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Hyperquadrati power series of degree fourby
Antonia W. Bluher (Fort Meade, MD)and Alain Lasjaunias (Bordeaux)

1. Introdution. Let p be a prime number and q = ps with a positiveinteger s. We onsider the �nite �eld Fq with q elements. Then we introdue,with an indeterminate T , the ring of polynomials Fq[T ] and the �eld ofrational funtions Fq(T ). We also onsider the absolute value de�ned on
Fq(T ) by |P/Q| = |T |deg P−deg Q for P, Q ∈ Fq[T ], where |T | is a �xed realnumber greater than one. By ompleting Fq(T ) with this absolute value weobtain a �eld, denoted by F(q), whih is the �eld of formal power seriesin 1/T with oe�ients in Fq. We reall that this �eld is often denoted by
Fq((T

−1)). Thus if α is a nonzero element of F(q) we have
α =

∑

k≤k0

ukT
k with k0 ∈ Z, uk ∈ Fq, uk0

6= 0 and |α| = |T |k0 .There is a strong analogy between the lassial onstrution of the �eld ofreal numbers and the �elds of power series whih we are onsidering here.The r�les of {±1}, Z, Q, and R are played by F∗
q , Fq[T ], Fq(T ), and F(q)respetively.The study of rational approximation to algebrai elements in the �eld

F(q) was initiated by K. Mahler [M℄ by adapting a lassial theorem of Liou-ville onerning rational approximation to algebrai real numbers. In hisartile Mahler pointed at the di�erene with the lassial ase by introdu-ing an example. Given a prime p and an integer r = pt with t ≥ 1, the ele-ment α ∈ F(p) de�ned by α =
∑

k≥0 T rk does satisfy the algebrai equation
α − αr = T−1. We know by Roth's theorem that algebrai real numbersare badly approximable by rational numbers, but in the ase of power se-ries over a �nite �eld there is no analogue of Roth's theorem and the ele-ment introdued above appears to be a ounterexample. Following Mahler'swork it beame progressively neessary to onsider a speial subset of alge-2000 Mathematis Subjet Classi�ation: 11T55, 11J61, 12E10.Key words and phrases: �nite �elds, projetive polynomials, �elds of power series.[257℄



258 A. W. Bluher and A. Lasjauniasbrai power series having partiular properties of rational approximation.The reader who is interested in a survey on the di�erent ontributionsto this topi and for full referenes an onsult for example [L℄ and [T,Chap. 9℄.We introdue a speial subset of elements in F(q) whih are algebrai over
Fq(T ). Let r = pt where t ≥ 0 is an integer. We denote by Ht(q) the subsetof irrational elements α in F(q) suh that there exist A, B, C, D ∈ Fq[T ] with
(1) α =

Aαr + B

Cαr + D
.We an observe that if α ∈ F(q) is irrational then so is αr and thereforewe have Aαr + B 6= 0 and Cαr + D 6= 0. Consequently we see that AD −

BC = (A − Cα)(Cαr + D) 6= 0. Now we put H(q) =
⋃

t≥0 Ht(q). Beauseof further analogies with quadrati real numbers, we all the elements ofthis subset hyperquadrati elements. In previous works the term algebraielement of lass I has been used but we think the present denominationis more desriptive and also onvenient for later preision. In view of theshape of equation (1), H(q) an be viewed as the analogue of the subset ofquadrati real numbers, the Frobenius isomorphism being replaed by theidentity map.If α ∈ H(q) then it is a root of the polynomial
(2) uXr+1 + vXr + wX + z ∈ Fq[T ][X] with uz − vw 6= 0.These polynomials, where the oe�ients belong to an arbitrary �eld F ofharateristi p, arise in other ontexts of number theory and have beenstudied from an algebrai point of view by Carlitz, Serre, Abhyankar, andothers; see [C℄, [A℄, and [B℄.Note that if α ∈ Ht(q) then α = f(αr) where f is the linear frationaltransformation with integer oe�ients involved in equation (1). By iterationwe obtain α = f((f(αr))r) = g(αr2

