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Abstract—This paper proposes a novel framework for the
fusion of hyperspectral and LiDAR-derived rasterized data using
extinction profiles (EPs) and deep learning. In order to extract
spatial and elevation information from both the sources, EPs that
include different attributes (e.g., height, area, volume, diagonal of
the bounding box, and standard deviation) are taken into account.
Then, the derived features are fused via either feature stacking
or graph-based feature fusion. Finally, the fused features are fed
to a deep learning-based classifier (convolutional neural network
with logistic regression) to ultimately produce the classification
map. The proposed approach is applied to two data sets acquired
in Houston, USA and Trento, Italy. Results indicate that the
proposed approach can achieve accurate classification results
compared to other approaches.

Index Terms—Convolutional neural network, deep learning,
extinction profile, graph-based feature fusion, hyperspectral,
LiDAR, random forest, support vector machines.

I. INTRODUCTION

Due to the availability of diverse remote sensors these days,

it is now possible to obtain a wide variety of information

from different materials on the Earth, ranging from spectral

information provided by passive sensors (e.g., multispectral

and hyperspectral images), to height and shape information

acquired by Light Detection and Ranging (LiDAR) sensors,

and texture information to amplitude and phase by Synthetic

Aperture Radar (SAR). This availability makes it possible

to integrate different information captured by diverse sensors

to further improve object detection ability and classification

performance. In spite of the rich amount of information

available in such data sets, automatic interpretation of remote

sensed data remains a difficult task [1].

Hyperspectral images are considered as an effective tool to

define the phenomenology and spectral characteristics of the

object of interest over a detailed spectral signature. LiDAR

data can be taken into account to practically characterize

the elevation and object height information of the scene.

Many methodologies have been proposed and/or adapted to

perform feature selection, feature extraction, segmentation,

and classification on hyperspectral images [2–9]. In a like
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manner, LiDAR data have been investigated for many tasks,

in particular feature detection and extraction [10–16].

However, urban scenes are usually highly complex and

challenging and it is optimistic to assume that a single sensor is

able to provide all the necessary information for classification

and feature extraction [17]. Bearing this in mind, hyperspectral

images are not applicable to effectively differentiate objects

composed of the same material (i.e., objects with the same

spectral characteristics). For example, roofs and roads that are

made of the same material exhibit the same spectral character-

istics, which makes the discrimination of such categories in the

feature space a very difficult task. On the other hand, LiDAR

elevation data alone cannot differentiate between objects with

the same elevation that are made of different materials (e.g.,

roofs with the same elevation made of concrete or asphalt). In

addition, the use of LiDAR data alone for complex areas, e.g.,

where many classes are located close to each other, is very

limited compared to optical data, due to the lack of spectral

information provided by this type of sensors [16, 18].

To address the above-mentioned issues and take advantage

of information provided by each available sensor, the fusion

of multi-sensor data can be taken into consideration. However,

the automatic integration of multiple types of data is not a

trivial task [19]. In addition, the use of more features extracted

by different sensors, while the number of training samples

is limited, may cause the so-called curse of dimensionality

[9, 20, 21]. To address this issue, different feature reduction

approaches, including feature extraction [22] and feature se-

lection [23–25], can be investigated.

The joint use of hyperspectral and LiDAR data has proven

to be successful for a wide variety of applications such as

shadow, height, and gap-related masking techniques [26–28],

above-ground biomass estimates [29], micro-climate mod-

elling [30], quantifying riparian habitat structure [31], and fuel

type mapping [32]. In addition, the joint use of LiDAR and

hyperspectral data has led to higher classification accuracies

compared to the use of each source individually. For instance,

in [1, 14, 19, 33–35], spatial, contextual, and structural in-

formation acquired by LiDAR data has been investigated,

along with spectral information captured by multispectral

and hyperspectral sensors. The obtained results have shown

improvement in terms of discrimination ability in forested and

urban areas. In all those works, the use of LiDAR along with

optical data leads to better results with respect to classification

accuracies. The aforementioned works indicate that LiDAR

and hyperspectral data may complement each other well and
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by integrating those two data sets appropriately, one can make

the most of the advantages of the two, while addressing the

shortcomings of each of them. The sequence of research works

on the joint use of LiDAR and hyperspectral data led to the

2013 Data Fusion Contest, organized by the Geoscience and

Remote Sensing Society (GRSS) [1].

In [36], the concept of the attribute profile (AP) was in-

troduced as a generalization of the morphological profile [37]

to extract a multilevel characterization of an image by using

a sequential application of morphological attribute filters. A

comprehensive survey on APs and their capabilities for the

classification of remote sensing data can be found in [9, 38].

To further improve the conceptual capability of the AP and

the corresponding classification accuracies, Ghamisi et al.

proposed extinction profiles (EPs) in 2016 [39]. EPs are based

on extinction filters, which are extrema-oriented connected

idempotent filters. In contrast with attribute filters, extinction

filters preserve the height of the extrema kept [39]. In [39], it

was shown that extinction filters are a more efficient alternative

than attribute filters in terms of simplification for recognition

applied to remote sensing images. This advantage leads to

higher classification accuracy for EPs compared to the results

obtained by APs. In addition, EPs’ parameters can be set

automatically, independent of the kind of the attribute being

used (e.g. area, volume, ...). However, the initialization of

threshold values used in APs is difficult and time-consuming.

In other words, the main issue of conventional APs, the

initialization of the threshold values, is addressed by EPs [39].

In [40], the concept of EPs has been generalized to extract

spatial and contextual information from hyperspectral images.

Recently, classification of hyperspectral data using deep

learning-based methods has attracted many researchers, due to

the capability of these approaches to extract abstract features at

deeper layers. More abstract features are known to be generally

invariant to most local changes of the input. Deep learning

is defined by the so-called “deep” neural network (DNN)

architectures, commonly deeper than three layers.

Based on various architectures and activation functions,

numerous classes of DNNs have been introduced, includ-

ing deep belief networks (DBN) [41], deep Boltzmann ma-

chines (DBM) [42], and stacked autoencoders (SAE) [43].

The number of contributions, based on deep learning for

hyperspectral image analysis is limited. In [44], a SAE-based

approach was developed for hyperspectral data classification

and feature extraction. In [45], a DBN-based feature extraction

was developed by the same team for the classification of

hyperspectral data. Although both approaches have led to

acceptable classification accuracy, there is, however, a full

connection between different layers. Consequently, a huge

number of parameters need to be trained, which can be an

undesirable factor if only a limited number of training samples

is available.

