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Abstract

An aeroelastic and aerothermoelastic analysis of a three-dimensional low aspect

ratio wing, representative of a fin on hypersonic vehicles, is carried out using

piston theory, and Euler aerodynamics. Studies on grid convergence are used to

determine the appropriate computational domain and resolution for this wing in

hypersonic flow, using both Euler and Navier-Stokes aerodynamics. Hypersonic

computational aeroelastic responses are then generated, using Euler aerody-

namics in order to obtain frequency and damping characteristics for comparison

with those from first and third order piston theory solutions. Results indicate

that the aeroelastic behavior is comparable when using Euler and third order

piston theory aerodynamics. The transonic aeroelastic behavior of the wing is

also analyzed using Euler aerodynamics. The aerothermoelastic behavior of the

wing, using piston theory aerodynamics, is studied by incorporating material

property degradation and thermal stresses due to non-uniform temperature

distributions. Results indicate that aerodynamic heating can substantially

reduce aeroelastic stability. Finally, hypersonic aeroelastic behavior of a generic

vehicle resembling a reusable launch vehicle is performed using piston theory.

The results presented serve as a partial validation of the CFL3D code for the

hypersonic flight regime.

Nomenclature

a Nondimensional offset between the elastic axis and the midchord, positive for elastic axis
behind midchord

a∞ Speed of sound
b Semi-chord
c Reference length, chord length of double-wedge airfoil
CL, CM , CD Coefficients of lift, moment about the elastic axis, and drag
Cp Coefficient of pressure
f1() Function relating Mach number and temperature
h Airfoil vertical displacement at Elastic Axis
Iα Mass moment of inertia about the Elastic Axis
Kα,Kh Spring constants in pitch and plunge respectively; Kα = Iαω2

α,Kh = mω2

h
M free stream Mach number
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M,K Generalized mass and stiffness matrices of the structure
m Mass per unit span
Mf Flutter Mach number
nm Number of modes used
p Pressure
p∞ Free-stream pressure
Q Generalized force vector for the structure
Qi Generalized force corresponding to mode i
q∞ Dynamic pressure
qi Modal amplitude of mode i
rα Nondimensional radius of gyration
S Surface area of the structure
Sα Static mass moment of wing section about elastic axis
TREF Reference temperature used to scale nondimensional temperature distribution
TE Kinetic energy of the structure
t Time
th Airfoil half thickness
UE Potential energy of the structure
V Free stream velocity
vn Normal velocity of airfoil surfaces
w Displacement of the surface of the structure
xα Nondimensional offset between the elastic axis and the cross-sectional center of gravity,

positive for center of gravity behind elastic axis
x, y, z Spatial Coordinates
Z(x, y, t) Position of structural surface
α Airfoil pitch displacement about the Elastic Axis
αs Static angle of attack
γ Ratio of specific heats
µm Mass ratio
ρ Air density
ωα, ωh Natural frequencies of uncoupled pitch and plunge motions
Φ Modal matrix
φi mode shape for mode i

τ Thickness ratio; τ =
th
b

ζ Damping ratio

(̇), (̈) First and second derivatives with respect to time

I. Introduction and Problem Statement

Hypersonic aeroelasticity and aerothermoelasticity was a vibrant and active area of research in the late
1950’s and during the 1960’s as evident from Refs.1–4 This research has been instrumental in providing the
basis for the aerothermoelastic design of the space shuttle. For a considerable time period there was only
limited interest in this area until the advent of the National AeroSpace Plane (NASP).

In recent years, renewed activity in hypersonic flight research has been stimulated by the need for a
low cost, single-stage-to-orbit (SSTO) or two-stage-to-orbit (TSTO) reusable launch vehicle (RLV) and the
long term design goal of incorporating air breathing propulsion devices in this class of vehicles. The X-
33, an example of the former vehicle type, was a 1/2 scale, fully functional technology demonstrator for
the full scale VentureStar. Another ongoing hypersonic vehicle research program is the NASA Hyper-X
experimental vehicle effort. Other activities are focused on the design of unmanned hypersonic vehicles that
meet the needs of the US Air Force. The present study is aimed at enhancing the fundamental understanding
of the aeroelastic behavior of vehicles that belong to this category and operate in a typical hypersonic flight
envelope.

Vehicles in this category are based on a lifting body design. However, stringent minimum-weight re-
quirements imply a degree of fuselage flexibility. Aerodynamic surfaces, needed for control, are also flexible.
Furthermore, to meet the requirement of a flight profile that spans the Mach number range from 0 to 15, the
vehicle must withstand severe aerodynamic heating. These factors combine to produce unusual aeroelastic
problems that have received only limited attention in the past. Furthermore, it is important to emphasize
that testing of aeroelastically scaled wind tunnel models, a conventional practice in subsonic and supersonic
flow, is not feasible in the hypersonic regime. Thus, the role of aeroelastic simulations is more important for
this flight regime than in any other flight regime.

Previous studies in this area can be separated into several groups. The first group consists of studies
focusing on panel flutter, which is a localized aeroelastic problem representing a small portion of the skin on
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the surface of the hypersonic vehicle. Hypersonic panel flutter has been studied by a number of researchers,
focusing on important effects such as aerodynamic heating,5 composite construction6,7 and nonlinear struc-
tural models with initial panel curvature.8,9 A comprehensive review of this research can be found in a
recent survey paper.10

The second group of studies in this area was motivated by a previous hypersonic vehicle, namely the
NASP.11–17 However, some of these studies dealt with the transonic regime, because it was perceived to
be quite important. Spain et al.12 carried out a flutter analysis of all-movable NASP-like wings with
slab and double-wedge airfoils. They found that using effective shapes for the airfoils obtained by adding
the boundary layer displacement thickness to the airfoil thickness improved the overall agreement with
experiments. Aerothermoelastic analyses of NASP-like vehicles found that aerodynamic heating altered the
aeroelastic stability of the vehicle through the degradation of material properties and introduction of thermal
stresses.15–17

The third group of studies is restricted to recent papers that deal with the newer hypersonic configurations
such as the X-33 or the X-34. Reference 18 considered the X-34 launch vehicle in free flight at M = 8.0. The
aeroelastic instability of a generic hypersonic vehicle, resembling the X-33, was considered in Ref. 19. It was
found that at high hypersonic speeds and high altitudes, the hypersonic vehicle is stable, when piston theory
is used to represent the aerodynamic loads. Sensitivity of the flutter boundaries to vehicle flexibility and trim
state were also considered.19 In another reference,20 CFD-based flutter analysis was used for the aeroelastic
analysis of the X-43 configuration, using system identification based order reduction of the aerodynamic
degrees of freedom. Both the structure and the fluid were discretized using the finite element approach. It
was shown that piston theory and ARMA Euler calculations predicted somewhat similar results.

