a horospherical decomposition of the
symmetric space M.

4. Polar and hyperpolar foliations

We first prove an algebraic characterization of polar actions and of hy-
perpolar actions on Riemannian symmetric spaces of noncompact type
(see also Proposition 4.1 in [19]), and then present some examples.
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Theorem 4.1. Let M = G/K be a Riemannian symmetric space of
noncompact type and H be a connected closed subgroup of G whose orbits
form a homogeneous foliation F on M. Consider the corresponding
Cartan decomposition g = € @ p and define

by ={€€p:(£Y) =0 forallY € b}.
Then the following statements hold:
(i) The action of H on M is polar if and only if f)pL is a Lie triple
system in p and by is orthogonal to the subalgebra [bpl, f)pL] <) bpl of
g.
(ii) The action of H on M is hyperpolar if and only if bpl is an abelian
subspace of p.

In both cases, let HpL be the connected subgroup of G with Lie algebra
[f)pl, f)pL] ® f)pl. Then the orbit S = HpL -0 18 a section of the H-action
on M.

Proof. Statement (ii) is an obvious consequence of statement (i). So
we proceed with proving (i).

If the action of H on M is polar, then f)pL is a Lie triple system by
definition of a polar action. We now assume that f)pL is a Lie triple
system. We have to show that the action of H on M is polar if and only
if b is orthogonal to [bpl, f)pL] @ bpl. Since f)pL is a Lie triple system, the
orbit § = le -0 is a connected complete totally geodesic submanifold
of M. Let p be a point in M which does not lie on the orbit H - 0. Since
H -0 is a closed submanifold of M, there exists a point ¢ € H - 0 such
that the distance between p and ¢ is equal to the distance between p and
H -o. Since M is complete, there exists a geodesic in M from p to ¢ such
that the distance from p to ¢ can be measured along this geodesic. A
standard variational argument shows that this geodesic intersects H - o
perpendicularly. It follows now easily that S intersects each orbit. Since
H induces a foliation, it therefore remains to show that 7,,(H - p) and
T,S are orthogonal for each p € & if and only if § is orthogonal to
(b by ] © by

Let v be the geodesic in S with 4(0) = o and §(0) = & € bpl, and
assume that £ # 0. For X € h and n € f)pL we denote by X* and n* the
Killing vector fields on M that are induced from X and 7, respectively.
Then we have

Ty (H (1) ={XJp : X €b}, TypyS ={njp :n € h#_}'

The restrictions of two such Killing vector fields X* and n* to v satisfy
the equation

d
dt 0 <X:Yk(t)777:;(t)> = ([¢*, X o, nE) + (X2, [65,0%]0) = —([&, 1], X),
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using the facts that [6*7X*] = _[gvX]*7 [5*777*] = _[5777]*7 [5777] € Ev
and that ad(¢) is a self-adjoint endomorphism on g. From this it easily
follows that b is orthogonal to [hpL, f)pl] @ hpL if T,(H - p) and T,S are
orthogonal for each p € S. Conversely, assume that h is orthogonal
to [hpL,f)pl] @ f)pl. Then, for each X € b, the restriction X7 of the
Killing vector field X™ to v is the Jacobi vector field along ~ with initial
values X3(0) = X5 = X, € by and (X3)'(0) = [£*, X*], = —[§, X5 =
—[&, X, € by. Here the subscript indicates orthogonal projection onto p.
Since both initial values are in b, = 1,S, it follows that X7 takes values
in the normal bundle of S along ~. This implies that T’ (H -y(t)) and
T, 1)S are orthogonal for each ¢ € R. Since this holds for each geodesic
v in § with 4(0) = o and 4(0) = ¢ € f)pl, ¢ # 0, we conclude that
T,(H - p) and T,,S are orthogonal for each p € S. q.e.d.

We will use the previous result to show polarity and hyperpolarity of
certain actions.

Proposition 4.2. Let M be a Riemannian symmetric space of non-
compact type and consider a horospherical decomposition Fg x E'™"® x
Ng of M. LetV be a linear subspace of E"~"® and assume that (®,V') #
(0,E"). Then the action of VX No C Agp X No on M is polar and
F§ x (E"=" ©V) is a section of this action. Moreover, the action of
V x Ng on M is hyperpolar if and only if ® = ().

Proof. The subspace (VEBmp)pl = pgSV of p is a Lie triple system and
Fix(E"""*&V) is the connected complete totally geodesic submanifold
of M corresponding to pg © V. Next, we have [(V @& ncp)é_, % @n\:p)é‘] =
[PeOV,psOV] C tp C mg, and since mg is orthogonal to agp®ng, we see
that V & ng is orthogonal to [(V @& ng)y, (V @ ne)y ] @ (V &ne);y . Since
Ag X Ng acts freely on M, it is clear that V' x Ng induces a foliation on
M. From Theorem 4.1 we conclude that the action of V' x Ng on M is
polar and that Fg x (E"~"*©V) is a section of the action. The statement
about hyperpolarity follows from the fact that Fg x (E"~"* © V) is flat
if and only if ® = (). q.e.d.

The previous result provides examples of polar actions which are not
hyperpolar on each Riemannian symmetric space of noncompact type
with rank > 2. It is worthwhile to compare this with the results by
Kollross [19] that in the compact case polar actions are in general hy-
perpolar. Special cases of these actions on Hermitian symmetric spaces
of noncompact type have also been discussed by Kobayashi [16] in the
context of strongly visible actions on complex manifolds.

Remark 4.3. Let M be a symmetric space of noncompact type with
the property that its restricted root system contains two simple roots
of the same length which are not connected in the Dynkin diagram.
The following example illustrates that the condition in Theorem 4.1 (i)
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that b is orthogonal to [f)pl, f)pl] &) hpL is necessary for polarity. Let us
consider h = (a © R(Hy — Hg)) ® (n©R(X, + Xp)), with o and 8 two
simple roots of the same length which are not connected in the Dynkin
diagram, and X, € go, Xg € g unit vectors. In order to prove that
this is indeed a subalgebra, by the properties of root systems it suffices
to show that [H, X, — Xg]| € h for any H € a © R(H, — Hp) (because
(Xo + X3, Xo — Xg) =0). However, if H € a © R(H, — Hg) we have
a(H) = B(H), which implies [H, X, — Xg] = a(H)(Xo — Xp) € h as
desired.

By construction we have by = R(H, — Hg) ® R(1 — 0)(X, + Xp). A
simple calculation using (o, ) = (8, 5) and («, ) = 0 shows that

[Ho — Hp, (1 = 0)(Xa + Xp)] = (@, @) (1 +0)(Xa — Xp).

This implies in particular that bpl is not abelian. Using again (o, ) =

(B, B) and (a, B) =0 we get
[Ho — Hp, (1 +6)(Xa — Xp)] = (o, a)(1 — 0)(Xa + Xp),

and also using [X,, X3| = 0 (because a and § are not connected in the
Dynkin diagram) we obtain

[(1=0)(Xa + Xp), (1 +0)(Xa — X3)| = —2(Ha — Hp).

All in all this means that bpl is a non-abelian Lie triple system. However,
h cannot give rise to a polar action because § is not perpendicular to
3 53] = R(1+0)(Xe — X).

This action has the interesting feature that it gives a homogeneous
foliation with the property that the normal bundle consists of Lie triple
systems. It is easy to see that the totally geodesic submanifold of M
generated by any of these Lie triple systems is a real hyperbolic plane.
These real hyperbolic planes have the property that they do not in-
tersect orthogonally the other orbits. It is interesting to observe that
the normal bundle is not integrable, as otherwise the integral manifolds
would provide sections and then the action would be polar.

Remark 4.4. The hypothesis in Theorem 4.1 that H induces a fo-
liation is necessary. For example, in sl3(C) consider the usual Cartan
decomposition sly(C) = suy @ p, where p denotes the real vector space
of (2 x 2)-Hermitian matrices with trace zero. Let a be the subspace
of diagonal matrices in slp(C) with real coefficients and t the subspace
of diagonal matrices in sl (C) with purely imaginary coefficients. Also,
denote by n the set of strictly upper triangular matrices in sly(C). Then,
sup @ adn is an Iwasawa decomposition of sly(C) and t® a is a Cartan
subalgebra of sl (C). Consider the vectors

1 i —i 1 1 -2 0 /2
BZ(O —Z1>’X:<0Z i>’€:<—2z’ —1Z> andE:(o Zo)‘
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Let h be the Lie subalgebra of t ® a @& n spanned by B and X. Then
pr = R¢ is abelian because it is one-dimensional. The connected closed
subgroup H of SLy(C) with Lie algebra bh acts hyperpolarly on the
real hyperbolic space RH? = SLy(C)/SUy but does not give rise to a
hyperpolar foliation. To see this let ¢ = Exp(F). It is easy to verify
that Ad(g)B € a and Ad(g)X € t, and hence Ad(g)h = t® a. The
corresponding connected subgroup of SLo(C) acts with cohomogeneity
one on RH3. This action has one singular orbit, a totally geodesic
RH' c RH3, and the other orbits are the tubes around it. Obviously,
the action of H is orbit equivalent to this one.

We continue with a discussion of some further hyperpolar actions on
Riemannian symmetric spaces of nonpositive curvature.

Example 4.5. (Polar and hyperpolar homogeneous foliations on Fu-
clidean spaces.) Let m be a positive integer. For each linear subspace
V of the m-dimensional Euclidean space E™ we define a homogeneous
hyperpolar foliation F7{ on E™ by

(FP)p=p+V={p+v|veV}

for all p € E™. Geometrically, the foliation F7/' consists of the union of
all affine subspaces of E™ which are parallel to V. It is obvious that F{*
is a hyperpolar homogeneous foliation on E™ whenever 0 < dimV < m.

Indeed, any hyperpolar homogeneous foliation on a Euclidean space
E™ is isometrically congruent to one of these examples. Assume that H
acts isometrically on E™ and that its orbits form a hyperpolar homoge-
neous foliation. Since the action of H is isometric and gives a foliation
on E™ it suffices to prove that each orbit of H is totally geodesic.

On the contrary, assume that the orbit of H through o is not totally
geodesic. Then, there exist a nonzero vector v € T,(H - 0) and a unit
vector § € vo(H - 0) such that A¢v = cv with ¢ # 0, where A¢ denotes
the shape operator of H - 0o with respect to £. Since the orbit through o
is principal, £ induces an equivariant normal vector field on H - o which
we also denote by £. This vector field satisfies &) = hu, for all h € H.
Consider the point p = expo(%go). Since £ is equivariant, the orbit of H
through pis H -p = {exph(o)(%gh(o)) : h € H}. Hence we can define the
map F': H-0 — H -p, h(o) — exph(o)(%ﬁh(o)) = h(0) + 1&,(,). Since
the action of H is polar, the equivariant vector field £ is parallel with
respect to the normal connection (see e.g. 2], p. 44, Corollary 3.2.5),
and thus we get Fio,v = v — %Agv = 0, which contradicts the fact that
H gives a foliation.

Example 4.6. (Codimension 1 foliations on Riemannian manifolds.)
Let M be a connected complete Riemannian manifold and F be a homo-
geneous foliation on M with codimension one. Then F is hyperpolar. In
fact, consider a geodesic v : R — M which is parametrized by arc length
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and for which %(0) is perpendicular to F, ). Since M is connected and
complete, v must intersect each leaf of F, and since F is homogeneous,
the geodesic intersects each leaf orthogonally. Therefore S = v(R) is a
section of F. Clearly, S is a flat totally geodesic submanifold of M, and
hence F is hyperpolar.

