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Abstract

Hypersingular integrals are guaranteed to exist at a point x only if the density function f in
the integrand satisfies certain conditions in a neighbourhood of x. It is well known that a suffi-
cient condition is that f has a Hölder-continuous first derivative. This is a stringent condition,
especially when it is incorporated into boundary-element methods for solving hypersingular in-
tegral equations. This paper is concerned with finding weaker conditions for the existence of
one-dimensional Hadamard finite-part integrals: it is shown that it is sufficient for the even
part of f (with respect to x) to have a Hölder-continuous first derivative – the odd part is al-
lowed to be discontinuous. A similar condition is obtained for Cauchy principal-value integrals.
These simple results have non-trivial consequences. They are applied to the calculation of the
tangential derivative of a single-layer potential and to the normal derivative of a double-layer
potential. Particular attention is paid to discontinuous densities and to discontinuous boundary
conditions. Also, despite the weaker sufficient conditions, it is reaffirmed that, for hypersingular
integral equations, collocation at a point x at the junction between two standard conforming
boundary elements is not permissible, theoretically. Various modifications to the definition of
finite-part integral are explored.

1 INTRODUCTION

There are many papers in the literature on singular and hypersingular integral equations. By
definition, such equations have kernels that are not integrable in the ordinary (improper) sense.
Specifically, for one-dimensional equations, the basic integrals are of the form

In(x) =

∫ B

A

F (t)

(t − x)n
dt, n = 1, 2,

where A < x < B and F (t) is called the density function. When the integrals are properly defined
(various definitions are considered below), I1 is a Cauchy principal-value (CPV) integral and I2 is
a Hadamard finite-part (HFP) integral; I1 is also called a singular integral and I2 is also called a
hypersingular integral.1–4

∗Appeared as International Journal for Numerical Methods in Engineering 39 (1996) 687–704.
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To be sure that In(x) exists, F (t) must have certain smoothness or continuity properties. Clas-
sically, these are usually expressed in terms of Hölder continuity and the function spaces C m,α

(functions in C0,α are called Hölder continuous; a function f is in C 1,α if f ′ is in C0,α; see section 2
for more details). Thus, it is well known that3, 4

if F ∈ Cn−1,α, then In exists. (1)

This condition is local ; if it holds in a neighbourhood of x, then In(x) exists. Note that condition (1)
is a sufficient condition for In to exist; thus, there are functions F that do not satisfy (1) and yet
In exists. It is this situation that we explore here, along with the possibility and/or the desirability
of actually changing the definition of ‘integral’.

Conditions similar to (1) also arise when considering the limiting values of layer potentials when
the field point approaches the boundary. For example, the tangential derivative of a single-layer
potential is closely related to I1, whereas the normal derivative of a double-layer potential is closely
related to I2. We examine these limiting values below (sections 4 and 6).

The primary motivation for this work is a widespread desire to weaken continuity requirements.
This is especially true for hypersingular integral equations, as the condition (1) for n = 2 is stringent.
For example, a standard boundary-element method proceeds by approximating F by quadratic
isoparametric conforming elements: this gives inter-element continuity but not differentiability.
Condition (1) suggests that, for a hypersingular integral equation, we cannot then collocate at a
point x at the junction between two elements because I2(x) does not exist, in general (see section 8).
Although this fact is recognised widely in the literature,3–8 there still exist recent claims9 that
ordinary conforming elements suffice. This claim is demonstrably false, unless one collocates away
from the element edges or changes the definition of the HFP integral; a third possibility is to use
a Galerkin method,10 but we do not pursue this option here.

In this paper, we show that the condition (1) can be weakened, using simple arguments. We
start by separating the density into its even and odd parts, with respect to the singular point x:

F (t) = Feven(t;x) + Fodd(t;x),

Feven(t;x) = 1
2
{F (t) + F (2x − t)}, (2)

Fodd(t;x) = 1
2
{F (t) − F (2x − t)}. (3)

Assume that F is merely continuous. Then, we show that the CPV integral I1(x) exists if Fodd

is Hölder continuous, and the HFP integral I2(x) exists if Feven is in C1,α. In fact, for the HFP
integral, we can even allow F to be discontinuous at x if we make a minor change to the definition
of the finite-part integral.

These results are simple but they seem to be new (Gray11 has used the vanishing of certain
integrals of odd integrands over symmetric intervals). They have several non-trivial applications.
For example, they give weaker (sufficient) conditions for the existence of the limiting values of
derivatives of layer potentials. Specifically, if one solves a boundary-value problem with discontin-
uous data, one usually obtains density functions that do not satisfy (1); however, they do satisfy
our weaker conditions, and so we can assert that the appropriate limits exist (section 7).

For a second example, we look again at the use of conforming elements for hypersingular bound-
ary integral equations (section 8); for definiteness, we consider quadratic elements although our
conclusions would remain unchanged if we were to use higher-order elements. Although we have
weaker sufficient conditions for the existence of the normal derivative of a double-layer potential
on the boundary, these conditions do not cover the use of collocation at the junction between two
elements. Indeed, the non-existence of the limit can be explicitly demonstrated; this reinforces
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our earlier findings. One possible way out of this difficulty is to change the hypersingular integral
equation itself by changing the definition of finite-part integral; we shall argue (section 8.1) that
this is undesirable, although it may be worthy of further study.