) where g is another linear frationaltransformation with integer oe�ients. Consequently, reursively we seethat if α is a root of a polynomial of type (2) then it satis�es for all integers
n ≥ 1 an algebrai equation of the type

unαrn+1 + vnαrn

+ wnα + zn = 0.So Ht(q) ⊂ Hnt(q) for all positive integers n.Now to be more preise, we introdue the following terminology. If t isthe smallest nonnegative integer suh that α ∈ F(q) satis�es an equationof type (1) we will say that α is a hyperquadrati element of order t. Withour de�nition, a hyperquadrati element of order zero is simply a quadratielement. We observe that elements of F(q) whih are quadrati or ubi over
Fq(T ) belong to H1(q) sine then 1, α, αp, αp+1 are linked over Fq(T ) andonsequently α satis�es an algebrai equation of type (2). Moreover H(q)



Hyperquadrati power series of degree four 259also ontains elements of arbitrarily large degree over Fq(T ). Indeed, for theelement α ∈ F(p) introdued by Mahler and mentioned above with r = ptand t ≥ 1, it was proved by arguments of diophantine approximation thatit is algebrai of degree r over Fp(T ) and also hyperquadrati of order t. Onthe other hand, it will beome lear in the next setion that not all algebrainumbers in F(q) are hyperquadrati.We have to reall a general and simple property of the subset H(q):it is stable under any linear frational transformation with integer oe�-ients and also under the Frobenius isomorphism x 7→ xp; moreover bothtransformations preserve the algebrai degree of eah element as well as thehyperquadrati order.Rational approximation to ertain hyperquadrati power series is wellknown, whih is also due to the possibility of desribing expliitly their on-tinued fration expansion. The �rst works in this area were undertaken byBaum and Sweet [BS℄. Later this has been done for many examples and alsofor di�erent sublasses of hyperquadrati elements (see in partiular [S℄).Here again we must underline the analogy with the lassial ase of realnumbers: the ontinued fration expansion for quadrati real numbers iswell known and this is due to the fat that these elements are �xed pointsof a linear frational transformation with integer oe�ients. Neverthelessthe possibility of desribing the ontinued fration expansion for all hyper-quadrati power series is still an open problem. In [MR℄ Mills and Robbinshave studied this problem and they desribed an algorithm to obtain inertain ases the ontinued fration expansion for a hyperquadrati powerseries. At the end of their artile ([MR, p. 403℄) they onsidered the followingalgebrai equation: x4 +x2−Tx+1 = 0. They observed that it has a uniquesolution in F(p) for all primes p. They notied that for this solution the on-tinued fration expansion has a remarkable pattern in both ases p = 3 and
p = 13. The expansion for p = 3 has been expliitly desribed (see [BR℄) andthis implies that the solution is not hyperquadrati (see [L, pp. 226�227℄).For p = 13 the expansion was only onjetured (see [BR, pp. 342�344℄), butas we will see the solution is then hyperquadrati. This fat may lead to aproof of this onjeture.Sine all algebrai power series of degree two or three are hyperquadrati,it is natural to ask, for a quarti power series over Fq given by its de�ningequation, whether it is a hyperquadrati element or not. Inspired by Mills andRobbins' equation we have investigated this question. In the next setion wedesribe the onnetion between hyperquadrati power series and di�erentialalgebra. We derive from it a neessary ondition for quarti power series tobe hyperquadrati. In the last setion we prove that under a simple andgeneral ondition a quarti power series is hyperquadrati of order one ortwo, depending on di�erent possible harateristis.



260 A. W. Bluher and A. Lasjaunias2. Di�erentiation of algebrai power series. We onsider the formaldi�erentiation on Fq(T ) whih an be extended to F(q). We have the usualrules for di�erentiation of sums and produts of elements in F(q) and if
x ∈ F(q) then the derivative is denoted by x′. Observe that beause of thepositive harateristi p the sub�eld of onstants in F(q) is the �eld of powerseries over Fq in T p.Proposition 2.1. Let f(X) = Xn+an−1X

n−1+· · ·+a0 be a polynomialin Fq(T )[X], irreduible over Fq(T ) and of degree n > 1. Let M be the n×nsquare matrix with oe�ients in Fq(T ) de�ned by
M =
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Let U0 = (ui,0)0≤i≤n−1 be the olumn vetor with u0,0 = 1 and ui,0 = 0for 1 ≤ i ≤ n − 1. Let (Um)m≥1 be the sequene of olumn vetors Um =
(um,i)0≤i≤n−1 in (Fq(T ))n de�ned by

