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ABSTRACT

Manipulation of the distribution of phonons ini a solid is important for both basic science

and applications ranging from heat management to reduction of noise in electronic

circuits and creating materials with superior acoustic and acousto-optical properties. This

thesis explores hypersonic phononic crystals as means to achieve control over high

frequency acoustic phonons. An integrated approach to fabrication, measurement and

analysis of hypersonic phononic crystals with band gaps in the GHz range is presented.

First, the phonon dispersion relation for one dimensional polymeric phononic crystals

fabricated by coextrusion of a large number of poly(methylmethacrylate)/poly(carbonate)

and poly(methylmethacrylate)/poly(ethylene terephthalate) bilayer pairs is investigated as

a function of a lattice constant and composition using Brillouin light scattering and

numerical simulations. This set of relatively simple multilayer structures represents an

excellent platform to gain a basic understanding of phononic band gap phenomena. In

addition, their in-plane phonon dispersion is used to extract information about the elastic

constants and glass transition temperatures of individual nanolayers in a periodic

multilayer arrangement. Next, two dimensional epoxy/air phononic crystals fabricated in

a photoresist using interference lithography are studied. These structures are 2D single

crystalline, enabling direction-resolved measurements of their phonon dispersion relation.

As a result, the complete experimental phononic band diagram is obtained and correlated

with numerical simulations. Finally, phononic properties of three dimensional

elastomeric poly(dimethylsiloxane) crystals are investigated and the mechanical
• ' ••~~ ~ ~~.i• , : ; °• i, :i; ,,



tunability of their dispersion relation is demonstrated. This set of structures forms the

basis for understanding how to design and fabricate acoustic and acousto-optical devices

with performance characteristics that can be adjusted dynamically during operation. The

investigations described in this thesis demonstrate both theoretically and experimentally

that 1D, 2D and 3D periodic submicron structures have complex phonon dispersion

relations at GHz frequencies. As a result, these crystals can be used to manipulate the

flow of random thermal phonons as well as externally generated acoustic waves resulting

in novel acoustic and thermal properties.

Thesis supervisor: Edwin L. Thomas

Title: Morris Cohen Professor of Materials Science and Engineering
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CHAPTER 1. THE PROMISE OF PHONONIC CRYSTALS [1]

1.1 Introduction

Phononic crystals are periodic materials that have potential to control the propagation of

elastic and acoustic waves. Interest in this class of materials has been generated by the

recent investigations of very similar photonic crystals, which resulted in the discovery of

a wide range of novel and exciting optical phenomena, such as slowing and localization

of light, negative refraction, etc., and may lead to many applications in

telecommunications, imaging and optical computing. The field of phononic crystals is

just emerging, and at this stage it is important to identify the most fundamental concepts

and rules that govern the behavior of these materials, as well as to hypothesize about their

potential applications.

This chapter focuses on the basic physics and applications of phononic crystals. The

concept of a phononic band gap is defined and its relation to the crystal symmetry and its

mechanical properties is investigated. The technological promise and the requirements

for fabrication and characterization of phononic crystals are reviewed for sonic,

ultrasonic and hypersonic frequencies, and the similarities and differences between

phononic crystals operating in different frequency regimes are highlighted. Finally, in the

last section of this chapter a brief overview of the thesis content is provided.



1.2 What are phononic crystals?

My interest in phononic crystals was sparked by the realization that they can notably

influence the random, thermally induced motions of atoms - something I had never

thought possible. Thermal atomic vibrations appear random and chaotic, they are perhaps

the most powerful illustration of the concept of entropy, and the idea to extend any kind

of influence over them seemed very strange and foreign to me. Yet, atoms in solids are

connected by chemical bonds and cannot move independently. When an atom is

displaced from its equilibrium position, it exerts force on its neighbors, which causes

them to move. These atoms, in turn, cause their neighbors to move and the end result is

the creation of a phonon - a wave of lattice distortion that propagates through the solid.

But if thermal atomic motions can be treated as waves, then in addition to the laws of

thermodynamics they must obey the laws of wave mechanics, in particular the laws of

interference and diffraction. It is precisely this wave-like nature of atomic motions that

phononic crystals utilize to forbid propagation of certain phonons and redistribute their

energy. As a result, hypersonic phononic crystals can modify thermal conductivity of

materials, which is very important for a whole range of applications, particularly for

improving efficiency of thermo-electric energy conversion [2,3].

This example illustrates how phononic crystals combine novel and interesting science

with a promise for technological innovations. From the scientific point of view, physics

of phononic band gap materials is very rich. Mechanical waves can be both longitudinal

and transverse, in contrast to electromagnetic waves, which are always transverse, and

electron waves, which are scalar. Furthermore, there is a significant difference between



elastic displacement waves propagating in solids, which can have both longitudinal and

transverse components of displacement, and acoustic pressure waves propagating in

fluids, which are always longitudinal. Finally, phonons strongly interact with each other,

especially at high frequencies. Thus, to gain a correct understanding of phonon-mediated

phenomena it is important to consider their mean free path, in addition to their

wavelength and the structural length scale. As a result, phononic band gap phenomena

depend on a larger number of parameters and are significantly more complex than more

widely studied photonic band gap phenomena.

A technological perspective is also important. It is useful to divide phononic crystals into

three classes - sonic, ultrasonic and hypersonic crystals - based on their frequency of

operation. Each of these classes leads to entirely different applications and requires

completely different technical approaches. Sonic crystals (1 Hz - 20 kHz) are important

for sound manipulation and communications; ultrasonic crystals (20 kHz - 1 GHz) play a

role in imaging and non-destructive testing; while hypersonic crystals (>1 GHz) may lead

to new applications in acousto-optics, signal processing and thermo-electricity. Each of

these classes of phononic crystals is treated in more detail later in this chapter.

1.3 The origin of phononic band gaps

To better understand the origin of phononic band gaps, consider an elastic wave

propagating in a lD crystal composed of alternating layers of two different materials. At

every interface the incoming wave transfers part of its energy into secondary, reflected

waves, which then interfere with each other. If this interference is constructive and there



is a sufficient number of these interfaces, eventually all energy of the original wave is

reflected back and the wave cannot propagate through the crystal. On the other hand, if

the interference is destructive, then all energy of the original wave is transmitted through

the crystal. Therefore, constructive interference of the secondary waves results in the

creation of band gaps, while destructive interference leads to the formation of

propagation bands.

t2i a

---------

Figure 1.1. Propagation of elastic waves in a 1D phononic crystal; ti - the thickness of i-th layer; a -

the lattice constant; pt, ci and Zi - the density, sound velocity and acoustic impedance of the i-th layer.

The condition for constructive interference is simply that the path differences between the

interfering waves must be equal to an integer multiple of their wavelength, A. Since the

path difference is determined by the lattice parameter of the crystal a, it is easy to see that

the interference occurs when the lattice parameter is comparable to the wavelength

a A2. Since frequency is inversely proportional to wavelength, the frequency at the



center of the band gap cog, is also inversely proportional to the lattice parameter,

1 1
cog . As a result, one can create a band gap at any frequency or wavelength byA a

changing the size of a unit cell. The reflectivity of each interface is given by the equation:

=Z2ZI + (1.1)

Here Z, is the acoustic impedance of the i-th material, which is equal to the product of its

density and sound velocity (longitudinal or transverse, depending on the polarization of

the incident wave), Z, = ci p , . The width of the band gap is generally proportional to the

interface reflectivity. Therefore, to increase the band gap one needs to use materials with

a large acoustic impedance mismatch.

Moreover, the position and width of the band gap depends on the propagation direction

because the path difference depends on the angle of incidence. Some phononic crystals

form band gaps for waves propagating in any direction - these are known as absolute or

complete band gaps. Other materials possess partial band gaps that only stop waves of

certain frequencies traveling in certain directions. It is easy to see that a 1 D crystal does

not have an absolute band gap because its mechanical properties only vary in one

direction: waves traveling at right angles to this direction will not be reflected (instead

they can be effectively guided in each layer), so there will not be a band gap in this

direction.



1.4 Symmetry and phononic band gaps

How does one design a phononic crystal to have a complete band gap? It is clear from the

previous 1D example that the density and sound velocities need to vary in all three

directions of space. However, not all 3D periodic structures will form a complete

phononic band gap. In fact, it is still quite difficult to determine the structures that

possess large absolute phononic band gaps.

For electromagnetic waves, which only have two transverse components of the dielectric

displacement vector, it is known that sinusoidal modulations of the dielectric contrast

along certain directions create photonic crystals with absolute gaps for three different

highly symmetric lattices: simple cubic, body-centered-cubic and face-centered-cubic [4].

The face-centered-cubic lattice having a diamond network possesses the current

champion photonic band gap, i.e. the largest band gap for a given dielectric contrast.

In solids mechanical waves can have both longitudinal (tension/compression) and

transverse (shear) components, although only longitudinal waves are allowed in fluids.

As a result, if we want to create a complete phononic band gap, we must design structures

with band gaps for both longitudinal and transverse waves in the same frequency region

and in general this is harder to do in phononic crystals with three modes than in photonic

crystals with only two transverse modes.



Figure 1.2. Diamond crystal lattice - champion photonic structure; its phononic properties are
currently under investigation [1].

The problem of elastic wave propagation in 1D periodic layered composites was first

treated by Brillouin in 1946 [5], and then further developed by several other authors [6-

8]. Yet, it was the recent advances in the filed of photonic crystals that drew renewed

interest to phononic band gap materials. The search for structures with complete

phononic band gaps was started by theoretical work by M. M. Sigalas and E. N.

Economou in 1992. They showed that solid-solid and fluid-fluid structures that consisted

of a periodic 3D lattice of identical high-density spheres placed within a low density host

material gave rise to complete phononic band gaps [9].



Despite the fact that elastic waves propagate at two different speeds within solids, while

acoustic waves travel at a single speed in fluids, Sigalas and Economou predicted that

complete phononic band gaps should exist in both cases. A few months later they showed

that an infinite 2D square array of high-density parallel cylinders embedded in a low-

density host material should also possess a complete band gap for both solid/solid and

fluid/fluid systems in 2D [10]. Unaware of this work, M. Kushwaha et al. reported the

existence of partial phononic band gaps for transverse elastic waves propagating in 2D

solid/solid crystals with the displacement fields polarized in the crystal plane in 1993

[11].

Despite a relatively large number of theoretical investigations that followed these early

pioneering studies [12-21], it is difficult to yet clearly identify the "champion" phononic

structure, i.e. the structure with the largest phononic band gap for a given contrast in

materials properties. Unlike the photonic case, where for a given structure the size of the

band gap depends only on the refractive index contrast n1/n 2 ; in the phononic case one

must consider the density ratio p,/p 2 , the velocity contrast between components

CL /CL2 and CT/cT2 , and the longitudinal vs. transverse velocity ratio for each material

component CLI /CT, andcL2 cIT2 . Moreover, as was mentioned before, the behavior of

solid-solid periodic media is considerably different from that of solid-fluid media, which

is in turn different from that of fluid-fluid media. For this reason, it is challenging not

only to identify the champion phononic structure, but even to perform comparison of the

results for different material systems. It is not surprising then, that no general approach to

phonon dispersion engineering has yet been proposed. Currently, the largest complete



band gaps in 3D were reported for arrays of spherical inclusions of a low density fluid

(p=1.07 g/cm3) in a high density fluid host (p=13.6 g/m3) arranged on fcc, bcc and sc

lattices (which would be impossible to realize experimentally) [15] ( -= C 0.83,
Wmidgap

0.77 and 0.62 for fcc, bcc and sc lattices, respectively). In 2D, the largest band gaps with

4= 1.8 were found for rectangular and hexagonal arrays of air cylinders in water [16].

1.5 Phononic crystals and sound

Sound manipulation is perhaps the most obvious application of phononic crystals. Sound

is immensely valuable in our daily lives for communications, information transfer or

simply for its aesthetic value as exhibited in music and rhythms. For human hearing

sound is made up of mechanical waves with frequencies roughly between 20 Hz and 20

kHz, or wavelengths ranging from meters to several tens of centimeters. Therefore, if we

assemble periodic structures with lattice constants in this range, we can expect them to

interact with sound and act as sonic mirrors.

A great illustration of sonic properties of a periodic structure was provided by Francisco

Meseguer and co-workers at the Materials Science Institute of Madrid in 1995 when they

studied the acoustic characteristics of a kinematic sculpture made earlier by Eusebio

Sempere, see fig 1.3 [1,22]. This minimalist sculpture consists of periodic square array of

hollow steel cylinders of 2.9 cm in diameter with a lattice constant of 10 cm.



Figure 1.3. Kinematic sculpture by Eusebio Sempere consisting of a periodic array of hollow stainless
steel cylinders, each 2.9 cm in diameter, arranged on a 10x10 cm square lattice. This sculpture has
been shown to have a partial phononic band gap at 1.67 kHz along the [100] direction [1,22].

In addition to being visually appealing, Meseguer and co-workers recognized that the

sculpture should also possess a sonic band gap, so they measured the acoustic

transmission of the sculpture as a function of frequency and direction. They found that

sound traveling normal to the cylinders axes along the [100] direction was strongly

attenuated at a frequency of 1670 Hz - a result that provided the first experimental

evidence for the existence of phononic band gaps in periodic structures.



It is easy to estimate the relation between the lattice constant and the band gap frequency.

The gap usually opens between the first and the second propagation bands at the edge of

the first Brillouin zone. Assuming that the sound velocity remains is independent on the

wave vector (this assumption ignores the bending of the propagation bands, but

nevertheless is accurate enough for an order of magnitude estimation of the midgap

frequency) the midgap frequency is roughly equal to

c c-k c
f= (1.2)

A 2;r 2a

for the propagation along the [100] direction in a square lattice, where the edge of the

first Brillouin zone is located at k = -. Substituting in the lattice constant of the
a

kinematic sculpture and sound velocity of air we obtain f = 1720 Hz, which is very

close to the observed experimental value.

The previous example shows that a structure needs to be several meters wide to create a

phononic band gap in the sonic regime. While this might not be a problem for

architectural acoustics, it is impractical for many other devices such as headphones and

speakers. One way to deal with this problem was proposed by Z. Liu et al. [23], who used

an array of locally resonant composite materials (lead balls coated with silicone rubber)

to achieve strong attenuation for the wavelengths two orders of magnitude larger than the

crystal lattice constant. Unlike regular phononic crystals, locally resonant materials

attenuate acoustic waves traveling at or near resonant frequencies by transferring their

energy into localized eigenvibrations of the objects that make up the lattice, which allows

tuning the band gap frequency by modifying eigenfrequencies of the objects as opposed



to changing the lattice constant. This approach is not limited to sonic crystals and can be

used to create structures with phononic band gaps at ultrasonic and hypersonic

frequencies, as long as locally resonant structures with the resonances at these

frequencies are available.

1.6 Ultrasonic crystals and negative refraction

Ultrasonic crystals have much smaller lattice constants (10-2 - 10-5 m) and operate at

significantly higher frequencies (20 kHz - 100 MHz). The technological potential of

ultrasonic crystals lies in their ability to improve performance and resolution of current

ultrasonic imaging and medical diagnostics systems by providing superior acoustic

mirrors and, especially, negative refraction based acoustic superlenses. Ultrasonic

technology is well established already; it offers a wide variety of acoustic sources,

detectors and good understanding of the scientific foundations behind ultrasound

propagation and the associated imaging process. Its main shortcoming lies in its limited

ability to focus, reflect or otherwise influence propagation of acoustic beams. Ultrasonic

phononic crystals directly address this issue and can be readily integrated into current

imaging systems. Moreover, ultrasonic crystals are macroscopic objects (lattice constant

in mm or sub mm range) and they can be easily fabricated at large scale with modem

manufacturing methods. In particular, 3D printing can be used to manufacture any 3D

periodic single crystalline structures with lattice constants down to 0.1 mm.