From the studies on previous hypersonic vehicles,11,20–22 one can identify operating envelopes for each
vehicle. A graphical representation of these operating conditions is shown in Fig. 1. This figure is a
convenient illustration of the operational envelope of generic hypersonic vehicles.

Recently, the authors of this paper described an aeroelastic analysis capability for generic hypersonic
vehicles in the Mach number range 0.5 < M < 15.0, using computational aeroelasticity.23,24 The computa-
tional tool consisted of a combination of the CFL3D code and a finite element model of a generic hypersonic
vehicle utilizing MSC.NASTRAN. The focus of these studies23,24 was on the aeroelastic behavior of a two di-
mensional double-wedge airfoil, operating in the Mach number range of 2.0 < M < 15.0 at various altitudes.
In these studies, the double-wedge airfoil was identified as a suitable candidate for exploring the various
computational aspects of hypersonic aeroelasticity. This paper continues to explore fundamental aspects
of hypersonic aeroelasticity using computational tools and it focuses on three-dimensional low aspect ratio
wings and complete generic hypersonic vehicle configurations. The specific objectives of the paper are:

1. Generate aeroelastic stability boundaries of a typical cross-section, based on the double-wedge airfoil
and a three-dimensional low aspect ratio wing, in hypersonic flow using piston theory, for comparison
with more refined computations.

2. Study the time-step and mesh requirements for the reliable computation of the unsteady airloads for
this particular problem using the Euler and Navier-Stokes options of CFL3D.

3. Compare the aeroelastic behavior initially predicted using piston theory aerodynamics with refined
solutions for the same problem, using unsteady aerodynamic loads based on complete Euler and Navier-
Stokes solutions.

4. Incorporate aerodynamic heating in an approximate manner in order to calculate aerothermoelastic
responses.

5. Extend the analysis to a generic hypersonic vehicle that has features resembling a reusable launch
vehicle.

Finally, it is important to note that these objectives not only enhance our fundamental understanding of
hypersonic aeroelasticity, but also make a valuable contribution towards the validation of the CFL3D code
for hypersonic flight conditions.

II. Method of Solution

The computational aeroelastic solutions in the present study are obtained using the CFL3D code.25 The
CFL3D code is used to generate both steady and unsteady air loads, and it also produces the aeroelastic
transients and response solutions. The combination between the fluid and structure is accomplished using
the free vibration modes of the vehicle.
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A. Euler/Navier-Stokes Solver in CFL3D
The aeroelastic analysis of the system is carried out using the CFL3D code. The code uses an implicit,

finite-volume algorithm based on upwind-biased spatial differencing to solve the time-dependent Euler and
Reynolds-averaged Navier-Stokes equations. Multigrid and mesh-sequencing are available for convergence
acceleration. The algorithm, which is based on a cell-centered scheme, uses upwind-differencing based on
either flux-vector splitting or flux-difference splitting, and can sharply capture shock waves. For applications
utilizing the thin-layer Navier-Stokes equations, different turbulence models are available. For time-accurate
problems using a deforming mesh, an additional term accounting for the change in cell-volume is included
in the time-discretization of the governing equations. Since CFL3D is an implicit code using approximate
factorization, linearization and factorization errors are introduced at every time-step. Hence, intermediate
calculations referred to as “subiterations” are used to reduce these errors. Increasing these subiterations
improves the accuracy of the simulation, albeit at increased computational cost.

B. Aeroelastic Option in CFL3D
The aeroelastic approach underlying the CFL3D code is similar to that described in Refs. 26 and 27.

The equations are derived by assuming that the general motion w(x, y, t) of the structure is described by a
number of modes represented by Eqn. (1):

w(x, y, t) =

nm
∑

i=1

qi(t)φi(x, y) (1)

The functions φi(x, y) represent the free vibration modes of the vehicle obtained from a finite element
model. The aeroelastic equations of motion are obtained from Lagrange’s equations,

d

dt

(

∂TE

∂q̇i

)

−
∂TE

∂qi

+
∂UE

∂qi

= Qi, i = 1, 2, ... (2)

which yield
Mq̈ + Kq = Q(q, q̇, q̈), qT = [q1 q2 ...] (3)

where the elements of the generalized force vector are given by,

Qi =
ρV 2

2
c2

∫

S

φi

∆p dS

ρV 2/2 c2
(4)

The aeroelastic equations are written in terms of a linear state-space equation (using a state vector of the
form [... q̇i−1 qi q̇i qi+1 ...]T ) such that a modified state-transition-matrix integrator can be used to march
the coupled fluid-structural system forward in time.

The aeroelastic capabilities of CFL3D, based on this modal response approach for obtaining the flutter
boundary, have been partially validated for the transonic regime for the first AGARD standard aeroelastic
configuration for dynamic response, Wing 445.6. The results of flutter calculations using Euler aerodynam-
ics are given in Ref. 28 and those using Navier-Stokes aerodynamics are given in Ref. 29. However, these
calculations were limited to the transonic regime.

C. Computational Methods for Fluid-Structure Coupling
Prediction of the dynamic response of a flexible structure in a fluid requires the simultaneous solutions

of the equations of motion of the structure and the fluid. In order to impose the kinematic boundary condi-
tions on the fluid mesh at the new time step, the location and velocity of the fluid-structure boundary must
first be known. This requires the solution of the entire system of equations for the structure, a task which
cannot be carried out till the current surface pressure is known, which depends on the solution of the fluid
domain and thus also on the unknown boundary conditions during the current time step. In addition, the
discretized model of the structure uses a Lagrangian approach by following a point located on the structure
over time, while the discretized model of the fluid uses an Eulerian approach by computing the flow quan-
tities at a specific location in space over time. Therefore, coupling the two systems is a fairly complicated
endeavor. A straightforward approach to the solution of the coupled fluid-structure system requires chang-
ing the fluid grid at each time-step, which is computationally very expensive. Therefore, several different
approaches have emerged as alternatives to partial regridding in transient aeroelastic computations, among
them being dynamic meshes,30 the space-time formulation,31–33 the Arbitrary/Mixed Eulerian-Lagrangian
formulation,34,35 the multiple-field formulation36,37 and the transpiration method.20,38

In the dynamic mesh approach,30 the edges of each element are represented as springs, with stiffnesses
inversely proportional to the length of the edge. Grid points on the outer boundary of the mesh are held fixed,
and the instantaneous locations of points on the inner boundary (body) are prescribed by the body motion.
At each time-step, the static equilibrium equations along the coordinate axes are solved iteratively at each

4
American Institute of Aeronautics and Astronuatics



interior node of the grid for its displacements. This is accompanied by a predictor-corrector method, which
first predicts the displacements according to a linear extrapolation and then corrects these displacements
using several Jacobi iterations of the static equilibrium equations. To avoid errors induced by the moving
mesh, a geometric conservation law needs to be satisfied which relates the change in the area/volume of a
cell to the area/volume swept by the boundary of the cell. This is the method used in CFL3D.