Throughout the paper, we make use of examples to illustrate the results. A particularly useful
example is the simple discontinuous function,

f(t) =

{

fL, t < 0,
fR, t > 0,

(4)

where fL and fR are constants. We also consider two ‘smoothed’ versions of this function (defined
by (20) and (39) below). Another useful example is f(t) = |t|, because it is not differentiable
at t = 0. Several other examples are constructed so as to show that the sufficient conditions
obtained cannot be weakened much further.

2 CLASSES OF FUNCTIONS

We are interested in functions with various smoothness properties. It is convenient to list these
here. Thus, assume that f is a given bounded function, defined on an interval a < t < b, except
perhaps for finitely many isolated points (these are irrelevant, as we will be interested in various
integrals of f).

• f is piecewise continuous, f ∈ PC. Such functions are continuous, except for finite discon-
tinuities. Thus, for a discontinuity at t = x, the left-hand limit, f(x−), and the right-hand
limit, f(x+), both exist, with f(x−) 6= f(x+); f(x) need not be defined. For example, the
discontinuous function (4) has f(0−) = fL and f(0+) = fR, and is not defined at t = 0.

• f is continuous, f ∈ C. Note that continuous functions are defined for all t with a < t < b;
in particular, we have f(x−) = f(x+) = f(x).

• f is Hölder continuous, f ∈ C0,α. This means that we can find positive constants A and α so
that

|f(t1) − f(t2)| < A|t1 − t2|
α with 0 < α ≤ 1

for all t1 and t2 in a < t < b. In particular, when we say that f is Hölder continuous at a
point such as t = 0, then we have

|f(t) − f(0)| < A|t|α with 0 < α ≤ 1 (5)

for all t in some interval containing t = 0. Roughly speaking, functions in C 0,α are smoother
than merely continuous functions, but they need not be differentiable (even if α = 1). For
example, f(t) = |t| is in C0,1 but it is not differentiable at t = 0.

• f has a Hölder-continuous first derivative, f ′ ∈ C0,α or f ∈ C1,α. Roughly speaking, func-
tions in C1,α are smoother than merely differentiable functions, but they need not have two
continuous derivatives.

3 CAUCHY PRINCIPAL-VALUE INTEGRALS

The Cauchy principal-value (CPV) integral of a function F is defined by

−

∫ B

A

F (t)

t − x
dt = lim

ε→0

{

∫ x−ε

A

F (t)

t − x
dt +

∫ B

x+ε

F (t)

t − x
dt

}

, (6)

3



where A < x < B. Choose a > 0 so that A < x − a < x + a < B. Then

−

∫ B

A

F (t)

t − x
dt = I +

∫ x−a

A

F (t)

t − x
dt +

∫ B

x+a

F (t)

t − x
dt,

where the last two integrals are nonsingular (we ignore them henceforth),

I = −

∫ x+a

x−a

F (t)

t − x
dt = −

∫ a

−a
f(t)

dt

t

and f(t) = F (t + x). Thus, without loss of generality, we can take x = 0 and a symmetric interval
of integration.

It is well known12 that a sufficient condition for the existence of I is that f be Hölder continuous,
f ∈ C0,α; we shall refine this condition.

We start by splitting f into its even and odd parts:

f(t) = feven(t) + fodd(t) (7)

where
feven(t) = 1

2
[f(t) + f(−t)] and fodd(t) = 1

2
[f(t) − f(−t)].

In particular, feven(0+) = feven(0−) = 1
2
[f(0+) + f(0−)]. By taking this value as the definition of

feven(0), we ensure that feven is continuous at t = 0, even when f is not.
Substituting for f into I gives

I = −

∫ a

−a
f(t)

dt

t
= −

∫ a

−a
fodd(t)

dt

t
= 2 lim

ε→0
L(ε) (8)

where

L(ε) =

∫ a

ε
fodd(t)

dt

t
.

In order to examine the limit ε → 0, we write

fodd(t) = fodd(0+) + f1(t),

f1(t) = fodd(t) − fodd(0+), (9)

where f1(t) → 0 as t → 0+. Then

L(ε) = fodd(0+) log (a/ε) + Ladd(ε), (10)

Ladd(ε) =

∫ a

ε
f1(t)

dt

t
.

Now, we examine the limit ε → 0, given various conditions on f . Note that, in order to obtain a
finite limit, both terms on the right-hand side of (10) must have finite limits.

• Suppose that f(t) is discontinuous at t = 0, f ∈ PC. Then, fodd(0+) 6= 0 and so the CPV
integral does not exist: it diverges as −2fodd(0+) log ε (assuming that Ladd has a finite limit).
For a simple example, take (4).

• Suppose that fodd(t) is Hölder continuous. This implies that fodd(0+) = 0, whence the
logarithmic term is absent in (10). Moreover, the Hölder continuity of fodd is sufficient to
ensure that the ‘added back’ integral, Ladd(ε), has a finite limit as ε → 0. Note that these
conclusions follow even if feven (and hence f) is merely continuous. For example,

f(t) =

{

[log |t|]−1, t 6= 0,
0, t = 0,

is even and continuous, but it is not Hölder continuous; its CPV integral exists (it is zero).
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• Suppose that fodd(t) is merely continuous. Again, this implies that fodd(0+) = 0, whence
the logarithmic term is absent in (10). However, continuity is not sufficient to guarantee that
Ladd(ε) has a finite limit. For example, take a < 1 and

f(t) =











[log t]−1, t > 0,
0, t = 0,
−[log (−t)]−1, t < 0,

(11)

which is continuous at t = 0; we have f ≡ fodd, whence

L(ε) = log | log a| − log | log ε|,

which does not have a finite limit as ε → 0.