The possibility of making superlenses with sub wavelength resolution has been one of the

hottest topics in optics for last several years. Photonic crystals with negative refraction



have been suggested theoretically and demonstrated experimentally as means to create

optical superlenses for the visible range [24-26]. Similarly phononic crystals can be used

to achieve negative refraction of acoustic waves and create acoustic superlenses [27-30].

To get an intuitive understanding of negative refraction consider a sound wave moving

from a homogeneous medium into a phononic crystal at an angle different from 90

degrees. We can think of the sound wave as consisting of two components: one that

travels parallel to the surface, and one that moves at right angles to it. Negative refraction

will occur if the direction of the parallel component upon entering the crystal is reversed,

while that of the normal wave does not change. This is actually possible if the parallel

component is reflected by the phononic crystal, while the normal wave component is

allowed to propagate. More precise mathematical requirements for negative refraction in

phononic crystals have been formulated and discussed by X. Zhang et al. [27]. Finally,

negative refraction and ultrasound focusing by flat superlenses has been experimentally

observed in arrays of 0.8 mm in diameter tungsten carbide beads manually arranged on

an fcc lattice in water [28].



1.7 Hypersonic crystals: acousto-optics and heat management

Hypersonic phononic crystals operate at frequencies of 100 MHz or higher and have

lattice constants in submicron range. They can also be used for a high resolution acoustic

imaging. In fact, acoustic microscopes operating at up to 5 GHz have recently become

commercially available (these microscopes currently do not use phononic crystals in their

imaging optics). However, significant difficulties in generating very high frequency

acoustic waves as well as relatively short mean free path for hypersonic phonons in many

materials limit performance of such imaging systems. On the other hand, hypersonic

crystals may find very interesting applications in acousto-optics and heat management.

Since hypersonic crystals have lattice constants in the range of wavelengths of visible or

infrared light, it is interesting to explore the possibility of creating materials with

simultaneous photonic and phononic band gaps. Recently the existence of such materials

has been demonstrated theoretically for the case of 2D crystals consisting of rectangular

and hexagonal arrays of air holes in silicon with the filling ratio of 0.45 [31]. The unique

advantage of photonic-phononic dual band gap materials comes from their ability to

localize both sound and light in the same special regions (defects) [32], see fig. 1.4. This

leads to dramatic increase in the intensity of acousto-optical interactions. In fact, in 2002

M. Trigo and co-workers measured photon-phonon scattering in lD periodic structures

that contained both partial photonic and phononic band gaps. They observed that such

double localization of photons and phonons increases the efficiency of photon-phonon

scattering by five orders of magnitude compared with the values for similar 1D structures

with photonic cavities only [33]. Materials with enhanced acousto-optical interactions are



being currently explored for many novel applications. For example, P. A. Fokker et al.

suggested that it might be possible to use these structures to generate intense sources of

coherent monochromatic phonons, i.e. phonon lasers [34]. Other applications may

include optical cooling [35], THz energy conversion via acoustoluminescence mechanism

[36] and increasing efficiency of light emission in silicon [37].

Figure 1.4. Localization of sound waves on a defect in a two dimensional array of air holes in Si
matrix. Color map is used to describe the variation of the normal component of the displacement
field uz for the first six eigenmodes of the crystal. This crystal can also trap light due to the presence
of complete dual photonic and phononic band gaps [1,31,32].

Hypersonic phononic crystals could also have a large impact in thermal management.

Thermal energy in solids is transported primarily by electrons and phonons. The

electronic contribution is important for materials with a large number of free carriers,

such as metals. On the other hand, the thermal conductivity of dielectric materials and

many semiconductors is determined mainly by the phonons. The presence of a phononic

band gap at frequencies that corresponds to the dominant frequencies of thermal
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vibrations can greatly reduce the flow of phonons and therefore the thermal conductivity

of a solid.

This could prove very useful for thermoelectric devices that convert thermal energy

directly into electricity. The figure of merit for a thermoelectric device, ZT, scales as

ZT , (1.3)
ke +kph

where a is the electrical conductivity, and ke and kph are the electronic and phononic heat

conductivities. If we reduce the electronic heat conductivity, ke, we will also reduce the

electrical conductivity, a, which means that ZT will not increase. However, by using a

phononic band gap to reduce the phononic heat conductivity, kph, it could be possible to

greatly improve the performance of devices such as Peltier thermoelectric coolers,

thermocouples and thermoelectric energy generators [2,3].

1.8 Thesis outline

This thesis presents an integral approach to fabrication, characterization and analysis of

submicron periodic structures with phononic band gaps at hypersonic frequencies. The

description of the experimental and numerical methods, which were employed to study

properties of hypersonic phononic crystals, is provided in chapter 2. In particular, the

main principles behind the design and operation of a Brillouin light scattering apparatus

are discussed in great detail, since Brillouin light scattering is the central tool used to

extract experimental information about the phonon dispersion relation of periodic

submicron materials. Chapter 3 reports on the phononic properties of 1D periodic

multilayer polymer films fabricated by multilayer coextrusion. Knowledge of the phonon



dispersion relations of these relatively simple periodic structures is important to

understand the basic physics of phononic band gaps materials. In addition, it provides

valuable information about mechanical and thermodynamic properties of polymer

nanolayers in a sandwiched multilayer assembly.

Phononic properties of 2D periodic crystals with square and hexagonal lattice symmetry

are treated in chapter 4. These structures possess complex multimode dispersion

relations, which consist of the multiple propagation bands separated by the band gaps.

The partial phononic band gap between the first and the second propagation band of quasi

longitudinal phonons is observed experimentally in the 2D square crystals. Finite element

analysis was used to compute the theoretical dispersion relations and the details of the

displacement fields of various modes in these structures. The modeling results are in very

good agreement with the experimental data using no adjustable parameters.

3D periodic elastomeric crystals with the phonon dispersion relation that can be tuned by

the application of mechanical strain are described in chapter 5. These structures can be

used to create various acoustic and acousto-optical devices with the performance

characteristics that can be dynamically adjusted during the operation. In addition, they

form a very interesting platform to study experimentally the influence of lattice symmetry

of the phononic band diagram. Finally, the main conclusions of this study are

summarized in chapter 6 and many promising directions for the future investigations are

listed in chapter 7.



CHAPTER 2. METHODS

2.1 Introduction

This chapter provides a brief overview of various techniques and methods used in this

investigation. It contains three main sections: section 2.2 that describes the mathematics

of elastic wave propagation in periodic structures; section 2.3 that treats the physics of

Brillouin light scattering and develops a practical design of a Brillouin light scattering

apparatus, which is used as the main characterization tool to measure phonon dispersion

relation of periodic materials; and section 2.4 that outlines fundamentals of interference

lithography and its applications towards fabrication of single crystalline periodic solid/air

submicron structures. A sufficient amount of detail is provided to achieve a solid

understanding of these techniques and their use in phononics, while additional

information is available in the references mentioned in the text and listed at the end of

this thesis.

2.2 Elastic wave propagation in periodic media: mathematical formulation

The equations of motion for an elastic medium are [38,39]

P 2 - . (2.1)
at, ax

Here, p is the density of the material, u, =u,(x,t) is the i-th component of the

displacement vector at point x and time t, and a,0 = a, (x, t) are the components of the

stress tensor. Summation over the repeatable indices is assumed. The material-dependent

stress-displacement constitutive relations ar = f(u,) allow eliminating stress in the



motion equations and describing the wave propagation in terms of displacement only. For

a general anisotropic medium the constitutive relations are

Or- = CMmn U,, (2.2)

1 ui au i)
where C is the stiffness tensor of the medium and u - 2 + is the strainymn 

Y 2 ax &x

tensor of the medium. The number of independent components in the stiffness tensor is

determined by the material symmetry. There are 21 independent elastic constants for

general anisotropic materials, 9 for orthotropic materials, 5 for transverse isotropic

materials and 2 for isotropic materials. Elastic stiffness matrixes for orthotropic,

transverse orthotropic and isotropic materials are
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The wave equations for an infinite anisotropic elastic medium can be further simplified

by looking for a plane wave solution

S= ii0 exp(i(k - - co t)), (2.6)

substituting it into the system of the original partial differential equations (2.2) and

performing differentiation. We then obtain an eigenvalue matrix equation

DCD T ii =p U, (2.7)

known as Christoffel equation, where

I kk
Dk =, 0

0

(2.8)

ky
kx
y0

This equation has a nontrivial solution if

det DCDT - p E 0. (2.9)

This expression allows calculation of the phonon dispersion relation for a plane wave

propagating in an anisotropic homogeneous medium along any direction defined by the

direction of its wave vector k.

For isotropic materials, the constitutive relations become simpler,

cri = AukkSj + 21uu..

Here X and gi are the Lame coefficients of the material [12,38].

equations can be written as

(2.10)

Then, the motion



at2 & (2.11)

These equations are further simplified by introducing two fields, scalar 9 = 9(x,t) and

vector Ef = ft(x,t), called the displacement potentials, through the relations

ii =V9+VxH, V-.= 0. (2.12)

Then, in case of a homogeneous medium, the motion equations become

a20 A+ +2/ aI2f
SV2 , and = = V2H. (2.13)

at2  Pt 2t p

The first equation describes longitudinal compression waves propagating in the medium

with a velocity

cL = 2 +2 (2.14)
P

while the second one describes transverse shear waves propagating with a velocity

CT = .p (2.15)

Since these two equations are uncoupled, transverse and longitudinal waves in the infinite

homogeneous, isotropic medium propagate independently of each other. The velocities

ratio

CL _ +2p _ 2-2v

c, F l- V (2.16)

depends only on the Poisson ratio of the medium. The Poisson ratio generally varies from

0. to 0.5, while for most materials it is around 0.33. This corresponds to the sound

velocity ratio of 1.41 for v= 0 and 1.99 for v= 0.33, respectively. The sound velocity



ratio goes to infinity as v approaches 0.5, which is the Poisson ratio typical for

incompressible materials, such as fluids, that do not support shear waves.

If the medium is not homogeneous and consists of several distinct regions, the boundary

conditions at the interfaces may cause coupling between longitudinal and transverse

waves. Depending on the physical problem and the properties of the boundary, several

types of boundary conditions are possible: (1) dynamic - conditions on stress components

only; (2) kinematic - conditions on displacement components only; (3) combination of

displacement and stress conditions; and (4) mixed, where stresses are given over one part

of the boundary and displacements over the other part [39].

For a periodic medium, p, A and p are the periodic functions of the position vector and

f(=; + -fo)- f(), (2.17)

where f = p, A, p and R0 is the lattice vector. Therefore, these functions can be

expanded in the Fourier series

f(F')= fGeiGr' , (2.18)

where G is an inverse lattice vector. The displacement field must satisfy the Bloch

theorem

i(F, t)= ei'i",') ifi ( " , (2.19)

where k is the wave vector and co = o(k) is the angular frequency. Substituting the

expressions for p, 2, t, and ii into the original wave equation and keeping only a finite



number (typically 10-200) of lower order terms in the Fourier expansion, one obtains an

eigenvalue matrix equation, from which the phonon dispersion relation c = Co(k) of the

periodic medium and the unknown coefficients iik (G) in the Bloch expansion can be

derived.

2.3 Brillouin light scattering

2.3.1 Physics ofa Brillouin light scattering process

Brillouin light scattering arises as a result of acousto-optical interactions in a scattering

medium. When an acoustic wave propagates through the medium, it creates modulations

in the medium dielectric constant e, which, in turn, scatter light. The dielectric constant of

the medium is then

6 = 6o + 8E,, (2.20)

where 60 is the dielectric constant of the unmodulated medium and

6i = PyjkUkI . (2.21)
k,l

Here uki is the strain tensor and pukt is the forth rank tensor known as a photo-elastic

tensor. This tensor describes the response of the medium to the propagating acoustic

wave. The number of its independent coefficients depends of the symmetry of the

medium. In particular, for cubic crystals the matrix of photo-elastic tensor is written in

the form



PIK =

F11 P12 P12 ' V V

P12 P11 P12  0 0 0

P12 P12 P11  0 0 0

0 0 0 p44  0 0

0 0 0 0 p44  0
0 0 0 0 0 n

(2.22)

- 44 j

For isotropic materials the form of this matrix is unchanged, but the number of

independent components is further reduced through the relation

P44 = 11(Pll +P12). (2.23)
2

The kinematics of the scattering process is described by the laws of conservation of

energy and wave vector for a photon-phonon scattering event, see fig 2.1 (a):

4 -• = •, (2.24)

Q -I n = +o.

Here 4 and k, 0 and c are the photon and phonon wave vectors and frequencies

respectively, indices i and s refer to the incident and scattered light respectively. The sign

± is used to describe the possibility of both phonon emission (Stokes process) and

absorption (anti Stokes process) during the scattering event. Both Stokes and anti Stokes

processes are equally likely, which leads to equal intensity of up-shifted and down-

shifted peaks in Brillouin spectra. In a periodic medium the momentum conservation

equation is modified to include the reciprocal lattice vector G:

q4 -4, = ±k + 6 . (2.25)

n n n I~ I\



Since G depends on the lattice constants, Brillouin light scattering can be used to

determine lattice constants of periodic materials. The sound velocity is much smaller than

the speed of light; thus

4 4, (2.26)

which allows deriving a simple relation between the phonon wave vector and the

scattering angle

k = 24 sin
(2.27)

from the vector diagram shown in fig. 2.1 (b).

q S

<-0
(a) (b)

Figure 2.1. Brillouin light scattering: (a) schematic diagram of a photon-phonon scattering event, (b)
momentum conservation during Brillouin light scattering.

The angle 0 in the equation is the angle between the propagation directions of photons

and a phonon that participate in the scattering event. Generally it is not equal to the

scattering angle, i.e. the angle between incident and scattered laser beams due to

refraction of the incident and/or scattered light. Thus, in practice the dependence between

phonon wave vector and the scattering angle is more complicated and depends on the



refractive index of the sample as well as the scattering geometry used in each particular

experiment.

The intensity of the photon-phonon scattering depends strongly on the elastic

displacement field distribution in a given phonon mode. To identify which phonon modes

scatter light strongly enough to be detected experimentally one must compute intensities

and polarizations of light scattered by each mode. Following the treatment by Landau for

an isotropic medium [40], the electric field in the scattered wave E• is proportional to the

vector product (i x O x )), where R is a unit vector in the scattering direction, and the

components of the vector G are given by the integral

G = J9ik exp(- is, " F)dV -ek. (2.28)

Here J is a unit vector parallel to the incident electric field vector E, = E0o exp(iji -F);

SEik is the change in the electrical permittivity due to elastic deformation -

1 au, auk
85'k = Pl 2Uik + p11•u11•k, where uik -•, 1 x +a is a strain tensor and p,1 and P12

2 &k & J

are the photo-elastic constants of the medium. The integration is done over the scattering

volume. In case of a plane wave propagating in a homogeneous medium, the integral for

G can be evaluated analytically. If the incident light is s-polarized, then: (1) in-plane

transverse modes do not scatter light; (2) light scattered by out-of-plane transverse modes

is p-polarized; (3) light scattered by longitudinal modes is s-polarized. In the case of

phononic crystals the displacement fields cannot be represented by plane waves and the

integral for G must be evaluated numerically. To estimate scattering intensities in this



case, one must first compute details of the displacement fields of various propagation

modes in phononic crystals.

2.3.2 Design and operation ofa Brillouin light scattering apparatus

Brillouin light scattering is ideally suited for investigations of hypersonic crystals

because it allows direct measurement of their complete phonon dispersion relation

o = C(). As a part of this study a Brillouin light scattering apparatus has been designed

and built at MIT. This section briefly discusses principles behind the design and

operation of the Brillouin light scattering apparatus. It serves as a practical reference in

Brillouin spectroscopy and its applications towards characterization of periodic materials.

