
HyperSeg: Patch-wise Hypernetwork for Real-time Semantic Segmentation

Yuval Nirkin*

Facebook AI & Bar-Ilan University

Lior Wolf

Facebook AI & Tel Aviv University

Tal Hassner

Facebook AI

Abstract

We present a novel, real-time, semantic segmentation

network in which the encoder both encodes and generates

the parameters (weights) of the decoder. Furthermore, to

allow maximal adaptivity, the weights at each decoder block

vary spatially. For this purpose, we design a new type of

hypernetwork, composed of a nested U-Net for drawing

higher level context features, a multi-headed weight gen-

erating module which generates the weights of each block

in the decoder immediately before they are consumed, for

efficient memory utilization, and a primary network that is

composed of novel dynamic patch-wise convolutions. De-

spite the usage of less-conventional blocks, our architec-

ture obtains real-time performance. In terms of the run-

time vs. accuracy trade-off, we surpass state of the art

(SotA) results on popular semantic segmentation bench-

marks: PASCAL VOC 2012 (val. set) and real-time seman-

tic segmentation on Cityscapes, and CamVid. The code is

available: https://nirkin.com/hyperseg.

1. Introduction

Semantic segmentation plays a crucial role in scene un-

derstanding, whether the scene is microscopic, telescopic,

captured by a moving vehicle, or viewed through an AR

device. New mobile applications go beyond seeking ac-

curate semantic segmentation, and also requiring real-time

processing, spurring research into real-time semantic seg-

mentation. This domain has since become a leading test-

bed for new architectures and training methods, with the

goals of improving both accuracy and speed. Recent work

added capacity [5, 6] and attention mechanisms [20, 45, 49]

to improve performance. When runtime is not a concern,

the image is often processed multiple times by the model

and the results are accumulated. In this paper, we attempt

to improve the performance in a different way: by providing

the network with additional adaptivity.

We add this adaptivity using a meta-learning tech-

nique, often referred to as dynamic networks or hypernet-

works [13]. These networks are used for tasks ranging from

*Performed this work while an intern at Facebook.

10 20 30 45 60 90 120
Run-time (FPS)

60.0

62.5

65.0

67.5

70.0

72.5

75.0

77.5

m
Io

U
 (%

)

Real-time ESPNet

HyperSeg-M (Ours)
HyperSeg-S (Ours)

ESPNetV2

DFANet A'
DFANet A

BiSeNetV2

BiSeNetV2-L
SwiftNetRN-18 BiSeNetV1

ICNet

TD4-Bise18

GUNet

Figure 1. Run-time / accuracy trade-off comparison on the

Cityscapes [8] test set. Our models (in orange) achieve the best

accuracy and the best run-time vs. accuracy trade-off relative to

all previous real-time methods.

text analysis [13, 50] to 3D modeling [26, 42], but rarely for

generating image-like maps. The reason is that the hyper-

networks, as suggested by previous methods, do not fully

capture the signals of high resolution images.

Semantic segmentation map are an especially interesting

case. They are generated by a coarse to fine pyramid, where

each level of the process can benefit from adaptation, since

these effects accumulate from one block to the next. More-

over, since every part of the image may contain a different

object, such adaptation is best done locally.

We thus offer a novel encoder-decoder approach, in

which the encoder’s backbone is based on recent advances

in the field. The encoded signal is mapped to dynamic net-

work weights using an internal U-Net, while the decoder

consists of dynamic blocks with spatially varying weights.

The proposed architecture achieves SotA accuracy vs.

runtime trade-off on the most widely used benchmarks for

this task: PASCAL VOC 2012 [11], CityScapes [8], and

CamVid [2]. For CityScapes and CamVid, the SotA accu-

racy result is obtained under the real-time conditions. De-

spite using an unconventional architecture that employs lo-

cally connected layers with dynamic weights, our method is

very efficient (See Fig. 1 for our run-time / accuracy trade-

off relative to other methods.)

To summarize, our contributions are:

14061

• A new hypernetwork architecture that employs a U-

Net within a U-Net.

• Novel dynamic patch-wise convolution with weights

that vary both per input and per spatial location.

• SotA accuracy vs. runtime trade-off on the major

benchmarks of the field.

2. Related work

Hypernetworks. Hypernetwork [13], are networks that

generate weight values for other networks (often referred to

as primary networks). Hypernetworks are useful as a mod-

eling tool, e.g., as implicit functions for image-to-image

translation [9, 24], 3D scene representation [26, 42], and

also for avoiding compute and data heavy training cycles

during neural architecture search (NAS) [55] and continual

learning [48]. To our knowledge, however, hypernetworks

were never proposed for semantic segmentation, as we pro-

pose to do here.

Locally connected layers. Connectivity in locally con-

nected layers follows a spatial pattern that is similar to

conventional convolutional layers but without weight shar-

ing. Such layers played an important role in the early

days of deep learning, mostly due to computational rea-

sons [10, 36, 47].

Locally connected layers were introduced as an accuracy

enhancing component in the context of face recognition,

where these were motivated by the need to model each part

of the face in a different way [43]. However, subsequent

face recognition methods tend to use conventional convolu-

tions, e.g., [41]. Partial sharing of weights, in which convo-

lutions are shared within image patches, was proposed for

the analysis of facial actions [58].

As far as we can ascertain, we are the first to propose lo-

cally connected layers in combination with hypernetworks

or in the context of semantic segmentation or, more gener-

ally, in image-to-image mapping.

Semantic segmentation. Early semantic segmentation

methods used feature engineering and often relied on data

driven approaches [15, 16, 17, 46]. To our knowledge, Long

et al. [28] were the first to show end-to-end training of con-

volutional neural networks (CNN) for semantic segmenta-

tion. Their fully convolutional network (FCN) output dense,

per-pixel predictions of variable resolutions, based on a

classification network backbone. They incorporated skip

connections between the early and final layers, for combin-

ing coarse and fine information. Subsequent methods added

a post processing step based on conditional random fields

(CRF) to further refine the segmentation masks [3, 4, 59].