Um = MmU0 for m ≥ 1.Let A be the (2n − 1) × (2n − 1) square matrix with oe�ients in Fq(T )de�ned by

A =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 an−1 . . . a0 . . . 0

0 1 an−1 an−2 . . . 0... . . . ...
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∣
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Let Ai,j be the matrix obtained from A by deleting the ith row and jth olumn.For 0 ≤ k ≤ 2n − 2, we set
ck =

i+j=k
∑

0≤i,j≤n−1

(−1)ja′i det(A2n−1−j,2n−1),



Hyperquadrati power series of degree four 261and also for 0 ≤ k ≤ n − 1,
bk = ck +

2n−2
∑

i=n

ciui,k.Finally , we denote by D(f) the disriminant of the polynomial f . Then if
α ∈ F(q) is suh that f(α) = 0, we have

α′ = ((−1)n(n−1)/2+1/D(f))

n−1
∑

k=0

bkα
k.

Proof. Let α ∈ F(q) be suh that f(α) = 0. Then α is algebrai over
Fq(T ) of degree n and αm ∈ Fq(T, α) for m ≥ 0. Consequently, we have
αm =

∑n−1
i=0 vm,iα

i for a vetor Vm = (vm,i)0≤i≤n−1 of (Fq(T ))n. From αm =
∑n−1

i=0 vm,iα
i, mutiplying by α and using the relation αn = −

∑n−1
i=0 aiα

i,we obtain Vm+1 = MVm where M is the matrix de�ned in the proposition.Sine V0 = U0 we see that Um = Vm and that Um = MmU0 holds for m ≥ 1.We introdue the polynomials in Fq(T )[X] de�ned by f ′
X(X) = nXn−1+

(n − 1)a1X
n−2 + · · · + an−1 and f ′

T (X) = a′1X
n−1 + a′2X

n−2 + · · · + a′n.Consequently, by formal di�erentiation of the equality f(α) = 0, we obtain
(1) α′f ′

X(α) + f ′
T (α) = 0.Sine the extension �eld Fq(T, α) of Fq(T ) is separable we have f ′

X(α) 6= 0.Therefore (1) implies
(2) α′ = −f ′

T (α)/f ′
X(α).Now we introdue the resultant R(f, f ′
X) of f and f ′

X in Fq(T )[X]. It isthe determinant of the square matrix A de�ned in the proposition. Sine f isunitary this resultant is known to be equal to (−1)n(n−1)/2D(f) where D(f)is the disriminant of f . Moreover sine the extension Fq(T, α) is separablethis disriminant is not zero. Now we know that there are two polynomials
P1 and P2 in Fq(T )[X] suh that
(3) R(f, f ′

X) = P1(X)f(X) + P2(X)f ′
X(X).Therefore replaing X by α in (3) we have (−1)n(n−1)/2D(f) = P2(α)f ′

X(α).Combining this last equality and (2) we obtain
(4) α′ = ((−1)n(n−1)/2+1/D(f))f ′

T (α)P2(α).The expliit expression for P2(X) is a lassial result. Indeed, with thenotations introdued in the proposition we have
(5) P2(X) =

n−1
∑

j=0

(−X)j det(A2n−1−j,2n−1),



262 A. W. Bluher and A. LasjauniasFrom (5) and the expression for f ′
T (X), we obtain

(6) P2(α)f ′
T (α) =

2n−2
∑

k=0

ckα
k

where ck is de�ned as in the proposition for 0 ≤ k ≤ 2n − 2. Clearly (6)beomes
(7) P2(α)f ′

T (α) =
n−1
∑

k=0

ckα
k +

2n−2
∑

k=n

ck

(

n−1
∑

i=0

uk,iα
i
)