Computer Tandem multipass
Fabry-Perot

I interferometer
L,........................................

Focusing optics
Shutter

Figure 2.2. Schematic of the BLS apparatus.

A schematic of the BLS apparatus is shown in figure 2.2. The main components are a

light source, focusing and collection optics, mounting mechanics and a tandem Fabry-

Perot interferometer used for the spectral analysis of the scattered light. The light source
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is a continuous wave green (532 nm) laser mounted on an arm of a goniometer. Usually

several hundred mW of cw power is sufficient for most BLS experiments. More powerful

lasers heat samples too much, which may cause material degradation. The laser frequency

cannot be chosen arbitrarily; it must match the target operation frequency of the Fabry-

Perot interferometer. Another important consideration for the laser selection is its spectral

width. Since in Brillouin spectroscopy very small shifts in the light frequency (on the

order of several GHz) are measured, it is critical to use lasers with very narrow spectral

lines (preferably with FWHM<10 MHz).

Most scattering geometries traditionally used in BLS experiments assume a fixed

scattering angle, usually 900 or 1800 [41]. This approach is simple because all optical

components are stationary and do not need to change their position during operation.

However, it only allows accessing one or very few phonon wave vectors, which is not

sufficient for dispersion relation measurements. Therefore, we use an angle-resolved

Brillouin setup with a sample mounted in the center of the goniometer. In this setup

measurements at any scattering angle from nearly 0 to 180 degrees are possible both in

transmission and reflection, see figure 5. As a result, a wide range of the phonon wave

vectors (roughly 1 - 35 itm ) can be accessed. The sample holder uses a separate rotation

stage to adjust the orientation of the sample in the plane is normal to the scattering plane.

For single crystalline samples this adjustment allows measuring phonon dispersion along

any desired direction in the Brillouin zone. Finally, most experiments described in this

thesis are done in transmission geometry, where the angle 0 between the incident light

and the normal to the sample surface is equal to the half of the scattering angle 0, see



figure 2.3. The unique experimental advantage of this geometry is that the phonon wave

vector does not depend on the refractive index of the sample due to mutual cancellation

of the refraction effects at the front and back faces of the sample. It can be shown that the

phonon wave vector in this case is given by a simple formula

4Ar (0\
k= -sin-- I, (2.29)

where 0 = 2 is the scattering angle and 20 is the wavelength of the laser light in

vacuum.

(P

Figure 2.3. Symmetric scattering geometry in the transmission BLS experiments. The angle between
the incident light and the normal to the sample plane is equal to the angle between the scattered light
and the normal to sample plane. In this geometry the phonon wave vector that is probed by BLS does
not depend on the refractive index of the sample.

The focusing and collection optics are very important parts of the BLS apparatus. The

focusing optics consists of a polarizer, which is used to maintain polarization of the

incident light normal to the scattering plane (s polarized) and a focusing lens (figure 2.2),



which focuses light into a spot of about 200 gm in diameter inside a sample, where

scattering takes place. The spot size is small compared to the sample size (generally

several mm to several cm), which insures uniformity during data acquisition. The

scattered light is collected by a collection lens; passes through a second polarizer, where

the desired polarization is selected; and then it is focused onto an input pinhole of the

Fabry-Perot interferometer with an additional lens. A scattering geometry in which both

polarizers are oriented vertically (normal to the scattering plane) is called the VV

geometry and it is used to measure light scattered by longitudinal phonons. In contrast,

the scattering geometry in which the focusing polarizer is oriented vertically and the

collection polarizer is oriented horizontally is called the VH geometry and it is used to

measure light scattered by transverse phonons (see the previous section for the derivation

of polarizations and intensities of light scattered in Brillouin experiments).

Proper selection and precise alignment of the focusing and collection optics is critical to

receive meaningful data in angle-resolved Brillouin spectroscopy. The following issues

are particularly important: (1) numerical apertures of the collection and focusing lenses;

(2) mounting the sample holder precisely in the center of the goniometer; and (3) correct

alignment of apertures that define the paths of the incident and scattered light.

The amount of light collected in scattering experiments is determined by the numerical

aperture of the collection lens according to the equation NA = n sin(a), where n is the

refractive index of the medium (most measurements described in this thesis are done in

air with n = 1) and a is the half-angle of the maximum cone of light that enters the lens.



Selecting lenses with large numerical apertures allows more light to be collected and

increases the signal. Unfortunately, it also leads to larger uncertainties in the values of the

scattering angle, since all photons with scattering angles from 0- a to 0 + a are

collected, and thus it increases uncertainties in the phonon wave vectors. While this may

not be a problem for studying processes with frequencies independent of the wave vector,

such as eigen vibrations of individual microparticles; it poses significant difficulties for

measuring the dispersion relation of phononic crystals. Therefore, the numerical aperture

of the collection lens must be optimized for each particular set of samples and

experimental conditions. The same considerations apply to some extent to the focusing

lens as well. The size of the numerical aperture must be chosen such that the spectral line

width due to the collection of light from 9- a to 0 + a scattered by phonons with a

range of wave vectors from k = ( 0 - a) to k = kO( + a)is smaller than the instrumental

line width of the Fabry-Perot interferometer, which is determined by the spacing between

the Fabry-Perot mirrors, as described in the Fabry-Perot manual [44].

Precise matching of the sample holder and the goniometer centers is necessary to insure

that light is collected from the same spatial region of the sample during scans at different

scattering angles. This is important, since some samples may not be uniform on the mm

length scale. In addition, incorrect alignment of the sample holder with respect to the

goniometer causes systematic errors in determination of the scattering angle, which

severely undermines the accuracy of BLS measurements. Finally, precise positioning of

apertures in the focusing and collection optics is necessary to insure that the paths of the



incident and scattered light are properly defined and correct values of the scattering angle

are used in further calculations and data analysis.

2.3.3 Tandem multipass Fabry-Perot interferometer and its applications in

Brillouin spectroscopy

Light scattered in Brillouin experiments has several spectral components. The strongest

one is at the incident light frequency corresponding to elastic scattering from static

inhomogeneities of the sample. The Brillouin components with frequency shifts

Af _ 10' are scattered by various dynamic processes, such as phonons, plasmons, spin

waves, etc. The intensity of the elastically scattered light is usually many orders of

magnitude larger than that of the Brillouin light. Therefore, it is necessary to separate a

very weak signal shifted in frequency only by a small amount from a much stronger

elastic background. This imposes extremely demanding requirements on the performance

of the interferometer. Usually, highly stable scanning with long acquisition times (typical

acquisition time varies from 10 minutes to several days), contrast ratio of 1010, free

spectral range of 5-100 GHz and resolution of <100 MHz is necessary. These

requirements can only be met in a tandem multipass operation of the interferometer

[42,43].
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Figure 2.4. The path of light inside a tandem six-pass Fabry-Perot interferometer manufactured by
JRS Scientific Instruments. The figure is adapted from reference [44].

The path of light inside a tandem six-pass Fabry-Perot interferometer made by JRS

Scientific Instruments is schematically shown in figure 2.4 [44]. Light enters through an

input pinhole P1 and an aperture A1, gets collimated by a lens L1 and then it is redirected

to pass through both sets of Fabry-Perot mirrors FP 1 and FP2 with the help of mirrors M1,

M2 and M3, as marked with blue arrows in figure 2.4. Then a prism PRI is used to reflect

it back parallel to its original trajectory to pass through FP 1 and FP 2 second time and

reach a mirror M4, as shown with red arrows in the figure. Upon reflection from M4 light

passes one more time trough FP 1 and FP 2 and then it is redirected by a prism PR2 and

mirrors M5 and M6 to reach an avalanche photon counter D, as shown with green arrows

in figure 2.4.



Transmissivity of each set of Fabry-Perot mirrors is given by the expression

T = (2 (2.30)

where ro (<1) is the maximum possible transmissivity determined by the losses in the

system, L is the optical spacing between mirrors and F, the finesse, is a quality factor

limited by the mirror reflectivity and flatness [44]. Generally it is difficult to achieve

values of the finesse higher than 100. It is easy to see that only wavelengths satisfying the

relation

L = p (2.31)
2

for an integer p will be transmitted. The transmissivity function for zr = 0.9 and F = 50

is plotted in figure 2.5.

There are three main parameters that describe the performance of a Fabry-Perot

interferometer: (1) resolution, (2) contrast, defined as the ratio of the highest to the lowest

transmissivity, and (3) free spectral range (FSR), which determines the maximum scan

range for a given mirror spacing. The resolution is determined by the width of the

transmissivity peak 82, FSR - by the distance between two consecutive peaks A2, see

figure 2.5. The resolution and FSR are related to each other through the expression

= F. (2.32)



;2
Since A2 = -, the FSR can be made arbitrary large by decreasing the mirror spacing L.2L

However, this will also increase 8A and reduce the resolution. Therefore it is necessary

to optimize L for each experiment according to the expectations for the lowest and the

highest frequencies to be recorded. Sometimes one must use two different mirror

spacings for each sample: large - to capture the low frequency phenomena with high

resolution, and small - to record the high frequency part of dispersion relation with large

FSR.

A MA /T -I"-

4-

Figure 2.5. Transmissivity of a single set of Fabry-Perot mirrors with finesse F = 50, adapted from
reference [44].

Contrast is the ratio of the highest to the lowest transmissivity,

T__ 4F 2

C = m 4F_
Tmin / 2 "

(2.33)
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With the finesse of about 100, contrast of roughly 103 can be achieved in a single pass

operation. However, if light is made to pass n times through Fabry-Perot mirrors, the

resultant contrast becomes C, = (Co)", which for our system is about 1012. Dramatic

increase in contrast is a great advantage of the multipass operation, which enables the use

of tandem Fabry-Perot interferometers in very sensitive Brillouin measurements.

Acquisition time for a single Brillouin spectrum is usually large, from tens of minutes to

several days. Perfect alignment and parallelism of Fabry-Perot mirrors with nm precision

is required during this time. Real-time feedback loops and piezoelectric controllers are

used to compensate for random drifts of Fabry-Perot mirrors and keep the operation of

the interferometer stable. In practice it is realized by optimizing mirrors spacing and

orientations for the maximum transmissivity at the incident light frequency during each

scan cycle. It is not convenient to use the scattered light for stabilization because it has

several spectral components and its intensity can vary depending on experimental

conditions. A good practical solution is to take away a small portion of light from the

incident beam before it hits the sample and use it to keep operation of the interferometer

stable. In our design this is done with help of an optical fiber that delivers a reference

beam into the interferometer, as shown in figure 5. An electronically-controlled shutter

closes for a fraction of a measurement cycle to block the scattered light and allow only

the reference beam into the interferometer. Once the stabilization is complete, the shutter

switches its position to block the reference beam and allow only the scattered light for

remaining of the scan cycle. As a result, measurements can be run with high accuracy and

stability for extended periods of time.



As a part of this investigation, a Brillouin light scattering apparatus has been designed

and constructed in our optics laboratory at MIT (room 13-5140). It is mounted on a

dedicated anti-vibration table that uses real-time feedback loops and piezoelectric

actuators to reduce vibrations and allow highly stable measurements over long

acquisition times. Most BLS spectra described in this thesis have been acquired using this

apparatus.

2.4 Interference lithography for fabrication of single crystalline phononic

structures

Interference lithography (IL) is a very valuable technique for the fabrication of

hypersonic phononic crystals. It allows creating a variety of ID, 2D and 3D single

crystalline patterns and even 2D and 3D quasicrystalline patterns with the feature size on

the submicron scale. Its advantages include access to a wide range of lattice symmetries,

very low defect concentration, fast and efficient processing and the potential for making

large area samples [45-48]. IL involves the formation of a stationary spatial variation of

light intensity created by the interference of two or more beams of light. This intensity

pattern is then transferred to a light sensitive medium, such as a photoresist, to yield

structures.

The electric field associated with a monochromatic plane wave can be described

mathematically as:

S(F, t) = to, •'•e'" ) (2.34)



where m is an index identifying the particular beam, E0 is the wave amplitude and

direction of polarization, k is the wave vector, co is the angular frequency, and # is the

phase. Note, k is not referring to the phonon wave vectors in this section, but to the

wave vectors of laser beams. The intensity distribution created by a set of beams is

proportional to the square of the magnitude of the resultant vector sum,

I(F) = _I E, E ,e '(( - )+ l'-) (2.35)

This intensity distribution has its translational periodicity determined by the difference

between the wave vectors k, - km of the interfering beams, while the polarizations,

represented by a set of complex electric field vectors, determine the pattern or motif

placed within the unit cell. The combination of the motif and the translational periodicity

determines the full set of symmetries associated with the resultant structure and hence its

space group [49-51].

To fabricate a crystal with symmetry that belongs to a particular space group, one needs

to be able to determine the proper values of k and E. Since the intensity equation is

essentially the Fourier transform of the crystal, these values can be computed by equating

the intensity equation to the structure factor of the space group. (The structure factor

describes the amplitudes and phases of the three-dimensional diffraction pattern due to

the scattering of incident radiation from the planes (hkl) of the crystal). The resultant set

of equations is then solved to yield the beam parameters that are required to obtain the

structure belonging to the desired space group [50].



Once the desirable light intensity distribution is achieved, it must be transferred into a

photoresist to form the structure. There are two types of resists: positive and negative. A

negative photoresist is a resist in which the regions exposed to light become insoluble to

the developer. This insolubility can be achieved by (1) an increase in molecular weight

and the formation of a crosslinked polymer network, or (2) photochemical rearrangement

to form new insoluble products. One common negative photoresist for interference

lithography is SU-8, an epoxy based monomer that undergoes cationic

photopolymerization. It has many advantages, such as chemical amplification, which

increases the sensitivity; mechanical robustness, which allows access to high aspect ratio

structures; and wide processing latitude with respect to radiation wavelengths [52,53].

For many applications it is desirable to infiltrate IL patterned polymeric structures with

other materials (for example high refractive index materials for photonic crystals) and

then to remove the original polymer structure. However, removal of highly cross-linked

polymers templates (which are usually obtained if negative resists are used) is difficult

and may require rather extreme processing such as resist burning or plasma etching

[54,55]. This can result in damage to the material that was back filled into the template

and hence negative resist removal has been a bottle neck for the fabrication of 3D

templates.

A positive resist is a photoresist in which regions exposed to light become soluble to the

developer, while unexposed regions remain insoluble. A commonly used positive resist is

composed of diazonaphthoquinone (DNQ) and novolac resin (a phenol formaldehyde

resin). The phenolic resin is highly soluble in basic solution and has excellent film



forming properties. DNQ acts as both photosensitizer and dissolution inhibitor. Upon

exposure, DNQ undergoes molecular rearrangement generating a carboxylic acid, and the

exposed area becomes soluble in basic developers, resulting in a positive image in

regions of high light intensity. Positive resists have the advantage over negative resists in

that they do not undergo shrinkage from cross-linking and can be easily removed after an

infiltration step by flood exposure followed by dissolution in a second developer

treatment [56]. A comparison of the fabrication process with positive and negative resists

that were used to fabricate structures described later in this thesis (Chapters 4, 5) is

shown in figure 2.6 (a) and schematic diagrams of the basic chemical mechanisms

responsible for the function of two different types of photoresists are shown in figs.

2.6 (b) and 2.6 (c).
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CHAPTER 3. PHONONIC PROPERTIES OF 1D MULTILAYER

PERIODIC SELF-SUPPORTING POLYMER FILMS

3.1 Introduction

One dimensional (ID) phononic crystal are the simplest, yet very important class of

phononic materials. From a theoretical viewpoint, properties of lD systems can be

studied with a number of relatively simple analytical and semi-analytical techniques, such

as Bloch expansion or the transfer matrix method, without need for extensive numerical

computations. At the same time, many phenomena in lD crystals are analogous to those

in more complex 2D and 3D crystals. Thus, lD crystals represent an excellent learning

platform to gain a basic understanding of phononic crystals.