Convolutional neural networks (CNNs) have gained great

attention from many researchers due to their use of local

connections to handle spatial dependencies. In addition, CNNs

share weights, which significantly decreases the number of

parameters requiring training, in comparison to other deep

approaches. However, the number of parameters needed to

deal with hyperspectral data is still high. In this manner,

inappropriate weights may lead to getting trapped in a local

minimum of the loss function. Ideally, many training samples

should be available to train weights appropriately; this is

an issue for hyperspectral image processing, where there is

usually an imbalance between dimensionality and the number

of available training samples. To partially overcome this issue,

few regularization methods have been introduced to handle

overfitting problems, including L2 regularization and dropout

[46]. In [47], a data augmentation method called “dithering”

is taken into account to further address the overfitting issue.

In this paper, a novel fusion framework is proposed for

the joint classification of LiDAR and hyperspectral data. In

particular, the main contributions of this paper are as follows.

1) This paper proposes a strong framework for multi-sensor

data classification using EPs and graph-based multi-

sensor data fusion [48]1 [35, 48]. However, the proposed

methodology can be considered to be a template and

therefore, different types of feature extraction and fusion

approaches can be used instead of the graph-based fea-

ture fusion., and deep learning-based classification. The

usefulness and generalization capability of the proposed

approach have been tested on two real data sets with

different land-covers. To this end, the first data set,

Houston data, is taken over an urban area, while the

second data set is taken over a rural area in Trento,

Italy.

2) To the best of our knowledge, this paper investigates

a deep learning-based approach for the classification of

multisensor data, LiDAR and hyperspectral, for the first

time in the remote sensing community.

3) The concept of EPs has successfully been investigated

for the classification of panchromatic [39] and hyper-

spectral data [40] so far. This paper also investigates

the ability of the EPs to extract useful information from

LiDAR images.

The rest of the paper is organized as follows: Section II is

devoted to the methodology. Section III presents experimental

results on two well-known data sets. Section IV wraps up the

paper by providing the main concluding remarks.

II. METHODOLOGY

This paper considers two strategies to fuse elevation, spec-

tral, and spatial information of LiDAR rasterized data and

hyperspectral images. Figs. 1 and 2 show the proposed fusion

strategies, strategy 1 and strategy 2, respectively. In summary:

1) Strategy 1 (Fig. 1): In this framework, nonparametric-

weighted feature extraction (NWFE), an extended multi-

extinction profile (EMEP), and a multi-extinction profile

(MEP) are applied to the LiDAR and hyperspectral

images to extract spectral, spatial, and elevation infor-

mation. Finally, all extracted features are concatenated

into a stacked vector and fed to a classifier (RF or

1Here, we only used graph-based feature fusion since its performance
has already been proven to be successful for the fusion of LiDAR and
hyperspectral data.
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Fig. 1. Strategy 1: The architecture of the proposed method using feature stacking as the fusion step.
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Fig. 2. Strategy 2: The architecture of the proposed method using graph-based feature fusion as the fusion step.

CNN-based classification approach) to produce the final

classification map.

2) Strategy 2 (Fig. 2): In this framework, EMEP is ap-

plied to the input hyperspectral data to extract spatial

information. In parallel, MEP is applied to the LiDAR-

derived Digital Surface Model (DSM) image to extract

elevation information. In order to normalize the number

of spectral, spatial, and elevation features, kernel prin-

cipal component analysis (KPCA) is separately applied

to the input data, the output of EMEP, and the output of

MEP. Extracted features are fused using the graph-based

feature fusion (GBFF) and fed to a classifier [random

forest (RF) [49] or CNN-based classification approach]

to produce the final classification map. RF has already

been shown to be effective in terms of classification

accuracy and efficient in terms of CPU processing time,

when it is performed on the features extracted by MPs

and APs, and frequently outperforms well-known clas-

sifiers in the hyperspectral community, such as support

vector machines (SVMs), on such features [9, 38]. We

used RF here to evaluate and compare the performance

of the proposed method with the RF.

For both strategies, we tried to feed the spectral, spatial,

and elevation information to the final classification approach.

To this end, EPs automatically generate spatial and elevation

features from the DSM (a LiDAR-derived feature) and the first

ICs (hyperspectral derived features). It is not recommended to

perform approaches such as MPs, APs, and EPs directly on the

whole hyperspectral data set, as they produce many redundant

features due to the high redundancy available between hyper-

spectral bands. Instead, they have almost often been performed

on a few features extracted by a feature extraction approach

(here, ICA). Below, a detailed description of the main building

blocks of the proposed strategies and the reason for their use

is provided.
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A. Extinction Profile (EP)

1) Extinction Filters: Ghamisi et al. [39] proposed the con-

cept of extinction profiles (EPs), based on a set of connected

filters, called extinction filters, which can preserve relevant

image extrema. Relevance here can be measured using the

concept of the extinction value defined by Vachier [50]. Let

Max(f) = {M1,M2, ...,MN} be the regional maxima of the

image F. For each regional maxima, Mi, there is an extinction

value ǫi corresponding to the increasing attribute being ana-

lyzed. For the input gray-scale image F, the extinction filter

preserves the n maxima with the highest extinction values,

which can be shown as follows:

EFn(F) = Rδ
g(F), (1)

where Rδ
g(F) denotes the reconstruction by dilation [51] of

the mask image, which is given as follows:

g =
n

max
i=1

{M ′
i}, (2)

where max is the pixel-wise maximum operation. The term

M ′
1 is the maximum with the highest extinction value, M ′

2 has

the second highest extinction value, and so on. By construc-

tion, the transformation that defines any regional extrema of

an image with the corresponding extinction value defines the

concept of a granulometric operation [52], which is a family

of opening and closing operators of increasing size.

The efficient implementation of the extinction filter is based

on max-tree data representation [53]. After constructing the

max-tree, the n maxima (max-tree leaves) with the highest

extinction values for the corresponding attribute are chosen,

while all other max-tree nodes that are not in the paths from

these leaves to the root are pruned.

In [39], it was shown that extinction filters act more

efficiently than attribute filters with respect to simplification

for recognition of remote sensing panchromatic images, since

they can preserve more regions and correspondences found by

affine region detectors. Another advantage of extinction filters

over attribute filters is that it is easier to set the parameters of

the extinction filters than those of attribute filters. The main

reason is that they are independent from the kind of attribute

being used (e.g., area, volume,...), since they are based on the

number of extrema. In contrast, the thresholds used by attribute

filters vary greatly according to the attribute being used as well

as the data set being analyzed. Therefore, the thresholds are

more difficult to set.