Example 4.7. (Hyperpolar homogeneous foliations on hyperbolic spa-
ces.) Let M be a Riemannian symmetric space of rank one, that is, M
is a hyperbolic space FH™ over a normed real division algebra F &
{R,C,H,0}. Here n > 2, and n = 2 if F = Q. Using the notations
introduced in the previous section, we have

so1, if F=R,

) sw, ifF=C,
"7 Yoprn F=H,
i, ifF=0.

The restricted root space decomposition of g is of the form

9=0-20aPg-—a D 9o D ga D 924,

where dimg, = dimg_, = (n — 1)dimgF, dimgy, = dimg_s, =
dimr F — 1. Moreover, we have go = €y ® a with a one-dimensional
subspace a C p and

50,1 if F =R,

Up_—1 ifF = (C,
&y = .

spp—1 @ spy if F=H,

507 if F=Q.

Let ¢ be a one-dimensional linear subspace of g, and define
50=0D (g OF) Dgoa =a® (nSY).

The subspace s, is a subalgebra of a & n of codimension one, and the
corresponding connected closed subgroup Sy of AN acts freely on FH™
with cohomogeneity one. The corresponding homogeneous foliation Fy
on FH™ is hyperpolar according to the previous example. Since K acts
transitively on the unit sphere in g, by means of the adjoint representa-
tion, Fy and Fy are orbit equivalent for any two one-dimensional linear
subspaces /, ¢ of go. We denote by Fji a representative of the set of
hyperpolar homogeneous foliations of the form F, on FH"™. We mention
that the leaf of F containing o € FH" is a minimal hypersurface in
FH™ If F = R, this leaf is a totally geodesic real hyperbolic hyperplane
RH"! ¢ RH". If F = C, this leaf is the minimal ruled real hypersur-
face in CH™ which is determined by a horocycle in a totally geodesic
and totally real RH? ¢ CH"™. For more details on these foliations we
refer to [1] and [3]. It was shown in [4] that apart from this foliation
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and the horosphere foliation there are no other homogeneous hyperpolar
foliations on Riemannian symmetric spaces of rank one.

Example 4.8. (Hyperpolar homogeneous foliations on products of
hyperbolic spaces.) Let

M=FH" x...xF,H"

be the Riemannian product of £ Riemannian symmetric spaces of rank
one, where k is a positive integer. Then

1 Mk
}”F’ll x...x}'Fk

is a hyperpolar homogeneous foliation on M. This is an elementary
consequence of the previous example.

Example 4.9. (Hyperpolar homogeneous foliations on products of
hyperbolic spaces and Fuclidean spaces.) Let

M=FH" x ... xF,H™"™ x E™

be the Riemannian product of k£ Riemannian symmetric spaces of rank
one and an m-dimensional Euclidean space, where k and m are positive
integers. Moreover, let V' be a linear subspace of E". Then

Ty X oo X Fk X F
is a hyperpolar homogeneous foliation on M.

Example 4.10. (Homogeneous foliations on symmetric spaces of
noncompact type.) Let M be a Riemannian symmetric space of non-
compact type and ® be a subset of A with the property that any two
roots in @ are not connected in the Dynkin diagram of the restricted
root system associated with A. We call such a subset & an orthogonal
subset of A. Each simple root o« € ¢ determines a totally geodesic hy-
perbolic space F,H™ C M. In fact, FoH" C M is the orbit of the
connected subgroup of G with Lie algebra g¢,;. Then Fg is isometric
to the Riemannian product of rg Riemannian symmetric spaces of rank
one and an (r — rg)-dimensional Euclidean space,

Fp = Fj x B = <H IE‘QH"“> x Er"e,
aced

Note that F,, = R if «v is reduced and F,, € {C, H, O} if « is non-reduced
(i.e., if 2a € ¥ as well). Then

Fo= 11 72

aced

is a hyperpolar homogeneous foliation on F3. Let V' be a linear subspace
of E'~"®. Then

Foyv =FoxF, ®*xNo CFgxE ™" x Np =Fp xNop =M
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is a homogeneous foliation on M. We will see below that it is hyperpolar.
Recall that each foliation ]:I?S on F, H™ corresponds to a subalgebra

of g¢q) of the form al @ (g.00, ) P gon with some one-dimensional linear
subspace /£, of go. As a consequence the foliation Fg on F§ corresponds
to the subalgebra a® ® (B, ((8a © €a) ® g24)) = a® & (ne SLs) of go,
where o = @ cq la- Therefore the foliation Fg1r on M corresponds
to the subalgebra

sy =02DV)B (e Cla) = (a* @V B ng) Sle Cad®ng

of qe, where we identify canonically V' C E"" = Ag - o with the
corresponding subspace of ag.

It is easy to see from the arguments given above that different choices
of £, and ¢}, in g, lead to isometrically congruent foliations Fo and Fj
on Fj. However, it is not obvious that different choices of ¢, and £,
in go lead to isometrically congruent foliations Fg v and Fgy on M.
That this is in fact true follows from the following two facts. On a
semisimple symmetric space the holonomy algebra is isomorphic to the
Lie algebra of the isotropy subgroup of the isometry group. Moreover,
on a simply connected symmetric space each element of the holonomy
group at a point o induces an isometry of the symmetric space with fixed
point 0. Hence, different choices of ¢, and ¢/, in g, lead to isometrically
congruent foliations Fg 1 and ‘7:</I>,V on M.

We note that these homogeneous foliations on symmetric spaces of
noncompact type have also been discussed by Koike [17] in the context
of his investigations about “complex hyperpolar actions”.

We are now in the position to formulate the main result of this paper.

Theorem 4.11. Let M be a connected Riemannian symmetric space
of moncompact type.

(i) Let ® be an orthogonal subset of A and V' be a linear subspace of
E"""®, Then

Fov=FsXF, *xNg CFyxE ™ x No =M

18 a hyperpolar homogeneous foliation on M.

(ii) Every hyperpolar homogeneous foliation on M is isometrically con-
gruent to Fo v for some orthogonal subset ® of A and some linear
subspace V' of E" "%,

Proof. We prove part (i) of the theorem here. Section 5 is devoted to
the proof of part (ii).

According to Theorem 4.1 we have to prove that s y is a subalgebra
and that (5q>,v)pL ={{ep:(Y)=0forallY € spy} is abelian.
Assume that the one-dimensional linear space ¢, = ¢ N g, is generated
by the nonzero vector E,,.
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The fact that se - is a subalgebra follows from the elementary prop-
erties of root systems. It is easy to see that

(5<1>,v)#' Cl<1> &) V <@R 1 — )

acd

We now check that (sg,1); is abelian.

If H H' € ag ©V we obviously have [H,H'] = 0. If H € ag OV
and o € ® we have [H, (1 —0)E,] = a(H)(1 + 0)E, = 0 by definition
of ap. If o, f € ® with a # 3, then [(1 — 0)E,, (1 — 0)Eg] = (1 +
0)[Eq, Egl — (1 +0)[Eq,0E3]. Now, [Eq, Eg] € gat+p = 0 because ac+ 8
is not a root (since a and § are not connected in the Dynkin diagram)
and [E,,0FEg] € go—p = 0 as o — [ is not a root (because both « and

are simple). q.e.d.

5. Classification

In this section we prove Theorem 4.11 (ii), thus settling the main
result of this paper.

A subalgebra b of a Lie algebra g is called a Borel subalgebra if b is a
maximal solvable subalgebra of g. Borel subalgebras of real semisimple
Lie algebras have been described in [20]. Any such Borel subalgebra
can be written as t ® a @& n, where h = t @ a is a Cartan subalgebra
of g and n is nilpotent. The subspace t is called the toroidal part of h
and consists of all X € b for which the eigenvalues of ad(X) are purely
imaginary. The subspace a is called the vector part of h and consists
of all X € b for which the eigenvalues of ad(X) are real. There exists
a Cartan decomposition g = £ @ p such that t C £ and a C p. We say
that b or b is mazimally noncompact if a is maximal abelian in p and
mazimally compact if t is maximal abelian in €. We use this description
for the following

Proposition 5.1. Let M = G/K be a symmetric space of noncom-
pact type. Let S be a closed subgroup of G which induces a hyperpolar
foliation. Then the action of S is orbit equivalent to the action of a
closed solvable subgroup whose Lie algebra is contained in a mazximally
noncompact Borel subalgebra.

Proof. By means of Proposition 2.2 we may assume that S is solv-
able and closed in I(M). The Lie algebra s of S is contained in a Borel
subalgebra b of g. As we explained above, there exists a Cartan decom-
position g = €@ p such that b =t @ a®n with t C € and a C p. Since
a is abelian we have the decomposition g = gg & (@Xei Q;\), where 3.
is the set of roots with respect to @ and g5 = {X € g : ad(H)X =
MH)X for all H € a}. We can choose an ordering in @ that induces a
set of positive roots 1 in such a way that it = @Xei+ g5 It remains
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to prove that this Borel subalgebra is maximally noncompact, that is,
a is maximal abelian in p.

On the contrary, assume that a is not maximal abelian. Let a be a
maximal abelian subspace of p containing a. Then we have the usual
restricted root space decomposition g = go ® (@ rex 8 ,\). We choose an
ordering of a compatible with that of a and denote by X1 the corre-
sponding set of positive roots, and write n = @5+ gr. We have the
relations

a= ﬂ Ker A, @0290€9< EB 9A>7 a5 = EB gx

Aext Aex+
)\‘520 )\‘520 A\ﬁ:}"

Recall from Theorem 4.1 (ii) that S acts hyperpolarly on M if and
only if 5# ={{ €p:¢& L s}is abelian. Obviously, a ©a C p and
a © a is orthogonal to n, and so a & a C 5#. On the other hand,
GBAEE*)%:O gr C go Cnen, and so @AeEt)\‘a:O Py C 5#. Altogether
this implies (a © a) ® (@Aezﬂx‘a:o p>\> C s;. Now choose A € ¥7F
with Az = 0. By the first relation above, we can choose H € a © a
with A(H) # 0. If X, € g, is a nonzero vector then [H, (1 — 0)X,] =
(1+0)N(H)X ) # 0, which contradicts the fact that spl is abelian. Hence,
a must be maximal abelian in p and the theorem follows. q.e.d.

We now prove that the foliations in Example 4.10 exhaust all the pos-
sibilities for hyperpolar homogeneous foliations up to orbit equivalence.
Let S be a connected closed subgroup of the isometry group inducing a
hyperpolar homogeneous foliation on M. From now on we fix a Cartan
decomposition g = £ @ p and a maximally noncompact Borel subalge-
bra t® a ®n with t C £ and a C p maximal abelian. According to
Proposition 5.1 we may assume that the Lie algebra s of S is solvable
and that s C t® a ® n. The proof goes as follows. First we classify the
abelian subspaces of a@p'. A bit more work leads to a description of all
subalgebras s of t@® a®n for which spl is abelian and contained in a®p?.
Hence, the problem reduces to prove that, if s is a subalgebra of tdadn
for which spl is abelian and the corresponding connected subgroup of

G with Lie algebra s induces a foliation on M, then spL Cadpl. We
will consider an auxiliary subalgebra s = s + (n ) nl). This subalgebra

satisfies §pL C a® p' and hence its projection onto a @ n is one of the

1

known examples. Then s, is contained in the centralizer of ﬁpl inp. A

p
bit more work allows us to calculate 5p¢ explicitly using the fact that
5 is a subalgebra. Then we will conclude that the projection of s onto
a ® n is one of the known examples. The final step is to prove that s
induces the same orbits as its projection onto a @ n.
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In what follows (until Lemma 5.13 inclusive) we will work in a context
slightly more general than that described above. Let s be a subalgebra
of t® a ® n such that ﬁpl is abelian. Hence, it is not assumed that the
orbits of the connected subgroup of G whose Lie algebra is s form a
foliation. Example 4.4 shows that this can happen. We first state a few
basic lemmas.