Nirkin et al. overcame limited, scarce segmentation labels

by utilizing motion from videos [31]. U-Nets [38] used

encoder-decoder pairs, concatenating the last feature maps

of the encoder, in each stride, with corresponding upsam-

pled feature maps from the decoders.

Some proposed replacing strided convolutions with di-

lated convolutions, a.k.a. atrous convolutions [4, 54]. This

approach produced more detailed segmentations by enlarg-

ing the receptive field of the logits but also drastically in-

creased computational costs. Another approach for ex-

panding the receptive field is called spatial pyramid pool-

ing (SPP) [18, 57], in which features from different strides

are average pooled and concatenated together, after which

the information is fused by subsequent convolution layers.

Subsequent work combined atrous convolutions with SPP

(ASPP), achieving improved accuracy, yet with even higher

computational cost [4, 5, 6]. To further improve accuracy,

some proposed inference strategies of applying networks

multiple times on multi-scale and horizontally flipped ver-

sions of the input image, and combining the results using

average pooling [5, 6].

Recently, Tao et al. [45] utilized attention to better com-

bine the inference strategy predictions, taking scale into ac-

count. Finally, others proposed axial attention, performing

attention along the height and width axes separately, to bet-

ter model long range dependencies [20, 49] .

Real-time segmentation. The goal of some methods is to

achieve the best trade-off between accuracy and computa-

tions, with an emphasis on maintaining real-time perfor-

mance. Real-time methods typically adopt an architecture

composed of an encoder based on an efficient backbone and

a relatively small decoder.

One early example of inexpensive semantic segmenta-

tion is the SegNet [1], which uses an encoder-decoder archi-

tecture with skip connections and transposed convolutions

for upsampling. ENet [34] proposed an architecture based

on the ResNet’s bottleneck block [19], achieving a high

frames per second (FPS) rate but sacrificing considerable

accuracy. ICNet [56] utilizes fused features extracted from

image pyramids, reporting better accuracy than previous

methods. GUNet [29] performed upsampling guided by the

fused feature maps from the encoder, extracted from multi-

scale input images. SwiftNet [32] suggested an encoder-

decoder with SPP and 1 × 1 convolutions for reducing the

number of dimensions before each skip connection.

Subsequent methods benefited from progress in efficient

network architecture [25, 51], such as depth-wise separa-

ble convolutions [7, 21] and inverted residual blocks [40]

which we also use in our work. BiSeNet [52] proposed

an additional, coarser downsampling path that is fused

with the finer resolution main network before upsampling.

BiSeNetV2 [51] extends BiSeNet by offering a more elab-

orate fusion of the two branches and additional prediction

heads from intermediate layers for boosting the training. Fi-

nally, TDNet [22] proposed a network for video semantic

segmentation, by circularly distributing sub-networks over

24062

Figure 2. Method overview. (a) The hypernetwork encoder based on an EfficientNet [44] backbone, b, with its final layer replaced by the

context head, h. (b) The primary network decoder, d, and layers wi of the weight mapping network, w, embedded in each meta block. The

input to the decoder, d, are the input image and the features, Fi, concatenated with positional embedding, Pi. Its weights are determined

dynamically for each patch in the image. Gray arrows represent skip connections, ×2 blocks are bilinear upsampling, and the blue ’+’

signs are concatenations. (c) The context head is designed as a nested U-Net. Please see Sec. 3 for more details.

sequential frames, leveraging temporal continuity.

3. Method

Overview. Our proposed hypernetwork encoder-decoder

approach is illustrated in Fig. 2 and Fig. 3. Similarly to

U-Net–based methods [38], we employ skip connections

between corresponding layers of the encoder and the de-

coder. Our network, however, uses encoder and subsequent

blocks which we refer to as the context head and weight

mapper, in the spirit of hypernetwork design. Skip connec-

tions, therefore, connect different encoder levels with the

levels of a hierarchical primary network, which serves as

our decoder. Moreover, our decoder weights vary between

patches at each stride level.

Our proposed model involves three sub-networks: the

backbone, b (shown in blue, in Fig. 2(a), the context head,

h (orange box in Fig. 2(a), also detailed in Fig. 2(c)), and

the primary network, acting as the decoder, d (Fig. 2(b)). In

addition, the decoder consists of multiple meta blocks, vi-

sualized in detail in Fig. 3(a). Each meta block, i = 0 . . . n,

includes an additional weight mapping network component,

wi, represented as orange boxes in Fig. 2(b).

Information flow. The weights of the three networks: θb,

θh, and θw, are fixed during inference and learned dur-

ing the training process, while θmi , the weights of the

decoder meta block, mi, are predicted dynamically at in-

ference time. The encoder’s backbone, b, maps an input

image, I ∈ R
3×H×W , to a set of feature maps, Fi ∈

R
Ci×

H

2i
×W

2i , i ∈ [1, 5], of different resolutions, where H

and W are the number of pixels along the height and width

of the image correspondingly.

The context head, h : R
Cn×

H
2n

× W
2n → R

Cn×
H
2n

× W
2n ,

maps the last feature map from b to a signal, φ. This sig-

nal is then fed to w : RCn×
H
2n

× W
2n → R

(
∑

i |θ
mi |)× H

2n
× W

2n

which generates the weights for meta blocks of the primary

network, d. Note that these weights vary from one spatial

location to the next. We define a fixed positional encod-

ing, PH,W ∈ R
2×H×W , such that in each position (i, j),

P
H,W
i,j = (2i−H+1

H−1 , 2j−W+1
W−1), i ∈ [0, H), j ∈ [0,W).