2) Extended Multi-Extinction Profile (EMEP): The main

idea behind using EPs is to apply several extinction filters with

progressively higher threshold values to appropriately extract

and model the spatial information of the adjacent pixels. In

more detail, the EP is constructed by performing a sequence

of thinning and thickening transformations defined with a

sequence of progressively stricter criteria. The EP for the input

gray scale image, F, can be presented as:

EP(F) =

{φPλL (F), φPλL−1 (F), . . . , φPλ1 (F)
︸ ︷︷ ︸

thickening profile

,F,

γPλ1 (F), . . . , γPλL−1 (F), γPλL (F)
︸ ︷︷ ︸

thinning profile

},

(3)

where Pλ : {Pλi
} (i = 1, . . . , L) is a set of L ordered

predicates (i.e., Pλi
⊆ Pλk

, i ≤ k). For EPs, the number

of extrema can be considered as the predicates. The terms φ

and γ are thickening and thinning transformations.

The EP, as presented here, only works on a gray-scale

image. To further generalize the concept of the EP to hy-

perspectral data, one possible way is to perform a feature

reduction approach, such as PCA or independent component

analysis (ICA), on the input data and then, apply EPs to the

most informative features [9]. This approach is based on the

reduction of the dimensionality of the data from E ⊆ Z
n to

E′ ⊆ Z
m (m ≤ n) with a generic transformation Ψ : E → E′

carried out on an input image F (i.e., Q = Ψ(F)). Then,

the EP can be performed on the most informative features

Qi (i = 1, . . . ,m) of the extracted features, which can

mathematically be given as:

EEP(Q) = {EP(Q1),EP(Q2), . . . ,EP(Qm)}. (4)

In contrast to MPs that are only able to model the size

and structure of different objects, EPs are more flexible

and can be of any type. In this way, the extended multi-

EP (EMEP) concatenates different EEPs (e.g., area, height,

volume, diagonal of bounding box, and standard deviation on

different extracted features) into a single stacked vector, which

can be mathematically defined as follows:

EMEP = {EPa1
,EPa2

, ...,EPaw
}, (5)

where ak, k = {1, ..., w} denotes different types of attributes.

Since different extinction attributes can extract complementary

spatial information, the EMEP has a greater ability to extract

spatial information than a single EP.

It should be noted that the EMEP demands almost the

same computational time as a single EP, since the most time

demanding step is to produce the max-tree and min-tree, which

are computed only once for each gray-scale image.

In our experiments on the LiDAR-derived image, since there

is only one image available, we use the term multi-EP (MEP)

for the situation when different types of EPs are applied to the

LiDAR image.

3) EEP Computational Complexity Analysis: It is easy to

obtain the fact that the computational complexity of the EEP

is m times the complexity of computing EP, in which m is

the number of informative features retained after performing

ICA or PCA.

The most time-consuming part is the construction of the

max-tree and min-tree required to compute the thickening and

thinning profiles. The complexity for a generic floating point

structure is O(nlog n), where n is the number of image pixels.
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TABLE I
COMPLEXITY ANALYSIS OF THE EEP. THE PARAMETER “s” REFERS TO

THE NUMBER OF THRESHOLD VALUES IN THE PROFILE. THE PARAMETER

“m” REPRESENTS THE NUMBER OF INFORMATIVE FEATURES KEPT AFTER

PERFORMING A FEATURE REDUCTION APPROACH.

Operation Complexity # Occurrence

Max-tree construction O(nlog n) 2m
Attribute computation O(n) 2m

Extinction values computation O(m) 2m
Filtering O(n) 2ms

For a complete analysis of the max-tree construction complex-

ity for different data types and different implementations, refer

to [54].

In our implementation, we use the array-based node-

oriented max-tree representation proposed in [55]. This rep-

resentation is very flexible, and for some attributes, such as

height, it reduces the computational complexity from O(n)
to O(m), where m is the number of max-tree nodes. The

structure is also suitable for parallel processing of the max-

tree. Table I demonstrates the computational complexities of

different steps in the EEP. For detailed information about the

complexities of the max-tree construction, attributes computa-

tion and filtering, see [54, 55].

B. Convolutional Neural Network (CNN)

Compared to other deep approaches, CNNs [56] take advan-

tage of local connections and shared weights. CNNs exploit

local correlations using local connectivity between the neurons

of near layers. In CNNs, some connections between neurons,

which share the same weights and biases, are replicated across

the entire layer. Fig. 3 demonstrates an example of the CNN-

based classification. As can be seen, the CNN consists of

several convolutional and pooling layers that construct a deep

network. In order to use the CNN for classification, a fully

connected logistic regression (LR) layer can be considered at

the end of the network. A convolutional layer is as follows:

xl
j = f

(
D∑

i=1

xl−1
i ∗ klij + blj

)

,

where xl−1
i is the i-th feature map of the (l-1)-th layer, xl

j is

the j-th feature map of the current (l)-th layer, and D is the

number of input feature maps. The klij and blj are the trainable

parameters in the convolutional layer. The function f(.) is a

nonlinear function and ∗ is the convolution operation.

In addition to the convolutional layer, one can also use

pooling in a network. The main advantage of pooling is that

such approaches can extract invariant features by reducing the

resolution of feature maps. As shown in Fig. 3, each pooling

layer is connected to the previous convolutional layer, and

combines a small N × 1 patch of the convolution layer. The

most common pooling technique is max pooling [57].2

Due to the high dimensionality of hyperspectral data, a

network can be forced to overfitting. To handle this issue

2We have used the MatConvNet library for the implementation of the CNN-
based classification method utilized in http://www.vlfeat.org/matconvnet/.

to some extent, rectified linear units (ReLU), dropout layers,

and dithering [47] can be taken into account. For detailed

information about CNNs and their design, please see [58].

The output of CNN is classified using an LR, which em-

ploys soft-max as its output-layer activation. Soft-max ensures

that the activation of each output unit sums to one. Therefore,

the output can be seen as a set of conditional probabilities. LR

can be considered to be a single layer neural network and, as

a result, it can be merged with the CNN to form a CNN+LR

deep classifier. In this manner, the size of the output layer

should be equal to the number of classes.

Both the EPs and the CNN are considered to extract

meaningful features from the input data. Here, it should be

noted that, although deep models extract abstract features in

their deep layers in particular, the deep learning model can

be considered to be a feature refiner, i.e., mapping the input

low-level feature to a mid/high-level one.