From now on, if v is a vector subspace of g, we denote by m, the
orthogonal projection of g onto v. Also, we denote by §,, = Tagn(s) the
projection of s onto a & n, the noncompact part of tH a @ n.

We will first derive some elementary results.

Lemma 5.2. Let A € ¥ and X,Y € gy. Then (1 —0)[0X,Y] =
2X,Y)H,y.

Proof. Tt follows from polarization of the identity [#(X+Y), X+Y] =
(X+Y,X+Y)H,. q.e.d.

Lemma 5.3. Let o be a simple root and v C go be a linear sub-
space such that [o,0] = {0}. Then [v,0v] C a if and only if v is one-
dimensional.

Proof. If v = RX with nonzero X € g,, then [0X, X] = (X, X)H, €
a. For the converse, assume that v has dimension greater than 1 and that
[v,0v] C a. Let X,Y € v be two nonzero orthogonal vectors. By Lemma
5.2 and orthogonality of X and Y, (1 —0)[0X,Y] = 2(X,Y)H, = 0,
so [0X,Y] € b N a = {0} Now, ([0, Y], [0, Y]) = —([X, [0, Y]}, V)
and using the Jacobi identity and the fact that [v,0] = {0} we get

(X, [0X,Y]] = —[Y,[X,0X]] = (X, X)][Y,H,| = — (o, a)(X, X)Y. Alto-
gether this implies ([0X,Y],[60X,Y]) = (o, a)(X, X)(Y,Y) > 0, which
gives a contradiction. q.e.d.

Lemma 5.4. Let A\, € ¥ such that A — p € . Let X € gy and
Y € g, be nonzero vectors. If [X,Y] =0 then A+ p is not a root. In
particular, if o, € A and X € go and Y € gg are nonzero vectors,
then [X,Y] = 0 implies that o and B are not connected in the Dynkin
diagram.

Proof. Assume that [X,Y] = 0. Since [#Y, X]| € gr—, = 0 we have,
using the Jacobi identity, that

0=[X,Y],oY] =—[[Y,0Y],X] =(Y,Y)[H,, X] = (Y,Y)(\, ) X.
Hence, (A, 1) = 0. Since A—p ¢ ¥ and the corresponding Cartan integer

satisfies A,y = 0, we get that A = ¢ ¥X. For the second part, just note
that o — 8 is not a root. g.e.d.

Lemma 5.5. Let ¥ C XT. For each A € U let vy C g\ be a one-
dimensional subspace. Then the linear subspace [¢y,a @ (@Aeqf v,\)] 18

orthogonal to a ® (@ ey (1 — O)vr) ® (@)\62+\q, pA).
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Proof. Obviously, [£,a] = 0, so there is nothing to prove in this case.
Assume that each vy is spanned by a corresponding vector E). Let
T €ty If H € athen ([T, E\],H) = —(E\, [T, H]) = 0. Since [y, g)] C
gx, for any p € X1 with g # X\ and any £ € p, we obviously have
([T, Ey\],&¢) = 0. Finally, since ad(T') is skewsymmetric, ([T, E,], (1 —
0)E\) = ([T, E\], E)) = 0, from where the result follows. q.e.d.

We now proceed with the first step of the proof, which is describing
abelian subspaces of a @ p'. Recall that p' =pnN (gql) @ gal). First, we
need the following lemma.

Lemma 5.6. Let q C a® p' be an abelian subspace and define ¥ =
{av € A =7y, (q) #0}. Then dimmy, (q) =1 for all o € V.

Proof. Assume the statement is not true. Any two vectors £,n € q
can be written as { = §o+ > g (1 —0)a and n =09+ cq (1 —0)7q,
with £4,7a € go. We denote by W/ C W C A the subset of roots a € A
such that &, and 7, are linearly independent. If the statement of this
lemma is not true, we can find ¢ and 7 such that the corresponding ¥’
is nonempty. An easy calculation taking into account that o — 3 is not
a root if a, 8 € A yields

0=[&n] = (1+0) (@) — alm)éa)

= (14 0)[Ea, 0na] + > (1 +0)[€a.ns).
[e% a,f

Then it follows in particular that > (1 + 0)[¢a, 01a] = 0, [{a;1a] = 0
for all o € ¥ and [£4, 18] + [£8,Ma] = 0 for all o, f € ¥ with « # .
By Lemma 5.2, (1 — 0)[0&4,na] = 2(€4, Na) Ha, which implies

1

0= 5 Z(l + 9)[5&76770c] = Z([€a76na] + <§Oc7770l>HOé)
aev acvw
= Z ([Saa 977&] + <€a7770c>H0l)7
aew’

the last equality following from the fact that [0, ] = (€a, &a) Ha-
For oo € ¥/, using [£,,10] = 0 and [0&,, 0] = (Eas Ea) Ha, We get

[[€a, 0mal, 080l = —[[0na; 08al, Ea] — [[0€as Eals 010l = (o, @)(€as Ea)ONa-
Now choose a, 3 € ¥ with 3 # «. Since 8 — a is not a root and
[0ng,08a] = 0[np, &al = 0[5, 0] = [0€5, 6Ma] We obtain
[[€3,0ns), 08a] = —[[0ng, 0¢al, &) — [[0€a: Eal, Ons] = —[[0€3, Onal, &5]
= [[0ma, 8], 6€8] + [[€8, 085, 0ma] = (o, B)(€s, §5)0Ma-

Taking into account the last two displayed equations we conclude

[[5679776],9@1] = <a75><5ﬁ,fﬁ>977a, for all avﬁ € \P/'



212 J. BERNDT, J.C. DIAZ-RAMOS & H. TAMARU

Therefore, for arbitrary a € W', the identity 0 = > 5y ([§g, Ong] +
<fg, 775>H5) yields

0=| > ([, 0m3] + (€, ms) Hp), 0

BeW’
= 3" (€. 0], 6¢a] + (€5, 15)[Hs, 6Ea])
ISV
= 3" (e, B)(Ep, €5)0ma — (v, B) (€5, £5)6E0)
BeW’

= | S (@, 8)(€s.65) | 0na — | S (e B) (s, 5) | O

pevw’ pew’

Since a € ¥/, 0, and 0&, are linearly independent, the only way the
above equality can hold is when the coefficients of 67, and 60&, are
simultaneously zero. In particular, Zﬁ@,(a,m(gg,g@ = 0. Hence,
ZBE‘I” (£3,&p) is orthogonal to span¥’. Since it is also a vector in
span ¥’ and the simple roots are linearly independent, it follows that
(€3,&p) = 0 for all g € W', contradiction. q.e.d.

We say that a subset & C A is connected if the subdiagram of the
Dynkin diagram determined by the roots of ® is connected. We say that
two subsets @, ®' C A are disconnected or orthogonal if for any o € ®
and any 8 € ', o and 8 are not connected in the Dynkin diagram (that
is, a 4 [ is not a root).

Proposition 5.7. Let ¢ C a @® p' be an abelian subspace and ¥ =
{ao e A7y, (q) # 0}. This set can be decomposed as ¥V = Ule U, with
U; C A connected, and W; and ¥; disconnected whenever i # j. Then
there exists a map ¢ : ¥V — R, a +— co, and vectors E; € @ae% Ja,
ie{l,....k}, with mg, (E;) # 0 for all « € V;, such that q is a linear
subspace of

k
bg=ay & | PR DY calHo+(1-0)E;

i=1 OZE\I/i

Proof. Using the fact that the sets W; are disconnected, it is easy
to see that a subalgebra b, as considered above is abelian. Hence, in
order to prove the proposition, it suffices to take an abelian subalgebra
q C a®p' and prove that it can be realized as a subspace of one of
the Lie subalgebras vy as defined above. For that, consider ¥ = {a €
A ¢ mg,(q) # 0} and write ¥ = Ule ¥, with ¥; C A connected, and
VU; and W; disconnected whenever ¢ # j. Our first assertion is that for
each i € {1,...,k} there exists a nonzero vector E; € @ae%— ga such
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that any vector £ € q can be written as £ = &y + Zle z;(1 — 0)E; for
certain &y € a and z; € R.

We fix i € {1,...,k}. From Lemma 5.6 it follows that dim g, (q) =
1 for all & € W. Hence, for each a € ¥ we can choose a nonzero
vector E, € g, such that any vector & € q can be written as £ = &y +
Y acw ta(1—0)E, for certain {y € a and a, € R. If, on the contrary, the
previous assertion is not true, we can find { = §o+ >, aan(1 —0)Es € q
and n =no+)_,ba(1—0)E, € qsuch that for some a, f € ¥; connected
in the Dynkin diagram the vectors (aa,ag), (ba,bs) € R? are linearly
independent. Since q is abelian, we have

0=[¢.n] = 3 (60)ba — alio)a) (1 +0)Ea + S aabs(1+6)[Ea, Es).

& a?/B

In particular, taking the g,y component we get anbg — agb, = 0 by
Lemma 5.4, which contradicts the fact that (aq,ag) and (ba,bg) are
linearly independent.

Therefore, we have proved our assertion, that is, any vector £ € q can
be written as £ = & + Zle x;(1 — 0)E; for certain & € a, z; € R and
E; € @,ecy, 9a- By the definition of W, it is obvious that my, (£;) # 0
for all a € ¥;, and indeed we can write E; = Zae\h FE,, with suitable
E, € g, (note that these might be different from the above E,’s). Since
U, and V¥, are disconnected if i # j, it is clear that [E;, F;] = 0 for all
i,7€{1,...,k}.

We choose such a vector £ = §0+Z§:1 xj(1—0)E; and assume z; = 0.
By definition of W there certainly exists n = 1o + Z§=1 yi(l—0)E; €q
with y; # 0. Hence,

k
0=1[&n =Y _(1+0) [ > (wjelo) — zje(mn)) Ea |,

7j=1 CVG\I/]‘

and taking the g,-component for any o € ¥; we get a(§p) = 0 because
z; = 0 and y; # 0. This implies that for each £ € q and each a € Y,
we can write (£, Hy) = co(§) (o, a)x; (if z; = 0 any ¢, (£) will do). The
next step is to prove that we can choose the same ¢, for all ¢ € q.

Assume that we cannot choose the ¢,’s in such a way. Then there
would be £ = 50—1—2?:1 zj(1-0)E; € gand n = 770+2le yi(1-0)E; €
q such that ¢, (&) # cq(n) for some « € ;. This of course implies that
x;,y; # 0. Taking the corresponding g,-component of [{,7n] as in the
previous displayed formula we get

0 = yic(§o) —wic(no) = i(§; Ha)—wi(n, Ha) = zigi{e, ) (ca(§) —ca(n)),

which leads to a contradiction. Hence we can choose the ¢, indepen-
dently of & € q, which allows us to define a function ¢ : ¥ — R by
(€, Hy) = coa, a)z;, with the notation as above.
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Finally, if £ = & + Zle zi(l — 0)E; € q we can write § = & +
> acw taHo with &) € ay = a6 (B, RH,) and aq € R. Here, the
a, must satisfy co(a,a)x; = (€, Hy) = an{a,a), so ¢ is contained in
one of the model spaces in the statement of the proposition. q.e.d.