For an experimentalist, lD crystals also offer a number of important advantages. The

main one is the ease of fabrication. 1D systems can be made using multilayer deposition,

self-assembly or coextrusion with precise control over the dimensions and properties of

each layer. Fabrication of defect cavities can be easily integrated into existing

manufacturing routines. Furthermore, 1D crystals have found numerous applications in

optics, acoustics and other fields of science and engineering. Understanding the phononic

properties of ID crystals (with and without purposeful defect layers) can improve the

efficiency of existing devices as well as lead to the development of new ones.

This chapter describes phononic properties of lD hypersonic crystals. First, general

features of their phononic band diagrams are discussed for elastic waves propagating



along the periodicity direction of a crystal. Then, the phonon dispersion for the in-plane

propagation in free standing, periodic multilayer anisotropic

poly(methylmethacrylate)/poly(ethylene terephthalate) (PMMA/PET) and isotropic

poly(carbonate)/poly(methylmethacrylate) (PC/PMMA) films is studied as a function of a

lattice constant and composition. As the lattice constant increases, additional propagation

modes appear in the phonon dispersion relations of these structures. These modes

represent layer-guided phonons propagating within individual layers and not throughout

the multiple layers, where the film's properties would correspond to an effective

homogeneous medium. As a result, their dispersion relation provides valuable

information about the elastic constants of polymer nanolayers. Furthermore, the glass

transition temperatures of the nanolayers can be estimated from the temperature

dependence of sound velocities of these phonon modes. Thus, BLS can be used as a

nondestructive technique to obtain quantitative information about mechanical and

thermodynamic properties of polymer nanolayers.

3.2 Normal phonon propagation in 1D phononic crystals

This section describes general features of the phononic dispersion relation in 1D crystals

for waves propagating normal to the periodicity direction. Two material systems are

investigated - PC/PMMA and SiO 2/PMMA periodic multilayer films with symmetric

50/50 compositions. Figure 3.1 shows phononic band diagrams for ID PC/PMMA (a)

and SiO2/PMMA (b) crystals computed using finite element analysis (FEA). The

densities, sound velocities, elastic constants and glass transition temperatures of these

materials are listed in table 3.1.



Table 3.1. Mechanical properties and glass transition temperatures of PC, PMMA and SiO 2.

Density cL ct E Tg
(g/cm 3) (m/s) (m/s) (GPa) (0C)

PC 1.3 2433 1070 4.1 0.38 140

PMMA 1.2 2851 1401 6.3 0.34 105

SiO 2 2.2 5972 3766 73 0.17 1175

The longitudinal and

respectively. Since the

crystals, but high for

transverse modes are plotted with solid and dashed lines,

contrast in densities and sound velocities is low for PC/PMMA

SiO2/PMMA crystals, the behavior of these systems is very

different. The phonon dispersion relation of the PC/PMMA crystal resembles that of a

homogeneous medium with linear dependence between co and k for the entire range of k

values except near the Brillouin zone edges. No complete phononic band gaps are

present, but several partial gaps for both longitudinal (highlighted in red) and transverse

(highlighted in green) modes are clearly visible at the edges of the Brillouin zone.
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Figure 3.1. Band diagrams of PC-PMMA (a) and SiO 2-PMMA (b) 1D phononic crystals with
symmetric compositions; solid and dashed lines represent the longitudinal and transverse modes,
respectively; red and green is used to highlight the positions of the longitudinal and transverse band
gaps, respectively; their intersection displayed in dark red shows the positions of complete phononic
band gaps for phonons propagating normal to the layers.

?2.5

S2.0
(I)

C" 1.5

S1.0

d, 0.5

nn

0.0 1.0

t. L- .t
u~2.5

S2.0
(,-

-r 1.5
4"

1.0

S0.5

1 1 I I

-r



In contrast, in the SiO2/PMMA film, the dependence between ao and k is nonlinear for the

entire range of k and there is a substantial amount of band bending. Large mechanical

contrast between ceramic SiO 2 and polymeric PMMA layers leads to the overlap between

transverse and longitudinal band gaps and the formation of several polarization

independent phononic band gaps, which are highlighted in dark red in fig. 3.1 (b). Note

that, unlike the electromagnetic case where for any An # 0 TE and TM partial gaps for

normal propagation coincide, considerable mechanical contrast ( PS2 1.8,
PPMMA

CL Si02 t SQ02L Si2 = 2.1, - = 2.7) is required to open a polarization independent band gap
CL PMM Ct PMMA

for normal propagation in lD solid-solid phononic crystals. This is due to the substantial

difference in sound velocities between transverse and longitudinal modes, which causes

opening of longitudinal and transverse partial gaps at different frequencies. If the

mechanical contrast is small, these partial gaps are narrow and do not overlap. As

mechanical contrast increases, the partial gaps widen and begin to overlap in the same

frequency region leading to the appearance of the polarization independent band gap. In

addition to mechanical contrast, the ratio of longitudinal to transverse velocities

c 2- 2v
c - -v is important, since it determines the separation between the mid-gap
c 1- 2v

frequencies of the longitudinal and transverse partial gaps. This ratio is typically between

1.4 and 2 for most materials; however, some rubbers with v -> 0.5 have very high ci/ct

ratios of -100 or more.



3.3 In-plane phonon propagation in 1D periodic anisotropic poly(methyl

methacrylate)/poly(ethylene terephthalate) films [57]

3.3.1 Phononics of giant birefringence optical polymer mirrors

The remainder of this chapter is dedicated to the in-plane propagation of phonons in 1D

crystals. The in-plane propagation (k) is notably different from the normal propagation

(k) discussed in the previous section, mainly because no band gaps form for elastic

waves propagating parallel to the film layers, since there is no periodicity in this

direction. Instead, under certain conditions, layer-guided modes are observed. The

dispersion relation of these modes is a strong function of layer thickness, orientation and

elastic constants. Thus, BSL can be used as a nondestructive technique to obtain

information about mechanical and morphological properties of individual nanolayers. In-

plane measurements also have an important experimental advantage. The transmission

scattering geometry, which is the primary scattering geometry for angle-resolved BLS

measurements, as described in section 2.3.2, requires that the phonon wave vector be

parallel to the sample surface. Since in coextruded multilayer films, the layers are

oriented parallel to the film surface, the use of the transmission scattering geometry

automatically assumes in-plane measurements.

This section reports on phononic properties of a multilayer giant birefringence polymer

visible light mirror manufactured by the 3M company. It was recently shown that

multilayer polymer films comprised of two different anisotropic polymers can be used to

make superior dielectric stack mirrors [58]. The performance of traditional

(nonomnidirectional) dielectric stack mirrors made of isotropic materials is limited by



Brewster's law, according to which the percent reflection of p-polarized light at a

material interface decreases with increasing angle of incidence and ultimately vanishes at

a critical angle (Brewster's angle). In contrast, multilayer mirrors made of highly

birefringent polymers can be designed to maintain or even increase p-polarized

reflectivity with increase in the incident angle [58].

In the past BLS has been applied to multilayer thin metal films with the main interest

directed to their magnetic properties [59,60]. The only BLS experiment on polymer films

with a multilayer structure was performed by Forrest et al. [61] on supported one to five

alternating poly(styrene)/poly(isoprene) (PS/PI) spin-coated homopolymer thin films.

They did not succeed, however, to resolve phonon propagation in the individual

homopolymer layers (20-80 nm thick). Instead, their data corresponded to longitudinal

modes in an effective medium behaving like a single component thin film despite the

large sound velocity contrast between the glassy PS and the rubbery PI at room

temperature. In addition, the phononic properties of the high molecular weight

concentrated poly(styrene-b-isoprene) block copolymer solutions with lamellar

morphology were studied by Urbas et al. [71]. Several propagation modes were observed

and associated with the structural periodicity of these solutions. Unfortunately, the block-

copolymer solutions were polycrystalline and did not allow choosing the direction of the

phonon wave vector with respect to the grain orientation.

The work described in this section is the first BLS study of a free-standing periodic

multilayer polymer film. Surprisingly, up to five acoustic-like modes are resolved. The



theoretical dispersion relations computed using a finite element analysis (FEA) suggest

that these modes are associated with phonons propagating within individual layers. This

conclusion is further supported by the measurements of temperature dependence of sound

velocities of these modes, which reveal two distinct glass transition temperatures that

correspond to phonons localized in poly(methyl methacrylate) (PMMA) and

poly(ethylene terephthalate) (PET) layers, respectively.

3.3.2 Sample morphology

The sample is a 40 ýtm thick stack of over 200 identical bilayer units composed of 78 nm

thick PMMA and 118 nm thick PET layers. The lattice constant

a = tPEM + tP = 196 nm. The PMMA layers are optically and mechanically isotropic,

while the PET layers possess uniaxial anisotropy with nx = ny nz and Ex = Ey, EZ.

Here nx, n, nz and Ex, E, Ez are the refractive indices and Young's moduli along x, y, and

z directions, respectively. The degree of birefringence in the PET layers was estimated

from ellipsometry and polarized reflectometry measurements to be An = 0.15. The TEM

images reveal excellent uniformity of the layers with essentially no structural defects, see

fig. 3.2. The film appears blue in reflection and red in transmission when examined at

normal incidence due to the presence of a photonic band gap at roughly 430 nm.



Figure 3.2. (a) Low and (b) high magnification TEM micrographs of PMMA/PET multilayer film;

the PMMA layer thickness is tP = 78 nm and the PET layer thickness tPET = 118 nm 1571. To

enhance contrast the PMMA layers were preferentially stained with ruthenium tetroxide (RuO4)

3.3.3 Experimental dispersion relation

Figure 3.3 shows typical ambient temperature VV Brillouin spectra measured using the

transmission scattering geometry, such that k is parallel to the layers at k = 0.0116 nm-'

and k = 0.0150 nm'. For a better visualization, the central elastic feature due to the

reference beam (adopted to stabilize the tandem Fabry-Perot interferometer) was omitted

over the frequency range +1.2 GHz around f = 0, (f = j The film displays up to six

modes, which are well resolved in the Brillouin spectra of fig. 3.3 (a, b). These modes are

successively labeled from 1 to 6 in order of increasing frequency.
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Figure 3.3. Typical BLS spectra of the PMMA/PET multilayer film at two different values of the
phonon wave vector k at room temperature. The numbers denote the distinct modes discussed in the
text. For clarity, the central Rayleigh line is not shown. The inset plot emphasizes the weak mode (6)
by choosing a logarithmic intensity scale. The small feature G is the interferometer ghost of the
strong mode (4).

At k = 0.0116 nm-' (fig. 3.3 (b)), three distinct Brillouin doublets (2-4) are observed,

with mode (4) being the most intense. At higher frequencies, two additional spectral

features (mode (6) and G) can be identified. While barely discernible in the linear

intensity scale, their existence is clearly visualized by plotting the intensity

logarithmically, as shown in the inset of fig. 3.3 (b). The faint peak marked as G is

identified as the ghost of the strong mode (4) due to higher order interference effects in

the tandem Fabry-Perot interferometer. At higher k values (fig. 3.3 (a)) two other modes

are resolved: the weak low-frequency mode (1) and the high frequency mode (5) with the



intensity comparable to that of mode (4). Moreover, an additional shoulder-like spectral

feature appears on the high-frequency side of mode (5). Note that this shoulderlike

spectral feature should not be confused with the ghost mode, fig. 3.3 (b).

Further insight into the physical origin of these modes can be gained by examining the

dispersion relation, which contains important information about wave propagation by

displaying the phonon frequency f experimentally determined as a function of k. To

obtain these frequencies f (i = 1-6), the BLS spectra were fitted with a superposition of

up to six Lorentzian line shapes shifted to the observed Brillouin peak positions plus one

central line to account for the Rayleigh peak. Figure 3.4 illustrates the dispersion relation

for the in-plane phonon propagation in our multilayer polymer system. Clearly, six modes

can be identified and labeled in accordance with the six numbered peaks in fig. 3.3. At

low k values, due to the proximity of their velocities not all six modes are resolved as

shown in fig. 3.3 (b), where merely four modes appear (2-4 and 6). Their identification is

based only on the dispersion relation (fig. 3.4). These observations are strikingly different

from what would be expected if the film (with total thickness of - 40 rim) behaved as a

mechanically homogeneous isotropic medium, where only two bulk modes (longitudinal

and transverse) are anticipated.
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Figure 3.4. The experimental phonon dispersion relation of the multilayer birefringent polymer film.
The dashed lines are the linear fits of the five observed propagation modes (1-5) with the linear
dependence between the frequency and the wave vector; the frequency of mode (6) is insensitive to k
variations. The upper abscissas show the corresponding kt values for the two constituent layer
thicknesses ti.

These experimental findings unambiguously suggest the explicit contribution of the

individual constituent layers to the elastic excitations of this multilayer film. The result is

in clear distinction from the earlier Brillouin study by Forrest et al. [61], where the

dispersion relation of the PS/PI multilayer film was well described by an effective

medium approach even though the mechanical contrast between the glassy PS and

rubbery PI is large at room temperature.
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3.3.4 FEA modeling of the phonon dispersion relation

To provide an interpretation for the observed in-plane propagation modes, we compute

the theoretical phonon dispersion relation using finite element analysis (FEA). A two-

dimensional (2D) eigenvalue model was created and solved using the COMSOL

MULTIPHYSICS 3.3 FEA package based on the linear elastic plain-strain

approximation. Since the film is periodic along the z direction, it is sufficient to model a

single unit cell consisting of one PMMA and one PET layer and use Bloch boundary

conditions

fi(x,O)= ii(x, a)exp(ika) (3.1)

for the boundaries parallel to the x-axis. Here kz is the z component of the phonon wave

vector and a is the lattice constant. The film is considered homogeneous and infinite (the

sample size is much larger than the phonon wavelength) along the x and y directions and

the phonon wave vector is taken without loss of generality to be parallel to the x axis.

Thus, we look for the wave equation solution in the form

fi(x, z)= i:(z)exp(ikxx), (3.2)

which leads to the second boundary condition,

i(O, z)= ii(l, z)exp(ikxl) (3.3)

for the cell boundaries parallel to the z-axis. Here 1 is a length of the modeling domain

along the x direction. This finite length of the modeling domain along the x axis 1 is

artificially introduced into the model in order to employ FEA, since it cannot be used

over an infinite domain. The solution, of course independent of the actual value of 1, is

used in the further data analysis. The model meshing and solver accuracy were previously

validated by computing the phonon dispersion relations for a homogeneous material and



for 2D hexagonal phononic crystals and comparing the results with the analytical

solutions (homogeneous material) and independent numerical computations (2D

phononic crystals) [65]. In both cases an excellent match was observed.