C. Data Fusion

1) Feature Stacking: In regards to Strategy 1, feature stack-

ing is used for feature fusion. Feature stacking is a simple

approach to integrating extracted features from LiDAR and

hyperspectral images. In this manner, let XSpe denote the

input hyperspectral data, and let XSpa be the output of the

EPs on the first informative independent components of the

hyperspectral data, which can extract and model spatial infor-

mation of the hyperspectral data. Let XEle denote the features

obtained by performing MEP on the LiDAR image, which can

extract elevation information. Unsupervised feature extraction

approaches, such as ICA and PCA, do not consider the class-

specific information of hyperspectral data, which can be pro-

vided by training samples. To efficiently extract spectral infor-

mation while decreasing the dimensionality, supervised feature

extraction approaches, such as NWFE, can be taken into

account [59, 60]. In this case, let XNWFE denote the features

extracted by the NWFE. The feature stacking approach simply

concatenates the features, i.e., XSta =
[
XSpa;XEle;XNWFE

]
. The

main shortcoming of such approaches is that they increase di-

mensionality in the feature space, which may cause the Hughes

phenomenon [20]. This issue might dramatically downgrade

the classification accuracy of classifiers, which cannot handle

high dimensionality with a limited number of training samples.
2) Graph-Based Feature Fusion (GBFF): In regard to

Strategy 2, a GBFF developed by Liao et al. [48] is used

for the fusion of spectral, spatial, and elevation features. The

outputs of different steps may have different dimensionalities

and characteristics, detailed as follows:

1) For example, the output of EPs on the first three indepen-

dent components produces 213 features (i.e., 71 features

for each independent component, including 14 features

for the height attribute, 14 features for the area attribute,

14 features for the volume attribute, 14 features for the

diagonal of the bounding box attribute, and 14 features

for the standard deviation attribute, and the independent

component should also be included to make a complete

profile). These features extract the spatial information of

the scene and model different attributes. Let XSpa denote

the spatial features.
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Fig. 3. A general example of a CNN network. For strategy 1, a concatenation of NWFE, EMEP, and MEP is used as the input for the CNN deep network,
while for strategy 2, the output of the graph-based feature fusion is fed to the CNN deep network as the input.

2) Hyperspectral data sets contain detailed spectral infor-

mation. For example, in the case of the Houston data,

the number of spectral features is 144. Let XSpe denote

the spectral features.

3) By performing the MEP on the LiDAR image, one may

obtain several features presenting elevation information

of the LiDAR derived data. (i.e., 71 features for the

LiDAR image). Let XEle denote the elevation features.

In order to fuse the features described above, the number

of dimensionalities should first be normalized in order to put

the same weight on each type of the features and reduce the

computational cost and noise throughout the feature space [1].

In [1], Kernel PCA [61] was suggested as an effective tool to

reduce the dimensionality of each type of features, separately,

since it can represent a higher-order complex and nonlinear

distribution in a fewer number of dimensions, which is helpful

against the Hughes phenomenon and high computational cost.

As suggested in [1], the normalized dimension of each type

of features is set to the smallest dimensions of the above-

mentioned features. For example, for the Houston data, this

value is set to 71 (d1 =71).

Let FSpe =
{

F
Spe
i

}d1

i=1
, FSpa =

{

F
Spa
i

}d1

i=1
, and FEle =

{
FEle
i

}d1

i=1
represent the spectral, spatial, and elevation fea-

tures after normalization to the same number of dimen-

sions, respectively, while F
Spe
i ∈ ℜd1 , F

Spa
i ∈ ℜd1 , and

FEle
i ∈ ℜd1 are the normalized spectral, spatial and eleva-

tion features, respectively. Let FSta =
[
FSpe;FSpa;FEle

]
and

FSta
i =

[

F
Spe
i ;F

Spa
i ;FEle

i

]

∈ ℜ3(d1) denote the vector stacking

of the spectral, spatial, and elevation features. Finally, let

{Zi}
n
i=1 and Zi ∈ ℜd2 represents the fusion features with

dimensionality of d2 with d2 ≤ 3(d1).

The main aim of the graph-based feature fusion is to seek a

transformation matrix, w ∈ ℜ3(d1)×d2 , which can perform both

dimensionality reduction and feature fusion in such a way that

Zi = wT Fi, where Fi can be set to FSta
i . The transformation

matrix w can reduce dimensionality and fuse features at the

same time, while it preserves local neighborhood information

and detects manifolds embedded in the original feature space

[48]. To do so, the following approach can be considered to

seek an appropriate transformation matrix w:

arg min
w∈ℜ3d1×d2





n∑

i,j=1

∥
∥wT Fi − wT Fj

∥
∥
2

Aij



 ,

where matrix A is denoted as the edge of the graph G =
(F,A).

III. EXPERIMENTAL RESULTS

A. Data Description

1) Houston Data: The data is composed of a hyperspectral

image and a LiDAR-derived digital surface model (DSM).

This data set was distributed for the 2013 GRSS data fusion

contest. The hyperspectral data was acquired by the Compact

Airborne Spectrographic Imager (CASI) over the University

of Houston campus and the neighboring urban area on June

23, 2012. The LiDAR data was acquired on June 22, 2012.

The data sets were collected by the NSF-funded Center for

Airborne Laser Mapping (NCALM). The size of the data is

349×1905 pixels with the spatial resolution of 2.5m. The

hyperspectral data set consists of 144 spectral bands ranging

from 0.38 to 1.05µm. The 15 classes of interests are: Grass

Healthy, Grass Stressed, Grass Synthetic, Tree, Soil, Water,

Residential, Commercial, Road, Highway, Railway, Parking

Lot 1, Parking Lot 2, Tennis Court, and Running Track. The

“Parking Lot 1” includes parking garages at the ground level

and also in elevated areas, while “Parking Lot 2” corresponds

to parked vehicles. Fig. 4 shows a color composite repressen-

tation of the hyperspectral data and the corresponding training

and test samples. Table II gives information about the number

of training and test samples for different classes of interests.

Cloud shadows in the hyperspectral data were detected

using thresholding of illumination distributions calculated by

the spectra. Relatively small structures in the thresholded

illumination map were removed based on the assumption that

cloud shadows are larger than structures on the ground.3

2) Trento Data: The second data set is a subset of larger

data captured over a rural area south of the city of Trento, Italy.

The subset used in the experiments is of 600 by 166 pixels.

The LiDAR DSM data was acquired by the Optech ALTM

3The enhanced data is provided by Prof. Naoto Yokoya from Technical
University of Munich (TUM).
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Thematic classes:

Healty grass Stressed grass Synthetic grass Tree Soil

Water Residential Commercial Road Highway

Railway Parking lot 1 Parking lot 2 Tennis court Running track

Fig. 4. Houston - From top to bottom: A color composite representation of the
hyperspectral data using bands 70, 50, and 20, as R, G, and B, respectively;
training samples; test samples; and legend of different classes.