The following lemma is useful to understand how s and spL are related.

Lemma 5.8. Ifs C tda®dn is a subalgebra and spL ={¢ep:¢Ls},
then s, = Tagn(s) = {X €a®n: X L}

Proof. If X € s, then for all £ € spL we have (X, &) = 0 by definition.
Since ¢ and p are orthogonal, mag,(X) L 5#.

Conversely, let X € a @ n such that X L 5pl, and choose Y € (a @
n) © s,. We may write Y = H + >, st Y\ with H € a and Y), € g,.
Clearly, Y — > st YA = H+ D \osi (1 —0)Yy € p, and if Z € s
we have (Y — 3 o5 OYN, Z) = (Y, Z) — Y \cx+ (0Y), Z) = 0, because
Y and Z are perpendicular and so are g_) and t® a & n. This proves
that Y — >\ 5 OY) € 5#. By assumption we have X L spL, and so
0= (X,¥ — 3peps 013) = (X,Y) = yeps (X,6Y3) = (X,Y), again
because g_) and a & n are perpendicular. Since Y € (a @ n) o s is
arbitrary, we conclude that X € (a@n)e ((a@n)Ss,) =5, qed.

Proposition 5.7 and Lemma 5.8 allow us to conclude the first step of
the proof of our classification.

Theorem 5.9. Lets C t&adn be a subalgebra such that spl Camp!
is abelian. Then there are an orthogonal subset ® C A, numbers a, € R
and nonzero vectors E, € g, for each a € ®, and a linear subspace
V C ag such that

s, =(Vaa®ono (EB R(aoHa + Ea)> .
acd
Proof. Since 5p¢ C a® p' is abelian, by Proposition 5.7 we have that
spl is a linear subspace of

k
1=a® PR D aaHo+ (1 -0)E;
=1 acd,

Here, as usual, ® = {a € A : 7y, (spL) # 0} = Ule ®;, with ®; con-
nected, and ®; disconnected to ®; whenever ¢ # j, E; € P acd; 9o With
Tgo (E;) # 0 for all a € ®;, and a : & — R a real-valued function. Our
first step is to prove that each ®; consists of exactly one root.

Fix i € {1,...,k} and assume that ®; has more than one root.
We may write F; = Ea@bi E, with E, € g,. Also, take £ = & +
> yj(zaeq)j aoHo + (1 — 0)E;) € s with y; # 0. Since we have
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dim (®a6<1>i REa) > 1, there exists a nonzero vector X € ®a6<1>i RE,
such that X is orthogonal to E; (or equivalently, to (1 — )E;, or to &,
or to ﬁpl). By Lemma 5.8, there exists S € t such that S+ X € 5. We
write X = acd; TaFa. Now, for each o € ®;, and again for dimension
reasons we can find a vector Z, = H, + ZBE% zqpE3 such that Z, is
orthogonal to £ (and hence to ﬁpl). Lemma 5.8 ensures that there exists
T, € tsuch that T, + Z, € s for each a € ®;. By Lemma 5.5 we get
([T, X1,€) = {[S, Za),€) = 0. Since s is a subalgebra and [Eg, E,] € n?
we have

0 = ([TotZa, S+X1,€) = (D wp(, B)E, &) = yi Y, (v, Bz 5(Ep, Eg)

BeP; BeP;

for each a € ®;. Putting Ag, = % and taking into account that y; #
0, the previous equation is equivalent to 256‘1%' Agaxp(Eg, Eg) = 0. Of
course, (Agq) is the Cartan matrix of the Dynkin subdiagram associated
with ®;. Cartan matrices are known to be nonsingular (see for example
[15, Proposition 2.52 (e)]) which means that zg(Eg, Eg) = 0 for all
B € ®;. This contradicts the fact that X is a nonzero vector and proves
that ®; has exactly one root.

Thus from now one we can assume that spL is a linear subspace of

q=oap D (@R (aaHa + (1 - H)Ea)) )

acd

with E, € g, and ® an orthogonal subset of A. Thus, we have to
show that @, cq R(aaHo + (1 —0)E,) C 5pl. Consider a vector £ =
§0 + Y aca Tal@aHy + (1 — 0)E,) € q orthogonal to 5]}, with & € ag
and z, € R. Since £ is orthogonal to spL, by Lemma 5.8 we can find
S € tsuch that the vector X = S+ &0 + > cq Tal@aHa + Ey) is in s.
On the other hand, it is clear, using again Lemma 5.8, that there exists
T, € t such that Z, =T, + (Eo, Eq)Hy — co{a, a)E, is a vector in s.
Since s is a subalgebra, [Z,, X] € s for each a € ®. A calculation using
the facts that t @ a is abelian, { € ap and o+ & X if o, 8 € @ and

o # [, gives
[Za, X] = 2o(a, ) (B, Ea) + ai(a, @))Eq

+[Ta, > wBs] + [S, aa{ar, a) Eq).
ped

Lemma 5.5 implies that the last two addends above are orthogonal to spL.
Since [Z,, X] is orthogonal to 5#, the first addend must be orthogonal

to 5p¢ as well. By definition of 5]}, the only way this can happen is
when z, = 0 for all @« € ®. This implies £ = & € ag and proves
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Boco R(aaHa + (1 — 0)Ey) C sy Now the theorem follows after a
straightforward application of Lemma 5.8. q.e.d.

Motivated by Theorem 5.9 we introduce the following notation. Let
a:® — R be a map and define a, = a(a) for all @ € . Furthermore,
for each o € ® we choose a nonzero vector E, € {g N g,. Consider

seve=Voa®an)o <@ R(aqH, + Ea)> .
acd

As above we will see in Proposition 5.10 that this does not depend on
the particular choice of £. We obviously have s 0 = s, for the zero
map 0: P — R.

Proposition 5.10. We have Ad(g)se,v,e = So,v where we take g =
Exp(— Y cp @aFa) € N if ® # 0 and g = idg if ® = 0. In particular,
$3.v.a 15 a subalgebra of a ® n. Moreover, the corresponding connected
subgroup So v, is conjugate to Sp v and induces a hyperpolar homoge-
neous foliation. We also have

(5(}7\/@)#_ = (Cl<1> © V) D (@ R(aaHa + (1 — Q)Ea)> .

acd

Proof. We define £, = aoHy + E4 for a € ®. Then the subalgebra
$,v,q can equivalently be written as s¢ v, = (Vea®en)o (@a@b }Rfa).
Let go = Exp(—aqFs) and g = [, ce 9a- Since o and S are not
connected in the Dynkin diagram, we have [E,, Eg] = 0, and so g =
Exp(— > ocq @aFq). Our aim is to prove that Ad(g)se,v,u = 5¢,v-

We introduce the following notation:

5o =(Vaa®®n)ORE,, $,=(Vaad®®n)oRE,.

First we prove that Ad(gs)5, = so for each a € ®. Note that, since
—aoFq € a®n, it follows that Ad(ga)(a®n) =ad®n. Now let X € §,.
Since E, is a unit vector and X € a & n, we have

(Ad(ga)X, Ea) = (X, Ad(Exp(aa@Eq)) Eq) = (X, e 2O )
2
= (X, Ba + aaHo + “2|a20Ea) = (X,6) = 0.
Also, if H € agp ©V then o(H) = 0 for each a € @, so

(Ad(ga) X, H) = (X, Ad(Exp(an0FE,))H) = (X, e 240Fa) f)
= (X, H + aqa(H)0E,) = (X, H) = 0.

Altogether this proves that Ad(gq)$a = Sa-
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Now let o, 3 € ® with o # 3. We prove that Ad(g.)53 = 3. Since

«a and B are simple roots, 8 — ma is not a root for m > 1. Hence,
o0 tm
Ad(Exp(t0E,))Ep = e 0P gy = 3~ —ad(0E,)" Ey = Ej.

m=0

If H € a we also get
Ad(Exp(t0E,))H = ¢'*OF) i — H + ta(H)0E,.
Now, let X € 55. Using the previous equations we obtain
(Ad(ga)X, &p) = (X, Ad(Exp(aafEa))Ss)
= (X,&3) + an(a, B)(X,0E,) = 0.
Also, if H € ap ©V we get
(Ad(ga)X, H) = (X, Ad(Exp(anbE,))H)
=(X,H) +aqa(H)(X,0E,) = 0.

Altogether this proves Ad(gn)ss = 53. A similar argument shows that
Ad(ga)ss = sg. However, since $¢.v,a = (Nocop 5a a0d 56V = (yco Sa
using the previous two equalities and a simple induction argument, we
obtain Ad(g)se,v,q = (Hae<1> Ad(ga))s0.v,a = S,V q.e.d.

This is a good point to recall the contents of Theorem 5.9, which says
that if s C t®a®n is a subalgebra such that ﬁpl C a®@p' is abelian, then
there are an orthogonal subset ® C A, numbers a, € R and nonzero
vectors F, € g, for each o € ®, and a linear subspace V C ag such
that s, = 56 v,q-

Proposition 5.11. Let s C t® a®n be a subalgebra such that

sp=s50vae=(Voa®®n) o (@ R(aqHy + Ea)>
acd
with ® a subset of orthogonal simple roots, E, € g, nonzero vectors, V
a linear subspace of ag and a, € R, and define E = =3 4 aafy and
g = Exp(FE). Then the following statements hold:
(i) Ad(g)s is a subalgebra of tdadn and (Ad(g)s), C Ad(g)s, = sa.v -
(ii) For each o € ® the projection of (t & a® (n S gy)) Ns onto t
centralizes E,,.
(iii) V C (Ad(g)s)n-
(iv) Assume that X € X7\ ® satisfies A+« ¢ X for each a € ®. Then
gx C (Ad(g)8)n-
In addition, assume that the orbits of the connected subgroup S of G
whose Lie algebra is s form a homogeneous foliation. Then the following
further statements hold:

(v) (Ad(g)s)n = Ad(g)sn = sa,v-
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(vi) Denote by s. the projection of s onto t. Then s. is an abelian
subalgebra that centralizes each E,.. In particular, [56,5],l] =0.

(vil) With the notation as in (vi), let S. be the connected subgroup of
G whose Lie algebra is s.. Then S, acts trivially on v,(S - o).

Remark 5.12. Remark 4.4 shows that the hypothesis that the orbits
of S form a homogeneous foliation is necessary in Proposition 5.11 (v),
(vi) and (vii).

Proof. (i) First note that since n is an ideal of t & a @& n we have
Ad(g)(t@adn) Ctdadn and Ad(g)s C t@ a® n. Proposition 5.10
implies that Ad(g)s, = so,v. We have to prove that (Ad(g)s), C s,y
Let T+ H+ X € swithT € t, H € a and X € n. We already
have Ad(g)(H + X) € Ad(g)s, = sa,v, so it suffices to prove that the
projection of Ad(g)T onto a®n is in s 7. Since n is an ideal of tGadn
this projection is Ad(g)T — T = Y32, & ad(E)*T € n. We have to
prove that (Ad(¢9)T — T, E,) = 0 for all @ € ®. Since [E,T] € n and
n is nilpotent it follows that ad(E)*T € n o n! for all k¥ > 2, and for
k = 1, we have ([E,T],E,) = 0 for all & € ® by Lemma 5.5. Hence,
(Ad(g)s)n C sa,v = Ad(g)sn.