.Finally, (7) implies
(8) P2(α)f ′

T (α) =
n−1
∑

k=0

bkα
k

where bk is de�ned as in the proposition for 0 ≤ k ≤ n − 1. Now ombining(4) and (8) we see that α satis�es the desired di�erential equation.Proposition 2.2. Let α ∈ F(q) be a hyperquadrati element of algebraidegree n > 3. Then in the di�erential equation satis�ed by α with the abovenotations we have bk = 0 for 3 ≤ k ≤ n − 1. In this ase the di�erentialequation satis�ed by α is alled a Riati di�erential equation.Proof. Sine α is algebrai of degree n it is lear that the di�erentialequation obtained in the previous proposition is unique. Now if α is hyper-quadrati then α = f(αr) where f is a linear frational transformation withoe�ients in Fq[T ]. Thus αr = f−1(α). By di�erentiating this last equalityand realling that (αr)′ = 0, we see that α satis�es a Riati di�erentialequation.The introdution of Riati di�erential equations in the study of diophan-tine approximation in positive harateristi goes bak to Osgood's work [O℄.We must add that the statement of the above proposition was �rst observedby Voloh in [V, p. 218℄.Proposition 2.3. Let p be a prime with p > 2 and q be a power of p.Let α ∈ F(q) be hyperquadrati and algebrai of degree four. Then there is
u ∈ Fq(T ) suh that β = α + u satis�es the algebrai equation

β4 + aβ2 + bβ + c = 0with a, b, c ∈ Fq(T ) and we have
(∗) (9b2 + 2a3 − 8ac)(a2 + 12c)′ − 4(3b′b + a′a2 − 4a′c)(a2 + 12c) = 0.Proof. If α ∈ F(q) is algebrai of degree four then we have

α4 + Aα3 + Bα2 + Cα + D = 0



Hyperquadrati power series of degree four 263with A, B, C, D ∈ Fq(T ). If we put β = α + A/4 then
β4 + aβ2 + bβ + c = 0 with a, b, c ∈ Fq(T ).Now α is hyperquadrati if and only if β is so. Thus, aording to the se-ond proposition, β satis�es a di�erential Riatti equation. Therefore in thedi�erential equation desribed in Proposition 2.1 we have b3 = 0. Using thesame notations as above we have b3 = c3 +c4u4,3 +c5u5,3 +c6u6,3 and �nally

(9) b3 = −a′ det(A6,7) + b′ det(A5,7) + (aa′ − c′) det(A4,7).If we now ompute the determinants of A4,7, A5,7 and A6,7 we obtain
det(A4,7) = 4(9b2 + 2a3 − 8ac), det(A5,7) = 4b(a2 + 12c),(10)

det(A6,7) = 2(21b2a + 32c2 − 24ca2 + 4a4).(11)Finally, from (9)�(11) we an see that b3 = 0 is equivalent to the ondition
(∗) stated in the proposition.This last proposition gives a neessary ondition (∗) on the oe�ients ofthe algebrai equation satis�ed by β for this element to be hyperquadrati.It is lear that (∗) is satis�ed in two simple ases: if (1) a = b = 0 or if (2)
a2 + 12c = 0. We will see in the next setion that both onditions (1) and(2) are su�ient for the element to be hyperquadrati. We reall Mills andRobbins' algebrai equation x4+x2−Tx+1 = 0, whih has a unique solutionin F(p) for all primes p. As pointed out in the introdution, this solution in
F(3) is not hyperquadrati. Nevertheless, in the ase p = 13, ondition (2)above is satis�ed, therefore the solution in F(13), aording to Theorem 3.4below, is hyperquadrati of order one.3. Hyperquadrati power series of degree four. The de�nition ofhyperquadrati an be extended to any �eld K of harateristi p. Namely, aseparable algebrai element α ∈ K will be alled hyperquadrati if it satis�esan equation α = γ(αr) for some γ ∈ PGL2(K), where r is a power of p. Inthis wider ontext, we an prove that a large family of algebrai elements ofdegree four are hyperquadrati.Theorem 3.1. Let p be a prime number with p ≥ 5. Let r = p if p ≡ 1
(mod3) and r = p2 if p ≡ 2 (mod3). Let K be a �eld of harateristi p. Let
a, b ∈ K and f ∈ K[X] with f(x) = x4 + ax2 + bx − a2/12. Then there is anontrivial polynomial g ∈ K[x] of the form g(x) = Axr+1 + Bxr + Cx + Dsuh that f(x) divides g(x).Note that if AD − BC 6= 0, then a root of f will be hyperquadrati,beause g(α) = 0 implies α = −(Bαr + D)/(Aαr + C). In partiular, AD −
BC is nonzero whenever f has an irrational root α, sine AD − BC =
(A − Cα)(Cαr + D) 6= 0.