The amorphous PMMA layer is modeled as an isotropic medium with Young's modulus

EPMMA=6.2 6 GPa, Poisson ratio VPMMA=0. 3 4 1 , and density PPMMA=I.2 g/m 3. These values

for elastic constants are based on the independent measurements of the speed of

hypersound in pure PMMA films. On the other hand, the PET layer, due to the

crystallization ability of PET, has to be taken as anisotropic (uniaxial). Its elastic

constants depend on the degree of anisotropy, which is in turn determined by the history

of the sample processing. As a result, it is very difficult to prepare pure PET films with

the same elastic constants as in our sample for hypersound velocity measurements. For

this reason, we were unable to determine elastic constants of anisotropic PET layers

independently and instead used them as fitting parameters to ensure the best match

between experimental and theoretical dispersion relation. The rich features of the

experimental and theoretical dispersion relation allow identification of a unique

combination of elastic constants, which provides a good agreement between the theory

and the experiment. In particular, we found that the transverse sound velocity was

determined almost entirely by shear modulus G,; the longitudinal sound velocity -

mainly by Young's moduli E, and E, and Poisson ratios vy and v,; while the position of

the q-independent mode was a function of shear modulus G, and Young's moduli E, and

E,. Accordingly, the PET layer was modeled as a transverse isotropic medium with

Ex_PET=Ey_PEr 6 GPa, Ez _Er 4 GPa, vyPE~r0.4 0, Vxz_PE70. 4 8 , Gx_ PEr 2 .2 GPa,



ppE=l1.38 g/m 3; Gxz PET is the shear modulus in the xz plane. These values are consistent

with previous studies of elastic constants of anisotropic PET [66-68].
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The theoretical phonon dispersion relation is shown in figure 3.5 (a). For the ease of

comparison, experimental data are also plotted on the same graph (black rectangles). Four

modes are expected according to the model prediction: a quasi transverse (QT) mode

(dashed lines), a quasi longitudinal (QL) mode (solid lines), and two closely spaced high-

frequency k-independent guided modes (dotted lines). The details of their displacement

fields at k = 0.01257 nm-1 are shown in figs. 3.5 (b-e). Note that for both QL (fig. 3.5

(c)) and QT (fig. 3.5 (b)) waves the regions of high deformation are not confined to any

individual layer, but rather are spread such that their displacement vectors are only

weakly dependent on z, especially for the transverse wave. In contrast, for the high-

frequency k-independent modes there are two regions of high deformation with the

displacement vectors antiparallel to each other, as shown in fig. 3.5 (d, e). These modes

appear as a result of periodicity in the film, and their frequency depends on the film

lattice constant. Interestingly, the regions of high displacement are now localized within

individual layers.

The positions of all modes are in good quantitative agreement with the experimental data.

However, the model does not predict the splitting of the transverse and longitudinal lines

into three and two components, respectively, as observed experimentally. It is well-

known that optical birefringence or diffraction [69] may lead to the splitting of Brillouin

lines due to the possible generation of light beams propagating in directions other than

the main beam. However, for the present experiment, these possibilities can be safely

ruled out. For An = 0.15, the birefringence induced splitting (ordinary and extraordinary

rays) would be an order of magnitude smaller than what we have observed and cannot be



resolved experimentally [41]. The small periodicity (compared to the laser wavelength)

excludes optical diffraction interference, as confirmed by the failure of observing any

abnormal optical beams in our experiment. Therefore, one must search for the cause of

the additional modes within the framework of elastic wave propagation.

There are two relevant length parameters in our problem: the lattice constant

a = tPMA + tPET and the phonon wavelength 2. Their ratio a = - will determine how the

propagating waves interact with the layered medium, i.e., if they experience it as a

homogeneous medium or if they are sensitive to the properties of the individual layers.

The larger (, the more we can expect waves to be localized within individual layers. In

the extreme case when r >> 1, waves propagating in each layer become completely

insensitive to the presence of the other layers. Figure 3.5 (b-e) shows a weak z

dependence for the QT and QL modes, but not for the higher frequency k-independent

modes. This behavior corresponds to the regime where phonon propagation is just

starting to be influenced by the multilayer structure of the film. It is helpful then to

examine now how the features of the wave propagation change upon further increase in

4. Figure 3.6 shows the theoretical dispersion relation for the QT (dashed lines) and QL

(solid lines) modes as well as the extrapolation of the experimental data (dotted lines)

based on the sound velocities of the experimental modes (2)-(5) for k in the range from

0.05 to 0.07 nm1 . Interestingly, the existence of three QT and three QL modes is now

predicted by the model. The phase velocities of these modes match the experimental

values quite well. Unlike the case of the lower k values, the displacements fields of these

modes show strong z dependence and are contained either in the PET or in the PMMA



layers. This result suggests that the five linear dispersion modes (1-5) observed

experimentally may come from the localized QL and QT phonons propagating within the

polymer individual layers. It is not entirely clear why the theory predicts the line splitting

for somewhat higher values of k than observed experimentally. Imperfections at

interfaces, such as interfacial roughness and strain fields, as well as a certain degree of

uncertainty about elastic constants of the anisotropic PET layers may be responsible for

this difference.
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3.3.5 Temperature dependence of sound velocities

In the previous section, some of the observed acoustic-like phonons were associated with

the individual layers. Since PET and PMMA possess different glass transition

temperatures Tg (352 K for PET and 378 K for PMMA), the variation of the phase

velocities of the observed phonon modes with temperature is anticipated to display the

characteristic kink at Tg, which should occur at distinctly different temperatures for the

two polymers. This would be a direct confirmation of the association of these modes to

the individual polymer layers.
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Figure 3.7. The variation of the phase velocities of the four main modes in the PMMA/PET

multilayer film as a function of temperature. The numbers correspond to the mode numbers in fig.
3.4. The vertical shaded regions denote the region of the respective glass transition temperatures of
the two polymers. Solid lines represent the least square fit to the experimental data before and after
the glass transition, data points in the vicinity of Tg were excluded from the fitting.



The phase velocities of the four linear dispersion modes ((2)-(5)) are plotted as a function

of T in figure 3.7. The harder PMMA layer exhibits a higher Tg (-100 'C) than the softer

PET layer (-80 oC). It is evident from fig. 3.7 that modes (2) and (4) should be associated

with PET layers and modes (3) and (5) with PMMA layers since they exhibit the same

values of Tg, respectively. These results are in accordance with our attempt to associate

these modes with the two types of individual layers. The sound velocity of the weak, low-

frequency mode (1) shows a very small variation with T that renders the identification of

the kink feature ambiguous, and it is therefore excluded from fig. 3.7.

The dependence of phase velocities of these modes at temperatures above and below Tg

can be well described by the linear relation

c(T) = c(OXI - aTT) (3.4)

with c(0) being the extrapolated velocity in the particular polymer at 0 K, and aT is the

proportionality coefficient, which describes how rapidly the sound velocity of a particular

mode changes with temperature. Since the longitudinal sound velocity is related to the

adiabatic compressibility = of the material through the equation

cL = (3.5)

aT of the two longitudinally featured modes (4) and (5) in different layers characterizes

the temperature dependence of fl, of the two component materials, while aT of the

transverse modes (2) and (3) describes the temperature dependence of the adiabatic shear

modulus G,. The values of aT for modes (2-5) are given in table 3.2 for the glassy (T<Tg)

and the rubbery (T>Tg) regimes. These values were obtained by performing a linear fit of



experimental sound velocities before and after the glass transition. Data that are in the

vicinity of Tg were excluded from the fit. BLS measures the adiabatic compressibility of

the system and could, in principle, be utilized to probe the Tg at different layer

thicknesses in this sandwiched multilayer arrangement. For the QT mode (2) and (3) in

the PET and PMMA layers, respectively, the coefficient aT (table 1) is somewhat larger

than those of the QL modes in the rubbery regime. This is expected, since the shear

modulus should eventually decrease to zero in the liquid state in contrast to the

tension/compression modulus. In the glassy regime, these material properties reflect

different deformation of the matter and a prediction on the relative magnitude of aT for

the two moduli is not possible.

Table 3.2. Sound velocities and their temperature coefficients aT of the various phonon modes of the
PET/PMMA multilayer film.

Mode 1 2 3 4 5

Room temperature 890±20 1175±23 1415±25 2905±30 3085±30
sound velocity (m/s)

aT(T<Tg) 104 (K1) 3.9±0.2 8.6±0.4 9.0±0.4 5.8±0.3

aT(T>Tg)-103 (K') - 1.46±0.05 1.50±0.06 1.3±0.03 1.23±0.03

3.3.6 Summary

In this section the in-plane phonon propagation in a iD periodic anisotropic multilayer

PET/PMMA film with the lattice constant a = 196 nm was analyzed. BLS was used to

measure the experimental phonon dispersion relation at GHz frequencies. The dispersion

relation is found to be sensitive to the structure and mechanical properties of individual

layers. Thus, knowledge of the phonon dispersion relation provides valuable information

about elastic constants of individual layers in nanoscale multilayer assemblies. We



observe five linear-dispersion propagation modes with constant phase velocities and an

additional mode with frequency that is nearly independent of the wave vector. FEA is

employed to provide the interpretation of the observed propagation modes. White the fit

between the FEA results and the experimental phonon dispersion is generally good, the

model predicts splitting of longitudinal and transverse lines into several components at

substantially higher thickness-to-wavelength ratio " than observed experimentally. The

possible reasons for this difference are discussed in the next section, where the dispersion

relation of isotropic PC/PMMA systems is studied as a function of their lattice constant

and composition. Temperature-dependent sound velocity measurements suggest that rich

features of the phonon dispersion of the PET/PMMA multilayer mirror are related to

phonons propagating within individual layers and not throughout multiple layers, where

the film's properties would correspond to an effective homogeneous medium as

confirmed by two distinct glass transition temperatures that correspond to Tg of the PET

and PMMA layers, respectively.

3.4 Evolution of phonon dispersion of 1D periodic isotropic PC/PMMA self-

supporting films with a lattice constant and composition [70]

3.4.1 Advantages ofPC/PMMA systems

In the previous section the in-plane phonon propagation in the giant birefringence

PET/PMMA optical mirror was analyzed using Brillouin light scattering and finite

element analysis. The most exciting result is the observation of a rich and complex

phonon dispersion relation, which was explained by the influence of individual layers on

the propagation of GHz phonons in the film. As a result, the elastic constants of the



periodic anisotropic nanolayers were estimated from the phonon dispersion relation.

Furthermore, temperature-dependent sound velocity measurements of localized

propagating modes were used to measure the glass transition temperatures of individual

layers in a periodic multilayer assembly.

Despite these interesting results, the PET/PMMA optical mirror is not the most suitable

system for a systematic study of the in-plane phonon propagation in 1D crystals. The

anisotropy in the PET layers makes data acquisition and analysis unnecessarily

complicated and ambiguous. More importantly, 3M does not disclose information about

the detail of its manufacturing process making independent determination of the

anisotropic elastic constants of the constitutive polymers nearly impossible. Finally, only

one film with a fixed lattice constant and composition was available for the investigation.

In this section we discuss phononic properties of periodic self-supporting multilayer

PC/PMMA films. Several samples with lattice constants ranging from 25 nm to 800 nm

and compositions from pure components to equal volume fractions have been studied.

Importantly, the polymeric materials are isotropic allowing clear distinction between light

scattered by longitudinal phonons (detected in the VV geometry) and transverse phonons

(detected in the VH geometry), see section 2.3.1 for more information on polarization if

light scattered in BLS experiments. Finally, elastic and optical properties of these

polymers are well known and thus FEA computations can be performed without need for

any adjustable or fitting parameters.



3.4.2 Sample architecture and morphology

The structural parameters of the PC/PMMA multilayer films are listed in table 3.3. Two

sets of samples have been investigated: (1) samples with a fixed lattice constant

a = 782 nm, but different compositions; and (2) samples with a fixed composition of

S=50% PC volume fraction, but different lattice constants. The films were fabricated

using coextrusion by the group of Prof. Eric Baer in the Department of Macromolecular

Science at Case Western Reserve University. The micromechanical behavior of these

films at large strains has been investigated by Baer with aim to improve adhesion and

toughness of polymer multilayers [63,64].

Table 3.3. Structural parameters of PC/PMMA multilayer films.

Number of layers PC composition (%) tc (nm) tPMMA (nm

Fixed lattice constant, different compositions
128 80±5 626±100 156+100

128 65±5 508±100 274±100

128 50±5 391±100 391±100

128 35±5 274±100 508±100

128 20±5 156±100 626±100

Fixed composition, different lattice constants
128 50±5 391±100 391±100

256 50±5 195±59 195±50

512 50±5 98±25 98±25

1024 50±5 49±12 49±12
2048 50±5 25±6 25±6

4098 50±5 12±3 12±3

TEM micrographs illustrating morphology of samples with a = 782 nm and 80%, 50%

and 20% PC volume fraction; and samples with 50% PC volume fraction and 98 nm, 50

nm and 25 nm lattice constants are shown in figs. 3.8 (a), (b), and (c); and (d), (e) and (f),

respectively. The structure of the PC/PMMA films is less perfect as that of the



PET/PMMA optical mirror. There is a substantial variation in thicknesses of individual

layers in all samples. At the same time the layers are generally continuous, flat, and

parallel to each other. Interfaces are smooth and sharp with no significant intermixing

observed.

Figure 3.8. TEM images of the PC/PMMA films: (a), (b) and (c) - samples with a = 782 nm and

80%, 50% and 20% PC volume fraction, respectively; (d), (e) and (f) - samples with 50% PC volume

fraction and 98 nm, 50 nm and 25 nm lattice constants, respectfully.



3.4.3 Experimental phonon dispersion relation ofPC/PMMA films

BLS spectra taken using the VV transmission scattering geometry at k = 0.0181 nm-' for

five periodic multilayer films with # = 50% and various lattice constants are shown is

fig. 3.9. Interestingly, BLS spectra of the films with lattice constants up to 195 nm

resemble that of a homogeneous medium with a single peak that corresponds to scattering

from longitudinal phonons.

Cu

0)r
S.6-

C)

S (4 (3) ((5) (4)~ (2)

-5 0
f (GHz)

Figure 3.9. BLS spectra taken with the VV transmission scattering geometry at k = 0.0181 nm-' for
five periodic multilayer films with 50% PC volume fraction and lattice constants ranging from 25 nm
to 782 nm.

The complexity of the BLS spectra increases gradually with the increase in the lattice

constant, such that the VV spectra of films with 391 nm and 782 nm display two and four
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distinct modes (labeled (2)-(4) in 782 nm spectrum of fig. 3.9), respectively. The

intensities of these modes are notably different suggesting large differences in the

microscopic details of their displacement fields. The two relevant length parameters,

a = t, c + tPMMA and the phonon wavelength A. = 2x , determine how the propagating

elastic waves interact with the layered medium. For a/A <1, the medium appears

homogeneous, since long wavelength material displacements propagate with a sound

phase velocity cff in a two component effective medium. In fact, the experimental value

Ceff= at low k is well captured from the elastic properties of the individual

components and the film composition, 0 using the Wood's law:

Ipc ý= (pc2cc +1' _XPPMMA (3.6)

The sound velocity of the transverse phonons with displacements perpendicular to their

propagation direction can be obtained from the VH BLS spectra at low a // values, where

we can expect effective medium behavior.

3.4.4 Theoretical phonon dispersion relation ofPC/PMMA films

Finite element analysis was used to compute phononic dispersion relations and provide

interpretation of the observed propagation modes. The detailed description of the model

parameters and boundary conditions is provided in section 3.3. The model assumes

perfectly bonded, ideally flat layers with uniform thickness, no roughness and defects, no

spatial variations in elastic properties and zero interface thickness. The densities and

elastic constants of the PC and PMMA layers are listed in table 3.1. Figure 3.10 shows

the comparison between the theoretical dispersion relation and the experimental results.



Quasilongitudinal, quasitransverse and mixed modes are shown as solid, dashed and

dotted lines, respectfully. (Note that QL modes scatter light in VV geometry, QT modes -

in VH geometry, while scattering from mixed modes is generally very weak and difficult

to detect experimentally).
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Figure 3.10. The theoretical and experimental phonon dispersion relations of the PC/PMMA
multilayer films with a = 782 nm and 20% (a), 50% (b) and 80% (c) PC volume fractions. Open
and solid symbols refer to the experimental modes measured in the VH and VV BLS geometries,
respectively. The theoretical dispersion relations for the QL, QT and mixed modes are plotted using
solid, dashed and dotted lines, respectively.



There is a very good agreement between the theoretical and the experimental results for

all compositions. The sound velocities of the two acoustic modes CLef and ct_ff are

independent of the layer thickness between 780 nm and 25nm at constant composition.