TABLE II
HOUSTON: NUMBER OF TRAINING AND TEST SAMPLES.

Class Number of Samples

No Name Training Test

1 Grass Healthy 198 1053
2 Grass Stressed 190 1064
3 Grass Synthetic 192 505
4 Tree 188 1056
5 Soil 186 1056
6 Water 182 143
7 Residential 196 1072
8 Commercial 191 1053
9 Road 193 1059
10 Highway 191 1036
11 Railway 181 1054
12 Parking Lot 1 192 1041
13 Parking Lot 2 184 285
14 Tennis Court 181 247
15 Running Track 187 473

Total 2,832 12,197

3100EA sensor and the hyperspectral data captured by the

AISA Eagle sensor, all with the spatial resolution of 1m. The

hyperspectral data consists of 63 bands ranging from 402.89

to 989.09nm, where the spectral resolution is 9.2nm. The

spatial resolution of this data set is 1m. For this data set, six

classes of interests were extracted, including Building, Woods,

Apple Trees, Roads, Vineyard, and Ground. Fig. 5 shows a

color composite representation of the hyperspectral data and

the corresponding training and test samples. Table III gives

information about the number of training and test samples for

different classes of interests.

B. Algorithm Setup and Discussion

For NWFE, the first features with cumulative eigenvalues

above 99% are automatically retained. To this end, 6 and 17

features have been extracted from the Trento and Houston data,

respectively.

For the RF, the number of trees is set to 300. The number

of the prediction variable is set approximately to the square

Thematic classes:

Apple trees Buildings Ground

Wood Vineyard Roads

Fig. 5. Trento - From top to bottom: A color composite representation of the
hyperspectral data using bands 40, 20, and 10, as R, G, and B, respectively;
Training samples; Test samples; and legend of different classes.

TABLE III
TRENTO: NUMBER OF TRAINING AND TEST SAMPLES.

Class Number of Samples

No Name Training Test

1 Apple trees 129 3905
2 Buildings 125 2778
3 Ground 105 374
4 Woods 154 8969
5 Vineyard 184 10317
6 Roads 122 3252

Total 819 29595

root of the number of input bands.

Fig. 6 and Table IV provide information about the structure

of the CNN network. Furthermore, the following points have

been taken into account to design a proper CNN network:

1) In this work, 90% of the training samples were used to

train weights and biases, while the rest are validation

samples to guide the design of a proper architecture in

order to avoid overfiting. Please note that the validation

samples are different from the test samples. The val-

idation samples have been extracted directly from the

training set.

2) A dynamic learning rate is taken into account. To do

so, the whole training period is divided into five stages,

starting from a relatively high learning rate of 0.005,

and decreasing by a half for each subsequent stage.

This setting provides a fast-descend-of-loss function at

the beginning, while the gradually decreasing rate can

ensure a small but consistent progress. After reaching

a certain stage of training, a high rate might not be

efficient anymore, since it might cause oversteps leading

to a higher loss.

3) In this paper, the input hyperspectral data sets were

normalized in the range of [0 1]. In order to extract

sufficient spatial information for the pixel to be classi-

fied, a large window with the size of 27×27 pixels was
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TABLE IV
THE ARCHITECTURE OF THE CNN.

Number Convolution ReLU Pooling Dropout

1 4× 4× 32 Yes 2× 2 No
2 5× 5× 64 Yes 2× 2 50%
3 4× 4× 128 Yes No 50%

INPUT

CONV-1

Feature Map-1

POOL-1

Feature Map-2

CONV-2

Feature Map-3

POOL-2

Feature. Map-4

CONV-3

Feature Map-5

Full Connection

Feature Map-6

Softmaxloss

Output

[27 × 27 × 10]

kernel size: 4 × 4 × 10    kernel #: 32   weights: (4 × 4 × 10) × 32 + 32 (bias)

[24 × 24 × 32]

size: 2 × 2

[12 × 12 × 32]

kernel size: 5 × 5 × 32    kernel #: 64   weights: (5 × 5 × 32) × 64 + 64 (bias)

[8 × 8 × 64]

size: 2 × 2

[4 × 4 × 64]

kernel size: 4 × 4 × 64    kernel #: 128   weights: (4 × 4 × 64) × 128 + 128 (bias)

[1 × 1 × 128]

kernel size: 1 × 1 × 128    kernel #: 9   weights: (1 × 1 × 128) × 16 + 16 (bias)

[1 × 1 × 16]

probability vector: [1 × 16]

Fig. 6. Detailed information about the network considered for CNN and
SICNN.

considered. Since the studied areas are of small sizes,

only three convolution layers and two pooling layers

have been used.

4) For the training step, a mini batch with a size of 32 was

taken into account. For relatively small training samples,

as in our case, this could allow the training step to

perform more frequent parameter updates and achieve

faster convergence in practice.

5) In order to preserve the borders of different features

through the convolutional process, the original image

is padded with an extra artificial border, which mirrors

the original border.

In terms of EPs, the following points have been taken into

account:

1) In order to generate the EP for area, volume, and

diagonal of the bounding box, the values of n used to

generate the profile are automatically given by ⌊αj⌋,

where j = 0, 1, ..., s − 1 and s shows the number of

thresholds. The aforementioned equation was obtained

experimentally. In this equation, the larger the α, the

larger the differences between consecutive images in

the profile. The smaller the α, the fewer extrema there

will be, where most of the image information is usually

present [53]. As recommended in [39], the approprite α

value can be chosen between 2 and 5. Here, α, and s

are set to 3 and 7, respectively.

2) In order to generate the EP for height and standard de-

viation, the threshold values were adjusted with respect

to the maximum value of each attribute, disregarding

extreme values such as the root node, which usually has

a much higher attribute than the other nodes [39]. Then,

the maximum value is split up into seven equidistant

parts.

3) The size of the EPs is 2s+ 1, since the original image

should also be included in the profile. The profiles were

computed using the 4-connected connectivity rule.

Fig. 7 shows a few representative features produced by EPs

on the LiDAR image using area, volume, diagonal of the

bounding box, height, and standard deviation attributes. As

can be seen, different extinction attributes extracts different

spatial information, which can be suitable for classification

accuracies.