264 A. W. Bluher and A. LasjauniasThe proof of our theorem, as a onsequene of the lemma below, is ob-tained by reduing the statement to the ase of a �nite �eld K.Lemma 3.2. Suppose that Theorem 3.1 holds when K = Fr. Then it holdsfor all �elds K of harateristi p.Proof. Let R = K[x]/(f) be the 4-dimensional K-vetor spae spannedby 1, x, x2, x3. In partiular, there are unique m
(n)
i ∈ K suh that

xn = m
(n)
1 x3 + m

(n)
2 x2 + m

(n)
3 x + m

(n)
4where the equality holds in the ring R. Obviously the m

(n)
i depend on aand b. The theorem is equivalent to the assertion that xr+1, xr, x, and 1are linearly dependent in R. Sine x and 1 are linearly independent, a linearrelation would have to involve xr+1 and/or xr. Then it is lear that thetheorem holds if and only if m

(r+1)
1 m

(r)
2 − m

(r+1)
2 m

(r)
1 = 0.Let w, z be transendentals over Fp, and F = x4 + wx2 + zx − w2/12 ∈

Fp[w, z, x]. This is a speial ase of the polynomial f , with a, b being tran-sendental quantities. Assign to w a weight of 2, to z a weight of 3, and to x aweight of 1. Then F is homogeneous of weight 4. In the ring Fp[w, z, x]/(F ),for k ≥ 4, we may write xk as −xk−4(wx2 + zx − w2/12), and the resultingpolynomial still has weight k and is a polynomial in w, z, and x. Continuingin this manner, we see that xk (modF ) has the form ∑3
i=0 hi(w, z)xi, whereeah hi is either zero or a homogeneous polynomial in w and z of weight

k− i. In partiular, eah m
(k)
i (w, z) belongs to Fp[w, z], and m

(k+1)
1 , m

(k+1)
2 ,

m
(k)
1 , m

(k)
2 have weights (k +1)−3, (k+1)−2, k−3, and k−2, respetively(or they are zero). It follows that m

(k+1)
1 m

(k)
2 − m

(k+1)
2 m

(k)
1 is either zero ora polynomial Hk(z, w) of weight 2k − 4. If a, b are arbitrary elements of a�eld K in harateristi p, then f is the speialization of F to w = a, z = b.Thus, m

(k)
i may be obtained by speializing the above polynomials at w = a,

z = b. It follows that there is a polynomial Hr(w, z) ∈ Fp[w, z], dependingon p but not on K, a, or b, suh that m
(r+1)
1 m

(r)
2 − m

(r+1)
2 m

(r)
1 = Hr(a, b)and Hr(w, z) has the form ∑

hijw
izj , where the sum is over all i, j ≥ 0 suhthat 2i + 3j = 2r − 4.If the theorem holds when K = Fr, then Hr(α, β) = 0 for all α, β ∈ Fr.Let β ∈ Fr. Then Hr(w, β) =

∑

hijβ
jwi ∈ Fr[w] is a polynomial of degreeat most (2r − 4)/2 = r − 2, yet it has at least r roots. Thus, H(w, β) isidentially zero. This shows that ∑

j hijβ
j is zero for eah i and for eah

β ∈ Fr. Thus, ∑

j hijz
j has at least r roots, for eah i. But its degree is atmost (2r − 4)/3, and so it must also be identially 0. It follows that all hijare zero, and so Hr(w, z) is identially zero. But then Hr(a, b) is zero for a, bbelonging to any �eld of harateristi p, and so the theorem holds for allsuh �elds.



Hyperquadrati power series of degree four 265To �nish the proof of Theorem 3.1, it remains to prove it when K = Fr.We do a ase-by-ase analysis, depending on how f fators and using thefollowing lemma.Lemma 3.3. Let f(x) = x4+ax2+bx−a2/12 ∈ Fr[x]. Then f(x) fatorsover Fr in one of the following ways:(i) f(x) = (x − u)3(x + 3u) with u ∈ Fr. (This happens if and only if
8a3 = −27b2, in whih ase u = −3b/(4a).)(ii) f(x) is the produt of four distint linear fators.(iii) f(x) is the produt of two distint irreduible quadratis.(iv) f(x) is the produt of a linear fator and an irreduible ubi.Proof. The disriminant of f is −3(8a3/9 + 3b2)2. Note that −3 is asquare in Fp if and only if p ≡ 1 (mod3). Thus, −3 is always a square in Fr.It follows that the disriminant of f is a square in Fr.Now f has a repeated root if and only if the disriminant is zero, whihhappens if and only if 8a3 = −27b2. In that ase, the reader an verify that(i) holds.If the disriminant of f is a nonzero square, then by Stikelberger's the-orem (see, for example, [Be, p. 164℄), the degree of f minus the number offators of f must be even. That is, f has an even number of fators, and soone of the fatorizations (ii), (iii), or (iv) holds.Now we prove Theorem 3.1 with K = Fr in eah ase of Lemma 3.3.Proof of Theorem 3.1. Case (i): We have f(x + u) = x3(x + 4u) =