The appearance of the additional non acoustic modes (2-3) and (5) is predicted by the

theory. Importantly, computations allow us to observe the details of their displacement

fields thereby providing interpretation of the nature of these modes.

Displacement fields corresponding to the QT and QL modes for k = 0.025 nm -1 in the

782 nm film with 50% PC fraction are shown in fig. 3.11, ordered from low to high

frequency. There are three distinct QT and three QL modes predicted for this sample,

although only two QT modes are resolved experimentally, possibly due to due to weak

scattering intensity, close proximity of the QT modes and/or structural imperfections of

the films. Note that, while these modes propagate with essentially the same phase

velocities (fig. 3.10), their displacements are localized primarily within the individual PC

or PMMA layers. When the phonon wave vector approaches zero, these modes represent

localized, non propagating eigenvibrations of the periodic bilayers with zero group

velocities and frequencies given by

f = lim c-- / +C =- c (3.7)
k-0 2;r d

where c is either the longitudinal (for (5)) or transverse (for (2,3)) effective sound

velocity. Mode (3) represents the second transverse harmonic vibration mode

corresponding to = 2 . For the larger values of k, the displacement fields of these



modes evolve into layer guided phonons (fig. 3.11) propagating with group velocities that

approach the phase velocities of the medium as seen from the dispersion relation in fig.

3.10.
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Figure 3.11. Details of the displacement fields for the QT and QL modes computed for the film with
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3.4.5 Temperature dependence ofsound velocities in PC/PMMA films

The biased spatial distribution of the displacement fields for different modes is

manifested in their Tg values. The variation of the phase velocities of these modes with

temperature is anticipated to display the characteristic kink at the temperature that

corresponds to the Tg of their propagation medium. Thus, the temperature behavior of

sound velocities of various phonon modes can be used in combination with the

theoretical modeling to provide interpretation on the nature of the observed propagation

modes.

Figure 3.12 shows the temperature variations of sound velocities of various phonon

modes for the samples with the volume fraction b = 50% and the lattice constant

a = 782 nm (a) and a = 25 nm (b). The sample with a = 25 nm displays a single Tg of

122 oC, which is intermediate between the glass transition temperatures of the PMMA

(105 OC) and PC (140 oC) layers. Thus, phonons propagating in the 25 nm lattice constant

film do not resolve the presence of individual polymer layers and display a homogeneous

medium-like behavior. In contrast, there are three distinct glass transition temperatures

for phonons propagating in the film with a = 782 nm. Modes (1) and (3) have Tg of -135

0C, which is very similar to the glass transition temperature of PC; mode (5) has Tg of

-105 oC, which is essentially the glass transition temperature of PMMA; while Tg of

mode (4) is -122 'C. Therefore, modes (1) and (3) must propagate primarily in the PC

layers; mode (5) - primarily in the PMMA layers; and mode (4) - in both PC and PMMA

layers. This conclusion agrees very well with the theoretical displacement fields shown in



fig. 3.11, which suggest that the lowest frequency transverse and longitudinal modes

should propagate in the PC layers, the highest frequency longitudinal mode should

propagate in the PMMA layers, while the mid frequency longitudinal mode is not

strongly localized. Note that the temperature-dependent measurements for mode (2)

would require much longer accumulation time those for the other modes due to its low

scattering intensity thus rendering the comparison less meaningful. For this reason the

variation of the phase velocity of mode (2) with temperature is not included in fig. 3.12.
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Figure 3.12. Temperature variation of the phonon phase velocities in the PMMA/PC films with
0 = 50% and lattice constants of 782 nm (a) and 25 nm (b). The vertical shaded regions denote the
regions of the respective glass transition temperatures of the two polymers. Solid lines represent the
least-square the experimental data before and after the glass transition; data points in the vicinity of
T, were excluded from fitting.
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3.4.6 Summary

This section describes the evolution of the phonon dispersion relation for the in-plane

propagation in periodic multilayer PC/PMMA films as a function of their lattice

constants, compositions and temperature. A graduate increase in complexity from a

simple two-mode dispersion characteristic of a homogeneous medium to a complex

multimode dispersion of a periodic medium is observed with increase in the lattice

constant. FEA is employed to compute the theoretical dispersion relations and

displacement fields within respective layers. An excellent agreement with the

experimental data for all compositions is achieved using no adjustable parameters.

Examination of the details of the theoretical displacement fields suggest that the

additional modes represent phonons propagating within individual layers. Finally, the

temperature dependence of the sound velocities reveals the presence of three distinct

glass transition temperatures in films with 782 nm lattice constant, but only a single

effective medium glass transition temperature in films with 25 nm lattice constant

a < 1, in further support of the influence of the individual layers on the in-plane phonon

propagation.

3.5 Conclusions

This chapter describes general features of elastic wave propagation in lD phononic

crystals. While relatively simple to fabricate and analyze, ID systems exhibit a complex

phonon dispersion relation with a number of unique characteristics. Thus, they constitute

an excellent platform to gain a basic understanding of the phononic band gap phenomena.

First, the normal propagation in 1D crystals with small and large mechanical contrast is



treated theoretically with example calculations based on the PC/PMMA and SiO 2/PMMA

systems, respectively. In contrast to ID photonic crystals, considerable mechanical

contrast is required to open polarization independent band gaps in iD solid/solid

phononic crystals due to notable difference in sound velocities of the longitudinal and the

transverse modes. Then, the in-plane phonon propagation in the anisotropic PET/PMMA

and a set of isotropic PC/PMMA multilayer films is studied. The complex phonon

dispersion relations are observed at large thickness-to-wavelength ratios. FEA

computations and temperature dependence of sound velocities clearly demonstrate that

the appearance of the additional modes is related to phonons propagating within the

individual layers and not throughout the film as a homogeneous medium. Therefore, the

phonon dispersion relation of these modes provides information about the structure and

mechanical properties of the propagation medium for 2 > 1. This conclusion has far-

reaching practical implications allowing us to measure the elastic constants and glass

transition temperatures of the individual polymer layers.



CHAPTER 4. PHONON DESIPERSION RELATION OF 2D CRYSTALS
FABRICATED USING INTERFERENCE LITHOGRAPHY
[65]

4.1 Introduction

In this chapter the in-plane phononic properties of 2D hypersonic crystals fabricated with

interference lithography are investigated. This study is different from the investigation of

the 1D multilayer polymer films described in the previous chapter in several respects.

First, in 2D crystals we expect to observe partial phononic band gaps along any direction

in the crystal plane, as opposed to the multilayer films, where no band gaps exist for the

in-plane propagation. The use of the transmission scattering geometry insures that the

phonon wave vector k is parallel to the crystal plane allowing detailed experimental

mapping of the phononic band diagram of 2D crystals. Moreover, since our samples are

single crystalline, any direction within the Brillouin zone can be experimentally accessed

by simply rotating the specimen.

Second, 2D crystals fabricated with interference lithography are solid/fluid structures

consisting of air holes in epoxy matrix, unlike solid/solid polymer films. The huge

mechanical contrast between epoxy (or any other solid) and air leads to the formation of

complete 2D phononic band gaps for a window of volume fractions in both hexagonal

and square phononic crystals [31]. At the same time, computations of the theoretical band

diagrams for solid/fluid crystals are more complex that for solid/solid crystals. It was

shown that the plane wave method fails to correctly predict phononic band diagrams of

solid/fluid structures regardless of how many plane waves are used in the expansion [72-



74]. For this reason, other numerical methods, such as finite element analysis or multiple

scattering theory, must be employed.

Finally, the experimental 2D crystals examined in this chapter are not self-supporting.

Instead, they are fabricated as thin (5 pim) films on top of a thick (3 mm) glass substrate.

It is important to consider the potential influence that the substrate may have on the wave

propagating in the patterned film when designing experiments and interpreting their

results. In particular the thickness-to-wavelength ratio of the film must be sufficiently

large t(/ > 3) to minimize leaking of the elastic waves into the substrate.

Two sets of samples have been investigated: (1) hexagonal crystals with the lattice

constant a = 1360 nm and porosity 0 = 4% and 0 = 39%; and (2) square crystals with

the lattice constant a = 750 nm and porosity 0 =30%. Rich dispersion relation

consisting of several higher order propagation bands was observed in the hexagonal

crystals for phonons propagating along the [110] direction. The theoretical band diagrams

computed using finite element analysis are in excellent agreement with the experimental

data. However, these crystals possess the lowest order phononic band gaps at roughly 700

MHz, which is below the detection limit of the Brillouin light scattering apparatus. For

this reason no band gaps were observed experimentally. In contrast, the smaller lattice

constant of the square crystals leads to the midgap frequencies of roughly 1.4 GHz, which

is sufficient for the direct experimental observation of the gaps between the first and the

second propagation bands.



4.2 Phononic dispersion relation of 2D hexagonal crystals

SEM images and a laser diffraction pattern of 2D hexagonal crystals fabricated using

interference lithography are show in figure 4.1.

Figure 4.1. SEM images of interference lithography patterned samples with hexagonal symmetry for
(a) 4% and (b) 39% air volume fraction; (c) 900 laser light diffraction pattern confirming single
crystallinity of the samples.



The samples consist of hexagonal arrays of cylindrical holes in epoxy matrix. The epoxy

layer is a 6 gm thick film on a glass substrate. The average sample radius is 2 mm. Two

samples have been analyzed: sl with a cylinder radius to lattice constant ratio of

a = 0.1 (4% porosity), and s2 with Xa = 0.33 (39% porosity). The lattice constant for

both samples is a = 1360 nm. The normal incidence transmission light diffraction pattern

(fig. 4.1 (c)) confirms the single crystal nature and hexagonal symmetry of the structures.

BLS is employed to measure the phonon dispersion relation of these structures. All

measurements are done using the VV transmission scattering geometry, as described in

section 2.3.2. A typical intensity profile consists of a very strong elastic Rayleigh peak at

f = 0 GHz and a series of symmetric Brillouin doublets at ±fthat correspond to Stokes

and anti-Stokes scattering (fig. 4.2 (a)). The smallest detectable frequency shift is

determined by the wings of the Rayleigh peak and by the intensity of the Brillouin

doublet. In our case, it is roughly 1 GHz for the stronger glass substrate peaks and 1.5

GHz for the weaker epoxy film peaks.

To understand the effects of periodicity on the phonon propagation we first compare the

spectrum of the sl sample with that of the unpatterned photoresist film. Both spectra

were taken at k = 0.0051 nm - '. Figures 4.2 (a) and 4.2 (b) show the VV scattered light

intensity profiles I = I(f) for the unpatterned film and sl, respectively. Two peaks are

present in the spectrum of the unpatterned sample: a high intensity peak (1) at



glass substrate, and a less intense peak (2) at

f = 2.34 GHz that corresponds to the longitudinal phonon of the polymer film.
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Figure 4.2. BLS spectrum of the samples at k = 0.0051 nm -1 : (a) unpatterned epoxy film; (b) sl

pattern.
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The spectrum of s1 is more complex. In addition to the most intense glass peak (1) at the

same frequency, we see three less intense peaks, (2), (3), and (4), coming from various

bands of the phononic crystal. The position of the lowest frequency longitudinal phonon

peak (2) is shifted slightly from f = 2.34 GHz to f = 2.29 GHz, in comparison with the

corresponding peak (2) of the unpatterned film, due to the decrease of the effective sound

velocity in the porous polymer structure of sample sl (4% porosity). The two new peaks

(3) and (4) correspond to propagation states in the higher bands of the phononic crystal.

Repeating our measurements for k from 0.0005 nm-1 to 0.009 nm-1, we obtain the

complete phononic band diagrams for the [110] propagation, as shown in figs. 4.3 (a) and

4.3 (b) for samples sl and s2, respectively.
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Figure 4.3. Experimental and selected theoretical phononic modes for sl (top) and s2 (bottom)
samples, respectively, for the phonon wave vector parallel to the [100] direction. Solid triangles -

glass mode; open triangles - Bragg mode; solid circles - phononic crystal modes; solid lines -
theoretical quasilongitudinal modes; dotted lines - theoretical mixed modes.
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To provide a basic for the interpretation for the observed modes, we calculate the

theoretical band diagrams and compare them with the experimental data. Finite element

analysis based on the weighted residual formulation [75] is employed to model the

properties of the elastic structures. Because of the periodicity of the structure, the

displacement field ii(;') must satisfy Bloch's theorem. As a result, periodic Bloch

conditions

i"F + i) = fi(F)exp(i/ -d) (4.1)

are used to relate the displacements at the boundaries. The interior air region is modeled

using zero-traction boundary conditions at the air-material interface [76]. The

background was taken to be epoxy with p = 1.19 g/cm3 , c t= 1.8 km/s and CL = 3.1 km/s.

Figures 4.4 (a) and 4.4 (b) show the calculated dispersion relationship for the in-plane

propagation, where the displacement field ii is normal to the axis of the cylinders for

samples sl and s2, respectively. Solid lines are QL modes, dashed lines are QT modes

and dotted lines are mixed modes.
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To visualize the differences among various propagation modes, we compute and compare

their displacement fields, see figure 4.5. For lower-lying modes, ii is essentially either

perpendicular or parallel to k. We therefore label these modes as the QL and QT waves,

(figs. 4.5 (a) and 4.5 (b)). In contrast, the higher band propagation modes are typically

strongly mixed and cannot be approximated as either longitudinal or transverse waves

(fig. 4.5 (c)). We also find that the same mode can have predominantly longitudinal

displacement field character for one range of k and strongly mixed displacement field

character for another range of k (fig. 4.4). Scattering intensities of these modes are vastly

different [40], as described in the section 2.2. QL phonons will scatter light significantly,

while contributions from the QT modes will not be detected. The intensity of the mixed

mode peaks will depend on their field distributions and must be evaluated separately for

each mode. However, their strength will be less than that of the QL peaks. For this

reason, the low frequency peak (2) in the sl spectrum (fig. 4.2 (b)) is more intense than

peaks (3) and, especially, (4).

Figures 4.3 (a) and 4.3 (b) superpose experimental data points and the theoretical lines on

the same graphs. Only QL modes (solid lines) and strongly scattering mixed modes

(dotted lines) are plotted. The spectrum of sample sl has contributions from the second

QL mode, while the first QL mode is at frequencies too low to be detected. In addition,

we see the signature of the strongly scattering mixed modes at the higher frequencies.
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Figure 4.5. Displacement fields for quasitransverse (a), quasilongitudinal (b) and mixed (c) modes
computed at k = 0.0027 nm-' in sl sample. The insert shows the measurement direction.
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The spectrum from sample s2 is very different. Because of the higher porosity, the

effective sound velocity decreases so that both the first and second QL modes are below

the BLS detection threshold. All the higher modes are mixed. Experimental data points

follow the calculated lines well, but in some places along the theoretical lines expected

experimental data points appear missing. This behavior is not surprising. The scattering

from the mixed modes is k-dependent and relatively weak. Therefore, for some values of

k it may be impossible to detect peaks even after long accumulation times. Finally, there

is one mode in both the sl and s2 spectra that does not follow any theoretical line. It is

labeled as Bragg mode and plotted with open triangles (figs. 4.3 (a) and 4.3 (b)). The

sound velocity of this mode is equal to the glass sound velocity, while its negative

dispersion is a characteristic of crystalline samples. We believe that this mode does not

represent a new phonon propagating in the crystals mode, but rather it originates in the

scattering of secondary optical beams diffracted by the patterned sample [69].

In summary, in this section we investigate the phonon dispersion relations of 2D

hypersonic crystals with hexagonal symmetry fabricated using interference lithography.

Brillouin light scattering is used to record phonon spectra for the wave vectors ranging

from k = 0.001 nm- 1 to k = 0.008 nm-' along the [100] direction. While phononic band

gaps are at frequencies too low to be resolved experimentally, their dispersion relation

reveals the presence of multiple propagation modes that belong to higher phonon

propagation bands. Finite element analysis is used to compute the theoretical band

diagrams and displacement fields. Its results are in excellent quantitative agreement with
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experiments using no fitting parameters. This work provides the first experimental

evidence for the complex multiband dispersion relation in 2D hypersonic crystals.

