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Optical clocks benefit from tight atomic confinement enabling extended interrogation times as
well as Doppler- and recoil-free operation. However, these benefits come at the cost of frequency
shifts that, if not properly controlled, may degrade clock accuracy. Numerous theoretical studies
have predicted optical lattice clock frequency shifts that scale nonlinearly with trap depth. To
experimentally observe and constrain these shifts in an 171Yb optical lattice clock, we construct a
lattice enhancement cavity that exaggerates the light shifts. We observe an atomic temperature
that is proportional to the optical trap depth, fundamentally altering the scaling of trap-induced
light shifts and simplifying their parametrization. We identify an “operational” magic wavelength
where frequency shifts are insensitive to changes in trap depth. These measurements and scaling
analysis constitute an essential systematic characterization for clock operation at the 10−18 level
and beyond.

Optical dipole trapping has risen from theory [1] to
establish itself as a workhorse experimental technique in
numerous contexts [2–5]. Despite the fact that dipole
trapping is achieved by inducing large light shifts, it
has found prominence in quantum metrology and pre-
cision measurements. The concept of magic wavelength
trapping resolves this apparent contradiction by inducing
large but identical shifts on two atomic states of inter-
est [6]. In an optical clock, the energy difference of these
two states gives the frequency reference that serves as the
timebase. The magic wavelength allows optical lattice
clocks [7] to realize the unperturbed atomic transition
frequency while maintaining the experimental benefits of
trapped systems. Magic wavelength trapping has found
applications far beyond atomic clocks including: cavity
QED [8], ultracold molecules [9] and Rydberg gases [10],
atomic qubits [11, 12], laser cooling [13], and quantum
simulation [14, 15].

Magic wavelength optical lattices have enabled op-
tical clocks to achieve unprecedented levels of perfor-
mance, with fractional frequency instability approaching
1×10−18 [16–20] and total systematic uncertainty in the
10−18 range [17–19]. Consequently, optical clocks be-
come sensitive tools to measure the gravitational red shift
and geopotential [21–24], search for dark matter [25–27],
constrain physics beyond the Standard Model [28–30],
improve very long baseline interferometry [31], and ulti-
mately redefine the second [32]. However, at these per-
formance levels, the concept of magic wavelength confine-
ment breaks down [33, 34]. Higher-order couplings, in-
cluding magnetic dipole (M1), electric quadrupole (E2),
and hyperpolarizability, prevent a complete cancellation
of the light shifts between clock states, introducing shifts
that scale nonlinearly with trap depth.

In an 171Yb optical lattice clock, we measure nonlinear
light shifts, offering improved determinations of the hy-
perpolarizability and lattice magic frequency νmagic [35–

38]. Theoretical studies suggest that these higher-order
light shifts yield lattice-band-dependent effects [34, 39–
41] which vary with atomic temperature, complicating
characterization of the light shift and its appropriate ex-
trapolation to zero. In this Letter, we extend the theory
and experimentally study these temperature-dependent
effects. Doing so reveals a simplification in the shift’s
functional form, achieving 1.2× 10−18 clock shift uncer-
tainty. The nonlinear shifts offer an experimental benefit
in the form of ‘operational magic wavelength’ behavior
- where the polarizability can be tuned, with laser fre-
quency, to partially compensate the hyperpolarizability
and yield linear shift insensitivity to trap depth. These
measurements and analysis are relevant for other atomic
species, including 87Sr, where the role of hyperpolariz-
ability for accurate characterization of lattice light shifts
differs between studies [18, 19, 42–45].

The dominant optical-trap AC Stark effect is from elec-
tric dipole polarizability (αE1), giving a shift that scales
to leading order with trap depth, U . The differential shift
of the clock transition is eliminated by operating at the
magic wavelength (or frequency) [33]. Higher multipolar-
izabilities from magnetic dipole and electric quadrupole
contributions (denoted here as αM1E2) also yield shifts,
albeit much smaller than the electric dipole terms. The
hyperpolarizability (β) shift accounts for electric dipole
effects that are fourth order in the electric field. In gen-
eral the frequency shift on the clock transition, δνclock,
is:

δνclock
νclock

= −U ∆α′E1Xn − U ∆α′M1E2 Yn − U2 ∆β′ Zn,

(1)
where all quantities appearing on the right-
hand-side are dimensionless. Here, ∆ de-
notes a difference in a quantity between clock
states, and ∆α′E1 = ∆αE1Er/αE1(νmagic)hνclock,
∆α′M1E2 = ∆αM1E2Er/αE1(νmagic)hνclock, ∆β′ =
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FIG. 1. (a) Schematic of the vertically-oriented lattice build
up cavity, with out-of-vacuum mirrors. PD photodiode, BS
beamsplitter, AOM acousto-optical modulator, PZT piezo-
electric transducer. (b) Sideband spectra for multiple trap
depths from 150 Er (light green trace) to 1260 Er (black
trace). (c) Longitudinal temperatures, extracted from side-
band spectra, as a function of trap depth. The red trace
corresponds to normal operating conditions, while the blue
trace incorporates an additional step of sideband cooling.

∆βEr
2/αE1(νmagic)

2hνclock. Xn, Yn, and Zn represent
expectation values of the spatial portion of the trapping
potential, U(z, ρ) = exp

(
−2ρ2/w0

2
)

cos2 (kz), for mo-
tional state n with 1/e2 lattice-beam-intensity radius w0;
Xn ≡ 〈n |U(z, ρ)|n〉 , Yn ≡ 〈n |U(z + π/(2k), ρ)|n〉 , Zn ≡〈
n
∣∣U(z, ρ)2

∣∣n〉. U , which is proportional to the lattice
intensity, is the dimensionless ratio of trap depth to

recoil energy Er = ~2k2

2m , where k = 2πνl/c for lattice
frequency νl, h = 2π~ is Planck’s constant, c is the speed
of light, and m is the mass of 171Yb.

Here, we extend the perturbative treatment in the har-
monic motional-state basis [41] to consider not only lon-
gitudinal confinement along the 1-D optical lattice, but
also transverse optical confinement. The resulting lattice
induced shift for an atom in longitudinal lattice band nz

and transverse motional state nρ = nx + ny is:

δνclock
νclock

= n5∆α′M1E2+[(n1+n2)∆α′E1−n1∆α′M1E2]U
1
2

−[∆α′E1+(n3+n4+4n5)∆β′]U+[2∆β′(n1+n2)]U
3
2−∆β′U2.

(2)

This treatment yields a U1/2 scaling originating from
αM1E2 [34, 39] and a U3/2 scaling originating from β [40]
and now includes contributions from both the trans-
verse and longitudinal motional quantum numbers: n1 =

(nz+1/2), n2 =
√
2

kw0
(nρ+1), n3 = 3

2 (n2z+nz+1/2), n4 =
8

3k2w2
0
(n2ρ+2nρ+3/2), and n5 = 1√

2kw0
(nz+1/2)(nρ+1).

Since measurements cannot be made at zero trap
depth, extrapolation to the unperturbed clock transition
frequency at U = 0 is required. For shallow traps with
cold low-density atomic samples, an extrapolation linear
in U has generally been considered sufficient to determine
the magic wavelength and unperturbed atomic frequency
at the 10−17 level of clock uncertainty. However, as the
required accuracy increases, the higher order terms in
Eq. (2) cannot, in general, be neglected. The added fit
parameters from each U -dependent term place a heavy
statistical burden on the measurement in order to reach
the desired level of uncertainty. Furthermore, the inclu-
sion of these higher-order terms introduces contributions
dependent on the thermally averaged 〈n〉. In order to
meaningfully apply Eq. (2) to experimental data, the 〈n〉
must be characterized over the range of U measured.