The Space-Time approach31–33 attempts to discretize the space-time domain using finite elements, i.e.,
the finite element mesh covers the complete space-time domain. The variational formulation of the problem
is written over the associated space-time domain. While the motion of the boundary is explicitly unknown,
the location of the boundary nodes at the end of a time-step are related to the other unknowns (i.e. velocity,
displacement) at the boundary of the spatial domain. The solution to this space-time variational problem
includes the complete motion of the spatial domain within the time-period of interest. Another advantage of
this approach is that it allows the use of spatially local time steps within a temporally accurate formulation.31

When applying this method to aeroelastic problems, a simultaneous solution of the fluid and the structure
over the combined space-time domains is the natural extension. However, in such a case , the solution and
variational function spaces needs to include functions which are discontinuous across the interface.

The Lagrangian approach applied to fluid flows provides a clear delineation of interfaces and well-resolved
details of the flow, but is limited by its inability to cope with large motions of particles as seen in high speed
flows. On the contrary, in the Eulerian formulation, large motions can be handled with relative ease,
but generally at the expense of precise feature definition and resolution of detail. Both the Lagrangian
and Eulerian approaches present advantages and drawbacks, and the Arbitrary Lagrangian-Eulerian (ALE)
method attempts to combine the best features of both descriptions.34 This is done by considering a reference
frame which moves at a non-zero velocity, and is also different from the particle velocity. The conservation
laws are then rederived in this frame. However, this method is primarily intended to simplify the treatment
of the boundary nodes, or to provide a rezoning capability for the fluid mesh. In the Mixed Lagrangian-
Eulerian method,35 the governing equations for both the fluid and the structure are formulated in integral
conservation form based on the same Lagrangian-Eulerian description. At the fluid-structure boundary, there
is a switch from the Lagrangian-Eulerian description to a Lagrangian description, and from Cartesian to
generalized coordinates. The entire fluid-structure continuum is treated as one continuum dynamics problem,
while allowing for different discretizations in the two domains. The same numerical integration algorithm
can then be used throughout all elements in the field meshes covering the fluid-structure system.

In the Multiple Field formulation,36 the moving mesh is viewed as a psuedostructural system with its
own dynamics and thus the coupled transient aeroelastic problem is formulated as a three-field problem: the
fluid, the structure and the dynamic mesh. The four-field formulation of aerothermoelasticity37 was proposed
as an extension of the three-field formulation above, to study phenomena involving fluid-structure-thermal
interaction. At present, only a one-way thermal mechanical coupling has been implemented. Thus, a change
in temperature only causes stress and deformations, but not vice versa. The transfer of thermal quantities
from the structure to the flow at the interface utilizes a wall law function, and the transfer of discretized
heat fluxes from the fluid to the structure is expressed via a heat flux equilibrium condition.

Finally, the transpiration method is a means by which to “trick” the flow solver into seeing a deflection
in the mesh that is not actually there. If a change in the surface normal is known, from a structural dynamic
solver for example, then this change in the normal surface can be applied directly to the existing CFD grid
through a slight modification of the existing surface normals. With transpiration, the nodes affected by a
surface deflection simply require a modification of the existing surface normals. Even though the surface
is not actually deflected, the flow solver sees the deflected normal at the corresponding nodal locations.
However, this method has seen limited usage in computational aeroelasticity.

D. General Overview of the Solution Process
The solution process of the computational aeroelasticity problem used in the present study is shown in

Fig. 2. First, the vehicle geometry is created using CAD software, and from this geometry a mesh generator,
in this case ICEM CFD, is used to create a multi-block structured mesh for the flow domain around the body.
In parallel, an unstructured mesh is created for the finite element model of the structure using the same
nodes on the vehicle surface that were used to generate the fluid mesh. Subsequently, the fluid mesh is used
to compute the flow around the rigid body using a CFD solver, which consists of the CFL3D code developed
by NASA Langley Research Center. The structural mesh is used to obtain the free vibration modes of the
structure by finite element analysis using MSC.NASTRAN. The modal displacements at the nodes in the
fluid mesh is then obtained by interpolation from the nodes in the structural mesh. Using the flow solution
as an initial condition, and the modal information, an aeroelastic steady state is obtained. For a geometry
with vertical symmetry at zero angle of attack the aeroelastic steady state is the same as the undeflected
state. Next, the structure is perturbed in one or more of its modes by an initial modal velocity condition, and
the transient response of the structure is obtained. To determine the flutter conditions at a given altitude,
aeroelastic transients are computed at several Mach numbers and the corresponding dynamic pressures.
The frequency and damping characteristics of the transient response for a given flight condition and vehicle
configuration can be determined from the moving block approach, which analyzes the Fourier transform of
a discretely sampled transient signal.39 This approach applied to the same altitude and vehicle configura-
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tion for a range of Mach numbers results in a series of damping values for the system. The flutter Mach
number can be estimated from this series by interpolating the damping data points to identify zero damping.

E. Computational Model for the Three-Dimensional Low Aspect Ratio Wing and Grid Con-
vergence Studies

Few studies40,41 have been carried out that validate CFL3D for the hypersonic regime. In part, this
is because CFL3D was not originally designed for modeling hypersonic flow, and does not contain support
for computing real-gas effects. However, depending on the flows to be studied, and on which flow variables
are the most relevant, sufficiently accurate solutions may be calculated even when ignoring real gas effects.
These studies40,41 compared the pressure distributions and static and dynamic stability derivatives of cones
and ogive-cylinder bodies obtained using CFL3D with results obtained using a unified hypersonic/supersonic
panel method in the range 3 < M < 6. However, no attempt was made in these studies to compare aeroelastic
stability boundaries obtained with CFL3D.

A systematic validation of the CFL3D code for flutter analysis in the hypersonic regime has never been
undertaken. To validate aeroelastic stability boundaries computed with CFL3D, it is important to identify
and use simple configurations for which aeroelastic stability boundaries can be computed using alternative
approaches. Previously, the authors of this paper studied extensively the aeroelastic behavior of a simple
two-dimensional, double-wedge airfoil using the Euler and Navier-Stokes solvers in CFL3D, as well as higher
order piston theory, in the hypersonic regime.23,24 The three-dimensional low aspect ratio wing, shown in
Fig. 3, which is representative of a fin or control surface on a generic hypersonic vehicle, is a logical choice for
extending the previous results to the three-dimensional case. Generating results for this configuration using
Euler and Navier-Stokes unsteady aerodynamic loads, and comparing them with results obtained using an
independently developed aeroelastic code based on piston theory, represents another validation of CFL3D in
the hypersonic regime.

In CFD computations, insufficient fluid mesh “quality” is detrimental to accurate prediction of the flow
characteristics and aerodynamic loads present on a body. The development of a high quality mesh, however,
becomes a challenging task for three-dimensional configurations due to limits in computational resources.
While the mesh must have sufficient resolution to adequately capture the flow characteristics, the number of
cells in the mesh is limited by the available computational resources. Due to this restriction, it is necessary
to distribute the cells around the body in an efficient manner.