Theorem 1 Suppose that F (t) is continuous at t = x. Suppose that Fodd(t;x), defined by (3),
is Hölder continuous at t = x. Then, the Cauchy principal-value integral (6) exists.

This theorem gives a sufficient condition for the existence of the CPV integral. We have also
shown that the continuity of Fodd is necessary, but not sufficient. Similar remarks can be made
concerning all the subsequent theorems.

3.1 Change the definition

As we have seen, the CPV integral (6) does not exist if F (t) is discontinuous at t = x. One way to
obtain a finite limit is to take a finite part! In other words, we change the definition of ‘integral’;
define two one-sided Cauchy principal-value integrals of F by (Schwartz,13 p. 104)

C

∫ x

A

F (t)

t − x
dt = lim

ε→0

{
∫ x−ε

A

F (t)

t − x
dt − F (x−) log ε

}

,

C

∫ B

x

F (t)

t − x
dt = lim

ε→0

{

∫ B

x+ε

F (t)

t − x
dt + F (x+) log ε

}

,

where A < x < B. These definitions supply finite values even if F is discontinuous at t = x.
Moreover, if F is actually smooth enough for its CPV integral to exist, then the sum of its two
one-sided CPV integrals will give the same value; this suggests generalizing the CPV integral to

C

∫ B

A

F (t)

t − x
dt = C

∫ x

A

F (t)

t − x
dt + C

∫ B

x

F (t)

t − x
dt, (12)

this being the definition of the integral on the left-hand side. For example, take the simple discon-
tinuous function f , defined by (4), with A = −a, B = a and x = 0. Then

C

∫ a

−a
f(t)

dt

t
= (fR − fL) log a. (13)

An equivalent definition to (12) is

C

∫ B

A

F (t)

t − x
dt = lim

ε→0

{

∫ x−ε

A

F (t)

t − x
dt +

∫ B

x+ε

F (t)

t − x
dt + [F (x+) − F (x−)] log ε

}

, (14)

equivalent in the sense that the right-hand side of (12) exists if and only if the right-hand side of
(14) exists. However, care is needed with all of these definitions, as the presence of the logarithmic
terms means that the integrals are not independent of simple changes of variable; an example of
this unpleasant property will be given at the end of section 5.2.
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4 TANGENTIAL DERIVATIVE OF A SINGLE-LAYER POTENTIAL

Consider the single-layer potential

S(x, y) =

∫ a

−a
f(t)G(x, y; t, 0) dt

where G is the fundamental solution defined by

G(x, y; t, η) = log
√

(t − x)2 + (y − η)2. (15)

The problem is to compute the tangential derivative of S on y = 0. Thus, we seek the limit of

T (x, y) = −
∂S

∂x
=

∫ a

−a

(t − x) f(t)

(t − x)2 + y2
dt (16)

as y → 0. For simplicity, let us take x = 0 and define T (y) ≡ T (0, y). Then, we have

T (y) =

∫ a

−a

t f(t)

t2 + y2
dt = 2

∫ a

0

tfodd(t)

t2 + y2
dt (17)

= fodd(0+) log
a2 + y2

y2
+ Tadd(y),

Tadd(y) = 2

∫ a

0

tf1(t)

t2 + y2
dt,

where f1 is defined by (9).

• Suppose that f(t) is discontinuous at t = 0. Then, fodd(0+) 6= 0 and so T (y) diverges
logarithmically as y → 0. We discuss this case further in section 4.1.

• Suppose that fodd(t) is Hölder continuous. In this case,

T (0) = Tadd(0) = 2

∫ a

0
f1(t)

dt

t

exists. Also, using (5),

|T (y) − T (0)| = 2

∣

∣

∣

∣

∣

∫ a

0

−y2

t(t2 + y2)
f1(t) dt

∣

∣

∣

∣

∣

≤ 2Ay2

∫ a

0

tα−1

t2 + y2
dt

< 2Ayα
∫

∞

0

sα−1

s2 + 1
ds,

and the last integral is finite, since 0 < α ≤ 1; hence, as α > 0, T (y) → T (0) as y → 0.
Comparing with (8) and (10), we see that the limiting value is

T (0) = −

∫ a

−a
f(t)

dt

t
.

• Suppose that fodd(t) is merely continuous. Again, we obtain T (y) = Tadd(y), but now we
cannot guarantee that T (0) exists. For example, T (0) diverges for the choice (11); neverthe-
less, is it possible that T (y) has a finite limit as y → 0? It does not: to see this, choose a < 1,
whence (11) and (17) give

|T (y)| = −2

∫ a

0

t dt

(t2 + y2) log t
> −2

∫ a

y

t dt

(t2 + y2) log t

> −

∫ a

y

dt

t log t
= log | log y| − log | log a|,

which is unbounded as y → 0.
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Theorem 2 Suppose that f(t) is continuous at t = x. Suppose that

fodd(t;x) = 1
2
{f(t) − f(2x − t)}

is Hölder continuous at t = x. Then,

lim
y→0

T (x, y) = −

∫ a

−a

f(t)

t − x
dt,

where T (x, y) is defined by (16).