For the sake of simplicity, the following names are used

in the experimental part: LiDAR, Hyper, and LiDAR+Hyper

show the classification accuracies of LiDAR, hyperspectral,

and their stack, respectively. EPlidar and EPhyper show the

classification accuracies of EPs applied to LiDAR, and hy-

perspectral data. EPlidar + EPhyper refers to the classification

accuracies of EPs applied to the stack of LiDAR and hyper-

spectral. GBFF and Stack show the classification accuracies

of the proposed method using GBFF and stacking as the fusion

step.

C. Discussion of the Houston Data

1) RF-based approaches: Table V shows the classification

accuracies obtained by different approaches using RF. The

classification accuracies obtained by LiDAR+Hyper improves

both the classification results obtained by the individual use

of LiDAR and Hyper, which confirms that LiDAR and

hyperspectral data are appropriate complements for each other

in terms of classification accuracies. The use of EPs can sig-

nificantly improve kappa, overall accuracy (OA), and average

accuracy (AA), since the EPs can efficiently extract spatial

information and model the shape and size of different objects,

which are helpful to precisely differentiate different classes

of interest. For example, EPlidar significantly improves the

classification accuracy of LiDAR by almost 42% in terms of

the OA, which confirms the capability of the EP in terms of

information extraction from LiDAR-derived rasterized data.

The best results were obtained by the proposed approach

using feature stacking. In this context, Stack improves GBFF

by almost 1.5% in terms of OA. The main reason for this

improvement is that RF is insensitive to noise in the training

labels and can handle high dimensional data with even a

limited number of training samples. The GBFF approach

reduces dimensionality and discards some information, while

feature stacking increases the dimensionality and keeps all

the information. Due to the robustness of the RF, a better

classification result can be obtained by the proposed approach

using feature stacking. In terms of class-specific accuracies,

Stack also improves the class-specific accuracies of most

classes compared to EPlidar + EPhyper. The main reason is

that EP is performed on the first ICs generated by ICA.

ICA does not consider class information provided by training

samples and therefore, it cannot extract spectral information

properly. However, in Stack, a few extra features produced

by NWFE are also considered, which can extract spectral

information with respect to class discriminant information

provided by training samples. The only exceptions are classes

Roads, Highways, and Parking lots, where the classes are

made of almost exactly the same materials and therefore have

almost the same spectral characteristics. As a result, spatial



JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 9

and elevation information can be more helpful to differentiate

these classes than spectral information.

2) CNN-based approaches: Table VI shows the classifica-

tion accuracies obtained by different approaches using CNN

as the classifier. The use of EP significantly improves the

classification accuracies of both LiDAR and hyperspectral data

due to the great ability of the EP in terms of simplification

for recognition. As can be seen, the proposed approach using

graph-based feature fusion provides the best results in terms

of classification accuracies. The main reason is that CNN,

in contrast with RF, is not that efficient at handling high

dimensional data when the number of training samples is

insufficient. The graph-based approach performs the fusion

step while it reduces the dimensionality. However, the feature

stacking-based approach increases dimensionality by concate-

nating elevation, spectral, and spatial features. This is the main

reason why Graph outperforms Stack when CNN is chosen

for the classification step. In addition, Graph preserves local

neighborhood information in the projected lower dimensional

feature space, while it detects the manifold embedded in the

original high-dimensional input data.

In table VI, EPhyper shows the best class-specific accuracy

for the category highways. The reason is that for this particular

class, the LiDAR-derived features complicate the distribution

of classes in the feature space as they consider elevation

information to distinguish different classes. For the Houston

data, the elevation of this particular class changes along

the highways. Therefore, the consideration of EPs on the

hyperspectral data set alone can lead to the best classification

performance for the highways, as it only considers spectral

information.

Fig. 8 demonstrates a few classification maps obtained

by applying different approaches to the Houston data. In

this manner, the outputs of RF on (a) hyperspectral data,

(b) the stack of LiDAR and hyperspectral data, and (c) the

proposed approach using feature stacking; and the outputs of

CNN-based classification on (d) hyperspectral data, (e) the

stack of LiDAR and hyperspectral data, and (f) the proposed

approach using GBFF are demonstrated. As can be seen,

the consideration of EPs can produce more homogeneous

classification maps than Hyper and the stack of LiDAR and

hyperspectral. Although the cloud shadow was removed from

the original data, when ICA is performed to the enhanced

hyperspectral data to produce base features for MEEPs, the

shadow effect is partially appeared on the second IC. This

is the reason that the cloud shadow slightly downgrades the

quality of the classification maps obtained by the proposed

approach.

D. Discussion on the Trento Data

With respect to Tables VII, and Table VIII, one can simply

notice that in all cases, EPlidar + EPhyper, Graph, and Stack

could lead to the highest classification accuracies. In addition,

the consideration of the spatial and elevation information can

significantly boost the performance of using LiDAR and Hy-

per in terms of classification accuracies, when these sources

have been considered separately. Same as the Houston data,

the use of EPs can considerably improve the classification ac-

curacy of LiDAR. In this context, the amount of improvement

by RF, and CNN are almost 41%, and 35%, respectively. In all

cases, the LiDAR+Hyper can boost the performance of either

LiDAR or Hyper in terms of classification accuracy, which

proves that the consideration of elevation information along

with spectral information are suitable in terms of obtaining

accurate classification maps. In terms of CNN, Graph slightly

improves Stack in terms of classification accuracies due to the

fact that Graph reduces dimensionality while fusing different

features, which is suitable from the stand point of classification

accuracy for CNN. Fig. 9 demonstrates a few classification

maps obtained by different approaches on the Trento data.

E. Comparison with the Literature

In this section, we briefly compare the proposed approach

with the literature. For the Trento data set, the proposed

approach improved the methodologies published in [19, 62] in

terms of classification accuracies. Indeed, the CNN considered

in our methodology provides the highest classification accu-

racies. In terms of SVM and RF, our fusion framework also

leads to higher classification accuracy than the ones reported

in [19, 62]. This improvement might be due to the use of EPs

instead of APs in the proposed approach. With respect to the

study published in [39], EPs are more powerful and efficient

than APs in terms of simplification for recognition applied to

remote sensing images and they can preserve the height of the

retained extrema.

For the Houston data, with respect to the outcome of

the 2013 Fusion Contest,4 the proposed approach provides

acceptable classification accuracies. However, it is important to

note that most approaches investigated in the contest had been

specifically developed for the classification of the Houston

data, while they include several overheads, pre-processing,

and postprocessing approaches to further improve the eventual

classification accuracy. The consideration of these pre- and

post-processing approaches can also be an interesting research

line to further improve the obtained classification accuracies.