x4 + 4ux3. Then xr+1 + 4uxr ≡ 0 (mod f(x + u)). It follows that (x− u)r+1

+ 4u(x − u)r ≡ 0 (mod f(x)). Sine (x − u)r+1 = (xr − u)(x − u) =
xr+1 − uxr − ux + u2, this gives the relation

xr+1 + 3uxr − ux − 3u2 ≡ 0 (mod f(x)).

Case (ii): f(x) =
∏

(x − ui) with ui ∈ Fr. Sine xr − x vanishes ateah ui, and the ui are distint, we see that f(x) divides xr − x.
Case (iii): f(x) = (x − ζ)(x − ζr)(x − λ)(x − λr), where ζ, λ belong to

F2
r \ Fr. Let

M =

(

ζ · ζr λ · λr

ζ + ζr λ + λr

)

∈ M2(Fr).If M is singular, then there is a row vetor (A B) ∈ F2
r suh that (A B)M

= (0 0). In that ase, ζ and λ both satisfy Axr+1 + Bxr + Bx = 0. Theonjugates ζr, λr would also satisfy this equality. Thus, eah linear fator of
f divides Axr+1 + Bxr + Bx, and so f itself divides that polynomial.If M is nonsingular, then there exists a vetor (A B) ∈ F2

r suh that
(A B)M = (1 1). In that ase, f divides Axr+1 +Bxr +Bx− 1 by the samereasoning as above.



266 A. W. Bluher and A. Lasjaunias
Case (iv): Let ζ be a root of the ubi fator, and denote the other tworoots by ζ ′ = ζr and ζ ′′ = ζr2 . Let τ1, τ2, τ3 denote the elementary symmetrifuntions of ζ, ζ ′, ζ ′′. Let u denote the rational root of f . Then

x4 + ax2 + bx − a2/12 = (x − u)(x3 − τ1x
2 + τ2x − τ3),whih gives the identities u = −τ1, a = τ2 − τ2

1 , b = τ1τ2 − τ3, τ1τ3 = a2/12.Consequently,
12τ1τ3 = (τ2 − τ2

1 )2.Let µ = ζ−u, µ′ = µr = ζ ′−u, and µ′′ = µr2

= ζ ′′−u. Let σ1, σ2, σ3 denotethe elementary symmetri funtions in µ, µ′, µ′′. Then
f(x + u) = x(x3 − σ1x

2 + σ2x − σ3).We ompute:
σ1 = µ + µ′ + µ′′ = τ1 − 3u = 4τ1,

σ2 = (ζ − u)(ζ ′ + ζ ′′ − 2u) + (ζ ′ − u)(ζ ′′ − u)

= τ2 − 2uτ1 + 3u2 = τ2 + 5τ2
1 ,

σ3 = (ζ − u)(ζ ′ − u)(ζ ′′ − u) = τ3 − uτ2 + u2τ1 − u3 = τ3 + τ1τ2 + 2τ3
1 .We laim that

3σ1σ3 = σ2
2 .Indeed, 3σ1σ3 = 12τ1τ3 + 12τ2

1 τ2 + 24τ4
1 = (τ2 − τ2

1 )2 + 12τ2
1 τ2 + 24τ4

1 =
(τ2 + 5τ2

1 )2 = σ2
2. Sine Fr3 is a 3-dimensional Fr-vetor spae with basis

1, µ, µ′, we know there are A, B, C in Fr suh that(1) µµ′ = Aµ′ + Bµ + C.Taking the trae to Fr, we �nd(2) σ2 = (A + B)σ1 + 3C.On multiplying equation (1) through by µ′′ and then taking the trae, we�nd(3) 3σ3 = (A + B)σ2 + Cσ1.Now subtrat σ1 times equation (3) from σ2 times equation (2). Sine σ2
2 =