4.1 More on discontinuous densities

Here, we discuss the simple example (4) in more detail. From (17), we obtain

T (y) = −(fR − fL) log y + T0(y),

T0(y) = (fR − fL) log
√

a2 + y2,

so that T (y) is unbounded as y → 0; note that, from (13),

T0(0) = C

∫ a

−a
f(t)

dt

t
= (fR − fL) log a. (18)

Thus, we can use the finite-part generalization of the CPV integral to express the ‘finite part’ of
the limit. However, the limit y → 0 is genuinely divergent, not an artifice of any definition of
integral. Despite this fact, attempts have been made to extract limiting values that are intended
to be physically meaningful; some of these attempts are described next.

Evaluate the limit near the discontinuity

Return to T (x, y), defined by (16), and evaluate the limit at x = ±δ on either side of the disconti-
nuity (assume δ > 0). The density is smooth at these points, so there is no difficulty in calculating
the limiting values; they are given by

T (±δ, 0) = −(fR − fL) log δ + T1(±δ),

T1(ν) = fR log (a − ν) − fL log (a + ν).

We note that T (δ, 0) and T (−δ, 0) both diverge logarithmically as δ → 0. However, we also note
that

T (δ, 0) − T (−δ, 0) = (fR + fL) log
a − δ

a + δ
→ 0 as δ → 0. (19)

Thus T (δ, 0) and T (−δ, 0) both approach the same value as δ → 0 (there is no discontinuity across
the discontinuity), but that value is infinite! Note also that T1(±δ) → T0(0) as δ → 0, so that we
obtain the same ‘finite part’ as before, (18).

Smooth the discontinuity

Huang and Cruse9 have replaced the discontinuous function (4) by a piecewise-linear approximation
(see their Figure 2). Thus, let

f(t) =











fL, t ≤ −δ,
1
2
(fR − fL)(t/δ) + 1

2
(fR + fL), −δ < t < δ,

fR, t ≥ δ,
(20)
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where we again think of δ as being small and positive. Since f(t) is Hölder continuous at t = 0, we
readily obtain

T (0) = −

∫ a

−a
f(t)

dt

t
= −(fR − fL) log δ + T2,

T2 = (fR − fL)(1 + log a).

Note that T (0) diverges as δ → 0 exactly as before. However, the ‘finite part’, T2, is independent
of δ and differs from T0(0) = T1(0).

Combination of the two

Suppose that, following Huang and Cruse,9 we take the piecewise-linear approximation (20), and
then evaluate T (x, 0) at x = ±δ. We find that

T (±δ, 0) = −(fR − fL) log δ + T3(±δ)

T3(ν) = fR log (a − ν) − fL log (a + ν) + (fR − fL)(1 − log 2).

Again, we note that T (δ, 0) and T (−δ, 0) both diverge logarithmically as δ → 0, and that their
difference tends to zero as δ → 0. However, T3(0) = (fR − fL)(1 + log 1

2
a), which is yet another

value for the ‘finite part’ !
Huang and Cruse9 examined the difference T (δ, 0) − T (−δ, 0) (actually, they studied the cor-

responding problem in plane elastostatics, where the aim is to calculate boundary stresses). We
have seen that this difference vanishes as δ → 0; in fact, it is given exactly by (19), so that it is
not affected by the replacement of (4) by (20). This seems to disagree with the results of Huang
and Cruse,9 although we note that their argument on p. 2050 is incomplete: having expanded all
the various kernels in powers of ε/r, where ε (our δ) is small, one cannot then let r → 0 without
further justification.

Summary

These differing treatments for dealing with the unbounded limit at a simple discontinuity yield
various answers for the ‘correction’; such behaviour is not unexpected and shows that these devices
are inappropriate.

5 HADAMARD FINITE-PART INTEGRALS

The Hadamard finite-part (HFP) integral of a function F is defined by

×

∫ B

A

F (t)

(t − x)2
dt = lim

ε→0

{

∫ x−ε

A

F (t)

(t − x)2
dt +

∫ B

x+ε

F (t)

(t − x)2
dt −

2F (x)

ε

}

, (21)

where A < x < B. This definition assumes implicitly that F is continuous at x. Choose a > 0 so
that A < x − a < x + a < B. Then

×

∫ B

A

F (t)

(t − x)2
dt = J +

∫ x−a

A

F (t)

(t − x)2
dt +

∫ B

x+a

F (t)

(t − x)2
dt,

where the last two integrals are nonsingular (we ignore them, as before),

J = ×

∫ x+a

x−a

F (t)

(t − x)2
dt = ×

∫ a

−a
f(t)

dt

t2
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and f(t) = F (t + x). As in section 3, we take x = 0.
It is well known3 that a sufficient condition for the existence of J is that f ′ be Hölder continuous,

f ∈ C1,α; we shall refine this condition by splitting f into its even and odd parts, (7). This gives

J = ×

∫ a

−a
f(t)

dt

t2
= ×

∫ a

−a
feven(t)

dt

t2
= 2 lim

ε→0
M(ε) (22)

where

M(ε) =

∫ a

ε
feven(t)

dt

t2
−

feven(0)

ε
. (23)

Note that, as f is continuous at t = 0, we must have fodd(0) = 0.
Now, we examine the limit ε → 0, given various conditions on f .

• Suppose that f(t) is discontinuous at t = 0, f ∈ PC. Then, the HFP integral does not exist
as we cannot even use its definition (it contains the undefined term −2f(0)/ε). However, see
section 5.1 for a simple way of overcoming this difficulty.

• Suppose that feven(t) is Hölder continuous, feven ∈ C0,α. Then, in general, the HFP integral
does not exist. For example, take feven(t) = |t| ∈ C0,1. Then, M(ε) = log (a/ε), which is
unbounded as ε → 0.