To experimentally observe light shifts in an 171Yb op-
tical lattice clock [16], we use a power enhancement cav-
ity (finesse ≈ 200 at νl, transparent at νclock) to form the
optical lattice, Fig. 1(a). Doing so enables us to realize
trap depths greater than 10× our anticipated operational
depth. A relatively large lattice beam radius (170 µm)
in the transverse plane enables high trapped atom num-
ber with relatively low atomic density and thus small
density-dependent collisional shifts. The cavity orienta-
tion along gravity suppresses resonant tunneling between
lattice sites [46, 47]. To ensure that the optical lattice has
no significant residual circular polarization (e.g. vacuum
window birefringence), the difference frequency between
π-transitions from both mF = ±1/2 [48] states is mea-
sured for all U . Residual circular polarization would lead
to a U -dependent vector AC Stark shift in the observed
splitting. No such dependence is observed, allowing us to
constrain lattice ellipticity below 0.6%. Using the vector
AC Stark splitting as an in-situ atomic sensor of opti-
cal lattice polarization allows us to exclude polarization-
dependent variations in the observed hyperpolarizability
effect [36]. The lattice laser frequency is stabilized, over
the course of a measurement, to a cavity with a typical
drift of .100 kHz per day. When data were collected, the
absolute lattice laser frequency was measured to within
≈10 kHz by optically dividing it down to RF [49], via an
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octave-spanning Ti:sapphire optical frequency comb [50],
and counting it against a calibrated hydrogen maser.

Atomic temperature in both the longitudinal and
transverse lattice dimensions, as well as the magnitude
of U , is assessed for all clock shift measurements via mo-
tional sideband spectroscopy, Fig. 1(b) [51]. We observe
that the temperature scales predominantly linear in U ,
Fig. 1(c). We attribute this linear scaling to the interplay
of lattice induced light shifts on the 1S0 → 3P1 cooling
transition and the atomic kinetic energy cutoff imposed
by the finite lattice depth. The linear scaling of temper-
ature with U has important consequences: for our ob-
served ratio of temperature to trap depth, the following
lowest-order approximations hold: 〈n1〉, 〈n2〉 ∝

√
U and

〈n3〉, 〈n4〉, 〈n5〉∝U . Under these conditions, Eq. (2) can
be reduced to:

δνclock/νclock = −α∗U − β∗U2, (3)

with U -independent finite-temperature polarizabilities
α∗ and β∗ (see Supplemental).

Intensity dependent light shifts were measured with
interleaved comparisons of the frequency shift between
test- and reference-lattice depth clock configurations, as
in Ref. [36]. Sideband spectra were taken directly be-
fore or after interleaved clock comparison. The density
shift was independently measured as a function of trap
depth to apply small (< 4 × 10−18) corrections to the
measured light-shift data. The effect of these corrections
is small compared to the statistical uncertainty of the de-
duced magic wavelength. For a given lattice frequency,
the clock shifts at multiple trap depths were compared.
This frequency shift data is plotted in Fig. 2(a). Each
color represents data sets with a distinct νl. The uncer-
tainties in δνclock/νclock are the total Allan deviation at
the end of each data run (≈ 1× 10−17).

We analyze the experimental data in Fig. 2(a) by fit-
ting each data set to a modified form of Eq. (3) (plus a
constant term to account for the U 6= 0 reference con-
dition). In principle, a fit with a single quadratic coef-
ficient could be justified because hyperpolarizability has
negligible lattice frequency dependence in the vicinity of
the magic wavelength. Nevertheless, it is possible for
∆αE1 effects to couple to β∗, giving the quadratic-shift-
coefficient dependence on lattice frequency. For example,
this situation can arise from atomic temperature that
scales nonlinear in the trap depth. Therefore, we per-
form fits with and without a global β∗, with both meth-
ods yielding a mean value of β∗ = −5.5(2) × 10−22 [52].
The observed coefficient is reduced in magnitude rela-
tive to ∆β′ by the finite temperature of the system; in-
tuitively atoms in higher motional states are more spa-
tially delocalized and thus experience lower average lat-
tice laser intensity. Nonlinear scaling of the atomic tem-
perature can have other important consequences, such as
lattice light shifts with additional U -dependencies that
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FIG. 2. (a) Clock shifts as a function of lattice depth. Col-
ored traces represent data sets with distinct detunings of νl
from νzero from ≈ −50 MHz (dark red) to ≈ 30 MHz (dark
blue). This color scheme is quantified in Fig. 2(b). Inset) At
the operational magic wavelength for a 50 Er lattice depth,
a 10% change in trap depth creates a 1 × 10−19 change in
δνclock/νclock. (b) Linear coefficients from the global fit, pri-
marily proportional to ∆αE1, as a function of lattice detuning
from νzero . This data is corrected for measured density shifts
but not for calculated M1/E2 effects.