Finally, given the input image and the feature maps,

F1, . . . , Fn, their corresponding positional encodings of

the same resolutions, P0, . . . , Pn, and the weights, θd,

the decoder, d, outputs the segmentation prediction, S ∈
R

C×H×W , where C is the number of classes in the seman-

tic segmentation task.

Our entire network is, therefore, defined by the following

set of equations:

F1, . . . , Fn = b(I|θb), (1)

φ = h(Fn|θ
h), (2)

θmi = wi(φ|θ
w), i = 0, . . . , n, (3)

S = d({Fi}, {Pi}|{θ
mi}) , (4)

34063

Figure 3. (a) The meta block based on the inverted residual block [40]. Each purple layer represents a dynamic patch-wise convolution

with weights generated by the orange layer, wi. (b) Visualization of the dynamic patch-wise convolution operation. Each color represents

weights corresponding to a specific patch and ’*’ is the convolution operation. Please see Sec. 3.3 for more details.

where the weights of each network are specified explicitly

after the separator sign.

3.1. The encoder and the hypernetwork

The first component of the hypernetwork is the backbone

network, b (blue box in Fig. 2(a)). It is based on the Effi-

cientNet [44] family of models. Sec. 4 provides details of

this network. In our work, the head of the backbone archi-

tecture is replaced with our context head, h. The backbone

outputs the feature map, Fi, in each stride. In order to de-

crease the size of the decoder, we augment it with additional

1 × 1 convolutions that reduce the number of channels of

each Fi by a factor ri. The exact values for ri are detailed

in Sec. B in the supplemental material.

The last feature map of b, the backbone network, is of

size H
2n ×

W
2n . Each pixel in this feature map encodes a patch

in the input image. These patches have little overlap, and

the limited receptive field can lead to poor results in case of

large objects that span multiple patches. The context head,

h, therefore, combines information from multiple patches.

We detail the structure of h in Fig. 2(c). Network h uses

the nested U-Net structure introduced by Xuebin et al. [35].

In our implementation, we employ 2×2 convolutions with a

stride of two, that output half the number of channels of the

input. Such convolutions are computationally cheaper than

3 × 3 convolutions, which require padding for the low res-

olution feature maps processed by h, and this padding can

significantly increase the spatial resolution. The bottom-

most feature map is average pooled to extract the highest

level context, and then upsampled to the previous resolu-

tion using nearest neighbor interpolation. Finally, in the

upsampling path of h, at each level, we concatenate the

feature map with its corresponding upsampled feature map,

followed with a fully connected layer.

While the weight mapping network, w = [w0, . . . , wn],
is a key part of our hypernetwork, it is more efficient in our

hierarchical network to divide w into parts and attach these

parts to primary network blocks (Fig. 2(b)). Hence, in-

stead of directly following h, the layers, w0, . . . , wn, of the

weight mapping network are embedded in each of the meta

blocks of d. The rationale is that the mapping from con-

text to weights incurs a large expansion in memory, which

can become a performance bottleneck. Instead, the weights

are generated right before they are consumed, minimizing

the maximum memory consumption and better utilizing the

memory cache. Each wi is a 1×1 convolution with channel

groups, gwi
, and is detailed next.

3.2. The decoder (the primary network)

The decoder, d, shown in Fig. 2(b), consists of n + 1
meta blocks, m0, . . . ,mn, illustrated in Fig. 3(a). Block,

m0, corresponds to the input image, and each of the blocks,

mi, i = 1..n, corresponds to the feature map, Fi, of the

encoder. Each block is followed by bilinear upsampling and

concatenation with the next finer resolution feature map.

Unlike conventional schemes, by employing a hypernet-

work, the weights of the decoder, d, depend on the input

image. Moreover, the weights of d are not only conditioned

on the input image but also vary between different regions

of the image. With this approach, we can efficiently com-

bine low level information from the stem of the network

with high level information from the bottom layers. This al-

lows our method to achieve higher accuracy using a much

smaller decoder, thus enabling real-time performance. The

hypernetwork can be seen as a type of attention, and similar

to some attention-based methods [20, 33], d benefits from

knowing the position information of the pixels. For this rea-

son, we augment the input image and the encoder’s feature

maps with additional positional encoding.

The design of m0, . . . ,mn is based on the inverted resid-

ual block of MobileNetV2 [40]: a point-wise convolution,

pw1, followed by depth-wise convolution, dw, and another

point-wise convolution, pw2, without an activation func-

tion. Instead of regular convolutions, our network employs

44064

Dataset Batch lr0 p t

PASCAL VOC 2012 [11] 32 10−4 3.0 3.2M

Cityscapes [8] 16 10−3 0.9 1.4M

CamVid [2] 16 10−3 2.0 240k

Table 1. Training hyperparameters for each benchmark.

Method Backbone mIoU GFLOPs Params

Auto-DeepLab-L [27] - 73.6 79.3⋆ 44.42

DeepLabV3 [5] ResNet-101 78.5 249.2⋆ 58.6⋆

DFN [53] ResNet-101 79.7 - -

SDN [12] DenseNet-161 79.9 - 238.5

DeepLabV3+ [6] Xception-71 80.0 177 43.48

HyperSeg-L EfficientNet-B3 80.6 8.21 39.6

Table 2. Results on the PASCAL VOC 2012, val. set [11]. ’⋆’,

represents metrics that were computed by us using open source

(listed in Sec. D in the supplemental material).

dynamic, patch-wise convolutions, described in the next

section. For very small patches – smaller than 4 × 4 in our

large model; smaller than 8× 8 in our smaller models – the

meta block includes only pw1. The total meta parameters,

θmi ∈ R
(|θpw1 |+|θdw|+|θpw1 |)× H

2n
× W

2n , required by each mi

is the combined meta parameters of all dynamic convolu-

tions in mi: θ
mi = θpw1∪θdw∪θpw2 . The weights, θmi , are

generated by the wi layer, embedded in mi, given the signal,

φi ∈ R
Cφi

× H
2n

× W
2n . At inference, the batch-normalization

layers of mi are fused with wi; more details are provided in

Sec. E in the supplemental material.