• Suppose that feven ∈ C1,α. Then, we can integrate by parts in (23) to give

M(ε) =
1

ε
[feven(ε) − feven(0)] −

1

a
feven(a) +

∫ a

ε
f ′

even(t)
dt

t
. (24)

The first term tends to zero as ε → 0, because f ′

even(0) = 0 (as feven is even and differentiable)
implying that feven(ε)−feven(0) is o(ε) as ε → 0. The limit of the integral in (24) exists because
of the assumed Hölder-continuity of f ′

even, and so the HFP integral exists. In fact, combining
(22) and (24) gives

×

∫ a

−a
f(t)

dt

t2
=

−2

a
feven(a) + −

∫ a

−a
f ′

even(t)
dt

t
, (25)

which can be viewed as a regularization of the HFP integral. Note that these conclusions
follow even if fodd (and hence f) is merely continuous.

• Suppose that feven(t) is differentiable, feven ∈ C1. Again, the first term in (24) tends to zero
as ε → 0, but mere differentiability is not sufficient to guarantee that the integral in (24) has
a finite limit. For example, take a < 1 and

f(t) =

{

|t| [log |t|]−1, t 6= 0,
0, t = 0,

which is continuously differentiable at t = 0; we have f ≡ feven, whence

M(ε) = log | log a| − log | log ε|,

which does not have a finite limit as ε → 0.

Theorem 3 Suppose that F (t) is continuous at t = x. Suppose that Feven(t;x), defined by (2),
has a Hölder-continuous first derivative at t = x. Then, the Hadamard finite-part integral (21)
exists.
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5.1 A useful generalization of the Hadamard finite-part definition

The definition of HFP integral, (21), cannot be used if F (t) is discontinuous at t = x. Instead, we
generalise the definition slightly as follows:

=

∫ B

A

F (t)

(t − x)2
dt = lim

ε→0

{

∫ x−ε

A

F (t)

(t − x)2
dt +

∫ B

x+ε

F (t)

(t − x)2
dt −

1

ε
[F (x+) + F (x−)]

}

. (26)

This definition only differs from (21) if F is discontinuous. If we take A = −a, B = a and x = 0,
we obtain (cf. (22))

=

∫ a

−a
f(t)

dt

t2
= =

∫ a

−a
feven(t)

dt

t2
= 2 lim

ε→0
M(ε)

where M(ε) is defined exactly as before by (23). It follows that the properties of (26) are very
similar to those of (21), the exception being that discontinuous functions can now be treated.

Theorem 4 Suppose that F (t) is bounded at t = x. Suppose that Feven(t;x), defined by (2),
has a Hölder-continuous first derivative at t = x. Then, the generalized Hadamard finite-part

integral (26) exists.

As an example, consider our standard discontinuous function (4); we obtain

=

∫ a

−a
f(t)

dt

t2
= −

1

a
(fR + fL). (27)

Moreover, it turns out that the definition (26) is preferable to (21) as it is more closely related
to the normal derivative of a double-layer potential, whose properties will be described below in
section 6. With this in mind, we note that (25) generalises to

=

∫ a

−a
f(t)

dt

t2
=

−2

a
feven(a) + −

∫ a

−a
f ′

even(t)
dt

t
, (28)

this formula being valid if feven ∈ C1,α; a finite discontinuity in f(t) at t = 0 is allowed.

5.2 Change the definition

As for the CPV integral, we can also introduce one-sided finite-part integrals; define two one-sided

Hadamard finite-part integrals of a function F by (Schwartz,13 p. 104)

H

∫ x

A

F (t)

(t − x)2
dt = lim

ε→0

{
∫ x−ε

A

F (t)

(t − x)2
dt − F ′(x−) log ε −

F (x−)

ε

}

, (29)

H

∫ B

x

F (t)

(t − x)2
dt = lim

ε→0

{

∫ B

x+ε

F (t)

(t − x)2
dt + F ′(x+) log ε −

F (x+)

ε

}

, (30)

where A < x < B. These definitions supply finite values even if F or its derivative are discontinuous
at t = x. Moreover, if F is actually smooth enough for its HFP integral to exist, then the sum of
its two one-sided HFP integrals will give the same value; this suggests another generalization of
the HFP integral to

H

∫ B

A

F (t)

(t − x)2
dt = H

∫ x

A

F (t)

(t − x)2
dt + H

∫ B

x

F (t)

(t − x)2
dt, (31)
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this being the definition of the integral on the left-hand side. For a simple example, evaluation
of (31) for the discontinuous function (4) gives the same value as (27).

An equivalent definition to (31) is14

H

∫ B

A

F (t)

(t − x)2
dt = lim

ε→0

{

∫ x−ε

A

F (t)

(t − x)2
dt +

∫ B

x+ε

F (t)

(t − x)2
dt

+ [F ′(x+) − F ′(x−)] log ε −
1

ε
[F (x+) + F (x−)]

}

. (32)

This definition generalises (26) to functions that do not satisfy F ′(x+) = F ′(x−). We will discuss
the utility of this generalization in section 8.1. Here, we note that care is needed because of the
logarithmic terms in (29), (30) and (32). For example, take f(t) = |t| Then, taking x = 0 in (32),
we obtain

H

∫ 1

−1

f(t)
dt

t2
= 0 but H

∫ 1/2

−1/2

f(2s)
2 ds

(2s)2
= −2 log 2,

which shows that the value of the integral is not independent of simple changes of variable.