However, in this paper, we have tried to propose a scheme that

is also applicable to other data sets composed of coregistered

hyperspectral and LiDAR images. In other words, the main

objective of the paper is to propose an efficient fusion frame-

work that is capable of handling different coregistered LiDAR

and hyperspectral images by preserving the generalization

capability of the proposed approach, while achieving the

highest classification accuracy on one specific data set is not

expected. In [63], a fusion framework using multiple feature

learning was developed for the Houston data, whose results

are comparable to the ones obtained by the proposed approach.

The proposed approach can slightly improve the results of the

work in [63] when no postprocessing is taken into account.

However, when Markov random field (MRF) is used as the

post-processing approach, the classification result of [63] will

be slightly better than the proposed approach, in which no

postprocessing is used. This fact encourages us to consider

4http://www.grss-ieee.org/community/technical-committees/data-
fusion/2013-ieee-grss-data-fusion-classification-contest-results/
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Fig. 7. A few representative features produced by EPs on the LiDAR-derived image file using area, volume, diagonal of the bounding box, height, and
standard deviation attributes.

(a) (b)

(c) (d)

(e) (f)

Fig. 8. Classification maps for Houston data: The outputs of RF on (a) hyperspectral data, (b) the stack of LiDAR and hyperspectral data, and (c) the proposed
approach using feature stacking; the outputs of CNN-based classification on (d) hyperspectral data, (e) the stack of LiDAR and hyperspectral data, and (f)
the proposed approach using GBFF.

an approach like the hidden MRF proposed in [2] to further

improve the classification accuracy of the proposed approach

in future.

IV. CONCLUSION

This paper proposes a fusion approach for the spectral-

spatial classification of LiDAR and hyperspectral data using

extinction profiles and convolutional neural networks. In this

work, the concept of the extinction profile has been used for

spatial, and elevation information extraction from both LiDAR

and hyperspectral data. The spectral, spatial, and elevation

features were then fused using either feature stacking or graph-

based feature fusion. Finally, the features were classified using

a few advanced approaches, such as RF and CNN-based

classification. The principal conclusions are as follows

1) EPs can significantly improve the classification accuracy

of both LiDAR and hyperspectral data. In this paper, the

usefulness of the EP for spatial and elevation informa-

tion extraction from LiDAR data has been investigated

for the first time in the remote sensing community.

Results indicate that promising results can be obtained

using the EP on LiDAR data, without involving any

information from hyperspectral data.

2) In this work, feature fusion was a better option than

graph-based feature fusion where RF is considered for

the classification step. On the other hand, a further
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TABLE V
RF HOUSTON: CLASSIFICATION ACCURACIES OBTAINED BY DIFFERENT APPROACHES USING RF. THE METRICS AA AN OA ARE REPORTED IN

PERCENTAGE. KAPPA COEFFICIENT IS OF NO UNITS. THE BEST RESULT IS SHOWN IN BOLD. LIDAR, HYPER, AND LIDAR+HYPER SHOW THE

CLASSIFICATION ACCURACIES OF LIDAR, HYPERSPECTRAL, AND THEIR STACK, RESPECTIVELY. EPlidar , EPhyper , AND EPlidar + EPhyper SHOW THE

CLASSIFICATION ACCURACIES OF EPS APPLIED TO LIDAR, HYPERSPECTRAL, AND THE STACK OF MEP AND EMEP, RESPECTIVELY. GBFF AND STACK

SHOW THE CLASSIFICATION ACCURACIES OF THE PROPOSED METHOD USING GBFF AND STACKING AS THE FUSION STEP. THE NUMBER OF FEATURES IS

WRITTEN IN PARENTHESES.

LiDAR Hyper LiDAR+Hyper EPlidar EPhyper EPlidar + EPhyper GBFF Stack
(1) (144) (145) (71) (213) (284) (50) (301)

OA 31.83 77.47 80.91 73.42 80.36 86.98 87.25 88.91
AA 37.43 80.34 83.17 75.97 83.47 88.54 88.95 90.15

Kappa 0.2677 0.7563 0.7931 0.712 0.7876 0.8592 0.8615 0.8796

1 13.48 83.38 83.57 74.26 77.49 78.06 80.06 83.29
2 16.25 98.40 98.21 61.75 78.48 84.96 92.58 97.74
3 56.63 98.02 98.42 97.23 100.00 100.00 100.00 100.00
4 44.03 97.54 97.73 58.14 82.77 95.45 95.55 99.34
5 58.04 96.40 96.50 82.10 97.73 98.77 99.72 98.77
6 58.04 97.20 97.20 83.22 95.80 95.80 95.80 99.30
7 39.08 82.09 85.82 77.33 73.23 73.41 86.38 85.91
8 29.53 40.65 56.51 68.28 59.92 85.28 86.61 86.99
9 13.59 69.78 71.20 59.40 83.00 93.96 91.31 91.97

10 11.29 57.63 57.14 66.89 64.09 67.08 47.49 49.71
11 40.41 76.09 80.55 99.91 84.72 90.89 92.88 97.82
12 9.99 49.38 62.82 64.75 78.10 88.57 85.11 86.26
13 15.08 61.40 63.86 58.60 77.89 76.14 82.46 75.44
14 80.16 99.60 100.00 100.00 99.60 100.00 99.60 100.00
15 80.16 97.67 98.10 87.74 99.37 99.79 98.73 99.79

Classification using RF,meanacc=85.1062,OA=85.1426,kappa=80.3395 Classification using RF,meanacc=90.6371,OA=89.2699,kappa=85.7897

(a) (b) (c)

(d) (e) (f)

Fig. 9. Classification maps for Trento data: The outputs of RF on (a) hyperspectral data, (b) the stack of LiDAR and hyperspectral data, and (c) the proposed
approach using feature stacking; the outputs of CNN-based classification on (d) hyperspectral data, (e) the stack of LiDAR and hyperspectral data, and (f)
the proposed approach using GBFF.

feature extraction on the stacked features may improve

the classification accuracy of CNN-based classifiers.

With respect to using the CNN for the classification step,

the graph-based feature fusion approach could lead to

better results in terms of classification accuracies than

feature stacking.