Employing the full signal in each mi is inefficient both

computationally and in the number of trainable parame-

ters, because φ is directly mapped into a large number of

weights. We thus instead divide the channels of φ into

parts, Cφ0
, . . . , Cφn

, which are relative in size to the re-

quired number of weights of each meta block. The division

of the channels is defined using the following procedure:

Cφ0
, . . . , Cφn

= divide channels(

Cn,max(gw0
, . . . , gwn

), |θm0 |, . . . , |θmn |), (5)

where divide channels(·) is detailed in Sec. A in the sup-

plemental material. This routine ensures that each part is

proportional to its allocated signal channels, is divisible by

max(gw0
, . . . , gwn

) for the grouped convolutions in w, and

is allocated a minimal number of channels.

The number of groups, gwi
, is an important hyperpa-

rameter, since it controls the amount of computations and

trainable parameters invested in producing the weights for

mi. Increasing gwi
reduces the computations and trainable

parameters in direct proportions, as can be seen from the

following equations:

|θwi | =
|θmi | · Cφi

gwi

, (6)

FLOPswi
=

|θmi | · Cφi
· H
2n · W

2n

gwi

. (7)

In the supplemental material, we study the effect of different

values of gwi
(Sec. C), and report the exact values of gwi

used in our tests (Sec. B).

3.3. Dynamic patchwise convolution

We illustrate the operation of the dynamic patch-

wise convolution (DPWConv), the layers, pw1, dw, and

pw2 of mi, in Fig. 3(b). Given an input feature

map, X ∈ R
Cin×H×W , and a grid of weights, θ ∈

R
Cout×

Cin
G

×Kh×Kw×Nh×Nw , where Cin and Cout are the

channel numbers for the input and output, G is the num-

ber of channel groups, H and W are the input’s height and

width, Kh and Kw are the height and width of the kernel,

and Nh and Nw are the number of patches along the height

and width axes, we define output patches as follows:

Oi,j = Xi,j ∗ θi,j , (8)

where ∗ is the convolution operation, i ∈ [0, Nh) and j ∈
[0, Nw) are the patch indices, Xi,j is a patch of X in the

grid location (i, j), and θi,j are the corresponding weights

from the weights grid. We first apply padding to the entire

input feature map, X , and then at each patch, Xi,j , we wrap

the adjacent pixels from neighboring patches.

4. Experimental results

We experiment on three popular benchmarks: PASCAL

VOC 2012 [11], Cityscapes [8], and CamVid [2]. We report

results using the following standard measures: class mean

intersection over union (mIoU), frames per second (FPS),

billion floating point operations (GFLOP), and number of

trainable parameters.

FPS is measured using established protocols [32]: We

record FPS for the elapsed time between data upload to

GPU through to prediction download. Our model is imple-

mented in PyTorch without specific optimizations. Finally,

we use a batch size of 1 to simulate real-time inference.

Similar to most previous methods, we measure FPS on a

NVIDIA GeForce GTX 1080TI GPU (i7-5820k CPU and

32GB DDR4 RAM). GFLOPs and trainable parameters are

calculated using the pytorch-OpCounter library [60], also

used by others [32].

We experiment with large, medium, and small variants

of our model, HyperSeg-L, HyperSeg-M, and HyperSeg-S,

respectively. The models share the same template and are

named according to their size as reflected by their parame-

ter numbers. Both HyperSeg-M and HyperSeg-S omit the

54065

Method Backbone Resolution
mIoU (%)

FPS GFLOPs
Params

val test (M)

ERFNet [37] - 1024× 512 - 69.7 41.7 21.7⋆ 2.0⋆

ESPNet [30] ESPNet 1024× 512 - 60.3 112.9 - -

ESPNetV2 [30] ESPNetV2 1024× 512 66.4 66.2 61.9⋆ 2.7 1.3⋆

ICNet [56] PSPNet50 2048× 1024 - 69.5 30.3 - -

GUNet [29] DRN-D-22 1024× 512 69.6 70.4 33.3 - -

DFANet A’ [25] Xception A 1024× 512 - 70.3 160.0 1.7 7.8

DFANet A [25] Xception A 1024× 1024 - 71.3 100.0 3.4 7.8

SwiftNetRN-18 [32] ResNet18 2048× 1024 75.4 75.5 39.9 104.0 11.8

BiSeNetV1 [52] ResNet18 1536× 768 74.8 74.7 65.5 75.2⋆ 49.0

BiSeNetV2 [51] - 1024× 512 73.4 72.6 156.0 21.2 -

BiSeNetV2-L [51] - 1024× 512 75.81 75.3 47.3 118.5 -

TD4-Bise18 [22] BiseNet18 2048× 1024 75.0 74.9 47.6 - -

HyperSeg-M EfficientNet-B1 1024× 512 76.2 75.8 36.9 7.5 10.1

HyperSeg-S EfficientNet-B1 1536× 768 78.2 78.1 16.1 17.0 10.2

Table 3. Real-time semantic segmentation results on Cityscapes [8]. ’-’ Implies that the metric was not reported. ’⋆’, denotes that the

specific metric was computed by us using available open source (listed in Sec. D in the supplemental material). 1Reported using horizontal

mirroring and multi-scale (confirmed by open source).