6 NORMAL DERIVATIVE OF A DOUBLE-LAYER POTENTIAL

Consider the double-layer potential

D(x, y) =

∫ a

−a
f(t)

(

∂

∂η
G(x, y; t, η)

)∣

∣

∣

∣

η=0

dt =

∫ a

−a

−yf(t)

(t − x)2 + y2
dt,

where G is defined by (15). The problem is to compute the normal derivative of D on y = 0. Thus,
we seek the limit of

N(x, y) = −
∂D

∂y
=

∫ a

−a

(t − x)2 − y2

[(t − x)2 + y2]2
f(t) dt (33)

as y → 0. For simplicity, let us take x = 0 and define N(y) ≡ N(0, y). Then, we have

N(y) =

∫ a

−a

t2 − y2

(t2 + y2)2
f(t) dt = 2

∫ a

0

t2 − y2

(t2 + y2)2
feven(t) dt. (34)

• Suppose that feven(t) is Hölder continuous at t = 0. Then, in general, N(y) does not have a
finite limit. For example, if feven(t) = |t|, then

N(y) = 2

∫ a

0

t(t2 − y2)

(t2 + y2)2
dt = log

a2 + y2

y2
−

2a2

a2 + y2
,

which is unbounded as y → 0 (this is Lyapunov’s famous example; see p. 71 of Günter’s
book15).

• Suppose that f ′

even(t) is Hölder continuous at t = 0. Then, we can integrate by parts in (34)
to give

N(y) =
−2a

a2 + y2
feven(a) + 2

∫ a

0

tf ′

even(t)

t2 + y2
dt. (35)

The first term is well behaved as y → 0. The second term is of the same form as T (y), given
by (17); its limit exists as y → 0. Hence, we see that

lim
y→0

N(y) = N(0) =
−2

a
feven(a) + −

∫ a

−a
f ′

even(t)
dt

t
,

11



which we recognise as the finite-part integral (28). Thus, we can simply set y = 0 in the
formula for N(y), (34), provided we interpret the integral correctly.

Theorem 5 Suppose that f(t) is bounded at t = x. Suppose that

feven(t;x) = 1
2
{f(t) + f(2x − t)}

has a Hölder-continuous first derivative at t = x. Then,

lim
y→0

N(x, y) = =

∫ a

−a

f(t)

(t − x)2
dt, (36)

where N(x, y) is defined by (33) and the integral is defined by (26).

Ervin et al.14 claim that Theorem 5 can be generalized to

lim
y→0

N(x, y) = H

∫ a

−a

f(t)

(t − x)2
dt, (37)

whenever f is piecewise-smooth (the finite-part integral on the right-hand side is defined by (32)).
This is false. To see this, take f(t) = |t| and x = 0: the right-hand side of (37) is 2 log a, but the
left-hand side does not exist.

6.1 More on discontinuous densities

Consider the discontinuous function (4), for which f ′(0+) = f ′(0−) and feven(t) = 1
2
(fR + fL), a

constant. Then, (35) gives

N(y) = −2a(a2 + y2)−1feven(a) → −(fR + fL)/a as y → 0, (38)

which is precisely the result (27).
However, if we calculate N(x, y) as y → 0 for the same f but other non-zero values of x, we

find that the limiting function N(x, 0) is not continuous at x = 0:

N(x, 0) = −fL/(a + x) − fR/(a − x) − (fR − fL)/x.

This result can be found either by calculating N(x, y) directly and then letting y → 0, or by
evaluating the finite-part integral on the right-hand side of (36).

The construction of Huang and Cruse

In order to deal with discontinuous densities, we could introduce the piecewise-linear approxima-
tion (20), as used by Huang and Cruse9 for a different problem. Generalizing their approach, we
calculate N(x, 0) at x = ±δ, and then examine N(δ, 0) ± N(−δ, 0). First, we note that N(x, 0) is
not defined at x = ±δ, because of the discontinuity in slope of f at these points (this can be shown
by explicit calculation; see section 8 below). However, let us overcome this difficulty by using a
piecewise-quadratic approximation,

f(t) =



















fL, t ≤ −δ,
1
2
(fR − fL)[2(t/δ) + (t/δ)2] + 1

2
(fR + fL), −δ < t ≤ 0,

1
2
(fR − fL)[2(t/δ) − (t/δ)2] + 1

2
(fR + fL), 0 < t < δ,

fR, t ≥ δ.

(39)
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f(t) is in C1,α; in particular, f ′(±δ) = 0. For this function, we can evaluate N(±δ, y) as y → 0, by
direct calculation from (33); the result is

N(±δ, 0) = −(fR + fL)a(a2 − δ2)−1 + N0(±δ),

N0(ν) = −(fR − fL)
{

ν(a2 − ν2)−1 + ν−1 log 4
}

.

Hence,

1
2
{N(δ, 0) + N(−δ, 0)} = −(fR + fL)a(a2 − δ2)−1, (40)

1
2
{N(δ, 0) − N(−δ, 0)} = −(fR − fL)

{

δ(a2 − δ2)−1 + δ−1 log 4
}

. (41)

Thus, the average value, given by (40), has a finite limit as δ → 0, namely −(fR + fL)/a, in agree-
ment with (38); thus, as in section 4.1, this quantity is not affected by smoothing the discontinuity
in f . On the other hand, the discontinuity in N , given by (41), is proportional to the discontinuity
in f but the limit is unbounded as δ → 0.