4.3 Direct observation of a phononic band gap in 2D square hypersonic

crystals

Phononic band gaps have not been observed in the hexagonal crystals discussed in the

previous section because their relatively large lattice constants (a = 1360 nm) lead to the

sub GHz values of the midgap frequencies, which are below the detection limit of the

BLS apparatus. Thus, it is desirable to use samples with submicron lattice constants

(preferably a <800 nm) to study the band gap formation in hypersonic crystals.

However, Brillouin scattering experiments in samples with a feature size approaching the

laser wavelength (532 nm) are extremely challenging due to strong optical diffraction and

significant elastic scattering. This places severe requirements for the sample quality. In

particular, the pattern thickness must be at least 5-10 microns to insure that sufficient

amount of the inelastically scattered light is collected from the crystal. This implies that

high-aspect ratio structures (with thickness-to-lattice-constant ratio of at least 10) must be

fabricated, which is only possible if a high stiffness photoresist, such as SU8, is used. In

addition, samples must be infiltrated with a refractive index matching fluid to minimize

optical diffraction and elastic scattering. Ideally, the infiltration fluid should have

refractive index equal to that of the sample material, wet the sample, but not dissolve or

swell it, have a very low vapor pressure and does not decompose under intense laser

radiation for extended periods of time. Generally, high molecular weight organic liquids

are used for infiltration. Unfortunately their densities and sound velocities are similar to
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those of the photoresist, which reduces the mechanical contrast and decreases the width

of the band gap.

Figure 4.6. SEM images of the top view (a) and the cross section (b) of the 2D crystals demonstrating
their single crystallinity, very good uniformity and low defect concentration. The lattice constant is
750 nm, the hole radius is 188 nm and the film thickness is 6 gtm.
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SEM images of the top view and the cross section of the film are shown in figures 4.6 (a)

and (b), respectively. The images were taken using Field-Emission High-resolution SEM

(JEOL 6320FV). They reveal excellent uniformity, single crystalline nature and very low

defect concentration in the samples over a large area. The film thickness is approximately

d = 6 pm, while the lattice constant is a = 750 nm. The samples were fabricated using

interference lithography on glass substrates coated with 500 nm thick unpatterned epoxy

buffer layers used to improve adhesion. To minimize elastic scattering all samples were

infiltrated with a phenylmethyl silicone fluid with p = 1.097 g/cm 3, n = 1.62 (at 532 nm)

and cL = 2.03 km/s. Note that the density, refractive index and sound velocities of epoxy

are Pepoxy = 1.19 g/cm3, nepoxy = 1.62 (at 532 nm), CL epoxy = 3.1 km/s and

Ctepoxy = 1.8 km/s, respectively.

The BLS spectrum taken at k = 0.0041 nm- along the [100] direction, which

corresponds to the magnitude of the wave vector at the edge of the first Brillouin zone

along this direction, is shown in figure 4.7 (a). The central part of the spectrum at

frequencies in the range of ±0.9 GHz comes from light scattered elastically by static

inhomogeneities in the sample and does not provide any information about the phonon

modes. Thus, it is masked with a grey rectangle to enhance the overall clarity of the

graph. There are three phonon peaks present in the spectrum. The highest intensity peak

(g) at 3.72 GHz comes from the glass substrate longitudinal phonons, while the weaker

peaks (1) and (2) at 1.21 GHz and 1.57 GHz, respectively, represent phonons propagating

in the first and second band of the crystal. The values of the peak frequencies were

obtained by fitting the experimental spectrum with a superposition of multiple Lorentzian
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shape lines. The overall fit is plotted in the lower part of the graph using a solid red line,

while the two individual Lorentzian peaks representing phonon modes from the first and

the second propagation band of the phononic crystal are plotted with dashed red lines.

Note that the oscillators used to model the elastic background and the glass peak are not

shown individually on the graph, even though their contribution is included in the overall

fit. The positions of the experimental data and the fit lines are separated to enhance the

overall clarity of the graph. The split in the frequencies between modes (1) and (2)

Af =1.57 -1.21 = 0.36 GHz defines the size of the phononic band gap along the [100]

direction. The ratio of the gap width to its midgap frequency is

0.36
0 .= _ 100% ; 26% .

0.5(1.21+1.57)

To confirm that there are no phonon states in the band gap at other values k we perform

the dispersion relation measurements for a range of phonon wave vectors from

k = 0.002 nm- 1 to k = 0.010 nm-'. The results are shown in figure 4.7 (b), where the

modes of the periodic pattern are plotted with black circles and the modes of the glass

substrate - with black triangles. Furthermore, at higher wave vectors we resolve an

additional mode (plotted with black diamonds), which represents the contribution from

longitudinal phonons propagating in the unpatterned buffer layer, as can be concluded

from its linear dispersion, very weak intensity and sound velocity slightly higher than that

of the pattern.
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Figure 4.7(a) The BLS spectrum taken at k = 0.0041 nm - 1 that corresponds to the edge of the first

Brillouin zone along the [100] direction (lr/a = 3.14/750 = 0.0041 nm-'). Peaks (1) and (2)
represent phonon modes from the first and the second propagation bands of the periodic pattern and
the high intensity peak (g) comes from the longitudinal phonons of the glass substrate. To obtain
frequencies of the phonon modes the experimental data were fitted with the multiple Lorentz
oscillator model. The resultant fit is plotted in a solid red line, while the oscillators representing
phononic crystal modes are plotted in dashed red lines. The oscillators representing elastic scattering
and scattering from glass phonons are not shown. (b) The phononic dispersion relation along the
[100] direction showing a partial band gap between 1.21 and 1.57 GHz (in grey). Black circles
represent the phononic modes of the pattern, black diamonds - the buffer layer, black triangles -
glass substrate.
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The phonon dispersion curves of the glass substrate and the epoxy buffer layer are linear

with the sound velocities of 5708 and 2860 m/s for glass and epoxy, respectively. In

contrast, the phonon dispersion of the periodic pattern is nonlinear with significant

amount of band bending, especially in the vicinity of the first Brillouin zone edge, which

leads to the formation of the band gap, highlighted in grey in fig. 4.7 (b). This is the first

direct observation of a phononic band gap along a well defined direction in single

crystalline hypersonic phononic crystals. Partial phononic band gaps in polycrystalline

materials consisting of a 3D assembly of colloidal poly(styrene) particles have been

reported recently by W. Cheng et al. [77].
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Figure 4.8. Theoretical band diagram for a 2D square epoxy/air phononic crystal with 30% porosity

for the phonon wave vector along the [100] direction. QL modes are plotted with solid lines, QT

modes - with dashed lines and mixed modes - with dotted lines. The partial band gap for QL

phonons is highlighted in grey.

The theoretical phononic band diagram for 2D epoxy/air square crystal with 30%

porosity (that corresponds to the uninfiltrated specimen) for the propagation along the
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[100] direction is shown in figure 4.8. QL modes are plotted with solid lines, QT modes -

with dashed lines and mixed modes - with dotted lines. In VV BLS experiments only the

QL modes are detected. Therefore, the experimentally observed partial phononic band

gap (fig. 4.7 (b)) corresponds to the gap between the first and the second propagation

band for the QL modes, which is highlighted in grey in fig. 4.8. Theory predicts that the

ratio of the gap width to its midgap frequency for the QL gap should be

6.58 - 3.706.58 3.70 .100%=56%, which is more than twice higher than the
0.5(6.58 + 3.70)

experimental ratio. This is expected, since the contrast in density and sound velocities

between epoxy and air is much larger than that between epoxy and the refractive index

matching fluid.

The phase velocity of sound in the crystal c, can be obtained from the slope of the

experimental dispersion relation in the low k (large wavelength) regime, where it is

essentially linear, and it is equal to c,=2271 m/s. It is interesting to compare this value

with the expected sound velocity of a homogeneous medium consisting of 65% volume

fraction of epoxy with cL epox,= 2 8 6 0 m/s and 35% volume fraction of the refractive index

fluid with CL= 2030 m/s. The density and the sound velocity of the effective medium is

related to the densities and sound velocities of its components by Wood's law:

2 2 - eoxy epoxy. Substituting the numerical values into this

equation we obtain cejf2446 m/s. This value is slightly higher that the experimental

phase velocity of the pattern in the long range regime. The difference is likely caused by

the higher cross linked density of the epoxy buffer layer, which was used to measure the
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sound velocity of unpattemed epoxy. The higher cross link density in the buffer layer is

expected since the buffer layer photoresist was exposed to higher dose of laser radiation

during the polymerization step.

4.4 Conclusions

Two dimensional periodic epoxy-air patterns fabricated in photoresist using interference

lithography are well suited for the practical realization of hypersonic phononic crystals.

These structures are single crystalline enabling direction dependant measurements of

their dispersion relation, while the mechanical contrast between epoxy matrix and air

inclusions is very large leading to the appearance of phononic band gaps for a relatively

wide range of air volume fractions. In particular, complete 2D band gaps are expected for

both square and hexagonal crystals with the porosity higher than 0.4. In addition, a

variety of structures with different symmetries and lattice constants can be easily

fabricated.

This chapter reports on phononic properties of 2D crystals with hexagonal symmetry and

the lattice constant of 1360 nm and 2D crystals with square symmetry and the lattice

constant of 750 nm. The phononic dispersion of hexagonal crystals reveals the presence

of several propagation modes in complete agreement with the FEA band diagram

calculations. Since the lowest order midgap band frequencies of these crystals are at

-700 MHz, which is below the detection limit of the BLS apparatus, we were not able to

record the formation of the band gaps experimentally. In contrast, the somewhat larger

submicron lattice constants of the square crystals lead to higher values of the midgap
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frequencies and allow direct observation of the bending of the first and second

propagation bands in the vicinity of the first Brillouin zone and the formation of the band

gap. This result is the first direct observation of a hypersonic band gap along a well

defined direction in a single crystalline periodic structure. It suggests possibilities for

experimental engineering of phonon dispersion relations at GHz frequencies and may

lead to a number of practical phononic devices, such as high frequency acoustic mirrors

and negative refraction based acoustic superlenses.
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CHAPTER 5. TUNABILITY OF PHONON DISPERSION RELATION IN

3D ELASTOMERIC STRUCTURES [78]

5.1 Introduction

The ability to fabricate phononic structures that can repeatedly and reversibly change

their properties during operation is crucial for a practical realization of phononic devices.

Since the dispersion relation of a phononic crystal depends on its lattice geometry and

mechanical properties, such a change can be achieved either by tuning its lattice constant

and symmetry or by changing the densities and elastic constants (sound velocities) of the

constitutive materials.

In this chapter I describe the fabrication of 3D single crystalline elastomeric network/air

structures using interference lithography and demonstrate that their phonon dispersion

relations can be tuned mechanically by subjecting their lattice to well controlled amount

of deformation along a specified direction in the Brillouin zone. This work represents the

first experimental demonstration of a mechanically tunable hypersonic phononic crystal.

5.2 Fabrication process

We employ an interference lithographic template (ILT) as a facile mold for fabricating

three-dimensional bicontinuous poly(dimethylsiloxane) (PDMS)/air elastomeric

structures. PDMS has proven to be an outstanding material for micro- and

nanotechnology [79]. For example, PDMS has been employed to make two-dimensional

(2D) and three-dimensional (3D) microfluidic devices such as pumps, valves, channels,

and cell culture systems [80-81]. PDMS can be deformed reversibly and repeatedly
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without residual distortion and is thermally stable, inexpensive, nontoxic, and

commercially available. Although PDMS can potentially be cross-linked using light [82],

it is not generally used as a photoresist due to the rather inconvenient processing

conditions [83,84]. 2D periodic structures patterned by photolithography and then

subsequently replicated in PDMS have been demonstrated as deformable optical and

acoustic components such as lenses, waveguides, and couplers [85,86]. The relatively

low modulus of PDMS (E ; 2 MPa) can lead to distortions such as feature-feature

pairing and feature sagging in conventional microcontact printing of surface features with

high-aspect ratio [87-89]. In structures fabricated by microcontact printing or replica

molding, which can possess residual physical stresses from the molding procedure,

collapse of structures begins to occur at an aspect ratio of -2 [80,89].

The use of multibeam interference lithography provides a promising approach to the

fabrication of large-area and periodic 3D templates on the submicron scale both rapidly

and cheaply. Importantly, it affords control over geometrical elements of the structures

such as symmetry and volume fraction, see section 2.3 for more detail.

Figure 5.1 shows the three steps of the fabrication process for the 3D elastomeric

network/air materials. In the first step, a 3D ILT is fabricated in a positive resist by a

single exposure to a periodic light intensity distribution, followed by development

(Figure 5.1 (a) and (b)). Due to the high surface tension of water, which can potentially

cause the pattern to collapse, supercritical drying has been suggested in the case of

aqueous-based photoresist [92]. However, supercritical drying of our photoresist resulted
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in the formation of cracks. Therefore we replaced water with pentane, which has a lower

surface tension (73.05 mN/m for water and 13.72 mN/m for pentane at 20 oC [93]).

In the second step, the open 3D network structure is completely filled with PDMS

prepolymer via vacuum assisted infiltration and the PDMS cured in the dark (fig. 5.1 (c)).

Finally, in step three, a second flood exposure to UV light is done to make the template

easily soluble in a dilute basic solution. PDMS is transparent in the UV-vis region and

does not prevent the radiation from reaching the template. Upon the second exposure, the

diazonaphthoquinone, which still remains in the initially unexposed regions, changes into

carboxylic acid and renders the template soluble in basic solution.
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Figure 5.1. Schematic illustration showing the fabrication process for the 3D continuous elastomeric

network/air structure. (a) Exposure by interference lithography (IL). Large arrows show the

direction of the beam while small arrows show the direction of polarization of each beam. (b) 3D

interference lithography template (ILT) fabricated in a positive resist. (c) 3D elastomeric

network/ILT structure from the replication of the PDMS into the ILT. (d) 3D elastomeric

network/air structure after flood exposure under UV lamp and subsequent removal of template in a

water-based developing solution.

The periodic intensity pattern that will become the void space for templating the PDMS is

formed by the interference of four laser beams from the output of a 532 nm continuous

wave, frequency-doubled Nd:YVO4 laser. The Gaussian output from the laser was

converted into a top hat function using a refractive beam shaper. The light intensity

distribution depends on the relative directions and polarizations of the interfering beams.

The overall film thickness is limited by absorption of the photoresist at 532 nm. The

attenuation coefficient of AZ-5214-E is k'= 0.0028 (from ellipsometric measurements),
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which readily permits pattern thicknesses of 3 pm. The refractive index of AZ5214-E is

n=1.66 at 532 nm and is not changed detectably during exposure (measured on a M-

2000D ellipsometer from J. A. Woollam Co.). The final directions and polarizations of

the beams inside the photoresist are given by:

k0 =[0.0122, 0.0122, 0.01221 E0 = [0,- 5.74, 5.74];

k = [0.0164, 0.0073, 0.00731 / 1 = [0, - 2.45, 2.45];
(5.1)

k2 = [0.0073, 0.0164, 0.00731 E2 = [0.97, -1.75, 2.97];

c3 = [0.0073, 0.0073, 0.01641 •, = [-0.97, - 2.45,1.75].

Here k, and E, are the wave vector and polarization of the i-th beam respectively. The

isosurface of the theoretical light intensity model is shown in figure 5.2 (a). The 3D

structure is a four-functional network with symmetry corresponding to the R3m space

group. The basic motif is comprised of a vertical post 1100 nm in length and 500 nm in

diameter with three shorter struts directed outward from the post, as shown in the inset.