The fidelity of a mesh is determined by studying the steady flow around a particular body. The steady
flow around the low aspect ratio wing is an excellent test case due to its double-wedge cross-section. At
supersonic Mach numbers and small angles of attack, an attached oblique shock will form at the leading
and trailing edges of the wing, while an expansion fan is present at mid-chord. For inviscid flow, the surface
pressure is a step function, where the discontinuity appears at mid-chord.

In order to determine the best distribution of cells around the wing, four different meshes were constructed
with different computational domains and cell spacing. The root section plane of the computational domain
for each test case (MESH1, MESH2, MESH3 and MESH4) is shown in Figs. 4 - 7. MESH2 - MESH4 have
the same computational domain, however the cell spacing normal to the wing surface is varied as shown.
The computational domains of MESH1 and MESH4 are shown in Figs. 8 and 9, respectively. Note that
MESH1 occupies a larger domain around the wing than MESH2-MESH4. Also, the cell spacing in MESH1
is primarily uniform, however, a small decrease in cell spacing is present at the leading and trailing edges
and mid-chord. As illustrated in Figs. 5 - 7, the outer boundary of MESH2-MESH4 surrounding the leading
surface of the wing (leading edge to mid-chord) was set at a distance 10% beyond the shock that forms at
M = 5.0. This Mach number was chosen as an upper bound of the computational domain for the leading
portion of the wing since it was not expected that flutter calculations would have to be carried out below
M = 5.0. The number of cells used in each test case is listed in Table 1.

The inviscid pressure distribution for each test case, at a cross-section located at 75% span of the wing,
is shown in Fig. 10. The computations were conducted at both a moderate (M = 5.0) and high (M = 16.0)
Mach number, at an altitude of 40,000 ft. The importance of the mesh used in the flow calculations is clearly
illustrated. As stated, the pressure at a cross-section of the wing should be a step function, with the pressure
constant from leading edge to mid-chord, and mid-chord to trailing edge; with the discontinuity at mid-
chord. However, as illustrated in Fig. 10, the surface pressure predicted using MESH1 is non-uniform over
the forward and aft sections. This indicates that neither the shock nor the expansion fan is captured well,
and the discontinuity in pressure is distributed over a large number of streamwise grid points. Furthermore,
while MESH2 - MESH4 all capture the leading edge shock, only MESH4 correctly simulates a sharp change
in pressure at mid-chord. This is particularly visible at M = 16.0. Comparison of Figs. 11 and 12 illustrates
the efficiency of the smaller computational domain at high Mach number. Most of the fluid cells in MESH4
are within the domain of influence of the flow, while the majority of the cells in MESH1 are outside the
domain of influence. Based on these observations, MESH4 was selected from amongst the four grids since it
accurately and efficiently captured the characteristics of the flow around the wing.

A necessary step in the selection of a mesh for fluid computations is the determination of a converged flow
solution for a static case. Therefore, a convergence study of MESH4 was conducted in order to determine
the necessary resolution for accurate prediction of the wing airloads. To perform this study, four additional
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grids (2 coarser, 2 finer) based on MESH4, were constructed. The CL and CM at αs = 1◦ were compared
by calculating the percent difference between the results obtained for each mesh to the finest mesh (5.1x106

cells). These quantities are listed in Tables 2 and 3. In general, most of the coarser grids are within 2% of the
finest grid predictions, while only the coarsest grid at the highest Mach number has a difference greater than

3%. In addition, the L2 and L∞ norms of the error in
p

p∞
at each grid point on the surface of the wing were

calculated for each mesh relative to the finest mesh. These quantities are listed in Tables 4 and 5. Typically,
in a mesh-convergence study, the goal is to see the error norms decrease as the grid gets finer, to an order of
magnitude of fractions of a percent. However, that goal is really only achievable in smooth solutions. The
flows computed here are discontinuous, and so these discrete error norms are dominated by the fact that
the shock location and thickness, when slightly different on the current mesh and finest mesh, leads to O(1)
error norm. In contrast, the lift and moment are less sensitive to exact locations of the discontinuities since
they are integral functions of the pressure. Therefore, the CL and CM calculations are selected in this case
as the best indicators of convergence. Comparing CM obtained with the various grids is also significant due
to the important role of the torsional moment in aeroelastic stability studies. Steady flow solutions, using
MESH4 with 0.63x106 cells, and the Euler solver in CFL3D, are obtained in 1 hour using 6 Athlon 2000MP
CPUs.

The boundary layers in hypersonic flow are much thicker than those present at more moderate Mach
numbers.42,43 In addition, the shock and expansion fan lie close to the body. This implies that the boundary
layer occupies a large portion of the shock layer.42,43 Based on these observations, MESH4 could also be
used for Navier-Stokes computations, since the majority of grid points are clustered in the vicinity of the
wing surface. As a further test of this fluid mesh, the grid convergence study described previously was
repeated using the Navier-Stokes solver in CFL3D. Tables 6 - 8 list the percent difference in CL, CM ,
and CD respectively for each mesh relative to the finest mesh (5.1x106 cells). These results imply that
more resolution is necessary in the mesh when solving the Navier-Stokes equations as opposed to the Euler
equations; however, these results are preliminary.

Tables 9 and 10 list the L2 and L∞ norms, respectively, for each grid. Similar to the inviscid case, the
L2 and L∞ norms of the surface pressure are large due to large changes in pressure at the leading edge and
mid-chord of the wing. Therefore, as before, comparisons of the airloads are a better indicator of convergence.

Figure 13 illustrates the flow pattern around at the 75% span station of the wing using MESH4 with
0.63x106 cells. Steady flow solutions, using MESH4 with 0.63x106 cells, and the Navier-Stokes solver in
CFL3D, are obtained in 1.4 hours using 6 Athlon 2000MP CPUs.

Based on these results, MESH4 was selected for the aeroelastic computations on the low aspect ratio wing.
With 0.63x106 cells, this grid is a 57x353x33 C-grid with 353 points around the wing and its wake (289 points
on the wing surface), 57 points extending spanwise from the root (49 points on the wing on the wing surface),
and 33 points extending radially outward from the surface. Figure 9 illustrates the computational domain
for this mesh. The root section plane, shown in Fig. 7, of the computational domain extends one-half
root chord-lengths downstream. The boundary of the grid surrounding the wing, from the leading edge to
mid-chord, extends to a distance 10% beyond the shock that forms at M = 5.0. The computational domain
in the spanwise direction also extends beyond the tip of the wing by 35% of the semi-span length. Further-
more, the grid is tapered, in all three dimensions, so as to be compatible with the geometric taper of the wing.