3 6 10 20 40 80 120
GFLOPs

66

68

70

72

74

76

78

m
Io

U
 (%

)

ERFNet

HyperSeg-M (Ours)

HyperSeg-S (Ours)

ESPNetV2

DFANet A'

DFANet A BiSeNetV2

BiSeNetV2-L

SwiftNetRN-18
BiSeNetV1

Figure 4. GFLOPs vs. accuracy trade-off on Cityscapes [8].

Our models (in orange) attain a significantly better trade-off than

previous methods.

finest resolution level of d; we bilinearly upsample predic-

tions to the input resolution from their previous level. In

HyperSeg-S the channels of the layers in mi are halved,

relative to those of the largest model. We provide model

backbone and resolution details, separately, for each exper-

iment. For other hyperparameter values, see Sec. B in the

supplemental material.

4.1. Training details

We initialize our network using weights pretrained on

ImageNet [39] for θb, and using random values sampled

from the normal distribution for θh and θw. The Adam

optimizer [23] was used for training, with β1 = 0.5 and

β2 = 0.999. Following others [5, 6], we use a polynomial

learning rate scheduling that decays the initial learning rate,

lr0, after i iterations by a factor of (1 − i
t
)p, where t is the

total number of iterations and p is a scalar constant. The

exact values for each dataset are listed in Tab. 1.

For the Cityscapes and Camvid benchmarks, we ap-

ply the following image augmentations: random resize

with scale range [0.5, 2.0], crop, and horizontal flipping

with probability 0.5. For PASCAL VOC we use a simi-

lar horizontal flip, and random resize with scale range of

[0.25, 1.0]. We further randomly rotate the images, in the

range of −30◦ to 30◦, jitter colors to manipulate brightness,

contrast, saturation, and hue, and finally pad the images to

a resolution of 512 × 512. We train all our models on two

Volta V100 32GB GPUs.

4.2. PASCAL VOC 2012 benchmark tests

PASCAL VOC 2012 [11] contains images of varying

resolutions, up to 500 × 500, representing 21 classes (in-

cluding a class for the background). This set originally con-

tained 1,464 training, 1,449 validation, and 1,456 test im-

ages. Its training set was later extended by others to a total

of 10,582 images [14]. This set is not typically used to eval-

uate real-time segmentation methods but the low resolution

images allow for quick experimentation. For this reason,

we chose this benchmark for our initial tests.

Tab. 2 reports accuracy, FLOPs, and number of trainable

parameters for our model and those of existing work. We

chose methods that reported results on the PASCAL VOC

validation set, without inference strategies (e.g., without

horizontal mirroring and multi-scale testing). Besides in-

creasing inference times by several factors, these techniques

can blur the contributions of the underlying methods. As

evident from the results, compared with previous work, our

methods achieve the best mIoU, with lower GFLOPs and a

64066

Figure 5. Qualitative results on Cityscapes [8] validation set images. Left to right: input, our result, and ground truth. The first four rows

showcase our model’s performance in diverse scenes. The last two rows provide sample failures. Please note that the reflective car hood

region is ignored in evaluation.

smaller number of trainable parameters.

4.3. Cityscapes benchmark tests

Cityscapes [8] provides 5k images of urban street scenes,

labeled with 19 classes. Image resolutions are 2048× 1024
pixels, and are typically downsampled or cropped during

training time. The images are partitioned into 2,975 train-

ing, 500 validation, and 1,525 test images.

Tab. 3 compares variants of our approach using the

EfficientNet-B1 backbone [44] operating on different res-

olutions, with previous methods. We only show previous

work considered to be fast: Methods that run at 10 FPS or

faster and report test set mIoU. Our models achieve the best

accuracy on both validation and test sets, as well as the best

trade-off between accuracy and run-time performance. The

trade-off comparison can be best seen in Fig. 1.

Importantly, our model incurs a large run-time penalty,

due to the unoptimized operations of DPWConv. Fig. 4

shows the trade-off between GFLOPs and accuracy of our

method relative to previous work. Evidently, our method

achieves a significantly better trade-off than other methods.

While GFLOPs does not directly correlate with FPS, it does

suggest the potential run-time performance, once all our

functions are optimized.

74067

Fig. 5 provides qualitative results of our HyperSeg-S

model on Cityscapes validation images. Our model pro-

duces high quality segmentations without any apparent ar-

tifacts, due to the partitioning of images into patches. The

last two rows of Fig. 5 offer sample failure cases. In the sec-

ond row from the bottom, our model confuses a truck with

a car. In the last row, our model fails to segment the poles

and mistakenly labels pixels as wall or sidewalk.

4.4. CamVid benchmark tests

CamVid offers 701 images of driving scenes, similar to

those of Cityscapes, labeled for 11 classes [2]. All images

share the same resolution, 960 × 720. The images are par-

titioned into 367 training, 101 validation, and 233 test im-

ages. Following the training protocol used by all of our

baselines, we train on both the training and validation sets.

Tab. 4 compares our approach with previous real-time

methods pretrained on ImageNet [39]. For a fair com-

parison, we exclude methods that use additional outside

data, other than ImageNet and CamVid. We test two vari-

ations of our model, both using the EfficientNet-B1 back-

bone [44]. HyperSeg-S operates on resolutions of 768×576
and HyperSeg-L on 1024×768. Both models achieve SotA

mIoU by a margin relative to that reported by the previous

SotA, with HyperSeg-S running at 38 FPS.

Even without outside data, our method outperforms

SotA results reported by methods that use Cityscapes as ad-

ditional training data: The best results using Cityscapes was

reported by BiSeNetV2-L [51], which improves its perfor-

mance from 73.2% mIoU, when trained without additional

data, to 78.5% with this data. This is still lower, by a mar-

gin, than our method: 79.1% with 16.6FPS. In fact, their

result is almost identical to our 38FPS network. Both vari-

ants of our method do not use any additional training data.