3σ1σ3, the left sides anel, and we obtain
C(3σ2 − σ2

1) = 0.Thus, either C = 0 or 3σ2 = σ2
1 .First assume C = 0. Then we have a relation µµ′ = Aµ′ + Bµ, so that

µr+1−Aµr −Bµ = 0. Then (ζ−u)r+1−A(ζ −u)r −B(ζ−u) = 0. It followsthat ζ satis�es the equation xr+1−(u+A)xr−(u+B)x+u2 +Au+Bu = 0.Then ζ ′, ζ ′′ also satisfy this equation. Furthermore, u satis�es this equation.Sine all roots of f satisfy this equation, we onlude that f divides therelevant polynomial, and so the theorem holds for f .



Hyperquadrati power series of degree four 267Next assume C 6= 0, so 3σ2 = σ2
1. We also know 3σ1σ3 = σ2

2. If σ1 = 0then σ2 = 0 also, so a = 0, and f(x) = x4 + bx. In that ase, x5 ≡ bx2

(mod f), x6 ≡ bx3 (mod f), x7 ≡ b2x (mod f), and so on. Note that r ≡ 1
(mod3), and thus xr ≡ cx (mod f) for some onstant c. Thus, f divides
xr − cx, showing the theorem holds in this ase. If σ1 6= 0, then σ2 = σ2

1/3,
σ3 = σ2

2/(3σ1) = σ3
1/27. It follows that σ1/3 is a root of x3−σ1x

2+σ2x−σ3,ontraditing that this polynomial is an irreduible ubi.We have ompleted the proof that the theorem holds when K = Fr, andby Lemma 3.2 this implies the general form of the theorem.Theorem 3.4. Let p be a prime with p > 2 and let q be a power of p. Let
α ∈ F(q) be an algebrai element of degree four. Then there exists u ∈ Fq(T )suh that β = α + u satis�es the algebrai equation
(∗∗) β4 + aβ2 + bβ + c = 0with a, b, c ∈ Fq(T ). We have:

(1) If a = b = 0 then α is hyperquadrati of order one.
(2) If a2 + 12c = 0 then α is hyperquadrati of order one for p = 3or p ≡ 1 (mod3) and of order at most two for p ≡ 2 (mod3).Proof. As in Proposition 2.3, it is lear that there is β ∈ F(q) as stated inthe theorem satisfying (∗∗). Sine β = α+u we know that α is hyperquadratiif and only if β is so and with the same order. In ase (1) the result is learfor p = 3. Now if p = 4k + 1 we have βp − (−c)kβ = 0 and if p = 4k + 3we have βp+1 − (−c)k+1 = 0 so the result follows. In ase (2) the result isalso lear for p = 3 sine the ondition redues to a = 0 and (∗∗) beomes

β4+bβ+c = 0. If p > 3 then the result follows immediately from Theorem 3.1with K = Fq(T ).In the above theorem, ase (1) is trivial: β is then a fourth root of arational funtion. Suh power series nth roots of rational funtions were �rstonsidered in diophantine approximation by Osgood (see [O, p. 109℄). In ase(2) a natural question arises: if p ≡ 2 (mod3), what is the exat order of β?With the notations of Lemma 3.2, we have seen that Hp2(a, b) is identiallyzero. This implies that β is hyperquadrati of order less than two, but thisorder is one if and only if Hp(a, b) = 0. For instane, if p = 5, a simpleomputation gives H5(a, b) = a3 − b2. But then D(f), the disriminant of fgiven in Lemma 3.3, is 3(a3−b2)2. Sine β is algebrai of degree four we have
D(f) 6= 0 and therefore H5(a, b) 6= 0, whih implies that β has order two. Inthe same way we have omputed the polynomials Hp(a, b) for p = 5, 11, 17, 23and in eah ase we have heked that H2

p = −3(D(f))(p−2)/3. So we knowwith the same argument as above that in these ases β has order two. It isthen natural to onjeture that if β satis�es (∗∗) with a2+12c = 0 and p > 3



268 A. W. Bluher and A. Lasjauniasthen β is hyperquadrati and its order is the residue of p modulo 3. A lastand important question remains open: may β be hyperquadrati withoutonditions (1) or (2)?
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