It should be noted that, in this work, deep learning has been

used for the first time for the joint classification of LiDAR and

hyperpspectral data in our community, and its results indicate

that the convolutional neural network is an efficient tool for

the fusion of LiDAR and hyperspectral data.
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TABLE VI
CNN HOUSTON: CLASSIFICATION ACCURACIES OBTAINED BY DIFFERENT APPROACHES USING CNN. THE METRICS AA AN OA ARE REPORTED IN

PERCENTAGE. KAPPA COEFFICIENT IS OF NO UNITS. THE BEST RESULT IS SHOWN IN BOLD. LIDAR, HYPER, AND LIDAR+HYPER SHOW THE

CLASSIFICATION ACCURACIES OF LIDAR, HYPERSPECTRAL, AND THEIR STACK, RESPECTIVELY. EPlidar , EPhyper , AND EPlidar + EPhyper SHOW THE

CLASSIFICATION ACCURACIES OF EPS APPLIED TO LIDAR, HYPERSPECTRAL, AND THE STACK OF MEP AND EMEP, RESPECTIVELY. GBFF AND STACK

SHOW THE CLASSIFICATION ACCURACIES OF THE PROPOSED METHOD USING GBFF AND STACKING AS THE FUSION STEP. THE NUMBER OF FEATURES IS

WRITTEN IN PARENTHESES.

LiDAR Hyper LiDAR+Hyper EPlidar EPhyper EPlidar + EPhyper GBFF Stack
(1) (144) (145) (71) (213) (284) (50) (301)

OA 49.79 78.35 83.33 61.76 88.01 88.81 91.02 89.71
AA 49.67 77.19 83.21 62.47 89.12 90.00 91.82 90.39

Kappa 0.4563 0.7646 0.8188 0.5851 0.8702 0.8788 0.9033 0.8884

1 28.30 82.24 83.48 52.52 78.16 78.63 78.73 78.35
2 26.88 98.31 89.10 38.06 87.41 94.83 94.92 94.64
3 49.50 70.69 83.17 71.49 99.80 99.80 100.00 100.00
4 62.03 94.98 99.34 73.86 79.64 98.30 99.34 99.15
5 28.60 97.25 97.63 29.92 98.39 98.58 99.62 98.77
6 37.76 79.02 98.60 66.43 94.41 95.10 95.80 95.10
7 52.71 86.19 93.10 87.03 79.76 82.56 87.87 85.45
8 77.30 65.81 88.03 82.72 94.11 92.02 95.25 92.88
9 49.34 72.11 76.47 51.23 81.31 85.39 89.71 83.78

10 64.48 55.21 43.92 57.82 97.01 71.04 81.18 81.76
11 71.35 85.01 91.46 88.71 86.15 85.77 86.34 84.91
12 43.32 60.23 75.70 54.95 91.55 92.12 92.70 92.03
13 38.95 75.09 74.74 67.02 89.82 87.02 87.02 86.32
14 87.04 83.00 82.19 73.68 95.14 98.38 99.19 94.33
15 27.48 52.64 71.25 41.65 84.14 90.49 89.64 88.37

TABLE VII
RF TRENTO: CLASSIFICATION ACCURACIES OBTAINED BY DIFFERENT APPROACHES USING RF. THE METRICS AA AN OA ARE REPORTED IN

PERCENTAGE. KAPPA COEFFICIENT IS OF NO UNITS. THE BEST RESULT IS SHOWN IN BOLD. LIDAR, HYPER, AND LIDAR+HYPER SHOW THE

CLASSIFICATION ACCURACIES OF LIDAR, HYPERSPECTRAL, AND THEIR STACK, RESPECTIVELY. EPlidar , EPhyper , AND EPlidar + EPhyper SHOW THE

CLASSIFICATION ACCURACIES OF EPS APPLIED TO LIDAR, HYPERSPECTRAL, AND THE STACK OF MEP AND EMEP, RESPECTIVELY. GBFF AND STACK

SHOW THE CLASSIFICATION ACCURACIES OF THE PROPOSED METHOD USING GBFF AND STACKING AS THE FUSION STEP. THE NUMBER OF FEATURES IS

WRITTEN IN PARENTHESES.

LiDAR Hyper LiDAR+Hyper EPlidar EPhyper EPlidar + EPhyper GBFF Stack
(1) (63) (64) (71) (213) (284) (50) (290)

OA 46.7 84.92 90.61 95.9 85.17 98.39 97.66 98.45
AA 43.31 85.01 89.17 93.53 84.43 97.06 96.87 97.17

Kappa 0.335 0.8004 0.8566 94.53 0.8099 0.9785 0.9688 0.9793

1 42.5 86.2 86.09 97.82 96.06 97.62 99.73 98.19
2 51.3 85.9 93.87 94.25 98.42 96.80 97.04 96.56
3 34.2 96.8 97.91 94.99 72.03 94.36 95.82 94.78
4 52.6 95.7 97.05 99.22 99.45 99.97 99.97 99.92
5 46.5 80.1 82.76 98.76 69.89 99.10 96.90 99.19
6 32.4 65 86.01 76.15 70.79 94.55 91.78 94.42

TABLE VIII
CNN TRENTO: CLASSIFICATION ACCURACIES OBTAINED BY DIFFERENT APPROACHES USING CNN. THE METRICS AA AN OA ARE REPORTED IN

PERCENTAGE. KAPPA COEFFICIENT IS OF NO UNITS. THE BEST RESULT IS SHOWN IN BOLD. LIDAR, HYPER, AND LIDAR+HYPER SHOW THE

CLASSIFICATION ACCURACIES OF LIDAR, HYPERSPECTRAL, AND THEIR STACK, RESPECTIVELY. EPlidar , EPhyper , AND EPlidar + EPhyper SHOW THE

CLASSIFICATION ACCURACIES OF EPS APPLIED TO LIDAR, HYPERSPECTRAL, AND THE STACK OF MEP AND EMEP, RESPECTIVELY. GBFF AND STACK

SHOW THE CLASSIFICATION ACCURACIES OF THE PROPOSED METHOD USING GBFF AND STACKING AS THE FUSION STEP. THE NUMBER OF FEATURES IS

WRITTEN IN PARENTHESES.

LiDAR Hyper LiDAR+Hyper EPlidar EPhyper EPlidar + EPhyper GBFF Stack
(1) (63) (64) (71) (213) (284) (50) (290)

OA 69.93 83.52 97.48 95.88 90.72 98.70 98.93 98.85
AA 49.42 80.59 95.58 92.50 84.99 98.08 98.48 98.40

Kappa 0.5802 0.7843 0.9664 0.9450 0.8763 0.9827 0.9855 0.9846

1 7.54 92.22 95.88 99.90 98.02 99.63 99.67 99.53
2 59.87 87.08 99.07 99.14 98.79 99.31 98.53 98.79
3 4.80 66.81 91.44 90.40 70.77 99.37 99.97 99.79
4 91.13 65.24 99.79 99.89 99.41 99.80 99.72 99.50
5 89.03 98.98 98.56 99.02 90.65 99.60 99.52 99.76
6 44.17 73.19 88.72 66.67 52.30 90.74 93.48 93.01
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