Ablation Study. We performed ablation studies on the

CamVid dataset [2], to show the contribution of our meta-

learning approach and the effect of using different back-

bones. The results are reported in Tab. 4.

In the first six middle experiments, for each model con-

figuration we replace the EfficientNet-B1 backbone with

different backbones: ResNet18, PSPNet18, and PSPNet50.

We have explicitly chosen backbones that were used by pre-

vious methods. In our implementation, a fully connected

layer transforms the last feature map before it is fed to

the context head, to 1280 channels for the ResNet18 and

PSPNet18 backbones, and 2048 channels for the PSPNet50

backbone. In the PSPNet backbones we do not use dilations

in any of the convolutions. In the experiments marked with

“w/o DPWConv”, we replace all the dynamic patch-wise

convolutions with regular convolutions, effectively elimi-

nating all the meta-learning elements of our method.

The results clearly show that the EfficientNet-B1 back-

bone is superior to the ResNet18, PSPNet18, and PSPNet50

Method Backbone
mIoU

FPS
Params

(%) (M)

ICNet [56] PSPNet50 67.1 27.8 -

DFANet A [25] Xception A 64.7 120.0 7.8

SwiftNetRN-18 [32] ResNet18 72.6 85.8⋆ 11.8

BiSeNetV1 [52] ResNet18 68.7 116.2 49.0

BiSeNetV2 [51] - 72.4 124.5 -

BiSeNetV2-L [51] - 73.2 32.7 -

TD4-PSP18 [22] PSPNet18 72.6 25.0 -

TD2-PSP50 [22] PSPNet50 76.0 11.1 -

HyperSeg-S ResNet18 77.0 32.5 16.2

HyperSeg-L ResNet18 77.1 11.5 16.7

HyperSeg-S PSPNet18 76.6 31.3 17.2

HyperSeg-L PSPNet18 77.5 11.4 17.6

HyperSeg-S PSPNet50 77.1 9.3 57.6

HyperSeg-L PSPNet50 77.9 2.2 67.9

HyperSeg-S w/o DPWConv EfficientNet-B1 77.3 45.5 9.9

HyperSeg-L w/o DPWConv EfficientNet-B1 78.4 21.6 10.3

HyperSeg-S EfficientNet-B1 78.4 38.0 9.9

HyperSeg-L EfficientNet-B1 79.1 16.6 10.2

Table 4. Real-time semantic segmentation results on CamVid [2]

(test set; no outside data). Top: previous methods. Middle: ab-

lation study. The first six rows are variants of our models with

different backbones. In comparison to the baselines, we improve

accuracy and increase runtime. In the “w/o DPWConv” variants,

we replace the dynamic depth-wise convolutions with regular con-

volutions. Those variants achieve lower accuracy compared to our

full method. Bottom: Our full method. ⋆Computed by us using

open source.

backbones, yet our method still outperforms previous meth-

ods with those backbones. Finally, removing meta-learning

from our method causes a 1.1% drop in accuracy for the

HyperSeg-S configuration, and a reduction of 0.7% in ac-

curacy for the HyperSeg-L configuration, with only a slight

improvement in FPS, showing that meta-learning is an in-

tegral part of our method.

5. Conclusions

We propose to marry autoencoders with hypernetworks

for the task of semantic segmentation. In our scheme, the

hypernetowrk is a composition of three networks: the back-

bone of the semantic segmentation encoder, b, a context

head, h, in the form of an internal U-Net, and multiple

weight mapping heads, wi. The decoder is a multi-block de-

coder, where each block, di, implements locally connected

layers. The outcome is a new type of U-Net that is able

to dynamically and locally adapt to the input, thus holding

the potential to better tailor the segmentation process to the

input image. As our experiments show, our method out-

performs the SotA methods, in this very competitive field,

across multiple benchmarks.

References

[1] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla.

Segnet: A deep convolutional encoder-decoder architecture

84068

for image segmentation. IEEE Trans. Pattern Anal. Mach.

Intell., 39(12):2481–2495, 2017. 2

[2] Gabriel J Brostow, Julien Fauqueur, and Roberto Cipolla.

Semantic object classes in video: A high-definition ground

truth database. Pattern Recognition Letters, 30(2):88–97,

2009. 1, 5, 8

[3] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,

Kevin Murphy, and Alan L Yuille. Semantic image segmen-

tation with deep convolutional nets and fully connected crfs.

arXiv preprint arXiv:1412.7062, 2014. 2

[4] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,

Kevin Murphy, and Alan L Yuille. Deeplab: Semantic image

segmentation with deep convolutional nets, atrous convolu-

tion, and fully connected crfs. IEEE Trans. Pattern Anal.

Mach. Intell., 40(4):834–848, 2017. 2

[5] Liang-Chieh Chen, George Papandreou, Florian Schroff, and

Hartwig Adam. Rethinking atrous convolution for seman-

tic image segmentation. arXiv preprint arXiv:1706.05587,

2017. 1, 2, 5, 6

[6] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian

Schroff, and Hartwig Adam. Encoder-decoder with atrous

separable convolution for semantic image segmentation. In

Eur. Conf. Comput. Vis., pages 801–818, 2018. 1, 2, 5, 6

[7] François Chollet. Xception: Deep learning with depthwise

separable convolutions. In IEEE Conf. Comput. Vis. Pattern

Recog., pages 1251–1258, 2017. 2

[8] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo

Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe

Franke, Stefan Roth, and Bernt Schiele. The cityscapes

dataset for semantic urban scene understanding. In IEEE

Conf. Comput. Vis. Pattern Recog., pages 3213–3223, 2016.