(ii) Let @ € ® and T be in the image of the projection of (t® a @
(n©gq))Ns onto t. Note that [T, E,| € go ©RE,, since ad(T') preserves
each root space and is skewsymmetric. Hence, we only have to show that
(0o O©RE,, [T, E,]) = 0. Let X € g, © RE, be arbitrary. Since X € s,,,
there exists Sx € t such that Sx + X € s. By definition of T', there exist
HecaandY € nog, such that T+ H+Y € 5. As s is a subalgebra we
have [Sx, Y]+ [X,T]+[X,H|+[X,Y] = [Sx+ X, T+H+Y] € 5. Since
[Sx,Y] €nOga, [X,H] = —a(H)X € go ©ORE, and [X,Y] € nonl,
the definition of s, yields

0= ([Sx + X, T + H+ Y], anHe + (1 — 0)Ea) = (X, T], Ea)
= _<X7 [T7E0c]>7

which completes the proof of (ii).

(iii) Let H € V C ag. Since H € s, there is Ty € t such that
Ty + H € s. By (ii) we have [Ty, E] = 0 and by definition a(H) = 0
for all @ € ®, 50 Ad(g~ ") (Tyg + H) = e 2 EN(Ty + H) =Ty + H € s.
Hence Ty + H € Ad(g)s and H € (Ad(g)s)n-

(iv) Assume A € X1\ ® and A+ a € X for any o € ®. Take X € g,
and Tx € t such that Tx + X € s. By (ii) we have [Tx,E] = 0.
Since A + « ¢ ¥ for any a € ®, we also have [X,E] = 0. Hence,
Ad(g™)(Tx + X) = e 2E)N(Tx + X) = Tx + X € 5. This implies
Tx +X € Ad(g)s and X € (Ad(g)$)n, so (iv) follows.

(v) By (i) we already know (Ad(g)s), C Ad(g)s, = so,v. We prove
the equality by showing that dim(Ad(g)s), = dim Ad(g)s,.
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By hypothesis and Proposition 2.1, all the orbits of S are principal
and the same is true of I;(S). Hence the isotropy groups S, = SN K
and I4(S), = I4(S) N K are conjugate. Their Lie algebras are s Nt and
(Ad(g)s)Nt, respectively. By (ii) we have [sNt, E] = 0 so Ad(g) = ¢2d(F)
acts as the identity on s Nt. Hence s Nt C (Ad(g)s) Nt and thus equal-
ity follows by hypothesis. This implies dim(Ad(g)s), = dim Ad(g)s —
dim(Ad(g)s) Nt = dims — dims Nt = dims,, = dim Ad(g)s,.

(vi) Obviously, s. is an abelian subalgebra because t is abelian. For
the second part, we assume first that 5, = s¢ 1. Fix a € ® and let X €
ga ©RE, be arbitrary. Then there exists Sx € t such that Sx + X € s.
Since H,, € a® C s, there exists Ty, € tsuchthat Ty, +H, € 5. Assis
a subalgebra we have [Ty, + H,, Sx + X] = (ad(Th, ) + (o, 0)14,) X €
0o N5 C go © RE,, where 1y, is the identity transformation of g,.
Since (o, ) # 0, ad(Th, ) + (o, )1y, is an isomorphism. Thus, the
previous equality implies g, © RE, € s. This implies Sx € s Nt and
thus [Sx, E,] = 0 by (ii). Also according to (ii), and since o € @ is
arbitrary, (vi) follows when s,, = s¢ .

Now we finish the proof of (vi). Let s C t® a @ n be a subalgebra
such that s, = s¢ v, and assume that all the orbits of the corresponding
connected subgroup S of G whose Lie algebra is s are principal. By (v)
we get (Ad(g)s), = so,v. Take an element T+ H + X € s with T € ¢,
H € aand X € n. Since H + X € s,, it follows that Ad(g)(H +
X) € Ad(g)s, = sao,v by Proposition 5.10. Hence, the projection of
Ad(g)(T'+ H + X)) onto t is the same as the projection of Ad(g)T" onto
t, and as g € N, that projection is 7. Now, since (Ad(g)s), = sa,v,
applying the argument in the previous paragraph to the subalgebra
Ad(g)s we get [T, Ey) = [m(Ad(g)(T + H + X)), Ey] =0 for all a € ®.
This already implies [E, T| = 0 and thus Ad(¢)T =T, so Ad(g)(T+H +
X)=T+Ad(g)(H+ X) and Ad(g)(H + X) € a®n. Since [t,a] =0, we
obtain [T, (as ©V) & (Bece R(aaHa + (1 — 0)E,))] = 0 and the result
follows.

(vii) Let t € S, and £ € v,(S - 0). Since 5# C p we may identify 5#
and v,(S - 0). By (vi), s. centralizes 5#, so with the above identification
we get t,& = Ad(t)€ = &. q.e.d.

We will need the following result:

Lemma 5.13. Let s be a subalgebra of t® a®n and s, its projection
onto a@n. Let X\ and p be two positive roots (not necessarily different).
If gx + 94 C S, then gagy C Sp.

Proof. We may assume that A+ p is a root; otherwise there is nothing
to prove. Let X € g) and Y € g,. By definition there exist S,T" € t such
that S+X,T+Y € s. Then, [S+X,T+Y]| =[S, Y]|-[T, X]+[X,Y] € s.
Recall that [€g, g,] C g, for any v € 3. The vector [S,Y]|—[T, X]|+[X, Y]
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is in n and hence in s,,. On the other hand, [S,Y]|—[T, X] € g,+gx C sp,
so [X,Y] € s5,. Since, X and Y are arbitrary, gy, = [gx, 9u] C Sn.
q.e.d.

We now drop the assumption spL Cadpl.

Let s be a subalgebra of t® a & n such that 5# is abelian. From now
on we assume that the orbits of the connected closed subgroup S of G
whose Lie algebra is s form a homogeneous foliation on M. As usual,
we denote by s, = magn(s) the projection of s onto the noncompact part
of tdadn.

We define § = s+ (n2 @ --- @ n™) = s+ (n o nl) where m = my is
the level of the highest root of ¥. Since n©n' is an ideal of t ®a @ n it
follows that s is a subalgebra of t®a®n. Also, s C 5 and thus §pL C 5#,
which means that ﬁpL is also an abelian subspace of p.

It is obvious by definition that 5# C a® p'. Hence Theorem 5.9
implies that 5, := Taen(5) = so,v,, with ® C A a subset of orthogonal
simple roots, a,, € R, 0 # E, € g, and V' C ag as usual. By Proposition
5.10, there exists g € N such that Ad(g)s, = so 1. This element can
be taken to be g = Exp(FE) with E = =" 4 a¢aFq.

We define § = Ad(g)s. The subgroup of G whose Lie algebra is § is
S = I,(S). Obviously, S induces a hyperpolar homogeneous foliation
on M. By Proposition 5.11 (i) we get &, := Tagn(5) C (Ad(g9)s), C
Ad(g)s, = sa,v. Then it follows that (aps © V) ® (P ,cp R(1 — 0)E,) C
ﬁpl. Since ﬁpl is abelian, we have that ﬁpl is contained in the centralizer
Zy((a 6 V) ® (Dpeco R(1— 0)E,)) of (a6 ©V) & (Baee R(1 — 0)Ey)
in p. Our first aim is essentially to calculate this centralizer. Eventually,
this will allow us to determine 5,, and later s,,.

We start with @, R(1 — 0)E, where the situation is a bit more
involved. We deal with this in a series of lemmas.

Lemma 5.14. Let o € ® and let & € p be written as € = & +
doen+ (1 — 0)6x with & € a and &\ € gy for each A € ¥, Then &
is in the centralizer Zy,(R(1 — 0)E,) of R(1 — 0)E, in p if and only
if o € Aa}s §o € RE,, §20 = 0 and [g)\—aaEa] = [g)\—i-oneEa] Jor all
A e Xt \{a,2a}.

Proof. If £ commutes with (1 — §)E, a simple calculation yields
0=1[¢(1-0)Eq]
= (1+60)(al€)Bat D [0 Fal = Y. [06r Bal — [0, Bul).
AET+H AETH\A

The above vector is zero if and only if each of its components in £,
A € XU {0}, is zero.

The €yp-component is zero if and only if [0¢,, E,] € a, and the €9,-
component is zero if and only if [{,, F,] = 0. Denote by v the vector
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subspace of g, spanned by E, and &,. The above two conditions imply
[v,0v] C a and [v,v] = 0. Since « is a simple root, Lemma 5.3 implies
that v is 1-dimensional and hence &, € RE,,.

The £,-component vanishes if and only if a(&)Eq — [€20, 0Fa] = 0.
Taking inner product with F, yields

0= <a(€0)Ea - [§2o¢7 HEa]yEa> = a(€0)<Ea7Ea> - <§2o¢7 [EomEaD
= a(§0)<Ea7Eoc>’

Hence, &y € ag,) = a © RH,. Taking into account the above equation,
this also implies [{24,0F,] = 0. Using the Jacobi identity we get

0= [[620“6Eo¢]7Ea] = _[[eanEa]7§2a] - _<EOUEO!>[HO!7§2O!]
= —2[a*(Eq, Ea)é2a,

which implies &, = 0.

Finally, if A € ¥\ {«, 2a}, the €)-component is (1 + 6)([Ex—a; Fa] —
[Extas0F,]). This vanishes if and only if [{x—a, Eo] — [Erta, 0Fa] = 0
because gy and g_) are linearly independent. Since the “only if ” part
is elementary, the result follows. g.e.d.

Lemma 5.15. Let « € ® and X € ¥\ {«, 2a}, and assume that the
a-string of A has length greater than one. Then @,,cy 9 x+ma C n-

Proof. Since (1—6)E,, € & and & is abelian, we have 5 C Z,(R(1—
0)E,). Let & € & and write as usual £ = & + Y cxt (1 — 0)&\ with
& € a and &, € gy for each A € ¥*. Lemma 5.14 already implies that
o € aga}, o € RE, and &, = 0. We have to prove that {yma = 0
for all m € Z. We prove this assertion depending on the whether the
length of the a-string of A is 2, 3 or 4. Note that \ & ®.

Assume that the length of the a-string of A is 2. In this case we
may assume A — o, A + 2a ¢ BT and \,\ + a € 1 (switch to A — «
if necessary). Then a and A span a root system of type As. Since
A+ 2a € 1, Lemma 5.14 implies [y, Eq] = [Ex420,0Fa] = 0. Since
A—a g ¥ and A+« € ¥ we get from Lemma 5.4 that £, = 0. Similarly,
by Lemma 5.14 we have [{xiq,0Fs] = [{r—a, Fo] = 0. Since A + o —
(—a) =A+2a g Y and A+ a+ (—a) = X € X, Lemma 5.4 yields
Exra = 0 which finishes the proof in this case.