must be included in Eq. (3) for high accuracy determi-
nation of the shift. Because we have observed a residual
quadratic dependence of the atomic temperature in the
transverse dimensions versus trap depth, when perform-
ing the fit of experimental data, we also allow for a U3-
dependent fit term (see Supplemental). The linear coeffi-
cients, α∗, extracted from the fits to data in Fig. 2(a), are
shown in Fig. 2(b). These coefficients scale linearly with
the lattice detuning and are parameterized as α∗(νl) =
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FIG. 3. To experimentally explore the role of finite temper-
ature effects, we measure δνclock/νclock near νzero both with
(blue data) and without (red data) sideband cooling. Since
the cooler atoms are more localized in the high-intensity por-
tion of the lattice, they experience a larger shift originating
from the hyperpolarizability. The inset shows representative
sideband traces.

(∂α∗/∂νl)× (νl − νzero). Fitting to this functional form,
we find ∂α∗/∂νl = 2.46(10)× 10−20 1

MHz and that the lin-
ear shift vanishes at νzero = 394, 798, 267 ± 1 MHz. Us-
ing a second independent atomic system with similar ex-
perimental conditions, we observe consistent values of
∂α∗/∂νl, β

∗, and νzero between the two systems. For
anticipated clock operation with a trap depth of 50 Er,
our determinations of α∗ and β∗ are sufficient to realize
10−18 uncertainty.

By inspection of Eq. (2), and recalling that, to lead-
ing order, 〈n1〉, 〈n2〉 ∝

√
U and 〈n5〉 ∝ U , we see that

both E1 and M1/E2 frequency shifts scale linearly with
U . Hence, under these conditions, the dominant effect of
M1/E2 contributions is to move the observed zero value
of the linear shift away from the lattice frequency where
∆αE1 = 0, νzero = νmagic − νM1E2. To estimate the
M1/E2 contribution to νzero, we perform a configuration
interaction plus many-body perturbation theory calcula-

tion [53] and determine α′M1E2 = 4(4) × 10−8
(

Er

hνclock

)
corresponding to νM1E2 ≈ −400 kHz. This result follows
from the partial cancellation of larger terms, yielding a
large relative uncertainty. Although νmagic can be de-
duced from our experimentally measured νzero and the-
oretically calculated νM1E2, it is worth reiterating that
νzero represents an experimentally relevant quantity to
zero all linear shifts in Eq. (3).

To highlight the important role of atomic temperature,

we measure the lattice light shifts under two distinct
thermal conditions. Figure 3 displays the light shift ver-
sus trap depth with and without an additional stage of
cooling along the lattice axis dimension, using quenched
sideband cooling on the ultra-narrow 1S0 → 3P0 clock
transition [37, 54]. The 1-D quenched sideband cooling
reduces the longitudinal temperature by a factor of ≥ 6.
The blue curve in Fig. 1(c) shows that, after sideband
cooling, the longitudinal temperature still exhibits a pre-
dominantly linear dependence on trap depth, though its
value ranges from just 400 nK to 5 µK. In Fig. 3, the ob-
served shifts are larger in the cooled case, since the near
unit fractional population in the ground lattice band ex-
periences the highest lattice laser intensity. In particular,
the measured hyperpolarizability effect in the sideband-
cooled case increases β∗ by 12(5)%. The change in β∗

introduced by cooling in just one dimension underscores
the importance of characterizing thermal effects on lat-
tice shifts.

Using the preceding expressions and taking into ac-
count thermal effects, we translate the measured β∗ and
α∗ to the respective atomic properties ∆β′ ≈ −10×10−22

and ∂∆α′E1/∂νl ≈ 4 × 10−20 1
MHz . Alternatively, known

lifetime and polarizability data can be used to calcu-
late ∂∆α′E1/∂νl = 4.5(3)× 10−20 1

MHz . While agreement
between perturbative theory and experiment is reassur-
ing, the perturbative treatment does not fully account
for anharmonic and cross-dimensional effects relevant for
higher-lying motional states. We have developed more
sophisticated models to evaluate Eq. (1) accounting for
these effects [55]. Importantly, we find a key behavior is
maintained in more refined analyses: given a linear rela-
tionship between temperature and depth, the clock shift
is well-approximated by Eq. (3) with α∗ and β∗ being
independent of depth.