7 DISCONTINUOUS BOUNDARY CONDITIONS

In applications of the boundary-element method, one often meets discontinuous boundary condi-
tions. These induce density functions that are not smooth at the points of discontinuity. For a
model problem with this property, we choose a boundary-value problem for Laplace’s equation
∇2u = 0 in the half-plane y > 0 with boundary condition

∂u

∂y
=

{

2π, |x| < a,
0, |x| > a,

on y = 0. (42)

In addition, we require that u = 4a log r + o(1) as r → ∞ for 0 < θ < π, where x = r cos θ and
y = r sin θ.

We can write down the solution of this problem. It is u = u0, where

u0(x, y) = (a − x) log [(a − x)2 + y2] + (a + x) log [(a + x)2 + y2]

+ 2y tan−1 [(a − x)/y] + 2y tan−1 [(a + x)/y] − 4a, (43)

as can be easily verified. We note two features of this exact solution. First, if we evaluate ∂u/∂y
on y = 0 at x = a, say, we find that

lim
y→0

∂u(a, y)

∂y
= lim

y→0

(

2 tan−1 2a

y

)

= π, (44)

which should be compared with its (prescribed) values for x < a and x > a, given by (42). Second,
we find that

u(x, 0) = (a − x) log [(a − x)2] + (a + x) log [(a + x)2] − 4a,

which shows that u(x, 0) has weak singularities at x = ±a; in fact, u(x, 0) is not differentiable at
x = ±a, but it is Hölder continuous there.

Now, suppose we wanted to solve the above model problem using a boundary-element method.
First, we need an integral representation; because of the growth at infinity, it is convenient to
subtract the logarithmic term by defining a new function v by

u(x, y) = 4a log r + v(x, y),
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so that v = o(1) as r → ∞,

∂v

∂y
=

{

2π, 0 < |x| < a,
0, |x| > a,

on y = 0,

and v ∼ −4a log r as r → 0. Then, a careful application of Green’s theorem gives

v(x, y) + 2a log r =
−1

2π
−

∫

∞

−∞

{

v(ξ, 0)
∂G

∂n
− G

∂v

∂n

}

dξ,

where ∂/∂n = ∂/∂y on y = 0 and G = G(x, y; ξ, η). Direct calculation shows that

1

2π
−

∫

∞

−∞

G
∂v

∂n
dξ =

1

2
−

∫ a

−a
log {(x − ξ)2 + y2} dξ = 1

2
u0(x, y),

where u0 is defined by (43). Hence

v(x, y) = −2a log r + 1
2
u0(x, y) +

1

2π

∫

∞

−∞

y v(ξ, 0)

[(ξ − x)2 + y2]2
dξ. (45)

This representation for v(x, y) is valid for all y > 0.
We can obtain a boundary integral equation for v(x, 0) by letting y → 0 in (45) in the usual

way. Having done this, we could then solve for v(x, 0) and then construct v(x, y) from (45). For
this particular problem, we know the solution for v(x, 0): it is

v(x, 0) = u0(x, 0) − 4a log |x|.

Now, consider the representation (45). The integral is a double-layer potential with density
v(ξ, 0); near ξ = ±a, v is Hölder continuous. So, if we wanted to calculate (cf. (44))

lim
y→0

∂v(a, y)

∂y
, (46)

say, the classical theorems on the existence of the normal derivative of a double-layer potential
cannot be used (they would require v ∈ C1,α). However, near ξ = a, we have

v(ξ, 0) = (a − ξ) log [(a − ξ)2] + a smooth term.

In particular, we note that the first term is an odd function of (a− ξ), and so it has no bearing on
the existence of the limit (46), which is assured by Theorem 5.

8 BOUNDARY-ELEMENT APPROXIMATIONS

Assuming that the geometry is smooth, a common approximation for the unknown density uses
piecewise quadratics:

f(t) =

{

aL
0 + aL

1 t + aL
2 t2, t < 0,

aR
0 + aR

1 t + aR
2 t2, t > 0.

Thus, splitting as in (7), we obtain

feven(t) = 1
2
(aR

0 + aL
0 ) + 1

2
(aR

1 − aL
1 ) |t| + 1

2
(aR

2 + aL
2 ) t2

fodd(t) = 1
2
(aR

0 − aL
0 ) sgn t + 1

2
(aR

1 + aL
1 ) t + 1

2
(aR

2 − aL
2 ) t2 sgn t

where sgn t = 1 if t > 0 and sgn t = −1 if t < 0. This approximation is called conforming if
aR

0 = aL
0 ; this ensures continuity at the junction t = 0. In fact, one can see that a conforming

approximation actually gives Hölder continuity, with f ∈ C 0,1. We have the following results.
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• For the tangential derivative of a single-layer potential to exist on the boundary y = 0 at
x = 0, Theorem 2 requires that f be continuous and fodd ∈ C0,α. These conditions are clearly
satisfied for conforming approximations, aR

0 = aL
0 .

• For the normal derivative of a double-layer potential to exist on the boundary y = 0 at x = 0,
Theorem 5 requires that f be bounded and feven ∈ C1,α. For these conditions to be met, we
do not need a conforming approximation, but we must have aR

1 = aL
1 , or f ′(0+) = f ′(0−).

Without this latter condition, there would be a term proportional to |t| in feven(t), and it is
known (section 6) that the limit does not exist for such a density.