Assume that the a-string of A has length 3. In this case we may
assume A — o, A +3a € X7 and A\, + a, A + 2o € . Then, \ and
« span a root system of type By or BCs. First we claim that £\, €
[0o ©RE,, g)]- Since the root system spanned by A and « is of type Bs
or BCy, A+ « and « are orthogonal and have the same length. This
implies that there exists an element of the Weyl group that maps « to
A+a. Hence gy1, and g, have the same dimension. By Lemma 5.4, for
any nonzero Zy € gy, ad(Zy) : ga — Or+a is injective, hence bijective.
We write &y = [Z),cEq + Z,] with ¢ € R and Z, € g, © RE,,.
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Since (Zy, Ey) = 0, Lemma 5.2 yields (1 — )[0E,, Z,] = 0 and thus
[0E., Z,) € t. Hence ad([0E,, Z,]) is skewsymmetric. Lemma 5.14
implies [Exta;0Fq] = [Ea—as Eoa] = 0. Then, using the Jacobi identity,
we get

0= ([€xta:0Fal; Z0) = ([[2x, cEBa + Za), 0Eo], Z))
= —c([[Ea, 0E0u], Z)\], Z)) — ([[Zas 0Fa], 23], Z)
= c(\, ) (Ea, Ea)(Zx, Z)) — (ad([Za, 0Fa]) 2, Z))
=c(\,a)(Eq, Eo){Zx, Z)).

Hence ¢ = 0 and our assertion follows.
Now we claim that gy @ gat+2q C 5,. By Lemma 5.14 we have

ZP)\@PA+2Q (R(l - H)Ea)
={(1 = 0)(nx + Mr+20a) € Pr ® Pat2a © [Mas Ea] = [MDt24,0Fa]}

whose dimension coincides with dimpy. Note that 71yy2, is uniquely
determined by 7, since

[[77)\7 Ea]v Ea] = [[77>\+20m HEa]’ Ea] = _[[HECV? Ea]v 77)\+2a]
= —\Ea\2<a, A+ 20) 120

Since H, € §,, by Lemma 5.14 there exists S € t such that S+H, € 5.
We prove that Zy,gp, ... (R(1 — 0)E,) is invariant under ad(S). Let
X € g ©RE,. Then there exists T' € t such that T4+ X € § by Lemmas
5.8 and 5.14. Hence, [S+ H,, T+ X] = (ad(S) + (o, a)14, )X € 5Ngy C
§,. Using again Lemma 5.14 we get 0 = ((ad(S) + (o, a)1g, )X, (1 —
0)E.) = —(X,ad(S)E,). Since X € g, ©RE, and ad(S)E, € g SRE,
(because ad(.S) is skewsymmetric), the above equation implies [S, E,] =
0. Note that [S,0FE,] = 0[S, E,] = 0. Now assume that (1 — 6)(n\ +
Mt2a) € Zpyaprioa (R(1—0)E,). We have to show that (1—6)([S, 7]+
(S, M +2a]) € Zpyaproa (R(1 — 0)Ey). Indeed, using the Jacobi identity
and [S, E,] = 0 we get

[[Sv TM]an] = —[[77/\7Ea]75] = _[[77)\-{-20”9Ea]75] = [[Sv "7)\+2a]7Ea]'

This proves that Zy, gp. .. (R(1 — 0)E,) is invariant under ad(S).

Let Zy € g). Then there exists Zx1924 € grr2q such that Z) + 2510,
is perpendicular to Zy,gp, ., (R(1 — 0)E,). Thus Lemma 5.8 yields
that Zy + Zxi12a € 5n, and so there exists T" € t such that T+ Z) +
Zxi2a € 6. Hence [S + Ho, T + Z) + Zxioa] = [S,Za + Zri2a) +
(N a)Zy + (A4 20,0) Zx120 € 5N (Gx D Gaso2a). AS Zy + Zyioq 18
perpendicular to Zy, ap, 0, (R(1 = 0)Ey) and Zy, gp, o, (R(1 — 0)E,) is
ad(S)-invariant, it follows that [S, Z) + Zx;24] is also perpendicular to
Zpy@prson (R(1 = 0)E,), and so [S, Zx + Zxy24] € 5, by Lemma 5.5.
Hence, (\,a)Z) + (A + 2a,a) Z)1 94 € §,. Since A and « span a root
system of type By or BC we know that (A, ) < 0 and (A + 2a, ) > 0.
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Therefore we have Z) € §,, which implies gy C §,. Similarly, one can
show gxi24 C 6y, Which proves our claim. Hence, &, &\124 = 0.

We have that (go © RE,) ® g C 6,. Let X € g, O©RE, and Y € g).
There exist S,T" € t such that S+X,T+Y € &. Hence, [S+X,T+Y] =
[S,Y]— [T, X]+[X,Y] € 5N(ga®9rDFa+r) C 5,. Then, by Lemma 5.8,
the right-hand side of the previous equation is orthogonal to (1—6)FE,, so
[T,X] € g.©RE, C &,. Since [S,Y] € gy C &, we conclude [X,Y] € §,.
As X and Y are arbitrary, {x1o € [0 © REq, gx] C §,. This implies
Exra = 0 and finishes the proof for a-strings of A of length 3.

Finally, assume that the length of the a-string of A is 4. In this case
we may assume A — o, A +4a € X7 and M\ + o, A+ 20, A +3a € T,
Then « and A span a root system of type Gs. A consequence of this fact
is that all four restricted root spaces have the same dimension. Now, by
Lemma 5.4, the linear map ad(Ey) : gx — gr+a IS injective, and hence
bijective. Thus, we can write {1 = [Fq, X)] with X € gx. We get
from Lemma 5.14 that

0= [g)\—aa Ea] = [g)\—i-omeEa] = [[EaaX)\]a eEa] = —[[QEQ, Ea]aX)\]
= _</\7 Oé> <EOM EQ>X)\'
Since (A,a) # 0, this implies X, = 0, and hence £, = 0. Since
A3a—(—a) € ¥ and A+3a+(—a) € X, Lemma 5.4 and [{)134,0F,] =
[g)\—i-om Ea] = 0 imply £A+3o¢ =0.

Another application of Lemma 5.4 implies that ad(0E,) : gr+30 —
gr+20 1S injective and hence bijective. A similar argument as before
writing Exyoa = [0Eq, Xot3a] With X134 € gr134 yields, using Lemma
5.14,

0= [£A+4o¢7 eEa] = [£A+2o¢7 Ea] = [I:HECH X)\+30c]7 Ea]
= _[[Eon HEQ], X)\+3a] = <)\ + 30[, OZ><Ea, EQ>X)\+305'
Hence, X)y3, = 0 and &) 12, = 0 because (A + 3a, ) # 0. Since

A—ag¥and A+ a € X, Lemma 5.4 and [y, Ey] = [€x124,0E4] =0
imply &, = 0. q.e.d.

We define O = {y € A: (y,a) = 0 for all @ € ®}. The root sub-
system of ¥ generated by ¥ is denoted by Y. We also denote by 2®
the set of roots of the form 2« with a € ®. Of course, the number of
elements of 2® is at most the number of irreducible components of .
The root subsystem generated by ¥ U ® is Yy U ® U 29.

Lemma 5.16. We have
5y Cag & (@ R(1 — 9)Ea) ® (pw ©a).

acd

Proof. If ® = ) then ¥ = A and Xy = ¥, and so the assertion is
that ﬁpL C p and there is nothing to prove in that case. Hence, we may
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assume that ® # (). It can happen that ® UV = A. By definition of
U this implies that X is reducible, and in fact it is the direct sum of
two root systems, one generated by ¥ and the other one generated by
®. Moreover, each element of @ is in an irreducible component of rank
one of X. In that case, Yy = X\ (P U2P) and the result follows readily
from Lemma 5.14. Hence, we may also assume that ® U ¥ # A.

Let Z = H®YY be the characteristic element in a of the gradation
g=Pcs ggu\l, of g corresponding to the parabolic subalgebra qoug.
We claim that if A € ¥ and A\(Z) = 1 then there exists a € ® such
that \+a € Xt or A\ —aeX™ .

In order to prove this, let A € X1 be such that A\(Z) = 1. If (\,a) #
0 for some o € &, then Ay, # 0, where A,, is the corresponding
Cartan integer. This clearly implies our claim. Thus we may assume
(Aa) = 0 for all @ € . Write A = >\ nyy with n, > 0. Then
by hypothesis, 1 = A\(Z) = ZygA\(@U\I/) n.. Since ny, > 0 we can then
write A = > cp Mo + B+ p, where € A\ (¢ U W) and p € span V.
Now, since ® consists of orthogonal roots, for each @ € ® we have
0= (\a) = na(o,a) + (B,a) = (na + Aga/2){a, ) so the Cartan
integer satisfies Ag, = —2n,. It cannot happen that n, = 0 for all
a € @ because in that case the previous equality implies (3, «) = 0 for
all @ € ® and hence g € ¥, contradiction. Therefore we can find « € ¢
such that n, > 0. We will see that A\ & o € X7, from where the claim
will follow.

By the properties of Cartan integers, the equation Ag, = —2n, can
only hold when n, = 1 and {«, 5} spans a root system of type By (or
B(C5). It is also obvious that A must be a root of the root subsystem
of 3 determined by the irreducible component where both a and £ lie.
Hence, the connected component of o and 5 in the Dynkin diagram of
the original root system X has a double arrow pointing to «. Therefore,
this connected component is one of B,, C,., BC, or Fy. Relabel the
corresponding reduced Dynkin diagram as indicated in the following
figure:

O—————————Q e O—O:O—O .....................
o1 %) o2 B o Q1
According to this labeling p € span{aq,..., a2, q119,...} (when-

ever the corresponding simple roots exist). However, since «; is orthog-
onal to a and 8 for ¢ > [ + 2, it follows that A can be a root only if
u € span{ay,...,q_o}, so the problem reduces to studying a root of
the form \ = 22:1 n;a; in a root system of type B; or BC; with the
labeling as above and with n;_1 = 1, n; > 1. By the description of all
roots for these root systems, A must be of the form A=«a; +--- 4+ o or
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A=oqa;+ -4+ a_1 + 2q;. Only the first of these two possibilities can
be orthogonal to o, and in that case it follows that A o € X7
Therefore, if A € X7 and A\(Z) = 1 there exists a € ® such that
AtaeXtor A—ae Xt Since A # a,2a, we can now apply Lemma
5.15 to obtain that g}DU\I, C 5,. Since the gradation is of type «g, it
follows from Lemma 5.13 that @~ g% 4 C .. This implies that &
is contained in the projection of g° onto p. Obviously A\(Z) = 0 if and
only if A € ¢ U ® U2®. Combining this with Lemma 5.14 we get the
result. q.e.d.

Now we turn our attention to the a-part of §pL and define ¥ = {\ €
Y:Mapg0V) =0} ={\e€X: H, € Vaa®} Itis obvious that ¥
is a (possibly empty) root subsystem of ¥. We denote by ¥ a set of
positive roots with respect to an ordering consistent with that of . We
define II = AN'Y and denote by X1 the corresponding root subsystem
of ¥ generated by II. Consider in X1 an ordering compatible with that
of ¥ so that ¥ = Sy Nt

Lemma 5.17. We have

5 Cag @ <EB]R<(1 - G)Ea> @ (pn©a).
acd

Proof. Write § € p as § = & + Y _yexn+ (1 — 0)&) with § € a and
&\ € gy for each A € BT, Given H € ap ©V we get [H,&] = (1 +
0) > res+ A(H)EN, which implies that the centralizer of ag © V in p is
Zp(a‘1> © V) =ad (@)\Efﬁ pA)- _

For any a € ® it is obvious that a(ag ©V) = 0, and so & C X. Using
Lemma 5.16 and Zy(ap © V) =a® (@Aei+ p)\) we easily get

5y Cag® <EBIR(1 —G)Ea> ol P mn

acd Aexins

This implies that for any A € £\ (® U (Sy NY)) we have gy € 5,. We
will use this fact several times during this proof.