Despite aspect ratios of about 2, our structures do not collapse which can be attributed to

both the interconnected nature of our structure and a low residual stress.
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Figure 5.2. Comparison of theoretical and experimental structures. (a) Isosurface of theoretical light

intensity model. The inset is view normal to the (1120) planes of the structure. (b) Calculated 3D

light intensity profile interference in the (0001) plane. (c) Reconstructed confocal image showing a
perspective view of the PDMS elastomeric structure. The inset is the view of y-z cross-sectional plane
of the structure corresponding to the schematic views in the inset of (a). (d) SEM image of ILT
pattern fabricated in a positive photoresist (AZ5214-E)) with a lattice spacing of 980 nm. (e) SEM
image of 3D templated PDMS network/air structure having the complementary structure to (d).

Figure 5.2 (a) shows the isosurface of theoretical light intensity model. The inset is a

view normal to the (1120) planes of the structure. Figure 5.2 (c) is a confocal micrograph

and the inset is the y-z cross-section image demonstrating good correspondence with the

schematic view shown in the inset of figure 5.2 (a). The PDMS elastomeric structure is

the complement of the positive resist template and very closely resembles the light

intensity pattern displayed in fig. 5.2 (b) (compare parts (b) and (e) of fig. 5.2). The

119



expected periodicity ("a" in fig. 5.2 (b)) in the (0001) plane based on the ILT parameters

is 980 nm, and this agrees with the SEM images of the (0001) plane of the experimental

structure (figure 5.2 (d) and (e)), confirming that the transfer of the light intensity pattern

into PDMS via ILT occurs with high fidelity. The larger scale periodicity in the confocal

and SEM images is caused by the photoresist surface being at a slight angle to the (0001)

plane of the interference pattern.

5.3 Tunability of the phonon dispersion relation in 3D periodic PDMS

elastomeric structures

Mechanical tunability of the phonon dispersion relation of our elastomeric structures is

demonstrated through BLS measurements of the samples with various degrees of

deformation. In particular, the dispersion relations of the undeformed sample and the

sample subjected to 30 % strain along the [1010T] direction were recorded. In situ

monitoring of the PDMS under tensile in-plane deformation was conducted by securing

the PDMS sample in a microstretcher mounted on an atomic force microscope stage

(AFM). AFM images (figs. 5.3 (c) and (d)) show the details of the change in the sample

lattice parameter and symmetry due to the 30% unidirectional strain applied along the

[10o0] direction. As clear from this image, the unit cell size along the tensile strain

direction increases by 30% accompanied by the reduction of spacing in transverse

direction thus demonstrating affine deformation of PDMS structure.
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Figure 5.3. BLS spectra of PDMS elastomeric structures at k = 0.0139 nm - 1 with 0% (a) and 30%

tensile strain (b) along the [10oo] direction. Peaks (1) and (3) derive from the phonons propagating in

the phononic crystal and are shifted by the deformation. Peak (2) arises from the longitudinal
phonons of the unpatterned PDMS substrate and remains unchanged. Peak (4) is a result of
backscattered light. The phonon wave vector is oriented along the [oo10] direction. AFM images

with 0% (c) and 30% tensile strain (d) along the same direction clearly show the change

in the lattice parameter and symmetry upon deformation. Insets are FFT of the AFM images.

BLS was employed to obtain information about the phononic dispersion relation of the

PDMS elastomeric crystals. In Brillouin experiments light is scattered inelastically by

thermal phonons. BLS allows for the simultaneous determination of phonon frequency

and wave vector by measuring the frequency shift of the scattered light at a known

scattering angle. The amplitude of the phonon wave vector can be selected by adjusting

the scattering angle, while its orientation with respect to the crystal lattice can be chosen

by rotating the sample in the plane perpendicular to the scattering plane (the scattering

plane is defined by the incident and the scattered laser beams, see section 2.3). Both
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incident and scattered light are polarized normal to the scattering plane (s-polarized). The

frequencies of various phonon modes are obtained by numerical fitting of the

experimental data with multiple Lorentzian peaks.

The corresponding BLS spectra exhibit four peaks, see figs. 5.3 (a) and (b) for the spectra

of undeformed and deformed sample, respectively. Relatively weak peaks (1) and (3)

come from the QL phonons propagating in the PDMS pattern, while a much stronger

peak (2) results from the scattering by longitudinal phonons in the unpatterned PDMS

substrate. The magnitude of the phonon wave vector for peak (4) is always twice that of

the photon wave vector and does not depend on the scattering angle. This k-independent

high-frequency peak (4) arises from the contribution of light backscattered by phonons

(by 1800) that is then elastically reflected from the front surface of the sample. Note that

the position of the substrate peak (2) is unchanged during deformation, while peaks

arising from the PDMS/air structure shift from 1.54 to 1.72 GHz and from 4.05 to 3.64

GHz (peaks (1) and (3), respectively).

Repeating the BLS measurements for a range of wave vectors from 0.001 nm-1 to

0.012 nm-1 we obtain phononic band diagrams for both undeformed and strained samples,

as shown in figure 5.4. The dispersions of the undeformed and strained sample are plotted

in red and blue colors, respectively. Substrate phonons are plotted in black. The edge of

the first Brillouin zone moves to the lower k values upon deformation causing

corresponding shifts in the positions of the propagation bands of the pattern. In addition,

one propagation mode that is present in the spectrum of the undeformed sample
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completely disappears after the deformation. We believe that this behavior is related to

the change in symmetry upon deformation. No phononic band gap can be resolved due to

the interference of a very strong signal from the PDMS substrate at the same frequencies,

see also figs. 5.3 (a) and (b).
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Figure 5.4. The phonon dispersion relation of the 3D PMDS/air structures measured along the

[1 T10] direction. Red dots - phonon modes of the undeformed pattern, blue dots - phonon modes of

the strained pattern (30% along the [10 TO] direction), black dots - substrate contribution.
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5.4 Conclusions

The tunability of the phonon dispersion relation is very important for the practical

realization of phononic devices. In this chapter we described fabrication of mechanically

tunable hypersonic phononic crystals by creating 3D periodic patterns in PDMS using

interference lithography. The fabrication approach employed avoids PDMS swelling or

pattern collapse. In this approach a positive photoresist is used to make the interference

lithography template and after infiltration with PDMS precursor and curing the resist is

flood exposed and then removed in a water-based basic solution resulting in single

crystalline periodic structures with submicron lattice parameters and 200 nm feature size.

To demonstrate the mechanical tunability our structures were subjected to 30% strain

along the [t100] direction and their phononic band diagrams were recorded using BLS for

k parallel to the [101To] direction. The deformation of the lattice leads to the change in size

of the Brillouin zone and corresponding shifts in the positions of phonon propagation

bands. In addition, one of the phonon modes present in the spectra of the unstrained

sample disappears after deformation, likely due to the change in the symmetry. The

results described in this chapter present the first experimental demonstration of tunable

hypersonic phononic crystals.
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CHAPTER 6. THESIS SUMMARY

Periodic materials with submicron lattice constants possess rich and complex phonon

dispersion relations at hypersonic frequencies. The most exciting feature of their

dispersion relation is the appearance of multiple propagation bands separated by band

gaps, where no elastic waves are allowed to propagate. The physics of elastic wave

propagation in periodic media is very complex due to a large number of structural and

materials parameters involved, such as structural symmetry, component material

densities, longitudinal and transverse sound velocities of the constitutive materials.

Furthermore, the behavior of solid/solid phononic crystals is notably different from that

of solid/fluid crystals, which is in turn different from that of fluid/fluid crystals. The

rather large parameter space leads to higher complexity in analyzing phononic crystals as

compared to better known photonic crystals, but at the same time it allows more

flexibility in designing materials with desirable phononic properties.

This thesis explores the phononic dispersion relations of a variety of periodic submicron

structures using an integral approach that combines experimental fabrication and

characterization and theoretical numerical analysis. The objectives of this investigation

are twofold. First, we seek to develop materials that can extend control over propagation

modes and over the density of states of high frequency acoustic phonons. These materials

may find applications in high resolution acoustic microscopy, nondestructive evaluation

techniques, acousto-optics and heat management. Second, we employ phonon dispersion

measurements as a tool to learn about mechanical properties of materials at the nanoscale.

In particular, knowledge of the phonon dispersion relation can be used to compute elastic
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constants of isotropic and anisotropic materials, while the temperature dependence of the

speed of elastic waves in a material provides a way to study the glass transition in

polymer nanolayers.

In the first part of this thesis, phononic properties of anisotropic PET/PMMA and

isotropic PC/PMMA multilayer films are studied as a function of their lattice constant

and composition. A gradual increase in complexity of the phonon dispersion relation is

observed as the lattice constant a becomes comparable to or larger than the phonon

wavelength 2. Films with a << A exhibit one longitudinal and one transverse mode in

complete correspondence to the dispersion relation of an effective homogeneous medium.

The temperature dependence of the sound velocities also reveals a single breaking in the

cL VS. T curve corresponding to the glass transition temperature of the average medium.

In contrast, films with a > 2 display several distinct propagation modes. FEA

computations suggest that these modes represent layer-guided phonons with displacement

fields localized almost entirely within individual polymer layers and not throughout the

film as for a homogeneous medium. This suggestion is confirmed by the temperature

dependence of sound velocities, which reveals several distinct breaking points in the CL

vs. T curve corresponding to the glass transition temperatures of PET and PMMA, and

the glass transition temperatures of PC and PMMA for anisotropic PET/PMMA and

isotropic PC/PMMA samples, respectively. In addition, fitting the theoretical dispersion

relations to the experimental data allows determination of elastic constants for individual

polymer nanolayers.

126



Next, properties of 2D hypersonic phononic epoxy/air crystals fabricated using

interference lithography are investigated. These structures are single crystalline allowing

direction-resolved measurements of their phononic band diagram. In addition, a variety

of samples with both square and hexagonal lattice symmetry and various volume

fractions were made available. Finally, the large mechanical contrast between the solid

polymers (epoxy) and air assures the formation of phononic band gaps for a wide range

of air volume fractions. We observe experimentally the presence of multiple propagation

bands and the appearance of phononic band gaps at the edge of the first Brillouin zone in

these samples. FEA computations are in very good agreement with the experimental

dispersion relations using no fitting parameters. This work is the first experimental study

of the phonon dispersion relation of single crystalline 2D submicron structures and it

clearly demonstrates the existence of phononic band gaps at hypersonic frequencies.

The final part of this thesis is dedicated to the fabrication of phononic structures with a

dispersion relation that can be tuned by the application of an external stimulus. In

particular, we use PDMS to create mechanically tunable hypersonic crystals. A novel

process to fabricate 3D periodic elastomeric structures is developed based on PDMS

infiltration of an interference lithography patterned positive resist template with

subsequent removal of the template in a water-based basic solution. No swelling or

pattern collapse occurs during this process.
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The PDMS/air phononic crystals were subjected to various degrees of deformation along

the [10i0] direction and their dispersion relations were recorded and analyzed. The

deformation is reversible and can be executed repeatedly without causing any damage to

the crystals. We find that the change in the size of Brillouin zone leads to the shift in

frequencies of phonon propagation bands, while the change in the structural symmetry

causes some phonon modes to disappear. This work is the first experimental

demonstration of mechanically tunable hypersonic crystals and it opens a pathway

towards practical realization of tunable phononic devices.
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CHAPTER 7. DIRECTIONS FOR FUTURE INVESTIGATIONS

The main result of this thesis is the development of techniques to fabricate and analyze

hypersonic phononic crystals and the experimental demonstration of phononic band gaps

in the GHz frequency range. It lays the foundations for phonon dispersion engineering in

periodic nanostructures and opens a number of exciting directions for the future

investigations.

From the theoretical viewpoint, we still need to identify the champion phononic structure,

i.e. the structure with the largest phononic band gap for a given contrast in mechanical

properties of materials. Moreover, the champion structure does not need to be the same

for solid/solid, solid/fluid and fluid/fluid crystals or for 2D vs. 3D and the differences

among these classes of phononic crystals should be carefully addressed. Finally, it is

important to consider practical issues related to the fabrication of the champion

structures. Interference lithography is a superior technique for the fabrication of phononic

crystals, but it has limitations in what kinds of structures can be accessed due to a finite

number of laser beams that can be used to create the interference pattern. It is desirable

not only to identify the champion structures, but also to assure that they can be fabricated

using interference lithography or other techniques, such as self-assembly or phase mask

lithography. If the fabrication is not feasible, then there is significant practical interest in

identifying approximate champion structures, which would still have good phononic

properties and can be more easily fabricated.
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There is also a wide range of exciting topics for experimental studies of hypersonic

phononic crystals. Clear and convincing demonstration of a complete phononic band gap

in 3D hypersonic structures would be a natural extension of the study of 2D crystals

described in this thesis. However, currently all 3D structures fabricated using interference

lithography include only a limited number of unit cells in the direction normal to the

sample plane (usually less than 10 unit cells) and cannot be approximated as infinitely

periodic in this direction. It is possible to obtain bulk-like 3D structures with self-

assembly, but these structures tend to be polycrystalline and do not allow direction-

resolved measurements. Thus, fabrication methods must be improved to create

significantly thicker structures, while preserving low defect concentration and single

crystallinity of the lattice.

Phonon localization on defects has tremendous practical importance. Until now there

have been very few experimental investigations of localization of high frequency acoustic

phonons and a vast majority of the studies explored defect cavities in ID superlattices.

Yet, localization in 2D and 3D crystals exhibits several novel features, such as phonon

guiding along linear defects, which are not observable in lD phononic crystals.

Therefore, experimental investigation of phonon localization in 2D and 3D hypersonic

crystals is a very promising direction for further advancement of phononics.

Finally, it is important to explore potential applications of hypersonic phononic crystals,

many of which have been discussed in the first chapter of this thesis. Two areas seem to

be particularly promising - creating acousto-optical devices using simultaneous
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photonic/phononic band gap materials; and improving the efficiency of thermoelectric

materials by engineering the phononic density of states in periodic nanostructures.

The main advantage of simultaneous photonic/phononic band gap materials lies in their

ability to localize both photons and phonons in the same spatial region thereby

dramatically increasing the intensity of acousto-optical interactions. Such materials

exhibit strongly nonlinear optical and acoustic properties and can be used in many

exciting applications, such as optical frequency conversion devices, optical cooling and

generation of coherent phonon beams. At the same time, fabrication of these structures is

not straightforward and requires selecting constitutive materials with desirable

mechanical (significant densities and sound velocities contrast), optical (large refractive

index contrast, low absorption) and acousto-optical (high acousto-optical coefficients)

properties. Moreover, the structural symmetry must allow the formation of simultaneous

photonic and phononic gaps for the same volume fraction of constitutive materials. These

challenges need to be addressed in future investigations.

The efficiency of thermoelectric energy conversion is proportional to electrical

conductivity and inversely proportional to heat conductivity of a thermoelectric material.

Unfortunately, in traditional thermoelectric materials, electrical and heat conductivities

are linked to each other, such that it is impossible to change one without modifying the

other. In contrast, phononic crystals may be able to reduce thermal conductivity by

blocking propagation of the dominant thermal phonons without any significant alteration

of electrical conductivity. However, the lattice constant of the crystal must be on the
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order of the dominant thermal phonons wavelength at a given temperature, which for

room temperature operation is at a periodicity of about 1-10 nm. As a result, one needs to

reduce the lattice constant of an IL defined phononic crystals by two orders of magnitude

in order to start influencing thermal properties of materials. This can be potentially done

using e-beam lithography, self-assembly or other nanofabrication techniques.

Alternatively, it is interesting to explore applications of phononic crystals as low

temperature thermoelectric materials. In this case the wavelength of dominant thermal

phonons is much larger and there is no need for such dramatic reduction in the lattice

constant.
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