Thus, we have found weaker sufficient conditions for the existence of various integrals and limits.
However, in the context of hypersingular boundary integral equations, these conditions explic-
itly forbid the use of collocation at junctions between conforming quadratic elements, in general.
Moreover, the same conclusion obtains with conforming higher-order elements.

8.1 Change the integral equation

Another point of view is as follows. First, derive a hypersingular integral equation in a standard
way, assuming that all densities are sufficiently smooth; here, the connection between the original
boundary-value problem and the boundary integral equation is made, using results such as Theo-
rem 5. Now, change the definition of integral so as to allow densities with less smoothness, such as
conforming piecewise quadratics. Finally, solve the new integral equation. This has been done for
a model problem by Ervin et al.,14 using various elements: in particular, convergence was observed
when using conforming quadratic elements, with collocation at the mid-point and end-points of
each element. It remains to ask how the solution of the new integral equation is related to the
(boundary values of the) solution of the original boundary-value problem. This does not seem to
be a trivial question, for we do not know how the matrix entries obtained by collocating at the
element end-points are related to the exact values. As a simple example, suppose we approximate
the quadratic function

f1(t) = 1
4
(t2 − a2)/a

over −a ≤ t ≤ a by the piecewise-linear function

f2(t) = 1
4
(|t| − a),

so that f1(t) = f2(t) at t = 0 and at t = ±a. Then,

H

∫ a

−a
f1(t)

dt

t2
= 1

(independent of a), but

H

∫ a

−a
f2(t)

dt

t2
= 1

2
(1 + log a),

which can take any value, depending on the choice of a.

9 CLOSING REMARKS

The boundary element community regularly deals with representation integrals, over the boundary
of a domain, for field variables and their derivatives. Limits of these integrals as the field point
approaches the boundary are of primary interest, as such limits give rise to the boundary integral
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equations so important for computations. It is customary and usually convenient (although not
necessary) to express these limits-to-the-boundary (LTBs) as CPV or HFP integrals, which them-
selves involve limits, albeit with at least some formal differences (for example, different parameters
go to zero). In practice, the integrals of most interest are often tangential derivatives of single-layer
potentials or normal derivatives of double-layer potentials. Hence the detailed attention to all of
these matters in this paper and throughout the community.

It is important to note, in any case, that although we express our LTBs in sections 4 and 6
as CPV and/or HFP integrals, no additional smoothness of the density functions is required for
existence of the LTB by so doing. Even though prior regularization would allow us to avoid the
CPV and HFP concepts, the smoothness requirements are exactly the same. Indeed, without
proper smoothness, unbounded terms will arise in the LTB, whether or not the CPV and/or HFP
concepts are employed.

Nevertheless, some limiting processes involving the density and kernel functions at issue here
do seem to require less smoothness, and still not produce unbounded terms; see, for example,
equations (1) and (2) in Guiggiani’s paper.16 However, these limits, although correct, do not give rise
to boundary integral equations as required for computations; this is acknowledged by Guiggiani.16

Moreover, they are not LTBs as considered in sections 4 and 6.
On the basis of our earlier findings and work in this paper, we can summarise as follows.

• Largely-accepted sufficient conditions for the existence of certain LTBs, and CPV and HFP
integrals, can be weakened, but only somewhat, based on the character of the even and odd
parts of the density, as shown above (extensions of these ideas to three-dimensional problems
are expected);

• however, collocation at the junction between two standard conforming boundary elements,
with hypersingular integral equations cannot be theoretically justified.

• Whether or not a LTB exists, for certain integrals, depends on the smoothness of the density.
This smoothness in turn is related to the order of singularity of the kernel. The smoothness
demand may not be relaxed, for a given kernel singularity, just because a regularization
process designed to lower the singularity of the integrand containing that kernel has been
used. It also may not be relaxed if the integral in question happens to be over a closed curve
(or surface) rather than an open one.

• Whether or not a LTB exists cannot be a function of the type of regularization procedure
used.

• Whether or not a LTB exists cannot be a function of whether regularization procedures are
applied globally (before discretization) or locally (to a particular boundary element or group
of elements containing the singularity).

• Smoothness conditions required for existence of LTBs cannot be avoided or altered by first
deriving an integral equation based on sufficient smoothness requirements, and subsequently
relaxing these requirements (without further justification).

In brief, for a given smoothness-of-density in the vicinity of a (collocation) point on the bound-
ary, either the LTB exists or it does not. Conditions for the existence of a LTB are not negotiable,
notwithstanding the variety of expressions, special integral definitions and/or regularization proce-
dures one may use (or avoid) to determine the value of that limit.

As noted above, we agree with Huang and Cruse,9 that the terminology ‘CPV’, ‘Hypersingular’,
and ‘HFP’, and the special definitions of integrals and some ideas associated with these terms may

16



be avoided, if certain regularization procedures are done before the LTB is taken, but we do not
agree that such terms are ‘unnatural’ or ‘artifices’. Indeed, we believe that it is important to retain
these concepts to help call attention to the rich and useful role played by Cauchy-singular and
hypersingular equations. We believe this regardless of how integrands, containing Cauchy-singular
or hypersingular kernels, can be or may have been weakened through regularization.

Finally, if smoothness requirements are ignored or believed to be unimportant, and by some
argument or tactic an infinity does not appear in an integral equation, where theory says that one
should, and one then computes with the (finite) terms which do appear, it is difficult to predict
what will happen. The fact that in many numerical experiments, including some of the authors’
own, ostensibly good data can be obtained by simply ignoring infinities, the authors regard as
seductive — but dangerously so.
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