F. Piston Theory Aerodynamics
Piston theory is a simple inviscid unsteady aerodynamic theory, that has been used extensively in su-

personic and hypersonic aeroelasticity. It provides a point-function relationship between the local pressure
on the surface of the vehicle and the component of fluid velocity normal to the moving surface.44,45 The
derivation utilizes the isentropic “simple wave” expression for the pressure on the surface of a moving piston,

p(x, t)

p∞
=

(

1 +
γ − 1

2

vn

a∞

)

2γ

(γ−1)

(5)

where

vn =
∂Z(x, y, t)

∂t
+ V

∂Z(x, y, t)

∂x
(6)

The expression for piston theory is based on a binomial expansion of Eq. (5), where the order of the

expansion is determined by the ratio of
vn

a∞

. Reference 45 suggested a third-order expansion, since it

produced the smallest error of the various orders of expansion used when compared to the limiting values of
pressure, namely the “simple wave” and “shock expansion” solutions. The third-order expansion of Eq. (5)
yields

p(x, t) − p∞ = p∞

[

γ
vn

a∞

+
γ(γ + 1)

4

(

vn

a∞

)2

+
γ(γ + 1)

12

(

vn

a∞

)3
]

(7)
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Combining Eqns. 1, 4, 6, and 7 yields the generalized forces obtained from piston theory. First order
piston theory is obtained when only the first term in Eqn. 7 is used, while third order piston theory is
obtained when all three terms in Eqn. 7 are used.

III. Results and Discussion

Comparison of aeroelastic stability results based on Euler, Navier-Stokes and piston theory in Refs. 23
and 24 provided an indication about the importance of viscosity, and the effectiveness of piston theory in
approximating the aeroelastic behavior of a double-wedge airfoil. A similar approach is pursued here for a
three-dimensional low aspect ratio wing that resembles the wing of the Lockheed F-104 Starfighter. This
configuration is used to compare first and third order piston theory with Euler aerodynamics. Furthermore,
the aerothermoelastic behavior of this configuration is studied in an approximate manner by introducing
thermal stresses and material property degradation due to temperature effects. Finally, the aeroelastic
behavior of a generic hypersonic vehicle is studied using first and third order piston theory.

In Ref. 24, a careful numerical study was carried out to determine the appropriate time step sizes required
for modeling the unsteady aerodynamics when using the Euler and Navier-Stokes solvers in CFL3D. These
results were based on a double-wedge airfoil resembling a typical cross-section of the low aspect ratio wing
located at 75% of span, which is shown in Fig. 14. The parameters describing this configuration are listed
in Table 11, and further details are given in Ref. 24. The aeroelastic behavior of the double-wedge airfoil,
obtained using different unsteady aerodynamic loads, is shown in Fig. 15. Use of piston theory yields flutter
at Mf=12.01, while the Euler loads reduce the boundary to Mf=9.39, and the Navier-Stokes based loads
result in a further reduction to Mf=8.97.

A. Aeroelastic Behavior of a Three-Dimensional Low Aspect Ratio Wing
The parameters describing the physical properties of the three-dimensional low aspect ratio wing are

shown in Table 12 and Fig. 3. This wing is assumed to be representative of the control surface of a
generic hypersonic vehicle and therefore its aeroelastic behavior at hypersonic speeds is studied. The natural
frequencies and modes, shown in Fig. 16, were determined by comparing them with the bending and torsional
frequencies and total mass of a wing that resembles the Lockheed F-104 wing. Flutter of the low aspect
ratio wing was calculated using first and third order piston theory aerodynamics and Euler aerodynamics
in the hypersonic regime. Furthermore, the aeroelastic behavior of the low aspect ratio wing was also
studied through the transonic regime using Euler aerodynamics. The time step size used was selected to
accommodate 50 steps per cycle of the highest frequency mode, for the Euler simulations. For the low aspect
ratio wing, this resulted in a smaller time step than that required for modeling the unsteady aerodynamic
loads.

The sensitivity of the aeroelastic behavior of the wing to the number of modes is illustrated in Table 13.
It is evident that increasing the number of modes from 5 to 8 has little effect on the aeroelastic behavior
when piston theory aerodynamics is used. However, it is also clear that at least five modes are needed to
capture the aeroelastic behavior. Analysis of the aeroelastic behavior of the low aspect ratio wing in the
hypersonic regime reveals several interesting results. Figure 17 shows the results for the low aspect ratio
wing using first and third order piston theory (Mf = 23.8, and Mf = 13.5 respectively). In both cases there
is a coalescence of the first and second natural frequencies of the wing with increasing Mach number, during
which the first mode begins to approach zero damping. However, despite the similar trends in damping and
frequency, the critical Mach number is over predicted by nearly 80% when using first order piston theory.
This discrepancy is associated with the neglect of thickness in first order piston theory. Figure 18 shows the
aeroelastic behavior of the wing when using Euler aerodynamics (Mf = 13.8). Comparisons of these results
with the aeroelastic behavior using third order piston theory aerodynamics illustrates remarkable similarities.
While the damping is somewhat different between the two models below M = 12.0, both produce similar
damping levels beyond M = 12.0 to flutter. However, the Euler simulation predicts that the second mode
approaches zero damping first, while for piston theory the first mode loses damping. Both models predict
nearly identical changes in frequency of the modes as the Mach number is increased. Also, for both cases
there is a coalescence of the first and second modal frequencies with increasing Mach number, while the
third to fifth modal frequencies are independent of Mach number. Also, the third to fifth modal damping
values are relatively independent of Mach number. It is interesting to note that the difference in flutter
boundaries between Euler and piston theory for the wing is merely 2%, while the difference between these
two calculations for the two-dimensional configurations was 20-25%.24 It is interesting to note that, for the
case of the three-dimensional wing, using Euler aerodynamics results in a higher value of Mf when compared
to third order piston theory. While from the two-dimensional results, the Euler loads produced a value of
Mf lower than that obtained from piston theory.

Figure 19 illustrates the aeroelastic behavior of the low aspect ratio wing in the transonic regime at
sea level, since this is the most critical loading case. It is evident that the wing is stable throughout the
transonic regime. However, it should be noted that while the modal frequencies of the system remain
relatively unchanged, there is an initial increase in stability at M = 0.9 when compared to M = 0.5, followed
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by a decrease in stability as the Mach number increases to M = 1.2. In particular, the second to fifth modes
seem to have lower levels of damping throughout the transonic regime when compared to the values at M
= 0.5. While the first and second modes have an initial decrease in damping levels as the Mach number is
increased from the transonic regime to M = 1.2, an additional increase in Mach number to M = 1.5 does not
result in a further decrease in damping. These results suggest that the wing is stable through the transonic
regime up to the supersonic regime.

Finally, it should be mentioned that aeroelastic results for the low aspect ratio wing using the Navier-
Stokes solver in CFL3D are currently in progress.