1, 5, 6, 7

[9] Bert De Brabandere, Xu Jia, Tinne Tuytelaars, and Luc

Van Gool. Dynamic filter networks. arXiv preprint

arXiv:1605.09673, 2016. 2

[10] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen,

Matthieu Devin, Mark Mao, Marc’aurelio Ranzato, Andrew

Senior, Paul Tucker, Ke Yang, et al. Large scale distributed

deep networks. In Adv. Neural Inform. Process. Syst., pages

1223–1231, 2012. 2

[11] Mark Everingham, Luc Van Gool, Christopher KI Williams,

John Winn, and Andrew Zisserman. The pascal visual object

classes (voc) challenge. Int. J. Comput. Vis., 88(2):303–338,

2010. 1, 5, 6

[12] Jun Fu, Jing Liu, Yuhang Wang, Jin Zhou, Changyong Wang,

and Hanqing Lu. Stacked deconvolutional network for se-

mantic segmentation. IEEE Trans. Image Process., 2019. 5

[13] David Ha, Andrew Dai, and Quoc V Le. Hypernetworks.

arXiv preprint arXiv:1609.09106, 2016. 1, 2

[14] Bharath Hariharan, Pablo Arbeláez, Lubomir Bourdev,

Subhransu Maji, and Jitendra Malik. Semantic contours from

inverse detectors. In Int. Conf. Comput. Vis., pages 991–998.

IEEE, 2011. 6

[15] Tal Hassner, Shay Filosof, Viki Mayzels, and Lihi Zelnik-

Manor. Sifting through scales. IEEE Trans. Pattern Anal.

Mach. Intell., 39(7):1431–1443, 2016. 2

[16] Tal Hassner and Ce Liu. Dense Image Correspondences for

Computer Vision. Springer, 2016. 2

[17] Tal Hassner, Viki Mayzels, and Lihi Zelnik-Manor. On sifts

and their scales. In IEEE Conf. Comput. Vis. Pattern Recog.,

pages 1522–1528. IEEE, 2012. 2

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Spatial pyramid pooling in deep convolutional networks for

visual recognition. IEEE Trans. Pattern Anal. Mach. Intell.,

37(9):1904–1916, 2015. 2

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In IEEE Conf.

Comput. Vis. Pattern Recog., pages 770–778, 2016. 2

[20] Jonathan Ho, Nal Kalchbrenner, Dirk Weissenborn, and Tim

Salimans. Axial attention in multidimensional transformers.

arXiv preprint arXiv:1912.12180, 2019. 1, 2, 4

[21] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry

Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-

dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-

tional neural networks for mobile vision applications. arXiv

preprint arXiv:1704.04861, 2017. 2

[22] Ping Hu, Fabian Caba, Oliver Wang, Zhe Lin, Stan Sclaroff,

and Federico Perazzi. Temporally distributed networks for

fast video semantic segmentation. In IEEE Conf. Comput.

Vis. Pattern Recog., pages 8818–8827, 2020. 2, 6, 8

[23] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014. 6

[24] Sylwester Klocek, Łukasz Maziarka, Maciej Wołczyk, Jacek

Tabor, Jakub Nowak, and Marek Śmieja. Hypernetwork

functional image representation. In Int. Conf. on Artificial

Neural Networks, pages 496–510. Springer, 2019. 2

[25] Hanchao Li, Pengfei Xiong, Haoqiang Fan, and Jian Sun.

Dfanet: Deep feature aggregation for real-time semantic seg-

mentation. In IEEE Conf. Comput. Vis. Pattern Recog., pages

9522–9531, 2019. 2, 6, 8

[26] Gidi Littwin and Lior Wolf. Deep meta functionals for shape

representation. In Int. Conf. Comput. Vis., pages 1824–1833,

2019. 1, 2

[27] Chenxi Liu, Liang-Chieh Chen, Florian Schroff, Hartwig

Adam, Wei Hua, Alan L Yuille, and Li Fei-Fei. Auto-

deeplab: Hierarchical neural architecture search for semantic

image segmentation. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 82–92,

2019. 5

[28] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully

convolutional networks for semantic segmentation. In IEEE

Conf. Comput. Vis. Pattern Recog., pages 3431–3440, 2015.

2

[29] Davide Mazzini. Guided upsampling network for real-time

semantic segmentation. arXiv preprint arXiv:1807.07466,

2018. 2, 6

[30] Sachin Mehta, Mohammad Rastegari, Anat Caspi, Linda

Shapiro, and Hannaneh Hajishirzi. Espnet: Efficient spatial

pyramid of dilated convolutions for semantic segmentation.

In Proceedings of the european conference on computer vi-

sion (ECCV), pages 552–568, 2018. 6

[31] Yuval Nirkin, Iacopo Masi, Anh Tran Tuan, Tal Hassner, and

Gerard Medioni. On face segmentation, face swapping, and

face perception. pages 98–105. IEEE, 2018. 2

94069

[32] Marin Orsic, Ivan Kreso, Petra Bevandic, and Sinisa Segvic.

In defense of pre-trained imagenet architectures for real-time

semantic segmentation of road-driving images. In IEEE

Conf. Comput. Vis. Pattern Recog., pages 12607–12616,

2019. 2, 5, 6, 8

[33] Niki Parmar, Prajit Ramachandran, Ashish Vaswani, Irwan

Bello, Anselm Levskaya, and Jon Shlens. Stand-alone self-

attention in vision models. In Adv. Neural Inform. Process.

Syst., pages 68–80, 2019. 4

[34] Adam Paszke, Abhishek Chaurasia, Sangpil Kim, and Eu-

genio Culurciello. Enet: A deep neural network architec-

ture for real-time semantic segmentation. arXiv preprint

arXiv:1606.02147, 2016. 2

[35] Xuebin Qin, Zichen Zhang, Chenyang Huang, Masood De-

hghan, Osmar R Zaiane, and Martin Jagersand. U2-net: Go-

ing deeper with nested u-structure for salient object detec-

tion. Pattern Recognition, 106:107404, 2020. 4

[36] Rajat Raina, Anand Madhavan, and Andrew Y Ng. Large-

scale deep unsupervised learning using graphics processors.