Let Z = HMMW\ID be the characteristic element in a of the gra-
dation g = Pz g’X\(\Ij\H) of g corresponding to the parabolic subal-
gebra qa\(g\m)- Let A € E$ be written as A = Z«/e\If n,7y and as-
sume A(Z) = 1. Then 1 = A(Z) = > cg\nny, SO We can write
A = a+ pu, where a € U\ II and p € spanll. By definition of p it
is obvious that p(ap © V) = 0, and by definition of « it is clear that
Mag ©V) = alag © V) # 0, that is, A\ € ¥. Thus we have gy C §,.
On the other hand, assume A € X+ \ X}, satisfies A(Z) = 1. Then we
conclude gy C 5, unless A € ®. The latter case is not possible since
& C A\V C A\ (¥ \II), which would imply A(Z) = 0. Hence, the
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conclusion is that for any A € X7 satisfying A(Z) = 1 we have gy C 5.
This implies that g}x\(qj\n) C 6, and hence, by Lemma 4.13 we have

@kgl gfx\(qj\n) C 5,. Combining this with the above inclusion for §pL
implies the result. q.e.d.

We are now ready to determine s,,.
Lemma 5.18. We have s, = 5¢,v,q-

Proof. Fix a € TI. Since a € ¥ we have a(ap © V) = 0 and hence
H, € V&a®. On the other hand, a € E$ so H, € ag. Since ag Na® =
{0}, Proposition 5.11 (iii) applied to & implies H, € V C (Ad(9)5)n.
Thus there exists S € t such that S + H, € Ad(g)s. Let X € g,.
By definition of II and Proposition 5.11 (iv) we get go C (Ad(g)8)n.
Then there exists T' € t such that 7'+ X € Ad(g)s. Since Ad(g)s is
a Lie algebra and [t,g,] C go we have [S + H,,T + X| = [S,X] +
[Ho, X] = (ad(S) + (o, a)13,)X € (Ad(9)s) N ga, where 1y, is the
identity of g,. Since the linear map ad(S) is skewsymmetric, it follows
that ad(S) + (o, @)1y, : o — 8o is an isomorphism. However, X € g,
is arbitrary, and so g, C Ad(g)s. Since « € II is also arbitrary it follows
that for all a € IT we have g, C Ad(g)s.

Let us denote by n® = n®*Nnyy the direct sum of root spaces associated
with roots of X7} of level s (note that the level of a root in X} coincides
with the level of this root as a root of X). The previous argument
shows that ! C Ad(g)s. Choose a basis {E1,..., E.} of n'. Since
g € N it follows that Ad(g)(n © n') C non!, and as Ad(g) is an
automorphism equality holds. Hence, by definition of § and 5 it is
obvious that Ad(g)s = § + (n © n!). Therefore, for each i, there exists
X; € non! such that E; + X; € 5.

We introduce the following notation. We define [Y71,Y5,...,Y]] =
[Y1,[Y2,..., Y]] inductively, being [Y7, Y2| the usual Lie bracket. Denote
by k the level of the highest root of ZH . Let s be the smallest integer
for which #* @ --- ® % C 5,,. Our aim is to prove s = 1.

First we prove s < k, that is, a* C 5,. Since [n® n®] C n*® and
no(nteon’e---onk) C §, by Lemma 5.17, we have [E;, +X;,,..., B, +
X, ]| =[Ei,...,E;,] mod 5,. Here we have used the fact that the level
of a root in Eﬁ is the same as the level of that root as a root of ¥ 1. The
brackets of k vectors in the right-hand side of the previous formula span
iF whereas the brackets on the left-hand side belong to § N n because
§Nnis a subalgebra. Since § N n C §,, this implies 1% C §,.

Now assume s > 1. Hence #® @ --- @ ¥ C 5, but #*~! ¢ 5,. We
use again [n%n’] C n®*® and no (nl@n?@ ... @n*!) C §,, which
follows from Lemma 5.17 and the definition of s. Thus we get [E;, +
Xiyy.o s Eiy +Xi, ] =1[Ei,...,Ei, ,] mod§,. Again, the brackets
in the right-hand side of the congruency span 1°~! whereas the brackets



HYPERPOLAR HOMOGENEOUS FOLIATIONS 227

in the left-hand side belong to § N\n C §,. Then we get a*~! C 5,
which is a contradiction. Therefore s = 1 and thus a' & --- & A% C §,,.
Altogether this implies

(apgo V)@ <@R (1-46 a)Cﬁ#‘CClc}@(EBR(l—@)EQ).
acd acd

Since V' C (Ad(g)s), by Proposition 5.11 (iii) and non! C §, by the
above equation, it follows from Ad(g)s = § + (n ©n') that 5, = sq v.

Let T+ H+ X €5 withT €t, H< aand X € n. By hypothesis,
the connected subgroup S of G with Lie algebra & induces a hyperpolar
foliation. Let E = =3 .4 aaFq and g = Exp(E). It follows from
Proposition 5.11 (vi) that [s., E] = 0, and hence Ad(g~ )(T—I—H—I—X) =
T+Ad(g~!)(H+X). Proposition 5.10 shows that Ad(g~)se,v = 56 v.a-
Since 5 = Ad(g™1)s, the result follows. q.e.d.

To conclude our proof we need to prove the following result:

Proposition 5.19. Let t ® a & n be a mazximally noncompact Borel
subalgebra of g. Let s be a subalgebra of tdadn such that 5, = Tagn(s) =
$3,v,q With some orthogonal subset ® of A. Assume that the orbits of the
connected subgroup S of G whose Lie algebra is s form a homogeneous
foliation on M. Then the actions of S and Sy are orbit equivalent.

Proof. First, assume s is a subalgebra of t ® a & n such that s, =
sp,v. Certainly, s, is a subalgebra of a @ n. Denote by S and S,
the corresponding connected subgroups of G. Also, denote by N the
connected subgroup of G whose subalgebra is n © (P, cqo RE,). We
prove that S and S, have the same orbits.

Assume that T4+ H € s with H € aand T € t. Let X € no
(B,co RE,). By definition, there exists R € t such that R+ X € s.
As t@ais abelian, [T+ H, X] = [T+ H, R+ X]| € sNn. Hence, if tan € S,
there exists n’ € N such that tan = n'ta. Since t® a is abelian we have
ta = at, and since a normalizes n © (@,cp RE,), there exists n” € N
such that n’a = an”. Altogether this implies tan = n'ta = n’at = an’t.
Thus, tan(o) = an”t(o) = an”(o) and hence S -0 C S, - 0. Since
both orbits S -0 and S,, - 0 have the same dimension and are connected
and complete we conclude S -0 = S, - 0. Now, let p = exp,(§) with
€ € V(S - 0). Using the fact that S acts isometrically on M and that
t«& = & by Proposition 5.11 (vii) we get

tan(p) = eXptan(o)((tan)*g) = eXpan”(o)((an”)*g) = an”(p)'
Hence, S'-p C S, - p, and thus equality holds. Since the action of S is
hyperpolar, all the orbits can be obtained in this way, and so S and S,
have the same orbits as claimed above.
Now we deal with the general case, that is, 5, = s¢ v, Let S be
the connected subgroup of G with Lie algebra s. By Proposition 5.11
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(v), there exists g € N such that (Ad(g)s), = Ad(g)s, = sa,v. The
subgroup I,(.Sy,) whose Lie algebra is Ad(g)s, = (Ad(g)s), has the same
orbits as I4(S) by the previous argument. Then I,(S,) and S have the
same orbits and hence the theorem follows. q.e.d.

Now we finish the proof of Theorem 4.11 (ii). Let H be a closed sub-
group of the isometry group of M inducing a hyperpolar homogeneous
foliation on M. By Proposition 5.1, the action of H is orbit equivalent
to the action of a closed solvable subgroup S whose Lie algebra s is
contained in a maximally noncompact Borel subalgebra. Then, there
exists a Cartan decomposition of g = €@ p and a root space decompo-
sition g = go @ (@ rex 0 A) with respect to a maximal abelian subspace
a of p such that the projection of s onto a @ n is given by s, = s5¢.v,4
by Lemma 5.18. Proposition 5.19 then implies that the actions of the
connected subgroups of G' with Lie algebras s and s¢ v, are orbit equiv-
alent. Hence, the action of H is orbit equivalent to the action of Sg 1
on M, which concludes the proof of Theorem 4.11.

6. Geometry of the leaves of hyperpolar homogeneous
foliations

In this section we study the extrinsic geometry of the leaves of hy-
perpolar homogeneous foliations on noncompact symmetric spaces. We
identify M with AN endowed with the inner product (-, -)an as de-
scribed in Section 3. However, we still denote by & orthogonal comple-
ment in g with respect to (-, -).

Proposition 6.1. The orbit S - p is isometrically congruent to
Se.v,a -0 for somea:® — R.

Proof. Let D be the left-invariant distribution on M determined by
(aeV)®Lg. Obviously, (a©V)®/s is a subalgebra of adn, and since AN
is simply connected, the leaf of D through o is D, = Exp((a&V)®{g)-o.
We prove that D is autoparallel. Using the formula for the Levi-Civita
connection it is easy to obtain VyH' = VyE, =0, Vg, H = —a(H)E,
and 2V g, Eg = (Eq, Eg)H, for any H,H' € a6V and o, € ®.

In particular, the leaf D, is totally geodesic in M and since v,(So,v -
0) = (ap © V) & lg, it contains the section of S¢y through o. Since
a section of Sgy intersects all the orbits, we may assume that p lies
in that section and so, the point p can be written as p = g~!(0) with
g=Exp(X) and X € (a5 V) & ly. Hence, So v -p =g (9So,vg™ ")
o= g '1,(Se) 0. Since g7! is an isometry of M, the orbit Sg y -
p is isometrically congruent to I4(Se,) - 0. We will now prove that
I,(Se,v) = S&,v,q for some a : & — R, and for that we will show that
Ad(g)ﬁcb,v =5%,V,a

Let H € a. We show that Ad(Exp H)se v = s¢,v. Since we already
have Ad(Exp H)sgp vy C a @ n, it suffices to prove that Ad(Exp H)se v
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is orthogonal to (ap & V) ® le. Let X € 5oy, H € ap &V and a € .
Then our assertion follows from the equalities (Ad(Exp H)X, H') =
(X, Ad(Exp(—0H))H") = (X, 'Y = (X, H') = 0, and

(Ad(Exp H)X, E,) = (X, e E,) = o(H)" (X, E.)

|
k!
=X BE,) = 0.