B. Aerothermoelastic Behavior of the Low Aspect Ratio Three-Dimensional Wing
A realistic model for the hypersonic regime must include aerodynamic heating effects. Aerodynamic

heating significantly alters the flow properties,46 degrades the material properties and also introduces thermal
stresses.47–49 Aerodynamic heating of the surrounding airflow leads to significantly different thermodynamic
and transport properties, high heat-transfer rates, variable γ, possible ionization, and nonadiabatic effects
from radiation.46,47 Thermal stresses can arise from rapidly changing conditions of heat input where time
lags are involved, or from equilibrium conditions of non-uniform temperature distribution.48,49 Commonly,
the heated structure has lowered stiffness due to material degradation and thermal stresses, which manifests
themselves as a reduction in frequencies.48–50

An accurate treatment of aerothermoelasticity requires the coupling of the unsteady heat transfer problem
with the aeroelastic problem based on the Navier-Stokes solution of the unsteady airloads. Instead of dealing
with this formidable problem, the results presented here are exploratory and are focused on gaining a basic
understanding of the importance of this effect. Therefore, approximate calculations are carried out by
considering the effect of non-uniform elevated temperatures on the structural stiffness, associated frequencies,
and mode shapes.

Again, the low aspect ratio cantilevered wing is a convenient example for studying the effects of aerody-
namic heating. For such a configuration the restrained warping at the root of the wing will induce thermal
stresses which in turn will affect the torsional stiffness of the wing and modify its frequencies and mode
shapes. The effect of warping restraint increases as the aspect ratio of a structure diminishes.51 Early stud-
ies of this effect52 indicate that by modeling a low aspect ratio wing as a plate, the effect of warping restraint
is inherently included. More recently, this effect has been studied in the context of composites.53,54 In these
studies, it has been pointed out that warping restraint is not only important for low-aspect ratio metallic
structures, but also for composite structures where the material proprieties are non-isotropic. Furthermore,
it was shown that the warping stiffness of a cantilever plate was a function of both aspect ratio, and the
ratio of bending/torsion stiffness.1,53 This observation is important for hypersonic vehicles where structural
properties are altered by aerodynamic heating.

As a first approximation of the effects of aerodynamic heating, a simple aerothermoelastic study has been
conducted by assuming a steady nonuniform temperature distribution, that varies with Mach number. This
temperature distribution is used to calculate the changes in stiffness and mode shapes associated with the
low aspect ratio wing. Two factors induce the changes: (a) degradation of the modulus of elasticity with
temperature, and (b) thermal stresses. The thermal stresses are computed with MSC.NASTRAN.

Since the low aspect ratio wing has a double-wedge cross-section, it is assumed that the temperature
distribution due to aerodynamic heating has a parabolic shape with peaks located at the leading and trailing
edges, and a minimum at mid-chord;55 as shown in Fig. 20. To examine the effect of heating on the modes
the assumed temperature distribution is normalized by TREF , and the reference temperature is varied.
The heated modes and frequencies of the wing are determined using the “Nonlinear Statics Solution” in
MSC.NASTRAN (Sol 10656) with the normal modes option selected. Data on the dynamic modulus of
elasticity for various alloys, including the 2024-T3 Aluminum alloy used in the present study, is given in Ref.
57. The changes in the natural frequencies of the low aspect ratio wing due to the combined effect of thermal
stresses and reduction of Young’s modulus are shown in Fig. 21. As expected, each of the natural frequencies
decrease with decreasing temperature. It is interesting that the fourth mode experiences a large reduction
in frequency over a relatively small temperature range (230◦ < TREF < 240◦), suggesting the occurrence
of thermal buckling. Furthermore, after a smooth decline in frequency until TREF = 200◦, the frequencies
of all the modes change discontinuously as the temperature is incremented further. Since thermal stresses
are present in the structure, it is important to study changes in the mode shapes as a function of increasing
temperature. The mode shapes at TREF = 200◦, TREF = 232◦ and TREF = 281◦ are shown in Figs. 22,
23, and 24 respectively. Around TREF = 200◦, a large wrinkle appears in each of the modes near the root
at the leading and trailing edges of the wing. Furthermore, comparing these mode shapes with the baseline
modes shown in Fig. 16 illustrates that the fourth mode has changed in character from a torsional mode, to
a mode where the deformation takes place locally near the root of the trailing edge. A further increase in
temperature results in similar mode shapes between the third and fourth modes. Furthermore, the wrinkling
of the leading and trailing edges has propagated further out towards the wing tip. It is important to note that
these plots are only snapshots at a given temperature, and therefore may not be representative of the broad
changes in mode shapes that takes place throughout the temperature spectrum. These figures indicate that
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further study is needed in order to develope an improved understanding for the combined effect of thermal
stresses and non-uniform temperature changes on the modal behavior of low aspect ratio wings.

An aerothermoelastic study with modified mode shapes requires a relation between the reference tem-
perature, TREF and flow Mach number for the low aspect ratio wing. This relationship is predicated on the
existence of a thermal protection system (TPS). The assumed TPS provides a linear increase in temperature
from 200oF at M=3.5 to 350oF at M=10.0. Above M=10.0, the TPS loses effectiveness and the temperature
increases such that it is proportional to the adiabatic wall temperature, reaching a temperature of 1000oF
at M=20.0. This variation is described by,

TREF = f1(M)
= 200 + 23.08(M − 3.5) 2 ≤ M ≤ 10
= 318.12 + 4.19(M − 7.25)2 10 < M ≤ 20

(8)

and it is depicted in Fig. 25.
Using this relationship between Mach number and reference temperature, the modes and frequencies are

calculated at a given Mach number. Piston theory aerodynamics is used in conjunction with these heated
modes and frequencies to determine aeroelastic damping and frequency characteristics at an altitude of
40,000 ft. The resulting flutter boundary for the heated low aspect ratio wing is shown in Fig. 26. It is
evident that the heating of the structure has a dramatic effect on the flutter boundary of the wing. The
dramatic drop in frequency of the fourth mode around M = 5.0 (TREF = 235◦) resulted in an instantaneous
loss of stability in the system. Even with a small step in Mach number and temperature, no damping or
frequency characteristics could be calculated as the Mach number approached M = 5.0, as illustrated by
the lack of values through this range of Mach number. However, as the temperature and Mach number was
increased past M = 5.25 (TREF = 240◦) stability was regained until M = 9.0 (TREF = 327◦). Comparing
these results to the baseline case shown in Fig. 17 (Mf = 13.8) illustrates a large reduction in aeroelastic
stability when the wing is heated. These results demonstrate the importance of correctly modeling aerody-
namic heating on a flexible structure. Further study of this topic is in progress.