In Int. Conf. Machine. Learning., pages 873–880, 2009. 2

[37] Eduardo Romera, José M Alvarez, Luis M Bergasa, and

Roberto Arroyo. Erfnet: Efficient residual factorized convnet

for real-time semantic segmentation. IEEE Transactions on

Intelligent Transportation Systems, 19(1):263–272, 2017. 6

[38] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:

Convolutional networks for biomedical image segmentation.

In Int. Conf. on Medical image comput. and comput. assisted

intervention, pages 234–241. Springer, 2015. 2, 3

[39] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, et al. Imagenet large

scale visual recognition challenge. International journal of

computer vision, 115(3):211–252, 2015. 6, 8

[40] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-

moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted

residuals and linear bottlenecks. In IEEE Conf. Comput. Vis.

Pattern Recog., pages 4510–4520, 2018. 2, 4

[41] Florian Schroff, Dmitry Kalenichenko, and James Philbin.

Facenet: A unified embedding for face recognition and clus-

tering. In IEEE Conf. Comput. Vis. Pattern Recog., pages

815–823, 2015. 2

[42] Vincent Sitzmann, Julien N.P. Martel, Alexander W.

Bergman, David B. Lindell, and Gordon Wetzstein. Implicit

neural representations with periodic activation functions. In

Adv. Neural Inform. Process. Syst., 2020. 1, 2

[43] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior

Wolf. Deepface: Closing the gap to human-level perfor-

mance in face verification. In IEEE Conf. Comput. Vis. Pat-

tern Recog., pages 1701–1708, 2014. 2

[44] Mingxing Tan and Quoc V Le. Efficientnet: Rethinking

model scaling for convolutional neural networks. arXiv

preprint arXiv:1905.11946, 2019. 3, 4, 7, 8

[45] Andrew Tao, Karan Sapra, and Bryan Catanzaro. Hierarchi-

cal multi-scale attention for semantic segmentation. arXiv

preprint arXiv:2005.10821, 2020. 1, 2

[46] Moria Tau and Tal Hassner. Dense correspondences across

scenes and scales. IEEE Trans. Pattern Anal. Mach. Intell.,

38(5):875–888, 2015. 2

[47] Rafael Uetz and Sven Behnke. Large-scale object recog-

nition with cuda-accelerated hierarchical neural networks.

In Int. conf. on intelligent comput. and intelligent sys., vol-

ume 1, pages 536–541. IEEE, 2009. 2

[48] Johannes von Oswald, Christian Henning, João Sacramento,

and Benjamin F Grewe. Continual learning with hypernet-

works. arXiv preprint arXiv:1906.00695, 2019. 2

[49] Huiyu Wang, Yukun Zhu, Bradley Green, Hartwig Adam,

Alan Yuille, and Liang-Chieh Chen. Axial-deeplab: Stand-

alone axial-attention for panoptic segmentation. arXiv

preprint arXiv:2003.07853, 2020. 1, 2

[50] Felix Wu, Angela Fan, Alexei Baevski, Yann N Dauphin,

and Michael Auli. Pay less attention with lightweight and dy-

namic convolutions. arXiv preprint arXiv:1901.10430, 2019.

1

[51] Changqian Yu, Changxin Gao, Jingbo Wang, Gang Yu,

Chunhua Shen, and Nong Sang. Bisenet v2: Bilateral net-

work with guided aggregation for real-time semantic seg-

mentation. arXiv preprint arXiv:2004.02147, 2020. 2, 6,

8

[52] Changqian Yu, Jingbo Wang, Chao Peng, Changxin Gao,

Gang Yu, and Nong Sang. Bisenet: Bilateral segmentation

network for real-time semantic segmentation. In Eur. Conf.

Comput. Vis., pages 325–341, 2018. 2, 6, 8

[53] Changqian Yu, Jingbo Wang, Chao Peng, Changxin Gao,

Gang Yu, and Nong Sang. Learning a discriminative fea-

ture network for semantic segmentation. In Proceedings of

the IEEE conference on computer vision and pattern recog-

nition, pages 1857–1866, 2018. 5

[54] Fisher Yu and Vladlen Koltun. Multi-scale context

aggregation by dilated convolutions. arXiv preprint

arXiv:1511.07122, 2015. 2

[55] Chris Zhang, Mengye Ren, and Raquel Urtasun. Graph hy-

pernetworks for neural architecture search. arXiv preprint

arXiv:1810.05749, 2018. 2

[56] Hengshuang Zhao, Xiaojuan Qi, Xiaoyong Shen, Jianping

Shi, and Jiaya Jia. Icnet for real-time semantic segmentation

on high-resolution images. In Eur. Conf. Comput. Vis., pages

405–420, 2018. 2, 6, 8

[57] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang

Wang, and Jiaya Jia. Pyramid scene parsing network. In

IEEE Conf. Comput. Vis. Pattern Recog., pages 2881–2890,

2017. 2

[58] Kaili Zhao, Wen-Sheng Chu, and Honggang Zhang. Deep

region and multi-label learning for facial action unit detec-

tion. In IEEE Conf. Comput. Vis. Pattern Recog., pages

3391–3399, 2016. 2

[59] Shuai Zheng, Sadeep Jayasumana, Bernardino Romera-

Paredes, Vibhav Vineet, Zhizhong Su, Dalong Du, Chang

Huang, and Philip HS Torr. Conditional random fields as re-

current neural networks. In Int. Conf. Comput. Vis., pages

1529–1537, 2015. 2

[60] Ligeng Zhu. pytorch-OpCounter. Available on-

line: https://github.com/Lyken17/pytorch-

OpCounter. 5

104070