Write X = H+Y"  co(taHa+yaEq) with H € ap0V and x4, Yo € R.
Since RH, & RE,, is a subalgebra, there exist constants a,, b, € R such
that Exp(aqEq) - Exp(ba Ha) = Exp(@q Ho + Yo Eq). This equation and
[Cl<1>,g<1>] = [g{a}7g{ﬁ}] = {0} for any Oé,ﬂ € 7é /87 lmply

g= <H Exp(zoHey + yaEa)> Exp H
aced

= <H Exp(aaEa)EXp(baHa)> Exp H

aced
= Exp <Z aaEa> Exp (H + Z baHa> .
acd acd

Hence, the equality Ad(Exp H')s¢ v = s,y for any H' € a and Propo-
sition 5.10 imply

Ad(g)se,v = Ad <Exp <Z aaEa>) Ad (Exp (H + Z baHa>) 53,V

aced acd
=50,V,a,
where a : ® - R, a — a,. This concludes the proof. q.e.d.
In view of Proposition 6.1, in order to calculate the geometry of the
orbits of S¢ v, it suffices to study the geometry of the orbit through the

origin o of S¢ v, where ® is an orthogonal subset of A, V' is a linear
subspace of ag and a : ® — R is a function. Hence, we consider

sove=(Voa®on o <@ R(aoHy + Ea)> ,

aced
for certain a, € R and E, € g, with (E,, E,) = 1. Note that

5o va =V (@R&)ea(@((ga@ma)@gza))@ D a0l

aed aEd AEH\ (BU2D)

where X, = #Ha — aqFo. We denote by 2@ the set of roots of the
form 2 with o € ®.
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Let X,Y € sp v, and £ € v,(Sp,v,q - 0). Using the formula for the
Levi-Civita connection with respect to left-invariant vector fields we
easily obtain

HA X, Y)an = ([(1 = 0)§, X],Y).

From now on let Z € s5¢ v,q.

Assume first that £ € ap © V. If X € V, then 2(4¢X, Z)an
([¢,X],Z) = 0. Since & € agp we also get 2(A: Xo, Z) an = ([€, Xal, >
—aq0(§)(Fq, Z) = 0. Similarly, if X € g, © RE, then 2(A:X, Z) an
a(§)(X,Z) = 0, and analogously, if X € goq then also A:X =
Finally, if X € g\ with A € X7\ (® U 2®), then 2(A:X,Z)an
(¢, X],Z) = ME(X, Z) =2M(&)(X, Z) an. In particular, we get trAg =
Z/\ez+\(¢u2¢)(dimg,\))\(§) = 20(&), where § = %EA62+(dimg,\))\ (see
(15, p. 329)).

Now let £ = ao Hy+2FE, for some o € ®. The vector £ is orthogonal to
S V.o With respect to (-, -)any and has length /2 + a2|a?2. If X € V,
then it follows that

1 1
(AeX, Z)an = {1 = 0)¢, X], Z) = —5a(X)(Ea, Z) = 0.
For g € & we calculate

(o, B)
B[
If o # B, we have as usual that a and S are orthogonal and hence

AeXg = 0. If o = 3, we can write the above expression in terms of §
and X, to get

1
(AeXp, Z) an = (—aaap{a, B)Ep — Ea + 5ap(Ea, Eg)Ha, Z) AN

1
(AeXa, Z)an = {aalal*Xo = 58 Z) an = aala[*(Xo, Z)an

Assume now that X € gg © REg with 3 € ® and o # 5. Since a and 3
are orthogonal we get [(1—0)¢, X| = 2(an (e, B) X +[Eq, X]—[0E4, X]) =
0, and thus A¢X = 0. One can prove in a similar way that A:X = 0 if
Xegggwithﬁefbanda#ﬁ.

Now we turn our attention to the subspace (g, ORFE,)®gaq. Let X €
0o ©ORE,. Clearly, [fE,, X] € go and ([0E,, X|,H) = a(H)(X,E,) =0
for all H € a. Then we get

1
(AeX, Z)an = {0 Ho+Ea—0Ea, X1, Z) = (ag|o* X +[Eq, X], Z) an
On the other hand, if Y € go, we have

1
(AeY, Z)an = §<[aaHa+Ea—9Ea,Y], Z) = (2a0|a*Y —[0E,, Y], Z)an

Since ([0FE.,Y],Eqn) = —(Y,[Eq, Ea]) = 0, A¢ leaves the subspace
(ga © RE,) @ g2, invariant. Moreover, since for Y € go, we have
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[Eo,[0E,, Y]] = —[Y,[Eq,0F,]] = —2|al?Y, then we get that the lin-
ear map ad(E,)|ad(0FE,)(92¢) : ad(0E,)(g2a) — @24 iS an isomor-
phism. From here we obtain the decomposition g, = Ker(ad(E,)|ga) ®
ad(0E,)(g24). Hence, if X € Ker(ad(E,)|ga) we get from the previous
expression that 4 X = a,|af>X, so Ag restricted to Ker(ad(E,)|ga) ©
RE, is aa\alleor(ad( Fa)lga)oRE, and the multiplicity is then dim g, —
dimgs, — 1. On the other hand, for nonzero Y € go, define X =
[0Es,Y] € go. Then the previous formulas read A¢X = aq|a?X —
2|la?Y and A¢Y = —X + 2a4|al’Y. The eigenvalues of the matrix

aalo? -1
—2|al? 2aq|al?
are % (3aa]a\ + /8 + aa\aP).

Before continuing we need the following (recall that £ = aq Hy+2E,,).
Lemma 6.2. We have

ad((1—-0)¢) [no EB(Q'V S 927) cno @(Q’y 2] 92-\/)

yed yeD

Proof. Let Y € n o <@we<1>(9“/ @gg,y)). By the properties of root

systems, it is clear that ad((1 —0)§)Y C n. For f € ® and Z € gg we
calculate

(ad((1 = 0)§)Y, 2) = (ad((1 - 0)§)Z,Y)
= 2aa(a, BNZ,Y) +([Ea, Z] = [0Ea, Z],Y ).

By assumption we have (Z,Y) = 0. Now, if a # 3, [Eq, Z] € gats =0
and [E,, Z] € gg—q = 0. If a = 3, [Ea,Z] € g2q and so ([Ey, Z],Y) =
0, and [#E,, Z] € go, and so ([0E,, Z],Y) = 0. In any case, (ad((1 —
E)Y,Z) =0.

If Z € gop a similar calculation shows that (ad((1 — 0)§)Y,Z) =
(|[Ea, Z],Y) — ([0FEq, Z],Y). If o # B, [Ea,Z] € gat2s = 0 and
0FEq,Z] € g2p—a =0. If o = B3, [Eq, Z] € 930 = 0 and [#E,, Z] € gq SO
<[0Ea, Z1,Y) =0. In any case, (ad((1 — 0)§)Y, Z) = 0 and the result is
proved. q.e.d.

Now define ¢ = Exp(—=- Vil ‘(1 +0)E,) for a € ®. It is well known that
¢ € Nk(a). Moreover, we have

Lemma 6.3. The following inclusion holds:

Ad(¢) no @(97@927) cno @(97@927)

yed yeD
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Proof. The argument given in the proof of the previous lemma can
be applied here to show that ad((1 + 6)¢) <u S (6976@(9“1 & gg,y)>) C

10 (D, ca(9y © 82)). Since Ad(9) = So_; & (LE—)™ ad(1+0)¢)™,
the result follows. q.e.d.

Finally, let X € g\ with A € 37\ (® U 2®). It follows from Lemma
6.2 that A¢ leaves n © (®ea(gy ® g24)) invariant. Thus, if Z € a ®
(Drea(gy © 029)) then (Ad(9)AcX, Z)an = (A¢ Ad(9)X, Z)an = 0.
Assume Z € n © (Dyea(gy ® g2¢)). Using the previous two lemmas,
Ad(¢)H, = —H, and Ad(¢)((1 — 0)E,) = —(1 — 0)E,, we get

(Ad($)Ae X, Z)an= %(Ad(qﬁ)AgX, Z) = %<A5X, Ad(¢p~H2Z)

= (X, Ad(97™)Z)ax = 101 - 6)6, X, Ad(97)2)

%([Ad(gb)(aaHa + (1 = 0)E,), Ad(¢)X], Z)
- _i<[(1 —0)6,Ad(¢)X],Z) = —(Ac Ad(¢) X, Z) an

In particular this implies trAg = aq|a|*(dim go + 2 dim gaa ).
We summarize all these calculations in the following

Proposition 6.4. Let S¢ v, be the connected subgroup of G whose
Lie algebra is s¢v,q. Let us write X, = #Ha — aqoF, and denote
by A¢ the shape operator of S v,q - 0 with respect to a normal vector
€ € Vo(Sa,v,q-0). We have:

1) If € € ap ©V, then the restriction of A¢ to the linear subspace

V@ <@7€¢RXW) @ <€]9,Y€q>(g»y @RE«,)) @ <®,Y€q>ngy) S zero

and the restriction of Ag¢ to gy for A € 1\ (2 U2®) is (€)1, .
2) If € = agHa+2E, with (Ey, Eo) = 1 we have (€, an = 2+a2|of?

and:

a) The restriction of the operator A¢ to V & (@wecb\{a}RXv) @

(@VECP\{Q} (9, © REV)> ® <@7€¢\{a} g%) is zero.

b) AeXy = anlal?X,.

c) We can decompose g, as go = Ker(ad(Ey)|ga) Pad(0E,)(g2q)-
The restriction of Ag to Ker(ad(Eqy)|ga) © RE, is given by
aa\alz1K0r(ad(Ea)|ga)9REa and the dimension of the subspace
Ker(ad(Ey)|ga) © RE,, is dim g, — dim goq — 1. The subspace
ad(0F.)(g20) ® g2a is invariant under A¢ and A¢ acts with
etgenvalues

@ (3aa]a\ + /81 ag\ap)
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whose multiplicities are dim go,, .
d) If ¢ = Exp (\/_| ‘(1 +0)E )) € Nk (a) then the subspace n ©

(@,\/eé(g'y @92«,)> is invariant by A¢ and by Ad(¢), and we

have A¢ Ad(¢) = —Ad(¢p)A¢. In particular, if AcX = cX,
then A¢ Ad(¢)X = —cAd(¢)X.

The mean curvature vector H, defined with respect to an orthonormal
basis {e;} as H =), II(e;, €;), is in our case

aalof’

H = 27TC(<1>@V H5 + Z m
ay

(dlm ga + 2dim gQ(X)(aocHa + 2Ea)7

where as usual 7y,1 denotes orthogonal projection onto ag © V.

We recall that the horocycle foliation is induced by the group NV, the
action of the nilpotent part of some Iwasawa decomposition. In this
case we have:

Corollary 6.5. The orbits of the horocycle foliation are isometrically
congruent to each other and their shape operator with respect to a vector

¢ € ais given by A¢ = ad(§)jn = Drex+ ME) 1y,

Remark 6.6. Let M be a symmetric space of rank one. Assume that
A = {a}. There are up to congruency two possible hyperpolar homo-
geneous foliations, namely, the horosphere foliation, which is the same
as the horocycle foliation in this case, and the solvable foliation, where
® = {a}. In both cases the foliation is by homogeneous hypersurfaces.

All the leaves of the horosphere foliation are congruent. The principal
curvatures of horospheres are || and 2|«| with multiplicities dim g, and
dim go,, respectively.

Now we consider the solvable foliation, whose leaves are the orbits of
the group Siqy (03 If 7 is a geodesic parametrized by unit speed such
7(0) = o and 4(0) is orthogonal to Siay foy - 0, then the path of v is
a section of this hyperpolar foliation. The principal curvatures of the
orbit Siay g0y - v(r) are

3
—|a| tanh(|alr), —%t h(|a|r) |\/4 3tanh(|a|r),
with multiplicities dim g, dim go, and dim gs,, respectively.
For cohomogeneity one homogeneous foliations see [4].
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