C. Aeroelastic Behavior of a Generic Reusable Launch Vehicle
The model employed in this study is a vehicle that resembles a generic reusable launch vehicle. It consists

of a lifting body and canted fins, shown in Fig. 27. The dimensions of the generic vehicle are 76.2 ft. length,
45.54 ft. width, and 6 ft. thickness. The canted fins have a span of 18 ft. with a taper ratio of 0.25. They
have double-wedge cross-sections with the maximum thickness at mid-chord, equal to 3.33% of the chord.
The empty mass of the vehicle is considered to be 70,000 lbs. The unrestrained modes were obtained using
MSC.NASTRAN. The first five modes are depicted in Fig. 28. The first two modes are the symmetric and
antisymmetric fin bending modes, while the third and fourth modes show fuselage bending and fuselage
torsion. The fifth and higher modes show a combination of fin and fuselage deformation.

In previous hypersonic studies, the approximate aerodynamic method of choice for bluff bodies has been
Newtonian impact theory blended with piston theory.16,58 The generic vehicle, shown in Fig. 27, has sharp
leading edges. For M > 5, the wedge angles are small enough to allow the presence of attached oblique
shocks. However, the wedge angles are large and Mδ ≫ 1, hence, instead of using a blended approach, a
different approach, described next, is used.

The geometry of the generic hypersonic vehicle usually consists of a combination of flat surfaces having
different wedge angles to the oncoming flow. In regions around the nose, and at the rear of the vehicle, the
actual slope might be different due to localized curvature of the geometry. Since piston theory is a two-
dimensional theory which relates parameters in the x-z plane, a sectional model of the vehicle can be created
using piston theory alone. Fig. 29 shows that the streamlines along the surface in an inviscid flow have
relatively small flow velocity components in the spanwise direction. Furthermore, at these Mach numbers,
only a small portion at the root of the fin is affected by the flow around the fuselage (body). Therefore, the
flow over the fins is assumed to be free-stream in this model. Thus, the surface of the vehicle can be divided
into “flow zones”, where the flow variables have substantially different values, due to the presence of oblique
shocks and expansion fans. The local flow variables can thus be calculated at various points on the surface
of the rigid geometry. Assuming small perturbations during the unsteady aeroelastic analysis, these values
need not be recalculated, saving computational effort. Next, an unsteady aeroelastic analysis is carried out
using piston theory with these local variables, applied in frames rotated to the angles of the flat surfaces
approximating the fuselage.

Using linear and nonlinear piston theory, the aeroelastic behavior of the generic hypersonic vehicle was
studied at different altitudes. The flutter Mach number, Mf , was calculated at 40,000 feet using nonlinear
piston theory with a varying number of structural modes. The results given in Table 14 indicate that the
minimum number of modes required for a converged solution is 12. The aeroelastic behavior of the generic
hypersonic vehicle at this altitude using linear piston theory is shown in Fig. 30, and that using nonlinear
piston theory is shown in Fig. 31. At this altitude, the linear model predicts Mf = 13.2, while the nonlinear
model predicts Mf = 7.1; thus, the linear model overpredicts the nonlinear model by 86%. For the nonlinear
model, flutter occurs due to an interaction between the modes with significant fin bending, i.e. the higher
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frequency modes. The body modes, i.e. the third (fuselage-bending) and fourth (fuselage-torsion) modes,
do not contribute to flutter. However, the linear model indicates that flutter initiates from an interaction
between modes numbered 2, 5 and 10. When the altitude is increased to 50,000 feet, nonlinear piston theory
predicts Mf = 9.7, as seen in Fig. 32, and flutter still arises from an interaction of the higher modes with
significant fin bending.

Studies are also being carried out on the aeroelastic behavior of the generic vehicle using Euler and
Navier-Stokes based unsteady aerodynamic loads to determine the influence of viscosity on the aeroelastic
stability boundaries. Results for the generic hypersonic vehicle will constitute an important contribution to
the state of the art, since there are no results available for hypersonic vehicle aeroelasticity using complete
solutions of the unsteady Navier-Stokes equations.

IV. Conclusions

The studies carried out in this paper support, the following conclusions. These conclusions are limited
by the various assumptions made.

1. For three-dimensional configurations, efficient distribution of the mesh points around the body is critical
due to limits in computational resources. For hypersonic flow, the computational domain should not
extend far beyond the body, with the majority of points placed close to the surface. This also implies
that the same grid can be used for Euler and Navier-Stokes aerodynamics.

2. The flutter Mach number of the low aspect ratio wing can be over predicted by as much as 80% when
using first order piston theory compared to third order piston theory.

3. Stability boundaries of the three-dimensional low aspect ratio wing predicted by Euler solutions are
approximately 2% higher than those predicted by piston theory.

4. The presence of aerodynamic heating on a low aspect ratio cantilever structure, such as a fin and/or
control surface on a hypersonic vehicle, will result in thermal stresses due to warping restraint at the
root. This, combined with material property degradation, dramatically affects the mode shapes and
natural frequencies of the structure and significantly reduces the flutter Mach number.

5. The aeroelastic behavior of the generic hypersonic vehicle predicted by linear and nonlinear piston
theory is found to be qualitatively similar, though the linear model overpredicts the flutter boundary
by 86%. Flutter for the generic hypersonic vehicle is seen to arise from the convergence of modes
having significant fin bending.

6. It is apparent that as the Mach number becomes large, there are significant differences between first
order and third order piston theory, independent of structural configuration studied. Therefore, pre-
dictions of aeroelastic stability based on linear piston theory can be unreliable, and the boundaries are
not conservative.

7. The results presented can be considered to provide a partial validation of the aeroelastic capabilities
of the CFL3D code for the hypersonic flow regime.
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Table 1: Grid resolutions of each test case.

# of Cells Mesh

4.0x106 MESH1
0.63x106 MESH2
0.63x106 MESH3
0.63x106 MESH4
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Table 2: Effect of grid resolution on the accuracy of CL computations using Euler aerodynamics.

# of Cells M = 5.0 M = 16.0

0.08x106 0.70% 3.09%
0.27x106 0.74% 1.53%
0.63x106 0.67% 1.11%
2.1x106 0.23% 0.44%
5.1x106 N/A N/A

Table 3: Effect of grid resolution on the accuracy of CM computations using Euler aerodynamics.

# of Cells M = 5.0 M = 16.0

0.08x106 1.84% 3.16%
0.27x106 0.96% 1.84%
0.63x106 0.10% 1.29%
2.1x106 0.24% 0.43%
5.1x106 N/A N/A

Table 4: L2 norm of
p

p∞
at various grid resolutions using Euler aerodynamics.

# of Cells M = 5.0 M = 16.0

0.08x106 0.1406 0.9047
0.27x106 0.0713 0.3930
0.63x106 0.0784 0.6342
2.1x106 0.0734 0.3838
5.1x106 N/A N/A

Table 5: L∞ norm of
p

p∞
at various grid resolutions using Euler aerodynamics.

# of Cells M = 5.0 M = 16.0

0.08x106 0.3431 2.0672
0.27x106 0.1315 0.8004
0.63x106 0.2715 1.9873
2.1x106 0.1423 0.7716
5.1x106 N/A N/A

Table 6: Effect of grid resolution on the accuracy of CL computations using Navier-Stokes aerodynamics.