The fitted parameters enable us to identify a U -
dependent operational magic frequency. Neglecting any
residual U3 shift dependence or β∗ detuning dependence,
νopmagic ≡ (−2β∗U)/(∂α∗/∂νl) + νzero. At this value of
νl, a negative linear light shift partially cancels the posi-
tive hyperpolarizability shift, yielding a shift at the oper-
ational U with zero first-order sensitivity to fluctuations
in U . Considering several factors (namely: large trap
volume for small density shift, low excited-band tunnel-
ing rate, and small absolute lattice induced shift), we
choose a 50 Er lattice depth, sufficient for clock opera-
tion with 10−18 uncertainty. Solving for a minimum at
50 Er, the measurements in Fig. 2 indicate an operational
magic wavelength of 2.2(1) MHz above νzero. Although
typically controlled at the 1% level, a 10% change in trap
depth creates a < 1×10−19 change in δνclock/νclock. This
parameter regime is shown as an inset in Fig. 2(a).

While the combination of hyperpolarizability and lat-
tice detuning are useful for achieving operational magic
wavelengths, they can also obscure determination of νzero
and νclock when deduced from measurements experimen-
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tally limited to a restricted range of U , as is com-
mon without a lattice power enhancement cavity. In
the simplest case, one can mistake a local minimum
for a flat line (over a restricted range of U) leading
to extrapolation errors in νclock and incorrect determi-
nations of νzero. Consider our measured parameters
(β∗ = −5.5(2)× 10−22, ∂α∗/∂νl = 2.46(10)× 10−20 1

MHz )
and experimental shift uncertainties ±1×10−17, but now
with a maximum trap depth of 300 Er. For a measure-
ment range of 100 to 300 Er, the variation of lattice
light shifts would be < 6 × 10−18 at a detuning of 8.9
MHz from νzero (the operational magic wavelength for
the middle of the measurement interval: 200Er). At this
detuning, the clock shift would appear independent of
U , giving the illusion of magic wavelength operation and
making it statistically challenging to resolve hyperpolar-
izability or non-magic linear shifts [56]. Linearly extrap-
olating to U = 0, errors in δνclock/νclock of 2 × 10−17

could result. Furthermore, not accounting for hyperpo-
larizability in the determination of νzero yields a 8.9 MHz
error in the deduced magic wavelength. Such a difficulty
in resolving hyperpolarizability and the resulting error
in the light shift determination is general for all lattice
laser frequencies (not restricted to νopmagic) and may ap-
ply to other atomic species. The case of 87Sr is notable,
due to previous measurements and disagreement about
the role of hyperpolarizability [18, 19, 42–45]. While
the scaling of atomic temperature with trap depth has
not been fully considered, experimental parameters have
been reported for strontium (∆β′ = −10(3)× 10−22 [44],
∆β′ = −7(7) × 10−22 [19], and ∂α′E1/∂νl = 3.6(3) ×
10−20 1

MHz [58]). A similar analysis to that above finds
linear versus non-linear extrapolations over the same lim-
ited range of U leads to differences in the shift determi-
nation δνclock/νclock of (2 − 4) × 10−17. It seems that
the role of non-linear extrapolations in 87Sr will hinge on
developing consensus on the magnitude of β∗, including
a proper accounting of the temperature scaling with U .
Furthermore, this consideration can guide ongoing work
in Mg [59], Hg [60], and Cd [61].

In conclusion, we have precisely characterized optical
lattice induced light shifts including nonlinear hyperpo-
larizability effects. Our measurements highlight the im-
portance of finite temperature effects at 10−18 fractional
frequency accuracy. We have also experimentally demon-
strated a metrologically useful regime, the operational
magic wavelength, where changes in light shifts can be
minimized as the trap depth changes. Furthermore, by
implementing quenched sideband cooling along the 1-D
lattice axis, tunneling related shifts are suppressed, while
somewhat warmer transverse temperatures reduce over-
all lattice light shifts. These measurements further lay
the framework for controlling lattice light shifts at the
10−19 level.
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