# of Cells M = 5.0 M = 16.0

0.08x106 0.87% 6.78%
0.27x106 0.01% 4.31%
0.63x106 0.73% 3.11%
2.1x106 0.01% 0.95%
5.1x106 N/A N/A
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Table 7: Effect of grid resolution on the accuracy of CM computations using Navier-Stokes aerodynamics.

# of Cells M = 5.0 M = 16.0

0.08x106 7.40% 2.87%
0.27x106 2.87% 3.06%
0.63x106 1.49% 2.32%
2.1x106 4.94% 0.36%
5.1x106 N/A N/A

Table 8: Effect of grid resolution on the accuracy of CD computations using Navier-Stokes aerodynamics.

# of Cells M = 5.0 M = 16.0

0.08x106 24.6% 79.3%
0.27x106 5.18% 37.9%
0.63x106 7.84% 27.1%
2.1x106 0.04% 0.45%
5.1x106 N/A N/A

Table 9: L2 norm of
p

p∞
at various grid resolutions using Navier-Stokes aerodynamics.

# of Cells M = 5.0 M = 16.0

0.08x106 0.6128 7.0045
0.27x106 0.3794 2.6719
0.63x106 0.5829 7.0423
2.1x106 0.3224 2.2489
5.1x106 N/A N/A

Table 10: L∞ norm of
p

p∞
at various grid resolutions using Navier-Stokes aerodynamics.

# of Cells M = 5.0 M = 16.0

0.08x106 1.2862 15.3114
0.27x106 1.004 8.9927
0.63x106 1.2820 15.4131
2.1x106 0.9265 8.9043
5.1x106 N/A N/A
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Table 11: Parameters describing the double-wedge airfoil.

Parameter Configuration II
c (m) 2.35

Thickness ratio (%) 3.36
Wedge angle (◦) 3.85

m (kg/m) 94.2
rα 0.484

ωh (Hz) 13.4
ωα (Hz) 37.6

ωh

ωα

0.356

xα 0.2
a 0.1

Table 12: Comparison of the Lockheed F-104 Starfighter wing to the low aspect ratio wing model

Parameter F-104 3-D Wing

Wing Mass (Kg) 350.28 350.05

1st Bending Frequency (Hz) 13.40 13.41

1st Torsional Frequency (Hz) 37.60 37.51

Table 13: Flutter results for the low aspect ratio wing using an increasing number of modes, and third order
piston theory aerodynamics, at 40,000ft.

No. of Modes Mf

2 15.6
5 13.5
8 13.3

Table 14: Flutter results for the generic vehicle using an increasing number of modes, and third order piston
theory aerodynamics, at 40,000ft.

No. of modes Mf

7 11.6
10 7.8
12 7.1
14 7.1
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Figure 1: Operating envelopes for several modern hypersonic vehicles.
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Figure 2: A flow diagram of the computational aeroelastic solution procedure.
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Flow Direction

(a) Planform of the low aspect ratio wing.

(b) Cross-sectional dimensions of low aspect ratio wing.

Figure 3: A planform view of the low aspect ratio wing and a view of its cross-section.
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Figure 10: Cp from 4 different grids using Euler aerodynamics. Located at the 75% span of the low aspect
ratio wing.
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Figure 11: Mach contours of the flow at a section located at 75% span of a low aspect ratio wing for Mesh1
using Euler aerodynamics. M = 5.0, 40,000ft. Note that the z dimension is scaled.
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using Euler aerodynamics. M = 5.0, 40,000ft. Note that the z dimension is scaled.
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Mode 1, 13.41 Hz..  First Bending. Mode2, 37.51 Hz..  First Torsional.

Mode 3, 49.18 Hz..  Second Bending.

Mode 4, 77.14 Hz..  Second Torsional. Mode 5, 79.48 Hz.. Third Torsional.
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Figure 16: First 5 free vibration modes of the low aspect ratio wing
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Figure 17: Comparison of aeroelastic behavior of the low aspect ratio wing using 1st and 3rd order piston
theory aerodynamics. 40,000ft.
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Figure 18: Aeroelastic behavior of the low aspect ratio wing using Euler aerodynamics. 40,000ft.
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Figure 19: Transonic aeroelastic behavior of the low aspect ratio wing using Euler aerodynamics, sea level.
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Figure 20: Normalized temperature distribution as a function of chord location. The 0 chord position
corresponds to the leading edge.
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Figure 21: Natural frequencies of a low-aspect ratio wing subject to a non-uniform temperature distribution.

Mode 1, 12.86 Hz..  First Bending. Mode2, 33.01 Hz..  First Torsional.

Mode 3, 46.64 Hz..  Second Bending.
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Figure 22: Heated mode shapes of the low aspect ratio wing. TREF = 200◦.

28
American Institute of Aeronautics and Astronuatics



Mode 1, 12.69 Hz..  First Bending. Mode2, 32.05 Hz..  First Torsional.

Mode 3, 46.13 Hz..  Second Bending.

Mode 4, 37.89 Hz..  Second Torsional. Mode 5, 64.45 Hz.. Third Torsional.

Flow Direction

Figure 23: Heated mode shapes of the low aspect ratio wing. TREF = 232◦.
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Figure 24: Heated mode shapes of the low aspect ratio wing. TREF = 281◦.
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Figure 25: Variation of temperature with Mach number.
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Figure 26: Aeroelastic behavior of the low aspect ratio wing subject to non-uniform heating using 3rd order
piston theory aerodynamics. 40,000ft.
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Figure 27: X-33 and generic reusable launch vehicle.
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(a) Mode 1, 5.27 Hz. Symmetric fin bending mode.

(b) Mode 2, 5.38 Hz. Asymmetric fin bending
mode.

(c) Mode 3, 11.12 Hz. First fuselage bending mode.

(d) Mode 4, 14.59 Hz. First fuselage torsional
mode.

(e) Mode 5, 21.95 Hz. Second fuselage bending
mode.

Figure 28: First 5 free vibration modes of the generic reusable launch vehicle.
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Figure 29: Streamlines and Mach contours on the generic vehicle using Euler aerodynamics, top view,
M=10.5, 40,000 feet.

Figure 30: Aeroelastic behavior of the generic vehicle at 40,000 feet, using linear piston theory. The frequen-
cies of the various modes at flutter is shown in the figures by black dots.
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Figure 31: Aeroelastic behavior of the generic vehicle at 40,000 feet, using nonlinear piston theory. The
frequencies of the various modes at flutter is shown in the figures by black dots.

Figure 32: Aeroelastic behavior of the generic vehicle at 50,000 feet, using nonlinear piston theory. The
frequencies of the various modes at flutter is shown in the figures by black dots.
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Figure 33: CFD domain for aeroelastic analysis of the generic hypersonic vehicle.
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